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Abstract 

None-Line-of-Sight (NLOS) signals denote Global Navigation Satellite System (GNSS) signals received indirectly from 
satellites and could result in unacceptable positioning errors. To meet the high mission-critical transportation and 
logistics demand, NLOS signals received in the built environment should be detected, corrected, and excluded. This 
paper proposes a cost-effective NLOS impact mitigation approach using only GNSS receivers. By exploiting more 
signal Quality Indicators (QIs), such as the standard deviation of pseudorange, Carrier-to-Noise Ratio (C/N0), elevation 
and azimuth angle, this paper compares machine-learning-based classification algorithms to detect and exclude 
NLOS signals in the pre-processing step. The probability of the presence of NLOS is predicted using regression algo-
rithms. With a pre-defined threshold, the signals can be classified as Line-of-Sight (LOS) or NLOS. The probability of the 
occurrence of NLOS is also used for signal subset selection and specification of a novel weighting scheme. The novel 
weighting scheme consists of both C/N0 and elevation angle and NLOS probability. Experimental results show that 
the best LOS/NLOS classification algorithm is the random forest. The best QI set for NLOS classification is the first three 
QIs mentioned above and the difference of azimuth angle. The classification accuracy obtained from this proposed 
algorithm can reach 93.430%, with 2.810% false positives. The proposed signal classifier and weighting scheme 
improved the positioning accuracy by 69.000% and 40.700% in the horizontal direction, 79.361% and 75.322% in the 
vertical direction, and 75.963% and 67.824% in the 3D direction.
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Introduction
Demand for mission-critical transportation and logis-
tics services is increasing rapidly, particularly in urban 
areas. These services, by definition, require high-per-
formance levels from systems that provide Positioning, 
Navigation, and Timing (PNT). Taking the example of 

services needed to support autonomous vehicles, the 
Society of Automotive Engineers (SAE) specifies the six 
levels of automation in Fig. 1 (SAE International, 2018). 
These levels range from 0 (full manual driving) to 5 (fully 
autonomous driving). At present, self-driving vehicles 
are transitioning from Level 3 to Level 4. Level 3 vehicles 
can detect the road environment and then make deci-
sions by themselves, such as cruising at a fixed velocity 
on a highway. For example, Audi A8L equipped with the 
Traffic Jam Pilot (TJP) technology was unveiled in 2019 
and certified in Germany as Level 3 (Saber et al., 2021). 
However, drivers must be prepared to take over vehicle 
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control when accidents occur or the autonomous driving 
system fails.

Compared to Level 3, Level 4 vehicles can control 
themselves when the aforementioned emergencies occur. 
Thus, Levels 3 and 4 are also known as the fail-safe and 
fail-operational levels, respectively. Example Level 4 vehi-
cles currently being tested are Alphabet’s Waymo, Baidu’s 
Apollo, Magna’s MAX4, and NAVYA. To achieve a high 
degree of positioning accuracy (decametric or better) 
with high availability, multi-sensor integration, including 
the Global Navigation Satellite System (GNSS), is com-
monly implemented.

GNSS comprises four global, two regional, and several 
augmentation systems. Starting with GPS many years 
ago, the development and operation of the additional 
systems resulted in receiving many more GNSS signals 
simultaneously (Li et al., 2020). For example, Fig. 2 shows 
that a U-blox receiver can receive more than 20 signals 
from the various systems at Imperial College London. 
Even with GPS and GLONASS, more than ten signals can 
be received and used for PNT. However, using all multi-
constellation signals for positioning and navigation, par-
ticularly in built-up areas, increases the computational 
burden and the possibility of significant and unaccepta-
ble measurement errors. Such measurements should be 
detected and, where possible, excluded. Hence, the main 
tasks are to detect and exclude faulty signals, enabling 
the use of the best signals subset. Failure Detection and 
Exclusion (FDE) should ideally be designed to be used 
across the entire signal processing chain, including pre-
processing and the positioning, navigation, and timing 
functions. This paper uses machine learning algorithms 

together with GNSS measurement Quality Indicators 
(QIs) for FDE in the pre-processing function.

From the generation of the data message, upload to 
GNSS satellites to transmission, reception of GNSS sig-
nals, and processing them in receivers, these signals are 
contaminated by error sources listed in Table  1 (Hof-
mann-Wellenhof, Lichtenegger & Wasle, 2007; Kaplan 
& Hegarty, 2005). Among these error sources, mul-
tipath occurs when the direct signal and its reflection 
are received together. Especially from a geometric per-
spective in the built environment, if the signal paths are 
shaded, the signals are reflected by static and dynamic 
objects and received by the receiver, resulting in large 
measurement errors. The signals that can be received 
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directly are referred to as Line-of-Sight (LOS). Instead, 
we collectively denote reflected and multipath signals 
None-Line-of-Sight (NLOS).

As the multipath error in the L1 pseudorange and 
carrier phase can reach 450  m, and a quarter of the 
wavelength, which is approximately 5  cm, respectively 
(European Space Agency, 2013), LOS signals have rela-
tively small pseudorange errors (metre level) compared 
to NLOS signals. Thus, the QI relative to pseudorange 
error characteristics can be used to detect NLOS signals.

Like the PNT requirements for autonomous driving, the 
multipath error also depends greatly on the surrounding 
physical environment influencing traffic scenarios. In an 
open area, almost all GNSS signals can be received directly 
from satellites. However, there is a wide variety of complex 
environmentally influenced traffic scenarios such as in the 
urban canyon, semi-urban, suburb, viaducts, boulevards, 
and tunnels (Wang, Groves & Ziebart, 2015). In the urban 
canyon, GNSS signals can be blocked or reflected by high-
rise buildings, trees, and other static or dynamic obstacles. 
These obstacles could result in severe multipath errors, 
resulting in unacceptable position errors, which cannot 
be mitigated through differential techniques (MacGougan 
et al., 2002; Ward, 1997). NLOS pseudorange measurement 
errors can also be large (Hsu et  al., 2017). Therefore, the 
NLOS signals are regarded as faulty signals in this paper. 
The multipath impact can be mitigated by detecting and 
excluding the NLOS signals or reducing the weight of these 
signals.

Several methods have been proposed to mitigate the 
effect of NLOS signals, including improved antenna 
and receiver design, use of weighting models or statisti-
cal approaches, signal processing, consistency check-
ing, mapping- or image-aided matching, and LOS/NLOS 
classification (Zhu et  al., 2018). However, choke-ring, 
controlled-reception pattern, and dual-polarization anten-
nas are expensive and impractical for dynamic use due 
to size, weight and power consumption. The use of code 
discriminator in the receiver is also expensive in terms of 

power consumption and manufacture. Since this paper 
seeks a cost-effective NLOS impact mitigation approach 
employing only a civil GNSS receiver without external 
aiding, mapping- and image-aided matching and consist-
ency-checking algorithms are not considered. This paper 
proposes a machine learning-based regression algorithm 
internal to the receiver to detect NLOS signals. The input 
features of the machine learning model are a set of Qual-
ity Indicators (QIs), such as elevation angle and Carrier-
power-to-Noise-density ratio (C/N0), which indicate the 
quality of the signals, and, therefore, enable the possibility 
of accurate prediction NLOS signals. With an appropri-
ate threshold, all signals can not only be categorised as 
either NLOS or LOS but also allow the latter to be ranked 
to reflect the error level. A novel weighting scheme is pro-
posed to exploit this ranking to increase the availability of 
the positioning function.

