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Abstract 

The regeneration of articular cartilage posed a formidable challenge due to the restricted treatment efficacy of exist-
ing therapies. Scaffold-based tissue engineering emerges as a promising avenue for cartilage reconstitution. However, 
most scaffolds exhibit inadequate mechanical characteristics, poor biocompatibility, or absent cell adhesion sites. In 
this study, cartilage-like protein-polysaccharide hybrid hydrogel based on DOPA-modified hyaluronic acid, bovine 
type I collagen (Col I), and recombinant humanized type II collagen (rhCol II), denoted as HDCR. HDCR hydrogels 
possessed the advantage of injectability and in situ crosslinking through pH adjustment. Moreover, HDCR hydrogels 
exhibited a manipulable degradation rate and favorable biocompatibility. Notably, HDCR hydrogels significantly 
induced chondrogenic differentiation of rabbit bone marrow mesenchymal stem cells in vitro, as demonstrated 
by the upregulation of crucial chondrogenic genes (type II collagen, aggrecan) and the abundant accumulation 
of glycosaminoglycan. This approach presented a strategy to manufacture injectable, biodegradable scaffolds based 
on cartilage-like protein-polysaccharide polymers, offering a minimally invasive solution for cartilage repair.
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1 Introduction
Cartilage injury represents a significant societal and 
economic burden, given its high prevalence as a preva-
lent joint disorder [1]. The structure of cartilage tissue 
is devoid of blood vessels, nerves, and lymphatics, con-
tributing to its restricted self-repair capacity following 
injury [2, 3]. Currently, commonly employed clinical 
approaches, such as autologous chondrocyte transplan-
tation, osteochondral transplantation, and bone marrow 
stimulation, are encumbered by several inherent limita-
tions, including heightened complications at the donor 
site, constrained availability, potential immunological 
reactions, and transmission of communicable diseases [4, 
5]. Fortunately, the advent of tissue engineering technol-
ogy, predicated on the modulation of scaffolds, growth 
factors, and cells, presents promising therapeutic strate-
gies for cartilage repair [6, 7].

Hyaluronic acid (HA), the only non-sulfated glycosa-
minoglycan in cartilage, plays a pivotal role in both the 
extracellular matrix (ECM) and synovial fluid of cartilage 
[8, 9]. Notably, it exhibits the capability to augment lubri-
cation performance at cartilage interfaces [10]. None-
theless, the clinical utility of exogenous HA encounters 
challenges due to its rapid degradation, absence of cel-
lular adhesion sites, and suboptimal mechanical proper-
ties, constraining its sustained efficacy for cartilage repair 
[11]. To tackle these issues, investigators have employed 
strategies such as the modification of hyaluronic acid 
(HA), for instance, by utilizing dopamine hydrochloride 
(DOPA), and so on [12]. The phenolic hydroxyl of DOPA 
contributed to enhancing adhesion, effectively facili-
tating binding to various materials or cell surfaces [13, 
14]. Therefore, modifying hyaluronic acid or combin-
ing it with other materials can enhance its mechanical 
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properties, extending its degradation rate, and further 
increase cell adherence to the material [12, 15].

Type II collagen is traditionally acknowledged as an 
essential collagenous constituent within articular car-
tilage, exerting a pivotal role in the developmental and 
maturation processes of chondrocytes [16]. Conse-
quently, there is a growing focus on type II collagen or 
materials derived from it in cartilage defect treatment 
and research [17]. Literature indicated that HA/Col II 
and Col I/Col II hydrogels had been employed to enhance 
the deposition of articular cartilage-specific matrix com-
ponents through the loading of bone marrow mesen-
chymal stem cells (MSCs). Despite the hydrogel could 
be injected into the defect site, continued refinement 
was imperative to optimize the congruence between the 
geometry of scaffold and the anatomical contours of the 
cartilage defect site. [18]. However, the prevalent utili-
zation of type II collagen derived from animals, such as 
pigs, cattle, and chickens, presents challenges includ-
ing high cost, batch instability, immunogenicity, and the 
risk of transmitting infectious diseases [19, 20]. Conse-
quently, recombinant humanized collagen II (rhCol II), 
generated through the cultivation of genetically modified 
microorganisms expressing human genes, emerges as an 
attractive alternative [21]. The rhCol II employed closely 
resembles human collagen in properties, offering poten-
tial advantages such as high purity, specific biological 
activity, batch stability, and lower immunogenicity [22]. 
Additionally, the addition of Col I has been proposed to 
play a crucial role in the mechanical stability of Col I/Col 
II hydrogels [18, 20]. Furthermore, an optimal ratio of 
Col I/II hybrid hydrogels has been reported to induce the 
differentiation of autologous MSCs into chondrocytes. 
Hydrogels containing both collagens exhibited higher 
glycosaminoglycan (GAG) yields compared to those con-
taining only one type of collagen [23]. Our previous stud-
ies also demonstrated that Col I/HA hydrogels possessed 
appropriate mechanical properties, and the addition of 
HA prevented excessive collagen contraction, thereby 
playing a vital role in inducing stem cells to differentiate 
into chondrocytes [24]. Therefore, collagen-based hydro-
gels provide a biomimetic three-dimensional matrix 
microenvironment, presenting a promising strategy for 
repairing cartilage defects [25–28].

