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Abstract 

Metal organic frameworks (MOFs) with their large surface area and numerous active sites have attracted significant 
research attention. Recently, the application of MOFs for the catalytic degradation of organic pollutants has pro-
vided effective solutions to address diverse environmental problems. In this review, the latest progress in MOF-based 
removal and degradation of organic pollutants is summarized according to the different roles of MOFs in the removal 
reaction systems, such as physical adsorbents, enzyme-immobilization carriers, nanozymes, catalysts for photoca-
talysis, photo-Fenton and sulfate radical based advanced oxidation processes (SR-AOPs). Finally, the opportunities 
and challenges of developing advanced MOFs for the removal of organic pollutants are discussed and anticipated.
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1 Introduction
Common organic pollutants include dyes, pesticides, 
antibiotics and mycotoxins, some of which can pose 
a severe threat to the environment and human health 
[1–3]. Notably, mycotoxins produced as secondary 
metabolites by some fungi have multiple toxic effects on 
humans and livestock [4]. In addition, pesticides such as 
herbicides, insecticides and bactericides can also affect 
the environment and cause health problems [5]. Simi-
larly, antibiotics are a class of drugs that treat infectious 
diseases in humans. However, the abuse of antibiotics is 
causing an increase in resistant bacteria [6], as well as 
metabolic and endocrine disruption. In addition, some 
dyes are also toxic and are the most commonly seen 
organic pollutants in the textile and leather industries. 

Therefore, there has been an increasing concern regard-
ing purifying organic pollutants due to the various recal-
citrant pollutants in wastewater from leather production.

Diverse methods have been involved in the removal 
of organic pollutants, such as physical removal, bio-
degradation and chemical degradation [7, 8]. Physical 
methods can separate organic pollutants from the envi-
ronment and food matrix, but can cause secondary pol-
lution [9]. Biodegradation based on single or combined 
cultures of bacteria, molds, yeasts, algae, or enzymes, is 
a popular remediation technique because it is highly eco-
nomical and environmentally friendly [10, 11]. Although 
most organic pollutants can be removed by biodegrada-
tion [12, 13], some are highly recalcitrant and require 
additional chemical treatment. In chemical degradation, 

Graphical Abstract



Page 3 of 22Wei et al. Collagen and Leather            (2023) 5:33  

advanced oxidation processes (AOPs) have received sig-
nificant attention, commonly using hydrogen perox-
ide  (H2O2), hydroxyl radicals (•OH) and sulfate radicals 
 (SO4

•−), which can oxidize organic pollutants into less 
toxic products [14–16]. In addition, Fenton and Fenton-
like processes, photocatalysis and  SO4

•−-based oxidative 
systems are also examples of AOPs.

Metal organic frameworks (MOFs), formed by the self-
assembly of metal ions or metal clusters with organic 
ligands, have aroused wide attention [17, 18]. The large 
surface area, numerous adsorption sites [19] and vari-
able functional groups have opened up potential applica-
tions of MOFs in catalysis [20], sensing [21], adsorption 
[22], conductivity [23] and drug delivery [24]. In addi-
tion, owing to their high surface areas, optimizable pore 
volume and pore size distributions, MOFs are becoming 
a promising class of adsorbents and enzyme immobili-
zation carriers. Due to their tunable metal active sites, 
MOFs themselves show excellent catalytic performance. 
Therefore, MOFs have been developed as catalysts for the 
degradation of organic pollutants in advanced oxidation 
processes combined with enzyme catalysis and photoca-
talysis [25–29], while also promoting the adsorption of 
organic pollutants for effective removal. Several common 
types of organic pollutants that can be removed by MOFs 
are listed in Table  1. Consequently, MOFs have proven 
to be a promising platform for the removal of organic 
pollutants via physical adsorption, enzyme catalysis and 
chemical oxidation.

In this article, we provide a comprehensive review 
of recent findings and developments of MOFs for the 
removal of organic pollutants, including the fabrication 
strategies of MOFs and removal mechanisms. The role 
of MOF microstructures and properties in their catalytic 
degradation capability are discussed. Also, the strategies 

for enhancing the performance of pure MOFs to remove 
organic pollutants are summarized.

2  Synthesis of MOFs
MOFs were initially introduced by Omar Yaghi et al. by 
means of the combination of metal clusters and organic 
ligands [40]. After that, other types of MOFs such as 
Materials of Institute Lavoisier (MILs), Zeolitic imida-
zolate frameworks (ZIFs), University of Oslo (UiO), and 
PCN developed gradually [41]. MILs are a subclass of 
MOFs that are fabricated via the coordination of trivalent 
transition metal ions (such as Fe, Al, and Cr) and carbox-
ylic acid ligands (Fig. 1a) [42, 43]. ZIFs can use transition 
metal ions to coordinate with imidazolate linkers through 
self-assembly (Fig. 1b) [44]. Among them, ZIF-8, a typical 
ZIFs composed of Zn (II) and 2-methylimidazole ligands, 
found its application as a catalyst in a variety of reactions 
[45]. Built with the metal center  Zr4+ and dicarboxylic 
acid linkers, the UiO family has different ligand lengths 
but similar network topology, and the strong Zr-O bond 
coordination is conducive to its stability in various envi-
ronmental conditions (Fig.  1c) [46]. PCN represents 
porous coordination network, Ma et  al. first designed 
PCN-9 by a reaction between  H3TATB and cobalt nitrate 
in DMSO [47]. And the reaction between  H4adip and Cu 
 (NO3)2 produced a new MOF designated PCN-14 by Ma 
and colleagues [48]. Subsequently, with meso-tetra(4-
carboxyphenyl) porphyrin (TCPP) as the ligand, more 
porphyrinic MOFs have been prepared by researchers 
(Fig. 1d) [49, 50].

Different synthetic approaches were used for the prep-
aration of MOFs, including solvothermal/hydrothermal 
methods, microwave synthesis, mechanochemical syn-
thesis, sonochemical synthesis and electrochemical syn-
thesis [55–59].