State‑of‑the‑art weighting schemes
Weighted Least Square (WLS) is commonly used for posi-
tioning with GNSS pseudorange measurements, using the 
expressions:

where z is the difference between pseudorange measure-
ment and geometric range, H is the state matrix, ε is the 
measurement noise vector, and x is a calculated vector 
comprised of three-dimensional coordinates and receiver 
clock offsets of all constellations. The weight matrix W  
is commonly specified based on the estimation of GNSS 
measurement quality with the two basic QIs, elevation 
angle and C/N0, as shown in Table 2 (Collins, & Langley, 
1999; Eueler & Goad, 1991; Hartinger & Brunner, 1999; 
Parkinson et al., 1996; Shokri et al., 2020; Tay & Marais, 
2013; Wen, 2020; Wieser & Brunner, 2000). The elevation 
angle and C/N0 masks are also commonly used to exclude 

(1)z = Hx + ε

(2)x̂ =
(

H
T
WH

)−1
H

T
W z

Table 1  Main GNSS error sources

Source Details

Satellite-based Clock bias

Ephemeris bias

Selective availability

Signal propagation Ionospheric delay

Tropospheric delay

Multipath

Receiver-based Clock bias

System noise

Table 2  Elements designed in the weight matrix

Number Function

(i) |sin (elevation)| 

(ii) sin
2 (elevation) 

(iii) tan
2 (elevation) 

(iv) 1/(0.244 × exp(−C/N0/10))

(v) 1/(0.03 + 0.244 × exp(−C/
N0/10))

(vi) 1/(0.13 + 0.56 × exp(−C/
N0/10))

(vii) exp(C/N0/10 )× sin2 (elevation)
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possible outlying measurements during pre-processing in 
the GNSS processing software.

As complexity increases in built environments such as 
urban canyons, GNSS signal analysis also increases. The 
C/N0 value could increase or decrease due to construc-
tive or destructive multipath interference, respectively 
(Ward, 1997). Therefore, not all signals with larger C/N0 
values should be labelled as LOS. In addition, signals are 
generally considered LOS when they have large eleva-
tion angles. However, there are scenarios when low-ele-
vation angle signals are LOS, for example, those in front 
and behind a vehicle travelling in an urban canyon. Note 
that high-rise buildings can block vehicle-side signals. 
Therefore, only using an elevation angle is insufficient 
to capture signal quality. Direction-related indicators 
such as azimuth angle and vehicle heading should also be 
considered.

This paper considers more QIs, including those related 
to direction, measurement statistics and vehicle, for 
advanced signal quality measurement. After an initial 
analysis of the correlation of all QIs to LOS/NLOS sig-
nals, some are used as input to selected machine learning 
models. The NLOS probability output from the models 
can then be used to label signals and improve the design 
of the weight matrix. Adjrad and Groves (2017) propose 
a weight matrix by multiplying the NLOS probability 
with the seventh weighting scheme. As a result, horizon-
tal positioning accuracy is improved by 44%. Wen et al. 
(2020) estimate the pseudorange error of NLOS signals 
using an empirical formula constructed from both the 
azimuth and elevation angles (Hsu, 2018). The NLOS sig-
nals are labelled based on an integrated GNSS and Lidar 
system. The User Equivalent Range Errors (UERE) for 
both LOS and NLOS signals are then calculated for the 
new weight matrix design. Xu et al. (2020) predict a C/N0 
threshold of LOS/NLOS signals using the Support Vec-
tor Machine (SVM) classification algorithm. If the pseu-
dorange residual is greater than this threshold, the weight 
of this measurement decreases. Experiments show that 
the mean positioning error is reduced from 26.40  m to 
3.03  m in peri-urban scenarios. The standard deviation 
was also reduced from 14.78 m to 1.96 m. In a deep urban 
scenario, the mean and standard deviation of the posi-
tioning error is reduced by 53.77% and 90.53%, respec-
tively. The above studies indicate that an improved weight 
matrix can be designed along with NLOS information. 
Compared with the aforementioned studies in which 
the NLOS probability or signal classification results are 
obtained using a three-dimensional city model, Lidar 
data, and sky-plot images, this paper proposes a machine 
learning algorithm using only GNSS QIs.

State‑of‑the‑art machine learning‑based LOS/NLOS signal 
classification algorithms
The aim of detecting NLOS signals is to reduce the mag-
nitude and standard deviation of the UERE. However, 
since positioning accuracy is mainly influenced by Dilu-
tion of Precision (DOP) and UERE, these two aspects 
should be simultaneously considered when selecting the 
best signal subset (Montenbruck et  al., 2002; Yin et  al., 
2013).

When selecting a subset of signals, the main issue is 
an excessive computational burden. For example, if four 
signals are selected from ten signals, the number of DOP 
calculations is C4

10 = 210 . If the number of signals goes 
up to twenty, the number will soar to 4845. This issue 
requires resolution since many signals (twenty or higher) 
GNSS signals from all constellations can be received 
simultaneously. Simplified DOP calculation algorithms 
have been proposed for fast signal subset selection (Meng 
et  al., 2015; Teng et  al., 2018; Wang et  al., 2018; Wei, 
Wang & Li, 2012). Chen and Zhang (2010) exclude some 
signals before the DOP calculation. The excluded signals 
have elevation angles between thirty to sixty degrees and 
azimuth angles approximately equal to those of other sig-
nals. Park and How (2001) and Wei et al. (2012) also pro-
pose an algorithm to eliminate signal redundancy. They 
assess signal redundancy by the angle between the two 
signal LOS vectors. However, in the urban canyon, NLOS 
signals account for a large proportion of those received. 
Therefore, reducing the number of DOP computations 
directly through signal redundancy may remove LOS sig-
nals and retain NLOS signals. An effective way to solve 
this issue is to select LOS signals using mathematical or 
machine learning algorithms before DOP calculation 
(Chen, Chien-Sheng, Lin & Lee, 2013; Chen, Chien-
Sheng, 2015; Mosavi & Divband, 2010; Simon & El-
Sherief, 1995; Teng & Wang, 2016; Wu et al., 2010; Zarei, 
2014; Zhu, 1992). In this way, most NLOS signals, as well 
as other faulty signals, can be removed before DOP cal-
culation. The state-of-the-art flow chart of the signal sub-
set selection algorithm is illustrated below (Fig. 3).

Machine learning algorithms have previously been 
used to detect GNSS NLOS signals. The three machine 
learning algorithms used are supervised, unsupervised, 
and reinforcement learning. The main difference between 
these three categories is the availability of labels. The 
supervised learning model is trained and tested with a 
labelled dataset. Unlabelled data are appropriate for the 
unsupervised learning model. For reinforcement learn-
ing, an agent interacts with the target environment by 
performing actions and obtaining rewards or punish-
ments generated in real time. For NLOS probability pre-
diction, supervised learning algorithms are mainly used. 
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The final dataset thus has signals labelled as either LOS 
or NLOS.

This paper uses supervised learning algorithms with 
QIs only from GNSS sensors as input to predict the 
NLOS probability and classify LOS/NLOS signals. Exten-
sive studies have been conducted and yielded relatively 
accurate results. Early research used only a single QI, 
such as C/N0, as input (Irish et al., 2014a). As discussed 
earlier, C/N0 is sensitive to the multipath effect, espe-
cially in urban canyons. Moreover, the C/N0 distributions 
of LOS and NLOS signals tend to overlap for low-grade 
receivers. Thus, more QIs have also been considered for 
the signal classification task. Yozevitch et al., (2012, 2016) 
proposed three classifiers using the C/N0, elevation angle, 
measurement, carrier lock, satellite clock bias, and indif-
ferent features.