Inspired by the principles of bionics, this study was 
dedicated to investigating the effects of distinct groups 
of HDCR hydrogels on chondrogenic differentiation 
(Graphical abstract). The study commenced with the 
optimization of the material system to explore the per-
formance characteristics of the various HDCR hydrogels. 
Subsequently, the biocompatibility of HDCR hydrogels 
was investigated in  vitro. Finally, the study delved into 
assessing the efficacy of HDCR hydrogel in promoting 

chondrogenic differentiation of rBMSCs, employing 
histological staining, polymerase chain reaction (PCR), 
and quantification of glycosaminoglycan (GAG) levels 
in vitro.

2  Experimental section
2.1  Materials and methods
Hyaluronic acid (HA, Mw = 0.34 MDa) was purchased 
from Bloomage Freda Biopharma Corporation (Shan-
dong, China). Type I collagen (Col I) was purchased from 
Tianjin ShijiKangtai Biomedical Engineering Corporation 
(Tianjin, China). Recombinant humanized type II col-
lagen (rhCol II, Mw = 98.4 KDa, 1078 amino acids) was 
obtained from Jiangsu Trautec Medical Technology Co., 
Ltd (Jiangsu, Chain). 1-Ethyl-3-(3-dimethyllaminopropyl) 
carbodiimide hydrochloride (EDCI, 99%), N-hydrox-
ysuccinimide (NHS, 99%), dopamine hydrochloride 
(DN, 99%) were provided by Best-reagent corporation 
(Chengdu, China). Hematoxylin and eosin staining (HE) 
were provided by Beijing Solarbio Science & Technology 
Co., Ltd (Beijing, China). DMEM medium (Hyclone) was 
purchased from Thermo Fisher Scientific Corporation 
(USA). Papain (sigma).

2.2  Preparation of HA‑DOPA
HA-DOPA was prepared using the reported method 
[29]. Simply, 1 g of HA powder was added to 150 mL of 
ultra-pure water until a clear solution was obtained. The 
reaction took place under a vacuum atmosphere. Subse-
quently, EDC (2400 mg) and NHS (575 mg) were added. 
Then, the reaction proceeded for 1.5 h within a pH range 
of 4.75–5.0. Afterward, 1420  mg of DOPA was added, 
and the reaction pH was maintained at 4.75–5.0 for 24 h 
to obtain the HA-DOPA solution. The dialysis of the 
HA-DOPA solution was performed at pH 3.5 for three 
days. Finally, HA-DOPA was freeze-dried. The chemical 
composition was verified by 1H-NMR (Bruker Amx-400, 
USA) and FTIR (Nicolet 6700, USA).

2.3  Fabrication of HDCR hydrogels
HA-DOPA was dissolved in DMEM medium (40  mg/
mL), Col I was dissolved in ethanoic acid (0.5  M) to 
form a Col I solution at a concentration of 40  mg/mL, 
and rhCol II was dissolved in ultrapure water to form a 
rhCol II solution at a concentration of 80  mg/mL. Sub-
sequently, appropriate volumes of these solutions were 
mixed (with final concentrations as shown in Table 1 and 
Additional file 1: Table S1), and 1 M NaOH solution was 
added to adjust the solution pH to 7.4. The resulting mix-
ture was then injected into molds (8  mm * 3  mm), and 
HDCR hydrogels were obtained under 37  °C conditions 
(Table 2).
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2.4  Microstructure observation
HDCR hydrogels were freeze-dried using a critical 
point dryer (CPD, EMCPD300, Germany). The hydro-
gels underwent two rounds of sputtering and gold 
spraying. They were examined utilizing a Scanning 
Electron Microscope (Hitachi Limited, S-4800, Japan).

