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Introduction
The World Health Organization defines disease as any abnormal condition that impairs 
the function of an organism such as a human, animal, or plant. In humans, diseases are 
commonly defined as any medical condition characterized by specific symptoms such as 
pain, distress, dysfunction, or even death. Infectious diseases are caused by microorgan-
isms and can spread from one host to another via direct or indirect transmission  [1]. 
Because of their potential to cause illness and death worldwide, numerous infectious dis-
eases have become a global health challenge. Some of these diseases are unique and are 
associated with specific regions and environments. Lassa fever (LF) is one of many infec-
tious diseases that are emerging or reappearing in some West African countries. It has 
caused widespread and serious health problems in West African countries, for instance 
Nigeria, Liberia, Ghana, Guinea, and Sierra Leone  [2]. However, according to the 
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Centers for Disease Control and Prevention (CDC), as well as the World Health Organi-
zation (WHO), the annual case count for LF ranges between 100,000 and 300,000, with 
an estimated 5,000 deaths in West Africa [3, 4]. LF was first described in the 1950s, and 
the viral particle was discovered in 1969 in the northern part of Nigeria, in a city called 
Lassa in Borno state. Lassa hemorrhagic fever is another name for Lassa fever, and it 
is contracted through the Lassa virus (LV). The multimammate rat (Mastomys Natal-
ensis) which is of the genus family Arenaviridae is the primary host of LV. The virus is 
primarily spread to humans through direct contact with contaminated food tainted by 
the urine or excrement of an infected rodent. Human-to-human transmission is uncom-
mon, but it is possible if a person shares medical equipment with an infected person 
without proper sterilization. Furthermore, it could be transmitted by dust particles 
through mucous membranes or skin breaks in humans. Because of its ability to spread 
from infected animal to human, LF is classified as a zoonotic disease [3, 5]. In humans, 
Lassa fever symptoms include headaches, chest pain, nausea, cough, vomiting, diarrhea, 
muscle pain, abdominal pain, sore throat, and fever. In severe cases, symptoms may 
include swelling of the face, low blood pressure, fluid in the lungs, and bleeding from the 
nose, mouth, or vagina. In a more severe case, this disease can result in death within two 
weeks of the onset of symptoms [6]. Controlling LF in the population can be difficult due 
to the lack of a vaccine against the virus; however, an antiviral agent known as Ribavirin 
has been used as a treatment drug in regions where the disease is endemic [3]. Accord-
ing to previous research, the prevalence of Lassa fever is much increased during the wet 
season because more Mastomys rodents migrate from their natural habitat to the human 
environment in order to breed and gain proximity. This is the time when human con-
tact with the rodent increases, thus increasing the force of infection and/or the rate of 
occurrence. Furthermore, previous research has established rainfall as a major ecologi-
cal factor influencing and contributing to the transmission dynamics of LF, as the trans-
mission probability rate is greater during the rainy season than during the dry season [7]. 
A variety of socioeconomic factors are also known to play a role in the dynamic spread 
of Lassa fever. These socioeconomic factors include, to name a few, educational level, 
occupation, and income, all of which influence the dynamic spread of Lassa fever due 
to a lack of amenities, malnutrition, an unclean environment, a low standard of living, 
insufficient health facilities, a lack of a good water source, and personal hygiene [2].

Numerous mathematical modelers and infectious disease experts have conducted 
studies to further enlighten and provide more information on the transmission 
dynamics and different approaches to control the endemic disease (see  [2–12] for 
examples). We present a few examples of these studies, along with their methodol-
ogies, approaches, and findings. Ifeanyi developed a multiple-patch model in  [2] to 
investigate the effects of socioeconomic class on Lassa fever transmission dynamics. 
The author performed a sensitivity analysis, which was followed by a numerical illus-
tration of the effect of parameter models for spread of disease and incidence. Their 
findings show that humans’ socioeconomic status has a significant influence on the 
dynamics of LF transmission. As a result, the study recommends that human socio-
economic classes be considered in order to achieve complete LF eradication in com-
munities where it remains endemic. A study titled “Evaluation of rodent control to 
fight Lassa fever based on field data and mathematical modelling” was presented 
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in [3]. The authors used a mathematical model to experiment various control strate-
gies in rural upper Guinea to determine how long and frequently control should be 
performed in order to eliminate LF in rural areas. The control strategies employed 
in this study include annual density control, continuous density control, and rodent 
vaccination. According to their field data analysis, it is unlikely that a yearly control 
strategy will reduce LV spillover to humans due to the rapid recovery of the rodent 
population following rodenticides application. Furthermore, the mathematical model 
suggests that the best strategy for eradicating LV is continuous control or rodent vac-
cination. A spatial analysis of Lassa fever data from human cases and infected rodents 
from 1965 to 2007 was performed in  [11], to describe the LF risk maps in West 
Africa. The authors look into the impact of environmental variables that are extrinsic 
such as temperature, vegetation, and rainfall on the transmission dynamics of LF in 
Cameroon. According to the study, rainfall has a strong influence in defining high-
risk areas, whereas temperature has a lesser influence in defining high-risk areas. Fur-
thermore, the risk maps revealed that the most dangerous region is situated between 
Guinea and Cameroon.