The three classification algorithms are the four-depth 
decision tree, expectation maximisation, and a simple 
C/N0 threshold determination. The classification accu-
racy achieved is higher than 70%. Using the same set of 
QIs, Sun et al., (2020a, 2020b, 2021) improved the accu-
racy to 89% for static data. The Gradient Boost Regres-
sion Tree (GBRT) in Sun et al. performs better than the 
decision tree, K Nearest Neighbor (KNN), and Artificial 

Neuro-Fuzzy Inference System (ANFIS) algorithms. 
However, the classification results obtained from static 
and dynamic data in the urban canyon are very different. 
For static data, the state of the GNSS signal changes grad-
ually. For dynamic data, the state may suddenly change 
from visible to blocked and then visible again. Phan et al. 
(2013) use the elevation and azimuth angle as QIs and 
Support Vector Machine (SVM) regression as a regressor 
to estimate multipath errors. The SVM multipath error 
estimator performs better than the Carrier Smoothing 
Filter (CSF). This result shows that the azimuth angle 
can also be used to estimate signal quality. Hsu (2017) 
introduced more QIs as input, including the change rate 
of C/N0, and the difference between pseudorange rate 
and delta pseudorange. The classification accuracy of the 
SVM regressor achieved is 75.40%.

When using the dual polarisation antenna, the C/N0 
values generated from both Left-Hand Circular Polar-
ized (LHCP) and Right-Hand Circular Polarized (RHCP) 
antennas can also be used as QIs. Guermaha et al. (2018) 
propose a GNSS LOS/NLOS classifier with dual-polar C/
N0 values and elevation angle as input, showing that 99% 
of signals could be classified correctly. However, the data 
points were just 100, and 66 LOS signals were included 
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in the dataset. Data imbalance may have an impact on 
experimental results. Sun et al. (2021) propose an ANIFS 
algorithm with C/N0 and its difference, elevation angle, 
and pseudorange residual as QIs to predict and correct 
NLOS measurements. As a result, the positioning accu-
racy improved to 30%. Xu et  al. (2019) also propose an 
SVM classifier with the aforementioned QIs and others 
from the Autocorrelation Function (ACF) with 90.39% 
classification accuracy. In summary, many QIs could be 
used to estimate signal quality. Therefore, an analysis of 
how all QIs relate to or influence LOS/NLOS signals is 
required to inform the selection of QIs for input to the 
machine learning algorithms.

Suzuki et  al. (2020) use neural network and Convo-
lutional Neural Network (CNN) models to improve 
classification accuracy further to approximately 98%. 
However, the input to the CNN model is sky-plot images 
from a fish-eye camera at a static point in the urban can-
yon rather than the QIs discussed previously. In addi-
tion, there was no dynamic experiment. This paper only 
focuses on constructing a classifier using GNSS QIs 
when the vehicle moves. The potential advantage of this 
approach is that if a classification accuracy similar to the 
CNN model’s results can be achieved, then there would 
be no need for external aiding through additional sensors 
and data.

Machine learning algorithms for regression
This paper uses several machine learning regression algo-
rithms together with specified thresholds to predict the 
possibility of a GNSS signal being NLOS.

(i) Support Vector Regression (SVR): SVR is effectively 
used to generate a high-dimension hyperplane to fit the 
data (Drucker et al., 1996; Smola & Schölkopf, 2004). All 
data in the training dataset are closest to the hyperplane. 
Unlike the least squares method, the function of SVR 
is to minimise the coefficients. In this paper, the Radial 
Basis Function (RBF) kernel K

(

x, x̃
)

 is chosen for nonlin-
ear fitting. The SVR problem description and solution are 
illustrated in Formula (4) and (5). The advantages of the 
RBF kernel are simplicity of model design, powerful fit-
ting, and low space complexity.

where x and x̃ are QI vectors in input space, and σ is a 
kernel parameter.

(3)K
(

x, x̃
)

= exp

(

−
||x−x̃||

2

2σ 2

)

(4)min
ω,b

1
2
||ω| |2 + C

m
∑

i=1

γ∈
(

f (xi)− yi
)

where ω and b are two model parameters, C is a regulari-
zation coefficient, γ∈ is ∈-insistency loss function, gi is the 
function of Lagrange coefficients.

(ii) K-Nearest Neighbors (KNN): KNN is a non-para-
metric algorithm. The output is the average of k nearest 
neighbours’ values (Guo et  al., 2003; Song et  al., 2017). 
According to the result of ten-fold cross-validation, k is 
chosen as five, and all neighbours have the same weight 
(Fig. 4). 

(iii) Gradient Boosting Decision Tree (GBDT): GBDT 
is an iterative decision tree model with an ensemble of 
weak learners or trees (Ke et al., 2017; Sun, Wang, Zhang, 
Hsu & Ochieng, 2020). The predicted output is the sum 
of the outputs from all weak learners.

where γt and ht(x) are the weight and the predicted result 
of each weak learner, respectively. The kth weak learner 
predicts the residual between the true value and the sum 
of the predicted values from 1st to k-1th. In this paper, 
the GBDT model uses a Logarithmic loss function to 
indicate the accuracy of the binary classification. By tun-
ing hyperparameters, the number of weak learners inside 
the model is a hundred. The criterion is Friedman’s mean 
squared error (Friedman & Hall, 2007) to reduce impu-
rity. The Friedman mean squared error is also used in the 
decision tree and random forest algorithms.

(iv) Decision tree: As a typical tree-like model, the deci-
sion tree, or Classification and Regression Tree (CART), 
divides the entire training dataset into smaller subsets 
(Myles et  al., 2004; Xu et  al., 2005). The procedure for 
generating a decision tree is illustrated in Fig. 5. The Sum 
of Square Error (SSE) is always chosen as the splitting 
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∑
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metric for regression. To avoid overfitting, the maximum 
depth of the tree is ten in this paper (Fig. 6).

(v) Random forest: This ensemble algorithm uses a set 
of weak learners (Rodriguez-Galiano et  al., 2015; Segal, 
2004). Unlike GBDT, the random forest algorithm is 
a bagging method in which all weak learners are paral-
lel, and the predicted output is the average of the out-
puts from all learners. Moreover, increasing the number 
of decision trees in the random forest algorithm does 
not cause overfitting. However, the number of decision 
trees is a key factor. A bootstrapping strategy is used in 
the random forest algorithm to vary the input dataset 
for all learners. Each tree’s maximum depth is also ten 
to address the same concern as with the decision tree 
algorithm.

(vi) Linear regression: This is the simplest and classi-
cal regression algorithm applied in various scenarios. In 
this paper, the result of the linear regression algorithms is 
used as a baseline.

(vii) Adaboost: This is a boosting algorithm like the 
GBDT (Collins, Schapire & Singer, 2002; Solomatine & 

Shrestha, 2004). The first weak learner is trained from 
the initial training dataset. Then, according to the first 
learner’s performance, the training dataset’s distribu-
tion is adjusted in real time by increasing the weight of 
data points with large relative errors. After that, the sec-
ond weak learner is trained. The process is repeated until 
the number of learners is maximum. The advantages of 
the Adaboost are: (i) less prone to overfitting, and (ii) 
the regression model can be constructed with any weak 
learners. Like the GBDT model, a hundred weak learners 
are inside the Adaboost model.