Table 1 Common organic pollutants that can be removed by MOFs catalysts

Types Name Molecular formula Hazard Refs

Pesticides Imidacloprid C9H10ClN5O2 Eye and skin irritant, liver cell disruption [30]

Atrazine C8H14ClN5 [31]

Diazinon C12H21N2O3PS [32]

Malathion C10H19O6PS [32]

Antibiotic Norfloxacin C16H18FN3O3 Liver and kidney issues [33]

Tetracycline C22H24N2O8 [34]

Oxytetracycline C22H24N2O9 [35]

Dyes Methyl orange (MO) C14H14N3SO3Na Cardiac arrhythmias and vasoconstriction [36]

Methylene blue (MB) C37H27N3Na2O9S3 [36]

Mycotoxins Deoxynivalenol C15H20O6 Carcinogenic and liver damage [37]

Aflatoxin B1 C17H12O6 [38]

Zearalenone C18H22O5 [39]
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The most common approach is based on solvother-
mal/hydrothermal methods (Fig. 2a), which involve the 
execution of the reaction in an autoclave at a defined 
temperature [60]. The existing solvothermal meth-
ods are based on organic solvents, such as methanol, 
ethanol, acetone and N,N-dimethylformamide [61]. 
It is a relatively convenient and facile method, but it 
has some limitations, including a long reaction time 
and the high cost of the solvents [62, 63]. To acceler-
ate crystallization and reduce liquid waste, alterna-
tive approaches, including electrochemical synthesis, 

microwave-assisted, mechanochemical and sonochemi-
cal, have been developed [64].

Microwave synthesis is a time-saving method, which 
uses microwave irradiation to heat reactant mixtures in 
domestic household microwave ovens (DMO) or simi-
lar commercially available instrumentation [65, 66]. 
Using microwave synthesis, various common MOFs 
such as MIL-101 [67], UiO-66 [68], ZIF-8 [69], PCN-
134 [70] (PCN means porous coordination network) 
and others have been successfully prepared (Fig. 2b).

Fig. 1 a Polyhedral structures of MILs [51] (with kind permission from Elsevier) b The crystal structure of ZIFs [52] (with kind permission from IOP 
Publishing Ltd) c Tolyhedral representation of the crystal structure of UiO-66 [53] (with kind permission from Elsevier) d Crystal structure of PCN-222 
[54] (with kind permission from Wiley–VCH)
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Mechanochemical synthesis is a green and eco-
friendly approach (Fig.  2c), using methods such as 
ball-milling, screw extrusion, liquid-assisted resonant 
acoustic mixing and other approaches [76]. This syn-
thesis method has attracted extensive attention because 
it uses little or no solvents, enables time-saving one pot 
synthesis, and generates minimal waste [77]. Liquid-
assisted grinding (LAG) and ion- or liquid-assisted 
grinding (ILAG) are the most commonly used methods 
in mechanochemical synthesis. Compared with abso-
lutely solvent-free approaches, these methods promote 
the dissolution of solid reagents and improve the for-
mation of coordination bonds [78, 79]. Uzarevic et  al. 
reported the first synthesis of zirconium MOFs (Zr-
MOFs) using the LAG method [80]. The catalysis and 
porosity measurements showed that Zr-MOFs made by 
LAG had properties comparable to solvothermally syn-
thesized materials.

Sonochemical synthesis uses ultrasound energy rang-
ing from 20 to 1000 kHz, which enables the preparation 
of numerous MOFs with diverse crystal sizes and mor-
phologies [81–83] (Fig.  2d). In general, the morphology 
and particle size of MOFs are affected by reaction time, 
temperature and ultrasonic power. Armstrong et al. opti-
mized HKUST-1 crystals and revealed the crystallization 
mechanisms by modifying the reaction time and other 
parameters [84]. Compared with conventional solvo-
thermal/ hydrothermal methods, this method can pro-
duce MOFs with homogeneous nucleation centers, while 
avoiding the need for high temperatures and pressures.

Electrochemical synthesis is a promising method that 
applies electrical current to chemical synthesis reactions 
[85] (Fig. 2e). This method can be divided into electrode 
superficial nucleation (ESN), indirect bipolar electro-
deposition (IBED), and electrophoretic deposition (EPD) 
[86]. In this approach, there is no requirement for metal 

Fig. 2 a Synthesis of MOFs by solvothermal/hydrothermal methods [71] (with kind permission from Wiley–VCH) b Microwave synthesis method 
[72] (with kind permission from Elsevier). c Mechanochemical synthesis method [73] (with kind permission from Elsevier) d Sonochemical synthesis 
method [74] (with kind permission from Wiley–VCH) e Electrochemical synthesis method [75] (with kind permission from Elsevier)
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salts as precursors because the metal ions are generated 
by the electrodes [56].

3  Strategy for organic pollutants removal
3.1  Synergism of physical adsorption to catalytic 

degradation
Although MOFs are used for catalytic degradation, their 
adsorption capacity is also an important characteristic 
for the removal of organic pollutants. Due to their tuna-
ble porosities and large surface area, MOFs could remove 
organic pollutants by adsorption [87]. The removal of 
organic pollutants by MOFs is facilitated by multiple 
mechanisms including π-π stacking, electrostatic inter-
actions, hydrogen bonding and acid–alkali interactions 
[88].

Gao et  al. synthesized MIL-53(Cr), MIL-53(Fe) and 
MIL-53(Al) for sulfamethoxazole (SMZ) removal [89]. 
The maximum adsorption capacities predicted by a 
Langmuir model were 468.56, 450.83 and 75.53  mg·g−1 
for MIL-53(Cr), MIL-53(Al), and MIL-53(Fe). The results 
revealed that metal nodes play an important role in SMZ 
removal. Zhao et  al. reported PCN-222 for chloram-
phenicol (CAP) removal [90]. PCN-222 exhibited a large 
adsorption capacity of 370  mg   g−1 and the adsorption 
equilibrium could be quickly reached after only 58 s. The 
large 1-D channels and the abundant hydroxyl groups of 
PCN-222 could improve the removal efficiency of CAP.

In addition, the introduction of functional groups 
such as -NH2, -NO2 or -SO4 and doping with metals 