Bakare’s research [6] developed a non-autonomous system of nonlinear ordinary dif-
ferential equations that capture the dynamics of LF transmission and seasonal variation 
in Mastomys rodent birth. The authors of the study evaluate LF disease intervention 
strategies by predicting optimal intervention best fit in controlling the disease in the 
population using the elasticity of the equilibria prevalence. Early ribavirin treatments, 
as well as an early combination of intervention strategies such as effective community 
hygiene, proper isolation of infected humans, and rodent elimination, will facilitate 
effective disease control in the population. A mathematical model of the transmission 
dynamics of Lassa fever infection with control in two different but complementary hosts 
is presented in  [10]. The model includes a death infectious human compartment that 
can infect a vulnerable individual. According to the study’s findings, the best way to con-
trol secondary transmission dynamics from human to human is to establish more Lassa 
fever diagnostic centers and use precautionary burial practices.

Salihu’s work is one of the studies that has investigated the dynamics of LF in Nige-
ria  [5]. The authors developed a mechanistic model of the large-scale Lassa fever epi-
demics in Nigeria from 2016 to 2019 to describe the interaction between human and 
rodent populations while taking quarantine, isolation, and hospitalization processes into 
account. Their findings suggest that increasing quarantine and isolation of infected indi-
viduals reduce Lassa fever transmission from human to human. Their findings also indi-
cate that across the three outbreaks, initial susceptibility increased from 2016 to 2019. 
Zhao conducted another study on the large-scale LF outbreak in Nigeria [7]. Their find-
ings suggest that increasing quarantine and isolation of infected individuals reduce Lassa 
fever transmission from human to human. The authors investigate the epidemiological 
characteristics of LF epidemics in various Nigeria states by quantifying the relation-
ship between disease reproduction number and local rainfall using the Richards growth 
model, three-parameter logistic, Gompertz, and Weibull growth models. Surveillance 
data were also used to fit the respective growth models in order to estimate the repro-
duction number and epidemic turning points. Overall, the study finds that rainfall has a 
significant impact on the transmission of LF in Nigeria.
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To better understand the dynamic transmission of Lassa fever in Nigeria, we devel-
oped a deterministic model using systems of ordinary differential equations and critically 
analyzed it both analytically and numerically, in order to provide a more comprehen-
sive understanding of the spread of LF using real cumulative data from the country. The 
remaining of the article is organized as follows: In Sect. , we present the formulation of 
the Lassa fever mathematical model. In Sect. , we performed a mathematical analysis on 
the formulated model, which includes determining the positivity of solutions, the invari-
ant region, and the stability of the Lassa fever free equilibrium. In Sect. , we performed 
data fitting and parameter estimation. This includes the sensitivity analysis of the model 
parameters. Numerical results and discussion of the analytical findings and the study 
conclusion are presented in Sects.  and  , respectively.

Methods
Formulation of mathematical model

The core objectives of this study will be achieved via the development, analysis, param-
eterization of the model with real data from Nigeria, and simulations with different 
scenarios of Kermack–McKendrick-type SEIR (susceptible, exposed, infected, and 
recovered) epidemic model for the transmission dynamics of Lassa fever in Nigeria. 
Since Lassa fever is a hemorrhagic feverish condition transmitted between two host 
(humans and rodents), we derived our model by classifying the host population into two, 
namely human and rodent population.

The total human population at time t, denoted by Nh(t) , is further divided into sus-
ceptible, exposed, infectious, and recovered (Sh,Eh, Ih,Rh) . Furthermore, the total rodent 
population at time t, denoted by Nr(t) , is divided into susceptible rodents (Sr) and 
infectious rodents (Ir) . Hence, the total human and rodent population at a given time 
are given as Nh(t) = Sh + Eh + Ih + Rh and Nr(t) = Sr + Ir , respectively. We model the 
progression of each subpopulation from one class to another based on their disease sta-
tus. The susceptible human populace is populated by recruitment rate �h , through birth 
or immigration and from recovered human individuals due to their loss of immunity 
at the rate τh . The susceptible human population is depopulated by infection following 
effective contact with infected individuals at the rates β1 given by