(viii) Bootstrap aggregating (Bagging): Suppose the 
total amount of the training data is n (Breiman, 1996; 
Sutton, 2005). The ñ data points extracted are used for 
training the first decision tree ( ̃n < n ). Then the extracted 
data are put back into the whole training dataset. This 
process is repeated k times. The predicted output is the 
average of the outputs from all weak learners. The com-
putational complexity of the Bagging algorithm is small, 
and the out-of-bag estimation can be performed with 
enough remaining data (Martínez-Muñoz & Suárez, 
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Fig. 5  The flow chart of the decision tree
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2010). However, different from the random forest, which 
is also a bagging method, all QIs are involved in the train-
ing process. Therefore, Bagging is more prone to overfit-
ting than the random forest algorithm.

(ix) Extremely randomised tree (Extra tree): This 
method is similar to the random forest (Eslami et  al., 
2020; Geurts et  al., 2006). The difference is that the 
extra tree is only one random QI used when dividing 
the tree nodes. Extreme randomness greatly inhibits 
overfitting. However, the differences between each weak 
learner inside are also greater, which results in regres-
sion that tends to be less effective than the random forest 
algorithm.

(x) Multi-Layer Perceptron (MLP): MLP is an artificial 
neural network that contains one input layer, multiple 
hidden layers, and one output layer (Gaudart et al., 2004; 
Murtagh, 1991). This paper uses three hidden layers to 
represent the nonlinear regression complexity as much 
as possible. The following research will test the perfor-
mance of deep learning models with more hidden layers. 
The output of the previous layer is the input of the cur-
rent layer. The activation function describes the nonlin-
ear relationship between input and output. The Rectified 
Linear Unit (ReLU) achieves the best classification accu-
racy, as shown by experimental analysis.

Field test and analysis of results
Data description
One publicly available open-source GNSS dataset was 
captured in Berlin and Frankfurt (Reisdorf et  al., 2016). 
The highest German tower is also in Frankfurt am Main 
(see the red circle in Fig. 7 (iii)). These data were recorded 
using one low-grade U-blox EVK-M8T GNSS sensor 
with ANN-MS antenna, one high-grade NovAtel SPAN 
differential GNSS sensor with pinwheel antenna, and 
one odometry sensor. The ground truth was generated by 

fusing the NovAtel receiver with the ego-motion data in 
the post-processing step. The ego-motion data were col-
lected from the CAN sensor (Novatel, 2016) (Figs. 7, 8).

Furthermore, the LOS/NLOS labels provided inside 
the dataset were generated by comparing the times-
pan and availability of the signals from both the NovA-
tel and the U-blox. The reliability of the dataset can be 
proven through two aspects: (i) We randomly chose one 
epoch from every four sub-datasets and drew skyplots 
(see Fig.  9). In these figures, we represent the width of 
the road with a dotted line. Almost all signals from the 
same category are clustered together. Although some 
NLOS signals fall within the cluster boundary of LOS sig-
nals, this could be caused by the occlusion of balconies 
or street lamps. (ii) This dataset has already been used 
by two other papers for NLOS detection and LOS/NLOS 
classification (Li et al., 2022; Reisdorf & Wanielik, 2018). 
The driving environment is shown in Table  3 (Reisdorf 
et  al., 2016). The data capture was conducted such that 
the number of LOS and NLOS signals would be roughly 
the same to avoid the imbalance classification issue (Gan-
ganwar, 2012; Sun, Wong & Kamel, 2009) (Fig. 9).

In the dataset, the GPS time, GPS week and seconds of 
the week, ground truth receiver position, heading, veloc-
ity, acceleration, and yaw rate of the vehicle were gener-
ated using the NovAtel data and the ego-motion data. 
Broadcast ephemeris data were downloaded from the 
International GNSS Service (IGS). The GNSS and satel-
lite identifier, raw measurement and estimated standard 
deviation, carrier-phase lock time counter, and C/N0 
were generated using the U-blox data. Using this infor-
mation, the QIs needed in this paper are generated.

Assessment metrics
The assessment metrics for the signal classification task 
are classification accuracy and false positive probability.

True Positive (TP) STP is the result that the classifi-
cation model predicts the positive category correctly. 
True Negative (TN) STP is the result that the classifica-
tion model predicts the negative category correctly. False 
Positive (FP) SFP is the result that the classification model 
predicts the positive category incorrectly. False Negative 
(FN) SFN is the result that the classification model pre-
dicts the negative category incorrectly.

In the experiment, ’True’ means the signal is originally 
labelled as LOS, and ’False’ means the signal is labelled as 

(7)PCA =
STP + STN

STP + STN + SFP + SFN

(8)PFP =
SFP

STP + STN + SFP + SFN
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NLOS. Therefore, classification accuracy is the probabil-
ity that the category of a measurement can be correctly 
predicted using machine learning models. The probabil-
ity of false positive is also chosen as the second assess-
ment metric because the smaller the percentage of false 
positives, the fewer NLOS measurements are left in the 

remaining dataset. Therefore, this metric is safety critical. 
In addition, it shows the measure of trust in the remain-
ing dataset.

Discussion of quality indicators
Eleven QIs are discussed in this section. The relationship 
between each QI and the GNSS signal classification is 
analysed with 50,000 LOS and 50,000 NLOS signals cho-
sen randomly.

	(i)	 Carrier phase lock-time counter (milliseconds): 
This is the length of time for which the phase-
locked loop has been locked. When the GNSS 
receiver loses the lock of a transmitting signal, the 
ambiguity of carrier-phase measurements changes 
randomly. The U-blox receiver can provide this QI 
directly in the UBX-RAM-RAWX message. Stud-
ies have shown that the signal amplitude would be 
changed after being reflected. Consequently, the C/
N0 of the carrier and loss-lock state will be affected 
(Ray & Cannon, 1999; Townsend et  al., 1995). So, 
if the lock time is zero, the signal is likely NLOS. 
As illustrated in Fig. 10, almost 95% of NLOS sig-
nals had less than 1000  ms of lock time. In con-
trast, LOS signals had a longer lock time. More 
than 50% of LOS signals had a lock time of more 
than 10,000  ms. Since the maximum lock time 
was 64,500  ms, the smaller lock time would tend 
to be close to zero after normalisation. To avoid 
this issue, we use the carrier phase lock state to 
replace the lock time. If the lock time exceeds 
1000 ms, the lock state is 1 (locked). Otherwise, it 
is 0 (unlocked). In this way, 11.48% of NLOS signals 
and 72.81% of LOS signals are locked.

	(ii)	 Pseudorange standard deviation (metres): This 
indicates the magnitude of the pseudorange esti-
mation error. This value and the following two 
standard deviations are generated directly from 
the U-blox receiver. The relationship between this 
QI and LOS/NLOS signals is shown in Fig.  11. 
Almost all LOS signal values of pseudorange stand-
ard deviation were concentrated at 10.24 m. How-
ever, for NLOS signals, 15,670 values were 20.48 m 
(1694 for LOS signals), 4001 values were 40.96  m 
(129 for LOS signals), 856 values were 81.92 m (41 
for LOS signals), and 36 values were even as high 
as 163.84  m (5 for LOS signals). The experiment 
shows that this QI is the most effective for LOS/
NLOS classification.