such as Cu, Co, Mn and Ni could effectively improve 
the adsorption performance of MOFs [91]. Yu et  al. 
fabricated a variety of porous MOFs, such as MIL-
53(Fe),  NH2-MIL-53(Fe),  NO2-MIL-53(Fe) and Br-MIL-
53(Fe) [92]. The maximum adsorption capacities of 
 NH2-MIL-53(Fe),  NO2-MIL-53(Fe) and Br-MIL-53(Fe) 
for the removal of tetracycline (TC) were 271.9 mg   g−1, 
272.6 mg  g−1 and 309.6 mg  g−1, which were respectively 
9, 10 and 25% higher than the capacity of the pure MIL-
53(Fe) (247.7 mg  g−1) (Fig. 3a). Dehghan et al. compared 
the TC adsorption capacities of four MOFs (ZIF-67-NO3, 
ZIF-67-Cl, ZIF-67-SO4 and ZIF-67-OAC) with different 
chemical groups and four MOFs (ZIF-8-Octahedron, 
ZIF-8-Leaf, ZIF-8-Cuboid and ZIF-8-Cube) with differ-
ent structures [93]. ZIF-67-Acetate exhibited the optimal 
performance (93.7%), showing 2.65 times higher removal 
efficiency than ZIF-67 (35.3%) (Fig.  3b). Yang et  al. fab-
ricated the Mn-doped UiO-66 (MnUiO-66) using sol-
vothermal method for TC removal [94]. Doping with 
Mn added the active sites of UiO-66 (Fig. 3c). The maxi-
mum adsorption capacity of MnUiO-66 was 72.5 mg·g−1, 
almost six times higher than that of pure UiO-66. Jin et al. 
reported MIL-101 nanoparticles co-doped with Cu and 
Co, and used them as an adsorbent for efficient removal 
of TC [95]. Compared with pure MIL-101, the adsorp-
tion capacity of Cu-Co/MIL-101 was increased by 140% 
(Fig.  3d). In parallel, the outstanding adsorption per-
formance can cooperate with the catalysis of MOFs for 
organic pollutants decontamination. For the elimination 

Fig. 3 a The adsorption capacity of MIL-53(Fe)-based MOFs at different equilibrium concentrations [92] (with kind permission from Elsevier) b 
Removal efficiency and adsorption capacity of studied MOFs for TC [93] (with kind permission from Elsevier) c Adsorption performance of UiO-66 
and MnUiO-66 for TC and Cr(VI) [94] (with kind permission from Elsevier) d Adsorption performance of pure MIL-101 and various MNPs/MIL-101 
composites [95] (with kind permission from Elsevier)



Page 7 of 22Wei et al. Collagen and Leather            (2023) 5:33  

of dyes in wastewater, a novel Fe-loaded MOF-545(Fe) 
was synthesized by Zhang et al. [36]. The formed mate-
rial not only showed high absorption capabilities, but 
also exhibited POD-like activity, which achieved remov-
ing MO and MB in a short period of time (about 2 h). In 
the case of photocatalysis, Jin et al. [96] synthesized MIL-
101(Fe)@MIL-100(Fe) heterojunction to achieve 80% 
degradation of TC. Owing to the synergistic adsorption 
between the outer shell and nuclear layer, the Z-scheme 
heterojunction displayed a pore channel limited effect, 
which increased TC adsorption quantity and promoted 
TC photocatalytic properties. Li et al. [97] designed mag-
netic porous  Fe3O4/carbon octahedra for Fenton-like 
catalytic removal of organic dye MB, the removal rate 
can reach nearly 100% in 30 min. The authors observed 
that the material exhibited excellent Fenton-like catalytic 
performance with MB molecules first adsorbed on the 
surface of catalysts, then diffused through mesoporous 
channels and sparked a Fenton-like reaction. Therefore, 
the synergistic impact of integrating physical adsorption 
and catalytic reactions may stimulate unique organic pol-
lutant removal effects.

3.2  Enzyme‑immobilization carrier assisted enzymatic 
degradation

Although native enzymes are also used for the degrada-
tion of pollutants [98, 99], the fragile nature of native 
enzymes makes them susceptible to denaturation or 
instability in extreme environments which results in inac-
tivation and an extremely high cost [100, 101]. Enzyme 
immobilization was an efficient strategy to improve the 
activity and stability of native enzymes. Owing to their 
high specific surface area, porous structure and good 
biocompatibility, MOFs hold great promise as enzyme 
immobilization carriers [102–104]. MOF-enzyme com-
posites are also excellent catalysts for the degradation of 
organic pollutants.

MOF-enzyme composites show better catalytic activity, 
stability and reusability due to the protection of natural 
enzymes by MOFs [105]. Multifunctional groups on the 
surface of MOFs can contribute to improving the activity 
of immobilized enzymes. Furthermore, MOF nodes and 
linkers could offer numerous anchor sites for enzymes 
through chemical bonding, including coordinative bond-
ing, covalent bonding and van der Waals forces [106, 
107], which could prevent enzyme denaturation when 
exposed to extreme conditions and organic solvents. Liu 
et  al. reported a hierarchically porous (HP) MOF HP-
PCN-224(Fe) for glucose oxidase (GOx) immobilization 
[108]. Compared with free GOx, GOx@HP-PCN-224(Fe) 
displayed higher activity, pH and thermal stability. Park 
et  al. found that Candida antarctica lipase B (CAL-B) 
conjugated on isoreticular MOF-3 (IRMOF-3) exhibited 

approximately 1000-fold higher activity than free CAL-B 
[109]. The immobilized enzyme showed higher ther-
mal stability than the free enzyme and superior storage 
stability. Li et  al. encapsulated organophosphorus acid 
anhydrase (OPAA) into zirconium MOF PCN-128y for 
the nerve agent simulant diisopropyl fluorophosphate 
(DFP) detoxication [110]. After three days of dry storage, 
OPAA@PCN-128y maintained 90% hydrolysis efficiency, 
while OPAA had only 30% hydrolysis efficiency. They 
further researched the catalytic performance of OPAA@
PCN-128y for the real nerve agent, Soman, which indi-
cated that the efficiency of OPAA@PCN-128y reached 
90% in 60 min.

MOF-enzyme composites can remove organic pol-
lutants through both the degradation activity of the 
encapsulated enzymes and the adsorption capacity of 
MOFs. Wang et al. found that encapsulation in Cu-MOF 
(HKUST-1) could enhance the catalytic activity of lac-
case [111] (Fig.  4a). The laccase/MOF system showed 
50% higher degradation efficiency for bisphenol A (BPA) 
than free laccase. Jiang et  al. synthesized the MIL-88A 
MOF and then used it to immobilize His-tagged organo-
phosphohydrolase (OpdA) for degradation of organo-
phosphorus pesticides (Ops) [112] (Fig.  4c-d). They 
used OpdA@MIL-88A for the degradation of OPs on 
grapes and cucumbers, which could achieve almost 100% 
removal efficiency and retain more than 66% and 61% 
of initial activity after 6 reuse cycles. Mo et al. encapsu-
lated horseradish peroxidase (HRP) in the single-crystal 
ordered macroporous zeolitic imidazolate framework-8 
(SOM-ZIF-8), which accelerated the degradation process 
of hazardous dyes (Fig. 4b) [113]. The HRP@SOM-ZIF-8 
could rapidly remove congo red (CR) and rhodamine B 
(RB) by integrating the benefits of oxidative degradation 
by HRP with adsorption to the host material, exhibit-
ing high removal efficiencies within 2  min. Wang et  al. 
encapsulated the organophosphorus hydrolase (OPH) 
into Zn-doped Co-based ZIF (0.8CoZIF) for the effec-
tive detoxification of methyl parathion (MP) [114]. In the 
presence of 50  mM  NaBH4, the OPH@0.8CoZIF com-
pletely converted 95 μM MP and produced nearly 100% 
4-aminophenol within 15 min.