2.5  Rheological properties
We employed the TA Discovery DHR-2 rheometer (TA 
Instruments, USA) to measure the rheological property. 
The linear viscoelastic region was determined through 
a strain amplitude scan (a strain of 100–300%) [30].

2.6  Dynamic mechanical analysis (DMA)
The storage modulus and loss modulus of the hydrogels 
were determined using a dynamic mechanical analyzer 
(DMA, TA-Q800, USA) in multi-frequency mode with 
fixed frequencies of 1, 2, 5, and 10  Hz, and a preload 
force of 0.001 N. Each sample underwent three repli-
cates for measurements.

2.7  Swelling ratio
Each HDCR hydrogel’s dry weight  (Wd) was weighed 
and immersed in phosphate buffered saline (PBS) solu-
tion, then placed in a shaker (37 °C) at 80 rpm. Finally, 
the hydrogels  (Ws) were reweighed at specific time 
intervals until they reached swelling equilibrium.

Swelling ratio = (Ws − Wd)/Wd × 100%

2.8  Disintegration behavior
First, record the weight  (Wo) of the hydrogel sample. 
After recording the weight, submerge the sample in 
ultra-pure water supplemented with 100 units of hya-
luronidase per milliliter in a shaker at 37 °C. Then, they 
were taken out from the shaker at the indicated time 
points, the outer layer of water on the hydrogel was 
removed, and the hydrogel was reweighed  (Wb).

2.9  The biocompatibility test and chondrogenic 
differentiation in vitro

rBMSCs (1*104 cells/well) were cultured in 24-well 
plates, co-cultivated with hydrogels, and subjected to cell 
viability assessments using the CCK-8 assay (Dojindo, 
Japan) and live/dead cell staining over a duration of 1, 
3, and 7  days. In the CCK-8 experiment, the cells were 
incubated in a culture medium with CCK-8 (10%) for 2 h, 
following which the absorbance was measured. For the 
live/dead cell staining, the cells underwent incubation in 
a mixture containing fluorescein diacetate and propidium 
iodide for 3  min, and observation was conducted using 
confocal laser scanning microscopy (LSM 880; ZEISS).

rBMSCs (1*104 cells/well) were cultured in 24-well 
plates and co-cultured with three hydrogels for 14 days. 
Chondrogenic differentiation of rBMSCs was analyzed 
using hematoxylin eosin (HE) staining, toluidine blue 
(TB) staining, safranin O (SO) staining, and alcian blue 
(AB) staining.

The hydrogel/rBMSCs complex was prepared by add-
ing cells (5*106 cells/mL) to the precursor solution as 
described in Sect. 2.3. GAG content was quantified and 
RNA expression was analyzed after 14  days culture. To 
measure the GAG content, the HDCR hydrogel/rBM-
SCs complex was collected in Eppendorf tubes with 
papain phosphate buffer and left to incubate overnight at 
a temperature of 65  °C. After centrifugation, the super-
natant was collected, The Blyscan sGAG assay kit (B100, 
Biocolor) was used to determine the GAG content. The 
PicoGreen (dsDNA quantification reagent, enzyme) assay 
was employed to measure the DNA content. To analyze 
gene expression, RNA collection was fulfilled using the 
RNeasy Mini Kit (Qiagen). PCR detection was conducted 
using the SsoFast EvaGreen Supermix (Bio-rad) to assess 
the transcript levels of Col I, aggrecan (Agg), Col II, 
GAPDH. The transcript levels of other genes were deter-
mined relative to the GAPDH gene expression.

2.10  Histological analysis
After washing the rBMSCs one time with PBS, the sam-
ples were secured in 4% polyformaldehyde (w/v) for 

Degradation percentage = (Wo − Wb)/Wo × 100%

Table 1 The primary data of the experimental groups

Groups HA‑DOPA (mg/
mL)

Col I (mg/mL) rhCol 
II (mg/
mL)

HD15C10R10 15 10 10

HD20C10R10 20 10 10

HD20C10  R0 20 10 0

Table 2 Primer sequences for GAPDH, Aggrecan, Col II, and Col I

Gene Forward sequence primer Reverse sequence primer

GAPDH TCG GAG TGA ACG GAT TTG GC TTC CCG TTC TCA GCC TTG AC

Aggrecan GGC CAC TGT TAC CGT CAC TT GTC CTG AGC GTT GTT GTT GAC 

Col II TGA TAA GGA TGT GTG GAA 
GCCG 

CAG GCA GTC CTT GGT GTC TTC 

Col I GTC GAT GGC TGC ACG AAA AA GGG CCA ACG TCC ACA TAG AA
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48  h. HE, SO, TB, AB were used to analyze the chon-
drogenic differentiation in HDCR hydrogels. Positive 
cells staining was analyzed using image J.