	(iii)	 Phase standard deviation (cycles): This indicates 
the magnitude of the carrier phase estimation 
error. The relationship between this QI and LOS/
NLOS signals is shown in Fig.  12. Similar to the 

(i) Berlin-Potsdamer Platz (ii) Berlin-Gendarmenmarkt

(iii) Frankfurt am Main-Main
Tower

(iv) Frankfurt am Main-Westend
Tower

Fig. 7  Driving routes in berlin and frankfurt am main (Source: 
(Reisdorf et al., 2016))

(i) Berlin-Potsdamer Platz (ii) Berlin-Gendarmenmarkt

(iii) Frankfurt am Main-Main
Tower

(iv) Frankfurt am Main-Westend
Tower

Fig. 8  Three-dimensional streetscapes in berlin and frankfurt am 
main  (Source: Google map)
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pseudorange standard deviation, the magnitude 
of the phase standard deviation of the NLOS sig-
nals is relatively large. More than 30,000 NLOS 
signals have the largest phase standard deviation. 
However, for LOS signals, the amount does not 
decrease monotonically as the phase standard devi-
ation increases. 9.33% of LOS signals still have the 
largest phase standard deviation. Thus, this QI may 

not be as effective as the former QIs for classifica-
tion.

	(iv)	 Doppler standard deviation (Hertz): The Dop-
pler shift is the carrier-phase time derivative. 
The U-blox receiver also estimated the Doppler 
standard deviation. According to the relationship 
between this QI and GNSS signal classification, 
most LOS signals have a Doppler standard devia-
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Fig. 9  Skyplots from every four sub-datasets

Table 3  Driving environment description

City Road length (m) Road width (m) Building height (m) NLOS 
signal 
ratio (%)

Berlin-Potsdamer Platz 1600 13–17 70–100 49

Berlin-Gendarmenmarkt 4950 20–23 20–60 37

Frankfurt am Main-Main Tower 2925 10–70 110–259 46

Frankfurt am Main-Westend Tower 2340 10–70  < 208 32
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tion of less than 3  Hz, and the Doppler standard 
deviation of most NLOS signals is between 4 and 
9 Hz (Fig. 13).

	(v)	 C/N0 (decibel Hertz): Carrier-power-to-Noise-den-
sity ratio (C/N0) indicates the signal strength of the 
received GNSS signal and can be used for channel 
scheduling and code and phase lock checking (Pini, 
Falletti & Fantino, 2008). It is commonly used to 
estimate signal quality. Yozevitch et al., (2012, 2016) 
set a 37 dB·Hz C/N0 threshold to classify LOS and 
NLOS signals with 71% classification accuracy. The 
relationship between this QI and LOS/NLOS sig-
nals is shown in Fig.  14. When the C/N0 value is 
small, there is a high probability that the signal is 
NLOS. In contrast, the LOS signal has a large C/
N0 value. There is an overlap when the C/N0 value 
is between 20 and 50 dB·Hz. This overlap width is 
a key criterion for determining the GNSS receiver’s 
quality (Irish et  al., 2014b). A C/N0 mask is com-
monly set in the pre-processing step to exclude 

possible faulty signals. However, many NLOS sig-
nals tend to remain undetected in the built envi-
ronment. Figure 15 shows the relationship between 
the C/N0 values and the ratio of NLOS signals. 
Although the signal’s C/N0 is equal to 30  dB·Hz, 
more than 70% of the signals are NLOS. Therefore, 
the signal quality cannot be estimated by C/N0 
only.

	Normally, the ratio of NLOS signals decreases with 
an increase in C/N0. However, a special circum-
stance is when the value of the C/N0 is greater than 
50 dB·Hz with an increased ratio of NLOS signals. 
This is because constructive multipath interference 
can also cause an increase in C/N0 (Ward, 1997).

	(vi)	 Elevation angle (degrees): This is the angle between 
the line of sight and the horizontal plane, meas-
ured in the vertical plane. Like C/N0, the elevation 
angle mask is also set in the pre-processing step 
to exclude possible outlying signals for two main 
reasons. First, the magnitude of the atmospheric 
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delay error is determined by the elevation angle of 
the signal. Thus, the elevation angle is the variable 
of empirical ionospheric and tropospheric cor-
rection models. Moreover, the GNSS signals with 
small elevation angles can be blocked or reflected 
when a vehicle moves in the urban canyon. The sig-
nals with relatively large elevation angles are most 
likely LOS. However, in the urban canyon, the sig-
nals in the front and rear directions of the vehicle 
are not prone to be obstructed. On the other hand, 
signals received from both sides of the vehicle are 
easily affected by the high-rise buildings. Therefore, 
angle-related QIs need to be analysed comprehen-
sively.

	The relationship between the elevation angle and LOS/
NLOS signals is shown in Fig.  16. 69.80% of LOS 
and 19.10% of NLOS signals had more than 40 
degrees elevation angles. Compared with the C/
N0, the distributions of the two signal categories 
concerning the elevation angle overlapped with a 
smaller area. This result means that the elevation 

angle is more feature-important for signal classi-
fication than the C/N0. The relationship between 
the elevation angle and the ratio of NLOS signals is 
shown in Fig. 17. Similar to the C/N0, in the urban 
canyon, simply setting an elevation angle mask in 
the pre-processing step is insufficient to exclude 
most NLOS signals.

	(vii)	Azimuth (degrees): This is the angle between a 
GNSS satellite and the North. It is measured clock-
wise around the antenna’s horizon or earth station’s 
horizontal plane. A separate analysis of the azi-
muth angle shows no obvious relationship between 
this QI and GNSS signal classification (shown in 
Fig.  18). This result is reasonable since the GNSS 
satellites are scattered in all directions. However, 
when a vehicle moves in the urban canyon, the sig-
nals in the front and rear directions of the vehicle 
are not prone to be blocked or reflected. In addi-
tion, the signals received on both sides are heavily 
affected by high-rise buildings. Figure 9 also proves 
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that signals on both sides of the driving direc-
tion are more likely to be NLOS. Thus, the angle 
between two vectors and the GNSS signal classifi-
cation must be related. The two vectors are those of 
the azimuth angle and the vehicle’s heading angle. 
The angle range is [0°, 90°]. We denote this angle as 
a difference from the azimuth angle. The relation-
ship between this angle and GNSS signal classifica-
tion is shown in Fig.  19. Compared to the NLOS 
signals, the LOS signals have smaller differences in 
azimuth angle.

	(viii)	Velocity (metres per second), acceleration (metres 
per second squared), and yaw rate (degrees per sec-
ond): These are all vehicle-based QIs. Results show 
no relationship between these three QIs and GNSS 
signal classification. Indeed, these QIs cannot be 
used in a single traffic scenario to estimate the sig-
nal quality. However, in future studies, all traffic 
scenarios should be analysed comprehensively. In 
different traffic scenarios, the driving speed and 
yaw rate, as well as the acceleration pattern, will 
be different. For example, the speed limit in the 
United Kingdom may vary by vehicle type. For cars 
and motorcycles, the maximum speeds of vehicles 
travelling in built-up areas and motorways are 30 
and 70 miles per hour, respectively. Thus, these QIs 
can effectively assist the system in determining the 
current traffic scenario and further assessing the 
signal quality.

	(ix)	 Change rate of C/N0 (decibel Hertz): This is the 
difference in the C/N0 of two adjacent time points 
of the same signal. Figure 20 shows that this QI is 
irrelevant to signal classification.

	(x)	 Measurement residual (metres): This is the dif-
ference between the pseudorange and computed 
range from a GNSS satellite to the estimated 

receiver position. In addition to GNSS signal qual-
ity, measurement residuals are also affected by the 
positioning method and all measurements used at 
that time. The results from the experiment show 
some residual outliers causing this QI’s normal val-
ues to be closer to zero after normalisation.