3.3  MOF nanozyme‑catalyzed degradation
By modulating the metal ion nodes and organic ligand, 
MOFs can be endowed with enzyme-like activities, 
including oxidase-, peroxidase-, and alkaline phos-
phatase-like activity, which can contribute to the removal 
of organic pollutants [115]. MOF-based nanozymes with 
oxidase-like activity can activate  O2 to produce reactive 
oxygen species (ROS), which in turn can directly oxi-
dize the pollutants [100]. In peroxidase-mimicking MOF 
nanozymes, MOFs can catalyze the reaction of  H2O2 with 
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other substrates [116]. For example, Zhou et al. reported 
PCN-222(Fe) containing Fe-TCPP as a heme-like ligand, 
mimicking the heme ligand of peroxidases [117]. In 
addition, MOFs can be used as hydrolase mimics which 
catalyze the hydrolysis of chemical bonds to achieve 
pollutants removal [100, 116]. Compared to natural 
enzymes, the MOF-based nanozymes show improved 
catalytic activity, better storage stability, and lower cost.

Luo et  al. used three MOFs (MIL-100, MIL-53 and 
MIL-68) with peroxidase-like activity for aflatoxin 
B1 (AFB1) removal (Fig.  5a-b) [12]. The removal effi-
ciency reached up to 100%, and animal feeding experi-
ments confirmed that the hepatotoxicity of AFB1 can 
be neutralized by these peroxidase-like MOFs. Huang 
et  al. reported hollow bimetallic Co-based nanocages 
(HNCs) (C-CoM-HNC, M = Ni, Mn, Cu, and Zn) for 
rhodamine B (RhB) degradation (Fig.  5c) [118]. In the 
strategy, the incorporation of secondary metal ions 
(Ni, Mn, Cu, and Zn) could provide new active sites 
and form synergistic active sites with Co. Meanwhile, 
C-CoM-HNC could mimic the oxidase enzyme and 

activate PMS, resulting in highly efficient RhB degra-
dation. The C-CoCu-HNC had better oxidase activity 
than other HNCs and exhibited a promising catalytic 
performance. Therefore, C-CoCu-HNC was used for 
RhB degradation and the degradation efficiency could 
reach 93.41% after 60  min of reaction. They also 
reported peroxidase-mimicking  NH2-MIL-88B(Fe) 
used for methylene blue (MB) degradation in water 
[119].  NH2-MIL-88B(Fe) could achieve 90% MB 
removal efficiency.

In addition, the current peroxide degradation systems 
are mainly based on the addition of  H2O2 as a peroxida-
tion agent. Zhao et al. developed an Au–Au/IrO2@Cu(p-
aminobenzoic acid, PABA) catalytic reactor with tandem 
enzyme-like activity [120], which can exhibit excellent 
GOx- and peroxidase-like activity (Fig. 5d). More impor-
tantly, based on its GOx-like activity, the reactor can con-
vert glucose into  H2O2, which in turn can be used for the 
oxidation of organic dyes, avoiding the need to handle 
concentrated  H2O2 with strong oxidizing and corrosive 
properties. In situ  H2O2 generation therefore provides a 

Fig. 4 a Schematic illustration of the synthesis of laccase@HKUST-1 [111] (with kind permission from Elsevier) b Schematic diagram 
of the preparation of HRP embedded in SOM-ZIF-8 [113]. c Preparation of MIL-88A and OpdA@MIL-88A [112] (with kind permission from American 
Chemical Society) d Effect of adsorption time on the loading amount of His-OpdA at a 2:1 ratio (w/w) of MIL-88A to total protein; protein loading 
and activity of immobilized His-tagged OpdA at different ratios (w/w) of MIL-88A to total protein [112] (with kind permission from American 
Chemical Society)
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promising direction for the development of novel MOF-
based nanozymes.

Most studies focused on the oxidase- or peroxidase-
like activity of MOF-based nanozymes. At present, there 
is little research on MOF nanozymes with hydrolase 
activity. However, Lin et al. reported a ZIF-90 nanozyme 
with organophosphate hydrolase (OPH) activity for the 
hydrolysis of MP (Fig. 6) [121]. The experimental results 
indicated that the mechanism for MP hydrolysis by ZIF-
90 nanozyme could be ascribed to the synergistic effect 
of zinc and imidazole.

3.4  Photocatalytic degradation
As a green degradation technology based on solar energy, 
photocatalysis holds great promise for the degrada-
tion of pollutants [122, 123] (Table  2). To date, numer-
ous photocatalysts have been used for the degradation 
of organic pollutants, including g-C3N4,  TiO2, ZnO, CdS 
and their derivatives [124, 125]. Dionysiou et al. reported 
the use of nitrogen- and fluorine-doped titanium diox-
ide (NF-TiO2) for microcystin-LR (MC-LR) degrada-
tion [126]. Gong et  al. found that g-C3N4/pyromellitic 
diimide (PDI)-g-C3N4 homojunction could photocata-
lytically degrade atrazine (ATZ) [127]. However, there 
are shortcomings in these photocatalysts, such as lim-
ited visible light utilization, improper band position and 
rapid recombination of charge carriers, which lead to low 
photocatalytic efficiency [128]. As porous coordination 

polymers consisting of tunable metal clusters and organic 
linkers, MOFs have photochemical properties. Consid-
ering the rich variety of possible MOF structures, using 
narrow gap semiconductors to construct MOF-based 
composites could overcome the above drawbacks and 
inherit the advantages of the individual MOFs or semi-
conductors [129–131]. For example, in order to make up 
for shortcomings such as the wide band gaps, insufficient 
light response and insufficient electric charge transfer 
rate, researchers introduced porous metal oxides, carbon 
materials, metal sulfides (MSs) and their heterostructures 
to form composites with improved photocatalytic per-
formance [132, 133]. In an effort to even better support 
practical applications of MOFs in photocatalysts, the rel-
evant theoretical calculation of MOF catalyst was elabo-
rated by Hai and his colleague [134], guides the design 
and development of MOFs material. Kim et al. reported 
a novel MIL-125(Ti) modified with chemically reduced 
nitrogen-containing graphene oxide (CR–N-GO), named 
r-N-MIL [135]. With the incorporation of CR–N-GO, 
the pore size was increased from 2 nm to 2.8 nm, and the 
band gap of the semiconductor material was narrowed, 
which finally improved the photocatalytic activity of r-N-
MIL. Wang et al. fabricated sulfur (S)-TiO2/UiO-66-NH2 
to achieve  Cr6+ reduction and BPA oxidation [136]. Wang 
et  al. reported a  ZnIn2S4@PCN-224 heterojunction that 
could degrade 99.9% tetracycline hydrochloride (TCH) 
within 60 min (Fig. 7) [137]. The increased photocatalytic 