The parameters βh,βr are the effective transmission probability per contact with infected 
humans and rodents, respectively. We assume that all human and rodent subpopulation 
are reduced by natural death at rate µh and µr , respectively. Following the infection of 
susceptible individuals, they progress to the exposed class. This is the stage where indi-
viduals undergo the infection incubation period. Exposed individuals become infectious 
and progress to increase the infectious class at the rate σh . Infectious subpopulation is 
reduced by recovery due to treatment at the rate φh and disease-induced at the rate δh 
(the death due to the disease). The recovered subpopulation is populated by the recovery 
rate of infectious individuals and further reduced by loss of immunity of recovered indi-
viduals. The rodent susceptible subpopulation is populated by birth of rodents at the rate 

β1 =
βr Ir + βhIh

Nh
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�r . This subpopulation is reduced by infection following effective contact with infected 
rodents at the rate β2 given by

The parameter βr is the effective transmission probability per contact with infected 
rodents. Following the descriptions above, the deterministic system of nonlinear differ-
ential equations describing the dynamics of Lassa fever in the population is given as

subject to the following initial conditions Sh(0) > 0,Eh(0) ≥ 0, Ih(0) ≥ 0,Rh(0) ≥ 0,

Sr(0) > 0 , and Ir(0) ≥ 0 . The descriptions of the model parameters and variables are 
given in Table 1, and the schematic diagram is given in Fig. 1.

β2 =
βr Ir

Nr

(1)

dSh

dt
=�h + τhRh − β1Sh − µhSh

dEh

dt
=β1Sh − (σh + µh)Eh

dIh

dt
=σhEh − (φh + µh + δh)Ih

dRh

dt
=φhIh − (µh + τh)Rh

dSr

dt
=�r − β2Sr − µrSr

dIr

dt
=β2Sr − µr Ir

Fig. 1  Schematic diagram of the Lassa fever model (1)
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Mathematical analysis
Positivity of solutions

In this section, the basic properties of model (1) will be explored. Since model (1) 
describes both human and rodents populations during the course of a Lassa fever epi-
demic, it will only be epidemiologically meaningful if all its state variables are nonnega-
tive for all time t ≥ 0 . In other words, solutions of the model system (1) with nonnegative 
initial data will remain nonnegative for all time t > 0.

Lemma 1  The solutions Sh(t),Eh(t), Ih(t),Rh(t), Sr(t) , and Ir of the model system (1) 
with nonnegative initial conditions Sh(0);Eh(0); Ih(0);Rh(0); Sr(0); Ir(0) will remain 
nonnegative for all time t > 0.

Proof
Let 

t1 = sup{t > 0 : Sh(t) > 0,Eh(t) > 0, Ih(t) > 0,Rh(t) > 0, Sr(t) > 0, Ir(t) > 0 ∈

[0, t]}  . 
Thus, t1 > 0 . It follows from the first equation of system (1), that

Employing the integrating factor method, this can be written as:

Hence,

(2)
dSh

dt
=�h + τhRh − β1Sh − µhSh ≥ �h − β1Sh − µhSh

d

dt

(

Sh(t)exp

[

µht +

∫ t

0

β1(x)dx

])

≥ �hexp

[

µht +

∫ t

0

β1(x)dx

]

Table 1  Description of the variables and parameters of the Lassa fever model (1)

Variable Description

Sh Population of susceptible humans

Eh Population of exposed humans

Ih Population of infectious humans

Rh Population of recovered humans

Sr Population of susceptible rodents

Ir Population of infected rodents

 Parameter Description

�h Recruitment rate of humans through birth or immigration

τh Immunity waning rate of humans

σh Disease progression rate of exposed to infected humans

φh Recovery rate of infected humans

µh Natural mortality rate of humans

δh Disease induced death rate of humans

βh Transmission probability from humans to humans

βr Transmission probability from rodents to humans and rodents

�r Recruitment rate of rodents through birth

µr Natural mortality rate of rodents
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so that,

Similarly, it can be shown that Eh(t) ≥ 0 , Ih(t) ≥ 0 , Rh(t) ≥ 0 , Sr(t) > 0 , and Ir(t) ≥ 0 
for all time t > 0 . Therefore, all the solutions of model (1) remain positive for all non-
negative initial conditions. � �

Invariant region

In this section, model (1) will be analyzed in a biologically feasible region as follows. 
Consider the biologically feasible region consisting of � = �h ×�r ∈ R

4
+ ×R

2
+ with

and

It can be shown that the set � is a positively invariant set and global attractor of this sys-
tem. This implies any phase trajectory initiated anywhere in the nonnegative region R6

+ 
enters the feasible region � and remains in � thereafter.