	Adopting basic and weighted least squares methods 
with weighting schemes from (i) to (vii) in Table 2, 
the relationship between the measurement residual 
and GNSS signal classification in the same GPS 
time interval is shown in Fig.  21. Three findings 
arise from this Figure. Firstly, the distributions of 
LOS and NLOS signals almost completely overlap. 
Therefore, it is difficult to distinguish between two 
categories of signals using this QI alone. Secondly, 
the relationships vary with weighting schemes. 
There is, therefore, no generalised conclusion that 
measurement residuals obtained by a specified 
weighting scheme can best be used to accomplish 
signal classification. Finally, LOS signals tend to 
have greater measurement residual in the urban 
canyon. For example, as shown in Fig. 21 (vii), the 
mean values of LOS and NLOS signals are − 19.34 
and − 15.18 m, with corresponding standard devia-
tions of 23.46 and 24.40 m.

	In addition, as the pseudorange residual is obtained 
after positioning, while signal FDE is conducted 
during pre-processing, this QI is not available for 
classification at this stage. So instead, we use the 
standard deviation of pseudorange to describe its 
error characteristics.

	(xi)	 Change rate of pseudorange (metres): This QI can 
also be used to describe the error characteristics of 
the pseudorange. However, it has the same draw-
back as the measurement residual. The outlier of 
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this QI can be extremely large with either LOS or 
NLOS signals. The maximum absolute values for 
LOS and NLOS signals from the experiment are 
175,359.78  m and 508,235  m, respectively. There 
are 82.66% LOS and 86.72% NLOS signals with 
less than 100 m of this QI. After feature normalisa-
tion, the outliers caused most values of the QI to be 
closer to zero. Therefore, this QI is also not recom-
mended for classification.

	In summary, eleven QIs are discussed in this section, 
with the first seven shown to be important features 
for distinguishing LOS and NLOS signals. There-
fore, the seven QIs are used in this paper as inputs 
to the machine learning algorithms to predict the 
NLOS probability of each signal.

Results of LOS/NLOS classification using machine learning 
algorithms
After collecting and generating all QIs needed and 
combining them with LOS/NLOS labels, one machine-
learning dataset from four sub-datasets in Berlin and 
Frankfurt was created. 50,000 LOS and 50,000 NLOS 
signals were chosen randomly to avoid the data imbal-
ance issue. The dataset is randomly divided into train-
ing, validating and testing sub-datasets. The ratios of the 
training, validating and testing sub-datasets are 52.5%, 
17.5% and 30%, respectively. This section focuses on the 

classification results using this dataset. Ten regression 
algorithms are implemented to predict the NLOS proba-
bility, and then the signals are classified as LOS or NLOS 
by comparing the possibility to a pre-set threshold. This 
paper sets the threshold as 50%. This threshold is sensi-
tive to the number of signals (e.g. in a multi-constellation 
scenario), measurement redundancy and LOS/NLOS 
trade-off.

Normally, the elevation angle and C/N0 masks are set to 
exclude possible outlying signals in the GNSS processing 
software. This approach can be regarded as a simple deci-
sion tree model. The relationships between the two QIs 
and the ratio of NLOS signals were separately presented 
in Figs. 14 and 16. Table 4 shows the results (classification 
accuracy and false positives) for different elevation angles 
and C/N0 masks. Note that the C/N0 mask of 37 dB·Hz in 
the last row of Table 4 was proposed by Yozevitch et al., 
(2012, 2016).

It can be seen from Table 4 that classification accuracy 
increases with increasing magnitudes of the two masks 
while false positives decrease. This result suggests that 
larger masks could be effective for excluding NLOS sig-
nals. However, there are two drawbacks to this decision 
tree model. One is that the classification accuracy is still 
lower than the results of the previous studies. Compared 
with directly setting two thresholds, the fifteen-layer 
decision tree training with these two QIs achieves up to 
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85.95% classification accuracy and 8.19% false positive. 
The first three layers of the ten-layer decision tree are 
shown in Fig. 22, where labels 0 and 1 represent LOS and 
NLOS, respectively.

The second drawback is that the number of data points 
labelled NLOS and excluded increased with two masks. 
For four sets of masks in Table 4, the number of signals 
excluded is 4.78%, 11.49%, 20.46%, and 44.71%, respec-
tively. The proportions of NLOS in these excluded sig-
nals are 12.21%, 25.13%, 44.67%, and 78.39%, respectively. 
When the elevation angle and C/N0 masks were set to 
20° and 37  dB·Hz, 9.66% of LOS signals were excluded. 
The remaining number of signals needs to be higher to 
be useful for positioning and integrity monitoring. For 
the decision tree model, 38.36% of signals are excluded, 
of which 94.14% were NLOS. This result suggests that 
implementing machine learning algorithms can improve 
classification accuracy and ensure that as many LOS sig-
nals as possible remain.

According to the previous research, two QI sets are 
mainly used, which are (i) elevation angle and C/N0, (ii) 
the elevation angle, C/N0, and measurement residual. 
These QI sets are listed in Table  5. This paper used the 
(vii) weighting scheme in Table 2 to calculate the meas-
urement residual. The machine learning algorithms 
mainly implemented in the previous research were the 
SVR, KNN, GBDT, and decision tree. Moreover, the 
random forest method is also implemented as a bagging 

method. The random forest algorithm performs best in 
any set of QIs. 

Moreover, the experimental results show that even 
though the measurement residual is not an effective 
QI for signal classification, this additional QI improves 
both classification accuracy and false positives. There-
fore, in this paper, we replace the measurement residual 
with the pseudorange standard deviation to describe the 
error characteristics of the pseudorange. The third QI 
set (iii) comprises the elevation angle, C/N0, and stand-
ard deviation of pseudorange. The results show that the 
classification accuracy is improved further. Therefore, 
the pseudorange standard deviation is more suitable than 
the pseudorange residual for LOS/NLOS classification 
(Table 6).

As discussed in the  last section, seven QIs, which are 
carrier phase lock-time counter, pseudorange standard 
deviation, phase standard deviation, doppler standard 
deviation, C/N0, elevation angle, and difference of azi-
muth angle, are combined to form the fourth (iv) set to 
classify LOS and NLOS signals. The classification results 
of ten machine learning algorithms are listed in Table 7. 
In this case, the performance of the bagging algorithms 
is better than the boosting algorithms, and the random 
forest method performs best. As a result, the classifica-
tion accuracy of random forest methods improves from 
92.20% to 93.02%, and the false positive performance 
improves from 3.40 to 3.01%.

The feature importance of all QIs fed into the ran-
dom forest model is calculated and shown in Fig.  23. 
The standard deviation of pseudorange, C/N0, elevation 
angle, and difference of azimuth angle are the first four 
important QIs to classify GNSS signals. The difference in 
azimuth angle turns out to be more important than the 
C/N0 in the urban canyon. Correspondingly, the other 
three QIs are less important. The feature importance of 
each of these three QIs is less than 0.05. Some studies 
have already shown that using only the best features can 
improve the model’s performance (Dewi & Chen, 2019; 
Jaiswal & Samikannu, 2017). Discarding less important 

Table 4  Classification results when setting two masks

Elevation angle 
mask (degrees)

C/N0 mask 
(dB·Hz)

Classification 
accuracy (%)

False 
positive 
(%)

10 10 67.26 32.48

15 15 70.11 27.70

20 20 75.59 20.48

20 37 76.30 8.00

15.3% samples
label=1

9.0% samples
label=1

True

True True

True

True True TrueFalse

C/N0≤48 dB·Hz
24.3% samples

Elevation≤50.52°
21.9% samples

Elevation≤28.50°
46.2% samples

Elevation≤40.76°
53.8% samples

Elevation≤53.63°
35.6% samples

C/N0≤39 dB·Hz
18.2% samples

C/N0≤33 dB·Hz
100% samples

False

False

False

False False False

16.1% samples
label=1

5.8% samples
label=0

8.9% samples
label=0

9.4% samples
label=0

11.8% samples
label=0

23.8% samples
label=0

Fig. 22  First three layers of the ten-layer decision tree with C/N0 and elevation angle
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features is more reliable, cost-effective, and time-effec-
tive. It is also important in navigation missions since the 
Time to Alert (TTA) should be met.