Fig. 5 a MOF-loaded membranes for AFB1 removal [12] (with kind permission from American Chemical Society) b Schematic diagram 
of membrane preparation [12]. c Illustration of a general approach for C-CoM-HNC synthesis [118] (with kind permission from American Chemical 
Society) d Schematic illustration of the sensing platform for organic dye degradation with antibacterial activity based on the Au–Au/IrO2@Cu(PABA) 
cascade reactor [120] (with kind permission from American Chemical Society)
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performance of  ZnIn2S4@PCN-224 compared to pure 
 ZnIn2S4 was attributed to the construction of a hierarchi-
cal heterostructure between  ZnIn2S4 and PCN-224.

The construction of heterojunctions is an ideal strat-
egy for improving the photocatalytic efficiency of 
MOFs, which can inhibit the rapid recombination of 

Fig. 6 Schematic representation of the synthesis of ZIF-90 and the reaction mechanism of organophosphorus hydrolase and ZIF-90 [121] (with 
kind permission from American Chemical Society)

Table 2 Summary of the photocatalytic degradation performance of functionalized MOFs as catalysts for the removal of organic 
pollutants

Pollutant MOF Pollutant 
concentration

Time (min) Degradation 
efficiency (%)

Refs

Styrene TiO2@NH2-UiO-66 30 ± 1 ppm 600 99 [138]

Acetaldehyde GO/NH2-MIL-125(Ti) 5.0 μL 80 65 [139]

RhB PCN/MIL 10 mg  L−1 200 86.9 [140]

MB UiO-66/g-C3N4 10 mg  L−1 240 100 [141]

RhB [(Cu4Cl)(CPT)4]·(HSiW12O40)·31H2O 10 ppm 80 99 [142]

Cr(VI) NH2-MIL-68 (In0.4Fe0.6) 20 mg  L−1 120 99.29 [143]

TC-HCl NH2-MIL-68 (In0.4Fe0.6) 20 mg  L−1 120 71.53 [143]

RhB TiO2 NPs/PCN-222(Zn) 50 mg  L−1 270 100 [144]

2,4-DNP TiO2 NPs/PCN-222(Zn) 20 mg  L−1 270 68 [144]

Diclofenac (DF) PCN-134 0.1 mM 300 99 [145]

Phenol Pt@UiO-66-NH2 thin film reactor 3.5 ×  10–5 M 300 70 [146]
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photogenerated electrons and holes [147]. In recent 
years, type II composite heterojunctions combining 
MOFs with  TiO2 have exhibited superior photocatalytic 
efficiency compared with pure MOFs or  TiO2 [137]. Zhao 
et  al. reported the photocatalyst PCN-222(Mn)-PW12/
TiO2, which degraded 94.83% for ofloxacin in 120  min 
and 98.5% for RhB in 80 min [148]. The  N2 adsorption–
desorption and photoluminescence (PL) spectra indi-
cated that the introduction of PCN-222(Mn) increased 
the number of active sites in PCN-222(Mn)-PW12/TiO2. 
The recombination rate of photoinduced electron–hole 
pairs was reduced, which in turn improved the photo-
catalytic efficiency. Liu et al. prepared 2D/1D core–shell 
heterostructures  (ZnIn2S4@Fe3O4 and  ZnIn2S4@α-Fe2O3) 
[149], and characterized them through a series of elec-
trochemical measurements, including transient photo-
current responses, EIS Nyquist plots and polarization 
curves. The results showed that the 2D/1D core–shell 
heterostructures were beneficial for electron transfer, 
which facilitated the photodegradation of RhB. Lu et al. 
used g-C3N4/PDI@MOF heterojunctions as photocata-
lysts for the removal of TC, carbamazepine (CBZ), BPA 
and p-nitrophenol (PNP) [150].

As an emerging and effective method, these studies 
demonstrated the potential of functionalized MOFs in 
photocatalytic degradation for the removal of organic 
pollutants. Nevertheless, the research on MOF-based 
degradation of organic pollutants is still in its infancy. 
This research area remains challenging due to the com-
plex reaction environments, such as photocatalytic reac-
tors required for these catalysts and the relatively low 
degradation efficiency obtained. Moreover, it is a promis-
ing strategy for constructing MOF-based photocatalysts 
to remove pollutants and develop novel photocatalysts 
with high-efficiency optical and electronic properties. In 
addition, photocatalysis can also be combined with other 
reactions, including Fenton and SR-AOPs, which may 
increase the degradation efficiency.

3.5  MOF catalyst performance in the Fenton‑like process
In Fenton and Fenton-like reactions, ferrous ion  (FeII) 
acts as a catalyst on  H2O2 to produce •OH, which in turn 
can attack even recalcitrant organic pollutants [151, 152]. 
However, conventional homogenous Fenton and Fenton-
like reactions have various disadvantages, such as sec-
ondary pollution and the need for pH regulation [153, 

Fig. 7 The mechanism of the electron/hole transfer and separation process of the ZIS@P20 composite under visible light irradiation [137] (with 
kind permission from Wiley–VCH)
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154]. To avoid these disadvantages, the superior hetero-
geneous Fenton-like reactions, including photo-Fenton 
reaction, Hetero-electro-Fenton process and photo-elec-
tro-Fenton (PEF) reaction, have stood out.