Lemma 2  The biological feasible region � = �h ∪�r ⊂ R
4
+ ×R

2
+ of the Lassa fever 

model (1) is positively invariant with nonnegative initial conditions in R6
+.

Proof
The following steps are followed to establish the positive invariance of � (i.e., solutions in 
� remain in � for all t > 0 ). The rate of change of the total human and rodent popula-
tions Nh and Nr , respectively, are obtained by adding the respective components of model 
(1) which result to

so that,

Sh(t1)exp

[

µht1 +

∫ t1

0

β1(x)dx

]

− Sh(0) ≥

∫ t1

0

�h

(

exp

[

µhy+

∫ y

0

β1(x)dx

])

dy

Sh(t1) ≥Sh(0)exp

[

−µht1 −

∫ t1

0

β1(x)dx

]

+ exp

[

−µht1 −

∫ t1

0

β1(x)dx

]

×

∫ t1

0

�h

(

exp

[

µhy+

∫ y

0

β1(x)dx

])

dy > 0.

�h =

{

Sh,Eh, Ih,Rh ∈ R
4
+ : Nh ≤

�h

µh

}

�r =

{

Sr , Ir ∈ R
2
+ : Nr ≤

�r

µr

}

dNh(t)

dt
=�h − µhNh(t)− δhIh(t)

dNr(t)

dt
=�r − µrNr(t)
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Hence, Nh(t) ≤ Nh(0)e
−µht +

�h
µh

(

1− e−µht
)

 and Nr(t) = Nr(0)e
−µr t +

�r
µr

(

1− e−µr t
)

 . 
In particular, Nh(t) ≤

�h
µh

 and Nr(t) ≤
�r
µr

 if the total human population and rodent pop-
ulation at the initial instant of time, Nh(0) ≤

�h
µh

 and Nr(0) ≤
�r
µr

 , respectively. So, the 
region � is positively invariant. Thus, it is consequently adequate to consider the dynam-
ics of Lassa fever governed by model (1) in the biological feasible region � , where the 
model is considered to be epidemiologically and mathematically well posed [13, 14]. �

Existence and Stability of Lassa fever free equilibrium (LFFE)

The Lassa fever free equilibrium of model (1) denoted by E0 is given by

The next-generation matrix method is used on system (1) for determining the repro-
duction number R0 . The epidemiological quantity R0 , called the reproduction number, 
measures the typical number of Lassa fever cases that a Lassa fever-infected individual 
can generate in a human population that is completely susceptible  [13, 15]. The R0 is 
used in investigating the local asymptotic stability of the Lassa fever free equilibrium E0 . 
By using the infected compartments ( E∗

h , I
∗
h , I

∗
r  ) at the LFFE, and following the notation 

in [16, 17], the Jacobian matrices F and V for the new infection terms and the remaining 
transfer terms are, respectively, given by

It follows that the basic reproduction number of model (1) is given by R0 = ρ(FV−1) , 
where ρ is the spectral radius of the matrix. Hence,

where Rh =
βhσh
k1k2

 , Rr =
βr
µr

 , k1 = σh + µh , and k2 = µh + δh + φh . From the threshold 
quantity R0 given above in (5), the quantity Rh measures the contribution of Lassa fever 
risk caused by human in the population, while the quantity Rr measures the quantity of 
Lassa fever risk caused by rodent in the population. It must be noted that the increase in 
any of the threshold quantity will directly upsurge the risk of Lassa fever in the popula-
tion. The following result is established.

Lemma 3  The Lassa fever free equilibrium E0 of model (1) is locally asymptotically sta-
ble in the biological feasible region � if R0 < 1 and unstable if R0 > 1.

(3)
dNh(t)

dt
≤ �h − µhNh(t), and

dNr(t)

dt
= �r − µrNr(t)

(4)E0 = (S∗h ,E
∗
h , I

∗
h ,R

∗
h, S

∗
r , I

∗
r ) =

(

�h

µh
, 0, 0, 0,

�r

µr
, 0

)

F =















0
βhS

∗
h

N∗
h

βrS
∗
h

N∗
h

0 0 0

0 0
βrS

∗
h

N∗
h















and V =











k1 0 0

−σh k2 0

0 0 µr











(5)R0 = Rh +Rr =
βhµrσh + βrk1k2

k1k2µr
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Proof
In order to prove the lemma above, we obtain the Jacobian matrix by evaluating system 
(1) at Lassa fever free equilibrium E0 as

where k1 = σh + µh , k2 = µh + δh + φh , and k3 = µh + τh . From (6), it is sufficient to 
show that all the eigenvalues of J (E0) are negative. We obtain the first four eigenvalues 
as −µr , −µh , −(µr − βr) and −k3 . It must be noted that −(µr − βr) can also be re-writ-
ten as −µr(1−Rr) , where Rr =