The fifth QI set (v), comprising these first four impor-
tant QIs, is fed into the machine learning algorithms. The 
results show that the classification accuracy of the ran-
dom forest model improves from 93.06% to 93.43%, and 
false positives decrease from 3.01% to 2.81% (Table  8). 
The other two algorithms, GBDT and Bagging, perform 
well in the classification task. One decision tree in the 
random forest model is shown in Fig. 24.

With 93.43% classification accuracy, most NLOS sig-
nals can be detected and excluded in the pre-process-
ing step. Figure  25 illustrates the frequency plots of the 
number of NLOS signals at one GPS second before and 
after NLOS signal exclusion. Without signal exclusion, 
many received NLOS signals affect positioning accuracy. 
Therefore, multiple failures should be detected in integ-
rity monitoring. However, after the NLOS signals are 

detected and excluded by the random forest algorithm, 
the frequency of only one NLOS signal in the signal set 
at one GPS second is 15.28%. The frequency of more than 
one NLOS signal is less than 2%.

However, after NLOS signal detection and exclu-
sion using the random forest algorithm with the (v) QI 
set, 41.43% of signals are excluded, of which 8.86% are 
LOS. For example, if seven measurements are needed for 

Table 5  Description of all QI sets

QI set Description

(i) Elevation angle and C/N0

(ii) Elevation angle, C/N0, and measurement residual

(iii) Elevation angle, C/N0, and standard deviation of pseudorange

(iv) Carrier phase lock-time counter, pseudorange standard deviation, phase standard devia-
tion, doppler standard deviation, C/N0, elevation angle, and difference of azimuth angle

(v) Pseudorange standard deviation, C/N0, elevation angle, and difference of azimuth angle

Table 6  Classification results with three sets of QIS

QI set Machine learning 
algorithm

Classification 
accuracy (%)

False 
positive 
(%)

(i) SVR 82.30 9.87

(i) KNN 88.21 6.20

(i) GBDT 87.25 7.82

(i) Decision tree 85.95 8.19

(i) Random forest 89.62 5.32

(ii) SVR 85.79 7.82

(ii) KNN 88.63 5.99

(ii) GBDT 87.92 7.33

(ii) Decision tree 86.57 7.46

(ii) Random forest 90.81 4.55

(iii) SVR 86.01 7.10

(iii) KNN 89.10 5.30

(iii) GBDT 90.08 5.32

(iii) Decision tree 89.08 5.07

(iii) Random forest 92.20 3.40

Table 7  Classification results with (IV) QI set

QI set Machine learning 
algorithm

Classification 
accuracy (%)

False 
positive 
(%)

(iv) SVR 86.41 7.00

(iv) KNN 89.72 4.75

(iv) GBDT 92.49 3.71

(iv) Decision tree 91.53 3.95

(iv) Random forest 93.06 3.01

(iv) Linear regression 84.28 8.59

(iv) Adaboost 86.05 8.38

(iv) Bagging 93.03 3.82

(iv) Extra tree 88.94 5.89

(iv) MLP 88.01 4.48

0.4

0.3

0.2

Fe
at

ur
e 

im
po

rta
nc

e

0.1

(i) (ii) (iii) (iv)
QIs

(v) (vi) (vii)
0

Fig. 23  Feature importance of qis in random forest
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positioning at every GPS second, then there are no suf-
ficient signals for 11.19% of the time. One possible solu-
tion to this issue is to select the seven measurements 
with the lowest NLOS probability values. As shown in 
Table 9, the GPS 16th, 18th, 26th, 27th, and GLONASS 
4th and 5th signals are labelled as LOS. These six signals 
are insufficient for positioning. Thus, the seventh signal, 
the GPS 21st signal with 50.36% NLOS probability, is also 
selected. The NLOS impact can be mitigated with the 
proposed weighting scheme.

Classification accuracy and false positives vary when 
setting different thresholds of NLOS probability. Fig-
ures 26  and 27 show the results of the random forest and 
GBDT algorithms. When the threshold is 0.5, classifica-
tion accuracy is the highest. Moreover, false positives 
increase with a larger threshold. From the results, the 
random forest algorithm is always better than the GBDT 
in these two aspects.

In comparing the results of our proposed classifica-
tion algorithm with others proposed before in Table 10, 
we again demonstrate that the LOS/NLOS classification 
accuracy depends on the selected algorithms and QIs. 
With single QI, the upper bound of the classification 
accuracy was 80%. The GBDT or naïve threshold might 
be the best algorithm for single QI. As the number of fea-
tures increased, the classification accuracy also increased. 
The QIs selected by other scholars were also related to 
signal strength, pseudorange, and elevation angle that 
can directly reflect the quality of the GNSS signal and 
influence on multipath. In this paper, we innovatively 
selected the difference between delta pseudorange and 
pseudorange rates to represent the surrounding environ-
ment and vehicle driving information. With the help of 
this feature, the classification accuracy increased by 3%. 

Results of weighting schemes
Since the random forest algorithm with the (v) QI set as 
input can classify LOS and NLOS signals with 93.62% 
classification accuracy and only 2.93% false positive, 

most NLOS signals can be detected and excluded. 
Therefore, this paper’s second task is further to miti-
gate the NLOS impact with a novel weighting scheme. 
In Table  2, seven weighting schemes have been intro-
duced. The positioning accuracy of seven weighted 

5.1% samples
label=1

6.3% samples
label=0

True

True True

True

True True TrueFalse

Elevation≤28.62°
11.4% samples

Elevation≤22.38°
49.6% samples

Elevation≤59.59°
39.0% samples

STDpseudo≤15.07 m
10.2% samples

STDpseudo≤73.44 m
100% samples

C/N0≤32 dB·Hz
28.8% samples

C/N0≤31 dB·Hz
61.0% samples

False

False

False

False False False

5.3% samples
label=0

44.4% samples
label=0

23.0% samples
label=1

5.8% samples
label=1

6.6% samples
label=0

3.6% samples
label=1

Fig. 24  First three layers of a decision tree in the random forest with (v) QI set
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Fig. 25  Frequency plot of the number of NLOS signals at one GPS 
time before or after NLOS signal exclusion

Table 8  Classification results with (V) QI set

QI set Machine learning 
algorithm

Classification 
accuracy (%)

False 
positive 
(%)

(v) SVR 86.63 6.92

(v) KNN 90.09 4.76

(v) GBDT 92.97 3.57

(v) Decision tree 92.00 3.80

(v) Random forest 93.43 2.81

(v) Linear regression 84.61 8.70

(v) Adaboost 86.04 8.59

(v) Bagging 93.31 3.43

(v) Extra tree 88.89 5.57

(v) MLP 87.36 6.43
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positioning algorithms is shown in Tables  11  and 12. 
Table  11  illustrates the positioning results with the 
elevation and C/N0 masks set as 15. For Table 12, these 
masks are removed. It is worth mentioning that the sin-
gular matrix cannot be inverted without two masks. To 
solve this issue, we set these two masks as 1.