Iron-based MOFs (Fe-MOFs) are a class of good pho-
tocatalysts and can be more efficiently coupled with 
Fenton reagents than other MOFs. Mei et  al. reported 
benzimidazole (BIm)-modified Fe-MOFs, and the rod-
like α-Fe2O3-x exhibited complete MB degradation [155]. 
The oxygen vacancies (OVs) and  Fe2+ content deter-
mined the α-Fe2O3-x photo-Fenton-like catalytic activ-
ity, which was substantiated by the experimental data 
and density functional theory (DFT) calculations. Wang 
et  al. reported a UiO-66-based MOF conjugated with 
an FeIII metalloporphyrin that could integrate photoca-
talysis and Fenton-like processes to degrade RhB [156] 
(Fig.  8a). Fe(III) tetra(4-carboxylphenyl)porphyrin chlo-
ride (FeIII-TCPPCl) not only played the role of a photo-
sensitizer, but also acted as an iron-based catalyst that 
produced ·OH from  H2O2, which could accelerate the 

Fenton-like process. Liu et  al. used MIL-88A as a cata-
lyst for the degradation of tris-(2-chloroisopropyl) phos-
phate (TCPP), a widely used organophosphorus flame 
retardant with adverse effects on the nervous system 
[157] (Fig.  8b). In the MIL-88A/H2O2/Vis system, the 
degradation efficiency of TCPP reached approximately 
95% (Fig.  8c). These were ascribed to the Fe–O clusters 
in MIL-88A, which could activate  H2O2 and then form 
·OH radicals. Owing to the slow Fe(II)/Fe(III) cycle, the 
efficiency of Fenton and Fenton-like reactions is generally 
limited. Huang and co-workers reported a two-dimen-
sional (2D) π-d conjugated MOF named  Fe3(HITP)2 
(HITP = 2,3,6,7,10,11-hexaiminotriphenylene) with high 
conductivity, which accelerated the Fe(III)/Fe(II) cycle 
to achieve 96.7% TC degradation within 30  min [158]. 
Furthermore, the efficiency of Fenton-like processes can 
be enhanced by introducing heterogeneous electro-Fen-
ton catalysts. Electro-Fenton reactions realized catalytic 
degradation rely on in-situ generation of  H2O2 on the 
cathode by  O2 reduction and further conversion to ·OH 

Fig. 8 a The proposed photocatalytic mechanism of FeIII-TCPPCl ⊂ UiO-66 in the co-catalytic Fenton-like reaction [160] (with kind permission 
from Elsevier) b Schematic diagram of the reaction mechanism of the MIL-88A/H2O2/Vis system [161] (with kind permission from Elsevier) c The 
efficiency of different systems in the removal of TCPP [161]
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[159]. Wu et  al. have achieved electro-Fenton degrada-
tion of SMX through the use of  Mn0.67Fe0.33-MOF-74. 
The SMX removal efficiency can reach 96% at pH 3 and 
30 mA of current after 90 min [160]. Huang’s team pre-
pared a series of  MnxCo3-x@C-GF with excellent catalytic 
performance by introducing Mn/Co MOFs derivatives 
into the graphite felt cathodes [161]. In their work, the 
CIP removal efficiency could achieve 99.8% in 60  min, 
which could be attributed to the electrochemically active 
metals that promoted the generation of active radicals 
(·OH). Another example of heterogeneous Fenton-like 
processes is the PEF reaction, which is an upgraded EF 
process. Ye and his colleagues [162] used 2,2′-bipyridine-
5,5′-dicarboxylate (bpydc) as a linker to prepare hetero-
geneous PEF catalyst Fe − bpydc 2D MOF for bezafibrate 
treatment. Under UVA and visible light irradiation, 
bezafibrate in solution could be removed completely with 
a small amount (0.05 g  L−1) Fe − bpydc 2D MOF as a cat-
alyst. The experimental analysis and theoretical calcula-
tions revealed that newly developed MOFs have become 
highly efficient Fenton-like catalysts [163, 164].

3.6  MOF catalytic degradation performance in SR‑AOPs
SR-AOPs produce hydroxyl radicals (·OH) and sulfate 
radicals  (SO4

•−), which give them great potential for 
efficiently eliminating a variety of harmful pollutants. 
In SR-AOPs,  SO4

•− and singlet oxygen (1O2) are mainly 
produced, which contribute to the activation of persul-
fate (PS) and peroxymonosulfate (PMS) [155]. Electron 
paramagnetic resonance (EPR) analyses, and theoretical 
calculations based on DFT are used to explore the pos-
sible mechanisms in MOFs-based SR-AOPs [165], which 
demonstrated that PMS/PDS activation by MOFs-based 
materials for organic pollutants degradation is promis-
ing. PDS and PMS were activated by many strategies, 
including ultraviolet irradiation, chemical methods and 
other methods in which photo-activation deserves spe-
cial attention [166]. In addition, partially coordinated 
metal ions in MOFs can activate PMS/PS to form  SO4

•− 
and ·OH, and thus degrade organic pollutants. Liu et al. 
embedded Co sites in a carbon nitride catalyst (CoCN), 
which were used for visible light-induced PMS activation 
[167]. The results of the radical quenching experiments 
and EPR analyses indicated the reaction mechanism of 
BPA degradation. The rate constant for the CoCN/Vis/
PMS system (1.84  min−1) was 5.58 times higher than that 
of the CoCN/ PMS system (0.329   min−1), which indi-
cated that visible light could help improve the activation 
performance of CoCN for PMS and produce more reac-
tive free radicals to degrade BPA.

In addition, bimetallic MOFs exhibited several syn-
ergistic effects and enhanced properties compared with 

the monometallic MOFs. Roy et  al. reported bimetal-
lic MOF-based heterojunction MIL-53(Fe/Co)/CeO2 for 
atrazine degradation [168]. Visible light irradiation only 
achieved 24.3% ATZ degradation within 60  min, while 
the MIL-53(Fe/Co)/CeO2/PMS/Vis system could achieve 
99.9% ATZ degradation. The results indicated that the Co 
and Fe sites in MIL-53(Fe/Co) could achieve simultane-
ous redox cycles and consequently activate PMS and gen-
erate the reactive species.

The above studies indicated that increasing metal sites 
could greatly improve PMS activation performance. 
This phenomenon can also be reflected in PS activation, 
which is based on MOFs. For example, Duan et  al. fab-
ricated Cu-MIL-101(Fe) andCo-MIL-101(Fe) to degrade 
Acid Orange 7 (AO7) via PS activation [169]. Compared 
with pristine MIL-101(Fe), the AO7 removal efficiency by 
6 wt% Cu-MIL-101(Fe) and 6 wt% Co-MIL-101(Fe) has 
reached 92% and 98% within 150 min.

The SR-AOPs are still in their infancy, and more 
research is needed to understand their complex catalytic 
mechanisms.