βr
µr

 . The remaining eigenvalues can be obtained from 
the sub-matrix M which is written as

According to the Routh–Hurwitz condition, all the matrix M are real and negative if 

	(i)	 Trace(M)< 0

	(ii)	 Determinant(M)> 0

It can be shown that,

and

Thus, all the eigenvalues of the Jacobian matrix (6) are real and negative if {Rr ,Rh} ∈ 
R0 < 1 , so that the Lassa fever free equilibrium E0 is locally asymptotically stable and 
unstable otherwise.�  �

From an epidemiological perspective, Lemma 3 implies that the spread of Lassa fever 
can be effectively controlled in the population when R0 is less than unity, if the initial 
sizes of the subpopulations of the model system (1) are in the basin of attraction of the 
Lassa fever free equilibrium E0.

Existence of Lassa fever endemic equilibrium (EEP)

We shall investigate the existence of the Lassa fever endemic equilibrium for system 
(1). The endemic equilibria denoted by E1 = (S∗∗h ,E∗∗

h , I∗∗h ,R∗∗
h , S∗∗r , I∗∗r ) represents the 

steady-state solution in the presence of the disease. By setting the right-hand sides of 
system (1) to zero and solving simultaneously in terms of the associated force of infec-
tion, it gives

(6)J (E0) =















−µh 0 − βh τh 0 − βr
0 − k1 βh 0 0 βr
0 σh − k2 0 0 0
0 0 φh − k3 0 0
0 0 − 0 0 − µr − βr
0 0 0 0 0 − µr + βr















(7)M =





−k1 βh

σh − k2





Tr(M) = −(k1 + k2) < 0

Det(M) = k1k2 − βhσh = k1k2

(

1−
βhσh

k1k2

)

= k1k2(1−Rh) > 0 if Rh ∈ R0 < 1
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where the force of infection is given as

Substituting expression (8) into the force of infection (9) at steady state yields the follow-
ing polynomial

where the coefficients pi for i = 1 . . . , 3 of the polynomial are given as

It can be seen that the coefficient p1 is positive while the sign of p2 and p3 depends on 
the values of the reproduction number. That is, if {Rh,Rr ∈ R0 > 1} , then p2 > 0 and 
p3 > 0 . In addition, for p2 to be positive, k1k2k3 > σhτhφh so that there is at least one 
sign change in the sequence of coefficients p1, p2, p3 . Thus, by Descartes rule of signs, 
there exists at least one positive real root for (10) whenever R0 > 1 . Therefore, the fol-
lowing result is established.

Lemma 4  The model system (1) has at least one endemic equilibrium whenever R0 > 1.

Data fitting and parameter estimation
As provided in Table 2, we obtained our data through three different strategies. Model 
(1) presented has ten parameters, and realistic values for two of these parameters are 
available in the literature. We further estimate two demographic parameter values from 
Nigeria, namely natural death and recruitment rate. The natural death is estimated as 
µh = 1

60.45×52 per week, where 60.45 years is the average lifespan in Nigeria [18]. Since 
we assume from model (1) that the total population of human Nh =

�h
µh

 , substituting the 
total population of human given as 214, 028, 302 [18], and the estimated value of µh , we 
obtain the recruitment rate as 68, 088 per week. We obtained five of the parameters by 
fitting model (1) to the observed cumulative cases of infected human, based on January 

(8)

S∗∗h =
�hk1k2k3

k1k2k3β
∗∗
1 + k1k2k3µh − β∗∗

1 σhτhφh

E∗∗
h =

β∗∗
1 �hk2k3

k1k2k3β
∗∗
1 + k1k2k3µh − β∗∗

1 σhτhφh

I∗∗h =
β∗∗
1 �hσhk3

k1k2k3β
∗∗
1 + k1k2k3µh − β∗∗

1 σhτhφh

R∗∗
h =

β∗∗
1 �hσhφh

k1k2k3β
∗∗
1 + k1k2k3µh − β∗∗

1 σhτhφh

S∗∗r =
�r

β∗∗
2 + µr

, I∗∗r =
β∗∗
2 �r

µr(β
∗∗
2 + µr)