2.11  Statistical analysis
All data were symbolized as the mean ± standard devia-
tion (SD) of more than three independent tests. We con-
ducted an analytical assessment using one-way analysis 
of variance (ANOVA). The data were examined using 
SPSS 22.0 software.

3  Results and discussion
3.1  Preparation and characterization of HA‑DOPA
The depicted procedure for the preparation of HA-
DOPA was illustrated in Fig.  1a. The carboxyl group 
of hyaluronic acid was activated under acidic condi-
tions using EDCI and NHS, and then reacted with the 
amino and phenolic hydroxyl groups on an appropriate 
amount of DOPA to obtain HA-DOPA. Specifically, the 
C=O peak in HA was observed at 1441  cm−1, while HA-
DOPA exhibited specific absorption peaks at 1730  cm−1 
in FTIR spectra, which were characteristic bands for 
superimposed amide or aromatic C=O [31], as depicted 
in Fig.  1b (black arrow). The structural characterization 
of the HA-DOPA was further confirmed by 1H-NMR. As 
depicted in Fig.  1c, in contrast to the spectrum of HA, 
there were new peaks were observed at approximately 
6.8 ppm, which were attributed to the characteristic cat-
echol motifs based on previous reports [32]. Additionally, 
the peaks at 2.9 ppm, and 6.56–6.90 ppm were attributed 
to the methylene, and benzene groups in DOPA, respec-
tively. Approximately 5% substitution degree of dopa-
mine on HA, as determined based on the peak area ratio 
at 6.8 ppm in HA-DOPA to the peak area of the hydro-
gen atom at 1.9 ppm in HA. Collectively, the aforemen-
tioned results indicated that HA-DOPA was successfully 
synthesized.

3.2  Preparation and characterization of HDCR hydrogel
The macroscopic view of HDCR hydrogels was shown in 
Fig. 1d. The hydrogels were categorized into three groups, 
which was designated as  HD15C10R10,  HD20C10R10, and 
 HD20C10R0. As depicted in Fig. 1e, HDCR hydrogels were 
prepared according to the method described in Sect. 2.3, 
and the precursor solution transformed from a yellow 
liquid to a brown hydrogel at pH = 7.4, 37 °C, indicating 
the oxidation of DOPA. Previous studies have consist-
ently shown that the adhesive properties of DOPA were 
primarily achieved through its oxidation process [33]. 
Meanwhile, the HDCR hydrogel could be easily injected 
with a 26 G syringe to form SCU shapes, suggesting 
excellent injectability and the ability to accurately fill 
irregular cartilage defects. Furthermore, the SEM analysis 

manifested that the HDCR hydrogels possessed a porose 
structure with uniform porosity (Fig.  1f ). This finding 
confirmed that the HDCR hydrogels were beneficial for 
gas and nutrient exchange, which had been supported by 
previous research [29]. As depicted in Fig. 2a, the swell-
ing ratio of  HD20C10R10 (129.93%) was higher than that of 
 HD15C10R10 (52.47%) and  HD20C10R0 (50.66%). Notably, 
all three groups of hydrogels achieved swelling stability 
within 24 h. The observed disparity in swelling behavior 
was attributed to the presence of DOPA, which possessed 
a catechol group. The oxygen atom in water established 
hydrogen bonds with the hydroxyl group of catechol, 
thereby facilitating the accumulation of water molecules 
within the DOPA-modified hyaluronic acid [34].

As depicted in Fig. 2b, the  HD20C10R0 hydrogel exhib-
ited a rapid degradation rate during the initial stages, and 
the mass loss exceeded 90% at about 48  h. Conversely, 
 HD20C10R10 hydrogel and  HD15C10R10 hydrogel demon-
strated smooth degradation in the presence of hyaluro-
nidase solution, with complete disintegration exceeded 
90% when the experiment was conducted for approxi-
mately 60  h. It has been reported that the enhance-
ment of hydrogels against enzymatic degradation has 
been previously demonstrated through the crosslink-
ing of hyaluronic acid with collagen amino groups [35]. 
The discrepancy of crosslinking degree was posited as a 
determinant influencing the disparate degradation rates 
observed among the three distinct hydrogel groups.