3.7  Other MOF‑based catalytic degradation
In addition to the above catalytic reactions, electro-
chemical catalytic degradation and ultrasonic reactions 
are important processes in the removal of pollutants. 
MOF-based materials are widely used as electrode active 
materials in the electrocatalytic degradation of organic 
pollutants. Arulpriya et  al. [170] synthesized a MOF-
modified electrode by introducing  TiO2@Fe MOF for 
the simultaneous sensing and degradation of CPF. The 
 TiO2@Fe MOF/SPE could degrade the chlorpyrifos with 
high efficiency due to its electrocatalytic activity. Xu et al. 
[171] introduced UiO-66 derived  ZrO2-C nanoparticles 
into  PbO2 electrode to construct a new type of  ZrO2-C/
PbO2 anode. The prepared functional electrode pos-
sessed advantageous electrochemical performance with 
the 2, 4, 6-trinitrophenol (TNP) removal efficiency of up 
to 94.48% in 140  min. In addition, MOF-derived nano-
materials can also be introduced into the electrode as 
photoelectrodes to enhance light utilization and improve 
degradation efficiency [172]. Jia et  al. [173] used ZIF-8/
NF-TiO2 nanocomposites as photoanodes for the degra-
dation of sulfa antibiotics. Results showed that the hybrid 
photoelectrode can effectively improve light utilization 
and enhance electron–hole pairs, resulting in enhanced 
the photo-electrocatalytic degradation activity.

With respect to the ultrasound (US) process, cou-
pled with photocatalysis, it could improve the degra-
dation efficiency of organic compounds [174]. Mosleh 
et  al. [175] prepared a novel photocatalyst by dop-
ing the Ce and Eu with HKUST-1 MOF for treating 
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organophosphorus pesticide Malathion by sonophotoca-
talysis. More cavitation bubbles were generated and cli-
maxed the mass transfer rate due to the ultrasonic field, 
resulting in a significantly improved Malathion degrada-
tion rate. Moreover, the sonolysis process has been pre-
sented for PS activation, which showed enhanced effects 
on the degradation of organic pollutants [176]. In Sajjadi 
and colleagues’ work,  Fe3O4@MOF-2 was prepared as a 
heterogeneous nanocatalyst for PS activation under US 
irradiation to degrade diazinon [176]. In the presence 
of US irradiation, the  Fe3O4@MOF-2/US/PS process 
accomplished the degradation of diazinon completely in 
60 min, which could be attributed to the intensified gen-
eration of hydroxyl radicals by US. The hybrid systems 
integrating ultrasound and various AOPs are a low-cost 
and effective technique for organic contaminants treat-
ment [177].

3.8  Reusability and safety of MOF catalysts
In practical applications, MOF catalysts are difficult to 
separate from the reaction solution for recycling. The 
fragile powder form of MOFs caused poor processing 
and recycling properties, which limit their practical 
applications [178, 179]. However, numerous strategies 
have been developed to overcome these defects. One 
is synthesizing magnetic MOF compounds. Niu et  al. 
reported a CuCo/C catalyst which could degrade 90% 
CIP by activating PMS within 30 min [180]. The hyster-
esis curve revealed that CuCo/C could be easily sepa-
rated using an external magnetic field (Fig.  9a). Cong 
et  al. reported a yolk-shell  Fe3O4@MOF-5 nanocom-
posite for MB removal [181]. In the yolk-shell  Fe3O4@
MOF-5,  Fe3O4 was magnetic and catalytic, while the 
MOF-5 shell could effectively protect the  Fe3O4 while 
providing numerous pores to accelerate the molecular 

Fig. 9 a Time-dependent adsorption (correlation curve was drawn using the kinetic parameters calculated from the pseudo-second-order model), 
pseudo-second-order plots (inset) and photographs of the contaminated aqueous solution before and after adsorption of RhB on MIL-100(Fe) 
(33.3wt.%) aerogel [182] (with kind permission from Wiley–VCH) b Magnetic properties of CuCo/C [180] (with kind permission from Elsevier) c 
Scheme of π-π and electrostatic interactions between the 3D ANF/ZIF-67 composite aerogel and dyes [183] (with kind permission from Elsevier)
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transfer and improve the catalytic efficiency. Due to 
the  Fe3O4 yolk,  Fe3O4@MOF-5 could also be separated 
using an external magnetic field.

Another effective recycling strategy is fixing MOFs 
on suitable carriers such as membranes or hydrogels/
aerogels (Fig.  9b). Wang et  al. used zeolitic imidazolate 
framework (ZIF)-67/PAN(polyacrylonitrile) composite 
nanofibers to activate PMS in the catalytic degradation 
of acid yellow-17 (AY) [184]. Different from dispersed 
MOF nanoparticle materials, the ZIF-67/PAN compos-
ite nanofibers could be easily separated from the reac-
tion system due to their flexibility. He et  al. reported 
Co@NCNT-MS catalysts with a favorable TC degrada-
tion capacity [185]. Researchers encapsulated the cata-
lysts in graphene oxide (GO) by facile vacuum filtration 
to form a composite membrane with outstanding ease 
of separation. He et  al. constructed a ZIF-8 photocata-
lyst membrane and its derived product (ZnS photocata-
lyst membrane) for the removal of MB under visible light 
irradiation [186]. The ZIF-8 photocatalyst membrane 
could easily achieve complete separation and avoid sec-
ondary contamination. Yao et  al. reported hybrid aero-
gels made from ZIF-9 and ZIF-12 loaded onto cellulose 
aerogels [187]. The hybrid aerogels could remove about 
90% of PNP in 60 min and could also be easily removed 
from the reaction system. Zhao et  al. prepared a 3D 
aramid nanofiber (ANF)/ZIF-67 composite aerogel for 
the removal of organic dyes [183]. The 3D ANF aerogel 
served as a mechanical support to achieve the uniform 
assembly of ZIF-67 (Fig.  9c). Ren et  al. designed and 
synthesized the MOF composite material copper-ben-
zenedicarboxylate/cellulose aerogel (CuBDC/CA) [188], 
which could decompose more than 90% methylene blue 
in 240 min.