(9)β∗∗
1 =

βr I
∗∗
r + βhI

∗∗
h

N ∗∗
h

, and β∗∗
2 =

βr I
∗∗
r

N ∗∗
r

(10)p1(β
∗∗
1 )2 + p2β

∗∗
1 − p3 = 0

p1 =µrRr(�hk2k3 +�hσhk3 +�hσhk3 +�hσhφh)

p2 =µrRr[�hk1k2k3 + βh�hσhk3 + µr(Rr − 1)(k1k2k3 − σhτhφh)]

p3 =�rk1k2k3µ
2
rRr(Rr − 1)
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2018 to December 2020 Nigerian Lassa fever weekly reported cases. This was obtained 
from the Nigeria Centre for Disease Control (NCDC) database [19]. Using the mathe-
matical software MATLAB-R2017b, the model fitting was carried out using the nonlin-
ear least square method. The process entails minimizing the sum of the square 
differences between each observed cumulative confirmed data point and its correspond-
ing confirmed data point from model (1). The root mean square error (RMSE) is spar-
ingly close to zero; this implies that model (1) presented fit very well with the data can be 
used to make precise predictions for the dynamics of this disease in the populace. All 
baseline parameter values obtained from fitting the data between 2018 and 2020 are tab-
ulated in Table  2. Furthermore, Fig.  2 depicts the data fitting of the cumulative con-
firmed cases for 2018, 2019, and 2020, respectively. It must be noted that in Table 2, we 
presented the estimated mean value of all the parameters; this is defined as the average 
cumulative cases for the fitted parameter value from 2018 to 2020. The estimated mean 
value is then used in the next section (except otherwise stated), to carry out sensitivity 
analysis and to simulate different scenarios of Lassa fever transmission dynamics in 
Nigeria.

Fig. 2  Data fitting of the Lassa fever model (1) using a 2018 cumulative cases; b 2019 cumulative cases; c 
2020 cumulative cases
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Sensitivity analysis

In this section, we further explore the impact of each parameters to the transmission 
dynamics of Lassa fever in Nigeria. To achieve this, we carried out a sensitivity analy-
sis to determine the effect of each threshold quantity parameter, using the given data 
presented in Table 2. The sensitivity indices were obtained by employing the approach 
in [21, 22]. The sensitivity indices value of each parameters is presented in Table 3, with 
their respective reproduction number, using the threshold quantity obtained in (5). Fur-
thermore, we present the bar plot of the sensitivity indices in Fig. 3.

Since we employ the use of the estimated mean value parameters as our baseline 
parameter values in predicting the dynamics of Lassa fever in Nigeria, we discuss the 
interpretation of the sensitivity indices by using the estimated mean value indices. The 
result shows that the transmission probability from human to human βh , and the trans-
mission probability from rodents to humans and rodents βr have the highest positive 
index with the value 0.6887 and 0.3113, respectively. The positive value implies that 
decrease (or increase) by H% in the transmission probability of infection from humans 
to humans βh , or the transmission probability from rodents to humans and rodents 
βr will decrease (or increase) the reproduction number. Likewise, the recovery rate of 
human φh , and the natural death rate of rodents µr have the highest negative index with 
the value −  0.6591 and −  0.3113, respectively. The negative value infers that increase 
by H% in the recovery rate of human φh , or the natural death rate of rodents µr will 
decrease the reproduction number by H% and vice versa. An epidemiological insight 
from this result is that any control strategy that reduces the transmission of infection 
from humans or rodents (βh,βr) , respectively, and control strategy that increases the 
recovery rate of human φh and the death of rodents µr will efficiently shorten the spread 
of Lassa fever disease in Nigeria. A good example of such control strategy is an effective 
human hygiene and behavior to reduce the transmission probability of the disease. Also, 
elimination of infected rodents using any accessible rat killer (such as rodenticides and 
rat traps), as it is evident that increase in natural death of rodents decreases the repro-
duction number of the disease.

Table 2  Values of the parameters of the Lassa fever model (1)

Parameter 2018 2019 2020 Estimated mean 
value

References

�h 68,088 68,088 68,088 68,088 Estimated

τh 0.3878 0.2448 1.5736 0.7354 Fitted

σh 0.1873 0.1114 0.0714 0.1234 Fitted

φh 0.0375 0.1233 0.0236 0.0614 Fitted

µh 0.0003 0.0003 0.0003 0.0003 Estimated

δh 0.0024 0.0024 0.0024 0.0024  [20]

βh 0.0101 0.0953 0.1479 0.0844 Fitted

βr 0.0179 0.0627 0.0553 0.0372 Fitted

�r 0.1000 0.1000 0.1000 0.1000  [20]

µr 0.0627 0.0627 0.0627 0.0627 Assumed
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Fig. 3  Sensitivity indices of the Lassa fever reproduction number R0 with respective to each year parameter 
value : a 2018 parameter values as given in Table 2; b 2019 parameter values as given in Table 2; c 2020 
parameter values as given in Table 2; d Mean parameter values as given in Table 2