Moreover, the shear thinning behavior of the hydro-
gel was evaluated through viscosity measurement. As 
depicted in Fig.  2c, it was found that G′ was dominant 
and gradually decreased under 100–200% strain, while 
G′′ gradually increased, with a crossing point occurred 
at 200% strain. Beyond this strain, G′′ became dominant, 
suggesting a transition of the hydrogel from a solid state 
to a liquid state due to the breaking of chemical bonds.

Additionally, the storage and loss modulus of all HDCR 
hydrogel were assessed using DMA. As presented in 
Fig.  2d–e, the loss modulus of HDCR hydrogels was in 
the range of approximately 0.1–1.3 kPa, and the storage 
modulus was in the range of approximately 0.3–2.5 kPa. 
It was noticed that both moduli increased with the rise 
in frequency (1–10  Hz) for all hydrogels. Notably, the 
 HD15C10R10 hydrogel and  HD20C10R10 hydrogel demon-
strated higher values compared to  HD20C10R0 hydrogel, 
with the modulus of  HD15C10R10 hydrogel surpassing that 
of  HD20C10R10. It was plausible that rhCol II might exert 
a promotional effect on the modulus, thereby poten-
tially contributing to the heightened moduli observed in 
 HD15C10R10 and  HD20C10R10 hydrogels in comparison 
to  HD20C10R0 hydrogel. The processes involve the oxi-
dative cross-linking of phenolic hydroxyl groups in HA-
DOPA and amino groups on Col I or rhCol II utilizing 
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Fig. 1 a The synthesis route of HA-DOPA. b FTIR spectra of HA and HA-DOPA. c 1H-NMR  (D2O) spectra of HA and HA-DOPA. d The macrostructure 
of hydrogels within different groups. e The gelation process and injection of HDCR hydrogels. f The microstructure (SEM) characterization of HDCR 
hydrogel
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the Michael addition reaction, as illustrated in Fig. 2f. The 
mechanical properties of hydrogels had a strong influ-
ence on cell growth and viability [36]. It was reported 
in the literature that at a modulus of about 200  Pa, 
the cell survival rate was more than 90%, while in the 
medium (about 100 Pa), the cell survival rate was about 
80%. Another study also showed that DOPA-containing 
hydrogels with a modulus in the range of 1–3  kPa pro-
moted cell proliferation. Together, this demonstrated that 
the mechanical properties of HDCR hydrogels play a pro-
motional role in influencing cell growth and viability [29, 
37].

3.3  In vitro proliferation and morphology of rBMSCs 
in HDCR hydrogels

Cell function and growth were tested using live/dead 
dyeing and CCK-8 assays to examine the impact of co-
culturing rBMSCs with hydrogels. Originally, the inves-
tigation included  HD15C10R10,  HD20C10R10,  HD20C10R0, 
and  HD20C0R10. The results of the cell proliferation assay 
revealed significantly superior CCK-8 outcomes for 
 HD15C10R10 and  HD20C10R10 compared to  HD20C10R0 and 
 HD20C0R10 (Additional file 1: Fig. S1). Consequently, sub-
sequent experimental groups were optimized, leading to 
the selection of  HD15C10R10,  HD20C10R10, and  HD20C10R0 

for in-depth investigation. As depicted in Fig.  3a–b, all 
HDCR hydrogels exhibited an increase in viable cells 
count over time. Additionally, the morphology of rBM-
SCs within  HD20C10R10 hydrogel was further investigated 
using SEM (Fig. 3c). Remarkably, rBMSCs exhibited nor-
mal growth morphology within the pores of  HD20C10R10 
hydrogel, indicating its conducive nature for cell growth 
and morphological maintenance. These findings collec-
tively indicated that HDCR hydrogels in different groups 
were conducive to promoting the proliferation and main-
taining the morphology of rBMSCs. Notably,  HD20C10R10 
hydrogels emerged as the most effective in facilitating cell 
proliferation and adhesion.