3.9  Functional MOF‑based derivative for catalytic 
degradation

To achieve the superior performance of catalytic, pristine 
MOFs and MOF composites can be converted into deriv-
atives by direct pyrolysis under appropriate conditions. 
MOF derivatives, synthesized via different pyrolysis 
strategies, are promising catalysts and absorbents for var-
ious reactions. For example, nanoporous metal-contain-
ing carbon (metal@C) catalysts are manufactured from 
MOFs via pyrolysis under an inert atmosphere (nitro-
gen or argon). Li and colleagues successfully synthesized 
a core/shell structured hollow Fe–Pd@C nanomate-
rial by carbonizing Fe-metal organic frameworks in the 
 N2 atmosphere [189]. The as-synthesized nanomaterials 
show excellent performance as catalysts in strengthening 
homogeneous Fenton degradation of phenol. Moreover, 
porous regular-shaped metal oxide@C can be obtained 

when the MOFs are calcinated in reactive environments 
such as an oxygen atmosphere. Zhang and coworkers 
[190] constructed MOF-derived  ZnFe2O4/Fe2O3 per-
forated nanotubes as catalysts for ciprofloxacin (CIP) 
photocatalytic removal. In their work, the magnetically 
recoverable Z-scheme photocatalysts were successfully 
synthesized by one-step calcination method using MOF 
as a precursor. Under light irradiation, with the help of 
the prominent photocatalytic performance of  ZnFe2O4/
Fe2O3 perforated nanotubes, the CIP removal percentage 
increased to 96.5% within 180 min.

In addition, the development of heterogeneous SR-
AOPs based on MOF composites and their derivatives 
has drawn much attention. Pu et  al. reported a MOF-
derived novel magnetic Fe@C composite for PS activa-
tion and SMX degradation [191]. Fe@C-800, synthesized 
under the pyrolysis temperature of 800 °C, exhibits high 
catalytic capacities. Degradation efficiency for SMX is 
98.3% and decomposition magnitude for PS is 93.6% after 
90 min. Zhao and coworkers reported the  CeO2/N-doped 
carbon/Ce-TCPP heterostructures that were converted 
from Ce-TCPP by performing a simple pyrolysis process 
at low temperature under  N2 flow [192]. The prepared 
heterostructures as heterogeneous catalyst exhibit excel-
lent photocatalytic activity of PMS under visible light, 
with the degradation rates of 98.6% and 94.4% for MB 
and MO within 60  min, respectively. The above works 
provided a possible degradation strategy for remediation 
of organic pollutants from the leather production.

3.10  MOF‑functionalized products for pollutant removal
MOFs hold great promise as novel materials for the 
removal of pollutants, and integrating them into func-
tionalized materials is very important from a practical 
point of view. Agrawal et al. fabricated MOF-functional-
ized fabrics ZIF-8@ carboxymethylated (CM) cotton and 
ZIF-67@CM cotton for the removal of volatile organic 
compounds (VOCs) from ambient air (Fig.  10) [193]. 
These fabrics have enormous potential for application 
in protective textiles, anti-odor clothing, air purifica-
tion filters, and related products. Yoo et  al. coated cot-
ton with Zr-MOFs such as UiO-66, UiO-67 and DUT-52 
and utilized the resulting composite for the removal of 
particulate matter PM from air, which could improve 
the performance of air filters [194]. Tahazadeh et al. syn-
thesized biodegradable cellulose acetate/MOF-derived 
porous carbon (CA/MOFDPC) adsorptive membranes 
for MB removal [195]. These functionalized products 
have a number of potential commercial applications. Seo 
et  al. prepared nanocellulose/MOF aerogel composites 
for effective detoxification of methyl paraoxon (MPO) in 
both static and dynamic continuous flow systems [196].
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4  Conclusions and perspectives
In this article, we reviewed recent progress in treatment 
methods for removing organic pollutants, with a focus 
on catalytic degradation using MOFs. First, we described 
the synthesis methods of MOFs. Although solvothermal 
synthesis is the most popular strategy for the preparation 
of MOFs, other green strategies have been developed to 
avoid high energy consumption or the residue generation, 
which will gradually become the direction of the future. 
Then, recent advances in the applications of MOFs in 
the catalytic degradation of organic pollutants were sys-
tematically reviewed. MOF nanozymes have been found 
to have wide applications in pollutant removal due to 
their multiple enzyme-like activities, but they still face 
the challenge of further hoisting their stability in practi-
cal applications. The photocatalytic processes based on 
MOFs can degrade organic pollutants effectively in a sus-
tainable way through the use of solar energy as energy 
sources. The heterogeneous Fenton-like reaction using 
solid catalysts removes organic contaminants by produc-
ing reactive species on the surface of the catalysts in an 
environmentally benign way. Meanwhile, research in this 
field is still in the early stages and some disadvantages, 

including aggregation and dispersibility, still exist. MOF-
based materials exhibited high activity in the SR-AOPs 
process for the removal of organic pollutants due to 
their unique structural characteristics, and the catalytic 
performance in the field of SR-AOPs is often limited by 
activation time and temperature. Notably, MOFs can be 
combined with other nano- and functional materials to 
achieve synergistic effects. Currently, MOFs are gradu-
ally being developed from enzyme carriers and physical 
adsorbents into multifunctional materials with enzyme-
mimetic catalytic activity and photocatalytic properties. 
With the progress of synthesis methods, multi-site trans-
formation can be achieved, while the adsorption perfor-
mance, enzyme catalysis, photocatalysis performance, 
and even auxiliary detection and removal functions can 
be achieved, resulting in truly multifunctional materi-
als for the future. Finally, the heterogeneity of MOFs 
and their combination with hydrogels, aerogels or mem-
branes will enable facile separation and recovery, which 
is very important for practical applications. We hope this 
review can provide useful information for researchers, 
and provide a reference for the removal of organic pollut-
ants with MOF in the leather industry.

Fig. 10 Schematic representation of MOF-based filters for integrated air purification [193] (with kind permission from Elsevier)
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Further research on the removal of organic pollutants 
with MOFs should address the following issues:

1. Although the synthesis methods of most MOFs are 
simple, the costs remain high. We need to develop 
more cost-effective methods to fabricate MOFs, such 
as strategies to choose cheaper organic ligands.

2. Currently, experiments on the removal of pollut-
ants using MOFs remain at the laboratory scale. In 
actual samples, there are many other substances 
which could disturb the removal process. Therefore, 
it is essential to evaluate these removal methods of 
organic pollutants for practical application.

3. Further studies should include specific experiments 
on the industrial utilization of MOFs. Although 
researchers have studied MOF-based catalysts in 
membrane reactors and MOF-based adsorbents as 
carriers, there are few studies on the removal of pol-
lutants in large-scale industrial scenarios.

Given the above problems and challenges, research-
ers could synthesize new types of MOFs materials and 
optimize the methods to reduce the influence of the 
material itself on the experimental results, thus solving 
the problems of materials in practical applications. In 
summary, MOFs, as an excellent new porous nanoma-
terial, would be able to achieve large-scale industrial 
production and practical application in the near future 
with the joint efforts of researchers.
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