Table 3  Sensitivity indices of the reproduction number parameters

Parameter 2018 2019 2020 Estimated mean 
value

Sign

βh 0.4659 0.5524 0.8638 0.6887 + ve

βr 0.5341 0.4477 0.1362 0.3113 + ve

σh 0.0008 0.0016 0.0038 0.0018 + ve

µh
− 0.0045 − 0.0029 − 0.0143 − 0.0052 − ve

δh − 0.0282 − 0.0107 − 0.0802 − 0.0262 − ve

φh − 0.4339 − 0.5402 − 0.7732 − 0.6591 − ve

µr
− 0.5341 − 0.4477 0.1362 − 0.3113 − ve

 Threshold quantity 2018 2019 2020 Estimated mean 
value

Sign

Rr 0.2864 0.6110 0.8819 0.5931 + ve

Rh 0.2499 0.7538 2.5943 1.3120 + ve

R0 0.5363 1.3648 3.4762 1.9051 + ve
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Results and discussion
In this section, we present the results of the numerical simulation of our model and its 
mathematical analysis. These results established our analytical result and findings. We 
explored the dynamical behavior of infected human and rodent population under differ-
ent scenarios, using the information from the sensitivity analysis results. We simulated 
model (1) using MATLAB Solver ode45, which is a six-stage fifth-order Runge–Kutta 
method. It is imperative to mention that we considered the total infected human popu-
lation as the sum of both the exposed human and infectious human (Eh + Ih) . Further-
more, we use the estimated mean value of the parameters given in Table 2 as the baseline 
parameter value, except otherwise stated.

Figure 4 illustrates a 2-D contour plot which shows the dynamics of the reproduc-
tion number, by varying the recovery rate of humans with respect to transmission 
probability rate from human to human βh . Increase in the transmission probability 
rate from human to human increases the reproduction number. For instance, if we 
fix the recovery rate of humans (x-axis) φh to be 0.4, a transmission probability from 
human (y-axis) at 0.3 yields a reproduction number between (1,  1.2), while when 
the transmission probability from human is 0.9, it produces a reproduction number 
between (1.6, 1.8). Furthermore, increase in the recovery rate of humans φh reduces 
the reproduction number. For instance, if we fix the transmission probability from 
humans (y-axis) βh to be 0.5, a recovery rate of human (y-axis) at 0.4 yields a repro-
duction number between (1.2, 1.4), while when the recovery rate of human is 0.8, it 

Fig. 4  2-D Contour plot of the reproduction number R0 of Lassa fever model (1), varying recovery rate of 
humans with respect to transmission probability rate from humans. Parameter values used are as given in 
Table 2 except for δh = 0.4887 so that R0 = 0.7461 < 1.
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produces a reproduction number between (1,  1.2). From the results, it can be sug-
gested that to reduce the reproduction number of the disease below unit, a control 
strategy that facilitates good and speedy recovery rates of humans, together with a 
reduction of the transmission rate between humans, will be sufficient to curtail the 
disease in the population.

In Fig. 5, we demonstrate the effects of the transmission probability from human to 
human βh and recovery rate of infected humans φh , on the infected human population 
using three different parameter values, respectively. Figure  5a depicts the effects of 
βh on the dynamics of infected human population. The results show that decrease in 
transmission rate of the disease from human to human decreases the infected human 
population. For instance, when βh = 0.084 , and βh = 0.042 , the reproduction number 
yields R0 = 1.91 and R0 = 1.25 , respectively, leaving the disease at her endemic state. 
However, decreasing βh = 0.021 drives the infected population to her disease-free 
equilibrium R0 = 0.92 < 1 . This is the point at which the disease can be curtail in the 
population, as described in Lemma 3. In Fig. 5b, the result illustrates that an increase 
in recovery rate of humans increases the total infected human population, given that 
the transmission probability rate remains at the baseline value. Interestingly, increase 
in the recovery rate of human is not enough alone to reduce the disease in the popu-
lation as this can be seen in the estimated reproduction number reported. This can 
be traced to the effect of the loss of immunity in the recovered individuals. Since 
the model assumption allows reinfection of recovered humans, when recovery rate 
increases with a stability of high transmission rate, such dynamics is expected in the 
population. Hence, it is important to reduce the transmission rate of the disease in 
order to make the recovery rate of human an effective control strategy to curtail the 
disease in the population.