3.4  Investigating the impact of HDCR hydrogel/rBMSCs 
complexes on chondrogenic differentiation

Histological staining was used to assess the cartilage 
differentiation in rBMSCs. Notably, the results of HE, 
SO, TB and AB staining (Fig. 4a) revealed that rBMSCs 
were  HD20C10R10 hydrogels exhibited more intense posi-
tive staining in comparison to the other hydrogels. Fig-
ure 4b–d illustrates that the densities of TB, SO, and AB 
positive cells were as follows: 71.34%, 76.86%, 55.02% 
in  HD20C10R10; 52.64%, 64.68%, 43.78% in  HD15C10R10; 
and 42.76%, 69.90%, 37.34% in  HD20C10R0. These 

Fig. 2 a Swelling ratio of three groups of all hydrogels. b Disintegration behavior of all hydrogels in hyaluronidase environment. c The rheological 
test of all hydrogels by rheometer. d Loss modules of all hydrogels by DMA. e Storage modules of all hydrogels by DMA. f Self-crosslinking 
schematic diagram of HDCR hydrogel
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Fig. 3 a Representative fluorescence images for rBMSCs cultured within the hydrogels following incubation for 1, 3, and 7 days. b The proliferation 
of rBMSCs was quantified utilizing CCK-8 assay. c Morphological examination of rBMSCs within the  HD20C10R10 hydrogel was conducted on day 7 
using SEM. *P < 0.05, ****P < 0.0001
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findings provided further supportive evidence for the 
augmented potential of chondrogenic differentiation in 
the  HD20C10R10 hydrogel, highlighting its superior per-
formance in promoting chondrogenesis in rBMSCs.

Figure 5a presented the process of chondrogenic dif-
ferentiation in  vitro, while quantitative evaluation of 
chondrogenic related gene expression was performed 
using PCR. Figure 4b–d depicted the gene expression of 
collagen I (Col I), aggrecan (Agg), collagen II (Col II) in 
HDCR hydrogel/rBMSCs. Notably, the gene expression 

of Agg in  HD20C10R10 hydrogel was the highest com-
pared to  HD15C10R10 hydrogel and  HD20C10R0 hydrogel 
after 14  days (Fig.  5c). Furthermore, the highest gene 
expression levels of Col II were observed in  HD20C10R10 
hydrogel compared to  HD15C10R10 hydrogel and 
 HD20C10R0 hydrogel at 14  days (Fig.  5b). Conversely, 
 HD20C10R0 hydrogel exhibited higher Col I gene expres-
sion at 14 days (Fig. 5d), suggesting that the addition of 
rhCol II may have an inhibitory effect on chondrogenic 
fibrosis.

Fig. 4 a Histological staining of HE, TB, SO and AB for 14 days in vitro. b The staining ratio of TB positive cells. c The staining ratio of SO positive cells. 
d The staining ratio AB positive cells. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001
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Furthermore, the quantification of glycosamino-
glycan (GAG) content in the extracellular matrix of 
cartilage serves as a crucial determinant of chon-
drogenic differentiation in rBMSCs. As depicted in 
Fig.  5e–g, there was a sequential decline in glycosa-
minoglycan (GAG) content within the  HD20C10R10, 
 HD15C10R10, and  HD20C10R0. Conversely, DNA content 
exhibited an opposing trend. Notably, the GAG/DNA 
ratio in  HD20C10R10 hydrogel surpassed that in both 
the  HD15C10R10 and  HD20C10R0 hydrogels at 14  days, 
thereby corroborating the outcomes derived from 
PCR analysis. This finding emphasized the promis-
ing potential of  HD20C10R10 hydrogel in enhancing the 
chondrogenic lineage commitment of rBMSCs.

4  Conclusion
In summary, the objective of this study was to develop 
injectable and biodegradable cartilage-like protein-poly-
saccharide hybrid hydrogels. Among the various HDCR 
hydrogel groups, diverse mechanical characteristics and 
a controlled degradation rate were successfully attained. 
Additionally, HDCR hydrogels provided a suitable  3D 
microenvironment for rBMSCs, promoting cell survival 
and proliferation. More importantly, the favorable 3D 
microenvironment of HDCR hydrogels not only facili-
tated rBMSC adhesion but also significantly enhanced 
chondrogenic differentiation. Consequently, this investi-
gation introduced a promising strategy for advancing the 
development of injectable and biodegradable scaffolds 

Fig. 5 a Diagram of chondrogenic differentiation of HDCR hydrogel/rBMSCs complexes in vitro. b Gene expression of Col II on day 14. c Gene 
expression of aggrecan on day 14. d Gene expression of Col I on day 14. e Quantification of GAGs produced by rBMSCs. f Quantification of DNA 
produced by rBMSCs. g GAG/DNA. *P < 0.05, **P < 0.01, ***P < 0.001
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based on protein-polysaccharide hybrids resembling car-
tilage, with implications for the field of cartilage tissue 
engineering.
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