The result shows that with the two-mask set, the 
horizontal positioning error’s smallest mean and stand-
ard deviation are obtained with the (vii) weighting 
scheme in Table 2, which are 7.990 and 5.371 m in the 
horizontal direction, 16.067 and 18.040 m in the verti-
cal direction, and 20.448 and 18.411  m  in the Three-
Dimensional (3D) direction. The positioning accuracy 
is reduced when removing the masks. This result is 
obvious because only the (vii) scheme is designed using 
two QIs: the elevation angle and C/N0. As the number 
of QIs increases, the quality of the GNSS signals can be 
better estimated. For high-quality signals, their values 

in the weight matrix are large. This paper proposes a 
novel weighting scheme (viii) which is designed as

where PNLOS is the NLOS probability. When the signal 
is most likely NLOS, its weight value is small, and vice 
versa. The positioning results show that without NLOS 
signal exclusion, the mean value and standard deviation 
are 6.462 and 4.802 m in the horizontal direction, 8.754 
and 9.185  m in the vertical direction, and 12.973 and 
10.504 m in the 3D direction. Experiments have proved 
that the mean and standard deviation of the positioning 
error in the horizontal direction decreased by more than 
10%. The mean and standard deviation of positioning 
error decreased by more than 35% in the vertical and 3D 
directions. Moreover, when removing the two masks, the 
positioning accuracy is also the highest among all weight-
ing schemes. The impact of NLOS is well mitigated with 
the term (1− PNLOS).

After NLOS signal detection and exclusion, the 
remaining signals are referred to as LOS_ml. The posi-
tioning accuracy is improved further using either the 
(vii) or (viii) weighting scheme (shown in Table  13). 
Compared with the positioning accuracy results 
using: (1) (vii) weighting scheme and no NLOS sig-
nal exclusion, (2) (viii) weighting scheme and NLOS 
signal exclusion, the positioning accuracy improved 
by 69.000% and 40.700% in the horizontal direction, 
79.361% and 75.322% in the vertical direction, and 
75.963% and 67.824% in the 3D direction.

(9)(1− PNLOS)× exp (C/N0/10)× sin2 (elevation)

Table 9  GNSS signal reception at one GPS second

GPS week GPS second (s) GNSS identifier Satellite 
identifier

NLOS 
probability 
(%)

1913 383,114.198 GPS 7 100

10 99.04

15 100

16 9.92

18 23.42

21 50.36

26 48.72

27 15.76

29 99.98

GLONASS 4 28.31

5 26.21

6 60.60

12 96.95

20 99.40

21 57.96
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Fig. 26  The relationship between the threshold value and 
classification accuracy results of Random Forest and GBDT
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Conclusion
This paper investigates the GNSS LOS/NLOS signal 
classification algorithm and weighting scheme for accu-
rate positioning. It is worth mentioning that we focus on 
NLOS signal detection and exclusion, as well as impact 
mitigation. Indeed, the GNSS signal could be blocked or 
reflected by buildings, walls, trees and others when the 
vehicle is driving in the built environment. To estimate 
signal quality, a richer set of QIs, including carrier-phase 
lock-time counter, the standard deviation of measure-
ments, vehicle-based QIs, angle-related QIs, C/N0, and 
others, are evaluated. Regression algorithms using these 
QIs as input are used to predict the NLOS probability of 
GNSS signals. With a pre-defined threshold, these sig-
nals can be labelled as LOS or NLOS. Results show that 

classification accuracy could reach 93.430%, with only 
2.810% false positive of the data using the four most 
important QIs as input. The NLOS probability can also 
be used for signal subset selection and weighting scheme 
design. A novel weighting scheme is proposed to mitigate 
the impact of NLOS. The results show that the position-
ing accuracy improved by 69.000% and 40.700% in the 
horizontal direction, 79.361% and 75.322% in the verti-
cal direction, and 75.963% and 67.824% in the 3D direc-
tion when using the random forest algorithm and novel 
weighting scheme.

Since this paper used an open-source dataset, the 
number of data points, QIs, and the urban environ-
ment were all fixed. As future scientific research work, 
we will collect a dataset including more QIs and data 

Table 10  Comparison of classification algorithm performance

Paper Classification algorithm QI Classification 
accuracy (%)

Yozevitch et al. (2012) Naïve threshold C/N0 70–80

Hsu (2017) SVM C/N0 67.1

Hsu (2017) SVM Change rate of C/N0 39.4

Hsu (2017) SVM pseudorange residual 40.5

Hsu (2017) SVM difference between delta pseudorange and pseudorange rate 65.4

Sun et al. (2020a), (2020b) GBDT C/N0 74.1

Yozevitch et al. (2016) Decision tree C/N0, elevation angle, measurement, carrier lock, satellite clock bias, indifferent 
features

78.9

Hsu (2017) SVM C/N0, Change rate of C/N0, pseudorange residual, difference between delta 
pseudorange and pseudorange rate

75.4

Xu et al. (2019) SVM Correlator-Level and RINEX/NMEA-Level features 90.4

Sun et al. (2020a), (2020b) GBDT C/N0, pseudorange residual, elevation angle 89.0

Sun et al. (2020a), (2020b) Decision tree C/N0, pseudorange residual, elevation angle 76.0

Sun et al. (2020a), (2020b) Distance-weighted KNN C/N0, pseudorange residual, elevation angle 88.5

Sun et al. (2020a), (2020b) ANFIS C/N0, pseudorange residual, elevation angle 82.7

This paper, 2023 Random forest The standard deviation of pseudorange, C/N0, elevation angle, and difference of 
azimuth angle

93.4

Table 11  Positioning accuracy with different weighting schemes and two masks

Weighting 
scheme

Signal Elevation 
and C/N0 
masks

Horizontal 
mean (m)

Horizontal 
standard 
deviation (m)

Vertical mean (m) Vertical 
standard 
deviation (m)

3D mean (m) 3D standard 
deviation 
(m)

(i) NLOS + LOS Yes 10.097 7.974 32.377 23.224 36.673 23.850

(ii) NLOS + LOS Yes 8.903 7.084 28.704 21.948 32.452 22.785

(iii) NLOS + LOS Yes 8.180 5.497 21.068 19.728 25.113 20.416

(iv) NLOS + LOS Yes 10.610 7.462 22.395 21.151 27.905 21.526

(v) NLOS + LOS Yes 11.584 8.569 33.385 24.159 38.564 24.481

(vi) NLOS + LOS Yes 11.721 8.702 34.245 24.532 39.484 24.833

(vii) NLOS + LOS Yes 7.990 5.371 16.067 18.040 20.448 18.411

(viii) NLOS + LOS Yes 6.462 4.802 8.754 9.185 12.973 10.504
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points from more constellations and more driving sce-
narios in the built environment. By labelling all driving 
scenarios, the performance of the LOS/NLOS classifi-
cation algorithms can be compared and analysed thor-
oughly. Furthermore, the reduced number of GNSS 
signals every second might cause a greater Dilution 
of Precision (DOP) value, and then the poor satellite 
geometry would cause lower positioning accuracy. Two 
possible solutions can address this issue. (i) Collecting 
data from four global constellations and some regional 
constellations. (ii) Remaining more signals by adjusting 
the LOS/NLOS threshold. Correcting and excluding 
the NLOS signals as much as possible under the condi-
tion of the DOP and further improving the positioning 
accuracy will be the focus of future work. To test the 
performance of LOS/NLOS classification algorithms, 
pseudorange positioning was used in this paper. For 
real-time vehicle positioning, higher accuracy algo-
rithms are always chosen, such as Real-Time Kinematic 
(RTK), Precise Point Positioning (PPP), and GNSS/INS 
integration. Research is ongoing on these positioning 
algorithms and relevant NLOS impact mitigation.
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