Fig. 5  Simulations of model (1) with varying effects of parameters on total infected humans 
population (Eh + Ih) : a transmission probability from humans to humans βh = 0.084(R0 = 1.91) , 
βh = 0.042(R0 = 1.25) , and βh = 0.021(R0 = 0.92) ; b recovery rate of humans φh = 0.123(R0 = 1.91), 
φh = 0.062(R0 = 1.90) , φh = 0.031(R0 = 1.89) ; Other parameter values used are as given in Table 2
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In order to see the effects of the transmission probability of rodent βr and natural 
death rate of rodent µr , on the infected rodent population, we simulate the infected 
rodent population using different parameter values of βr and µr , respectively, in 
Fig. 6. It can be seen in Fig. 6a that decrease in the transmission probability rate of 
rodents leads to a decrease in the infected rodent population. For instance, at the 
baseline parameter value βr = 0.037 , the respective reproduction number yields 
R0 = 1.91 , which draws the final size of the infected rodent population close to 
500. However, decreasing the value of βr = 0.009 reduces the reproduction number 
R0 = 1.46 , which leads to a decrease in infected rodent population. Thus, by limit-
ing the transmission rate of infection between the rodents, the infected rodent popu-
lation can be reduced to a minimum size. Figure  6b illustrates the effect of natural 
death rate µr on the infected rodent population. It was shown that upsurge in natural 
death rate of the rodents decreases the final size of the infected rodent population. 
For example, at µr = 0.016 , the final infected rodent population size lies between the 
boundary of (4000, 5000) , while increase in the natural death of rodent (µr = 0.063) 
reduces the final infected rodent population size below 1000. This result implies that, 
by reducing the number of rodents in the environment, the infected rodent popula-
tion can be reduced.

The results in Fig. 7 show the convergence of solution trajectories for the infected 
humans. This entails using different initial sizes of the population to illustrate the sta-
bility behavior of the infected human population size, under little or large perturba-
tion. Figure 7a depicts the stability of the endemic state of the disease when R0 > 1 , 
while Fig. 7b illustrates the stability of the disease-free equilibrium of the model. A 
simple interpretation of this result is that the infected human population equilibrium 
will remain the same regardless of any changes in the size of the subpopulation.

Fig. 6  Simulations of model (1) with varying effects of parameters on infected rodents population: 
a transmission probability from rodents to rodents and humans βr = 0.037(R0 = 1.91) , 
βh = 0.019(R0 = 1.61) , and βr = 0.009(R0 = 1.46) ; b natural death rate of rodents µr = 0.063(R0 = 1.91), 
µr = 0.031(R0 = 2.49) , µr = 0.016(R0 = 3.68) . Other parameter values used are as given in Table 2
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Conclusions
In this study, we formulated a deterministic model using systems of ordinary differential 
equations to investigate the transmission dynamic of Lassa fever in the population. The 
population was stratified into human and rodent compartment. The developed model 
was parameterized by using cumulative reported data obtained from NCDC. Results 
show that the root mean square error is sparingly close to zero; this implies that the 
proposed model fit well with the data and can be used to make accurate predictions 
for the dynamics of this disease in Nigeria. We establish that the LFFE of the model is 
locally asymptotically stable if the threshold quantity R0 < 1 , and unstable otherwise. 
We further carried out a sensitivity analysis for the reproduction number to determine 
the influence of each parameter to the transmission dynamics of Lassa fever in Nige-
ria. The result proves that the most influential parameters on the reproduction number 
are the transmission probability rate from human to human βh , recovery rate of infected 
humans φh , transmission probability rate from rodents to humans and rodents βr , and 
the natural death rate of rodents µr . Following this result, numerical simulations were 
carried out to explore the effect of the most sensitive parameters on the infected human 
population and rodent population, respectively. Overall, the results from this study sug-
gest that any control strategies that decrease the number of rodent populations, and the 
transmission probability rate from rodents to humans and rodents, will advance the con-
trol of Lassa fever in the population.

Since Lassa fever is endemic in some regions of Africa, it is important to quan-
tify the re-occurrence of this disease outbreak in Nigeria, due to the growth in the 
reported cases over years. Using the assembled data from 2018 to 2020, we will fore-
cast a future epidemic outbreak using mathematical and computational models. Fur-
thermore, in order to predict the eradication of Lassa fever in Nigeria, we will explore 
the advantage of multiple control strategies in curtailing this disease in the popula-
tion. This will be achieved by modifying model (1) with the optimal control problem 

Fig. 7  Convergence of solution trajectories for infected humans (Eh + Ih) with different initial sizes. 
Parameter values used are as given in Table 2 except for a βh = 1.6889 so that R0 = 3.22 > 1. ; b 
βh = 0.2815, σh = 0.3701,µr = 0.1882,βr = 0.0124 so that R0 = 0.50 < 1.
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using Pontryagin’s maximum principle. In addition to that, since controlling and erad-
icating any form of diseases in a large population can be both severe and expensive, 
we will employ the use of a cost-effective analysis to investigate the most cost-effec-
tive strategy suitable for use, among various combination of the control strategies.
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