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Abstract

In this paper, we introduce a new class of fuzzy sets, namely, fuzzy ψ*-closed sets for
fuzzy topological spaces, and some of their properties have been proved. Further, we
introduce fuzzy ψ*-continuous, fuzzy ψ*-irresolute functions, and fuzzy ψ*-closed
(open) functions, as applications of these fuzzy sets, fuzzy T1/5-spaces, fuzzy T

ψ�
1=5

-spaces, and fuzzy ψ*T1/5-spaces.
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Introduction
Zadeh [1] introduced the fundamental concept of fuzzy sets and fuzzy set operations

in 1965. Fuzzy topology was introduced by Chang [2] in 1965. Subsequently, many re-

searchers have worked on various basic concepts from general topology using fuzzy

sets and developed the theory of fuzzy topological spaces [3–7]. Muthukumaraswamy

and Devi [8] introduced fuzzy generalized α–closed and fuzzy α–generalized closed

(briefly fgα-closed and fαg-closed) sets in fuzzy topological space in 2004. Abd Allah

and Nawar [9] introduced and studied ψ*-closed sets in topological space in 2014. In

this paper, we introduced another new notion of fuzzy generalized closed set called

fuzzy ψ*-closed sets, which is properly placed in between the class of fuzzy α-closed

sets and the class of fuzzy generalized α-closed sets. The structure of the rest of this

paper is as follows. The “Preliminaries” section introduces the necessary definitions of

fuzzy α-closed sets and fuzzy generalized α-closed sets. In the “Fuzzy ψ*-closed sets in

fts” section, we introduce the definition of fuzzy ψ*-closed sets in fuzzy topological

spaces and proved some of their properties. In the “Fuzzy ψ*-continuous and fuzzy ψ*-

irresolute functions in fts” section, we identify the concept of fuzzy ψ*-continuous and

fuzzy ψ*-irresolute functions and fuzzy ψ*-closed (open) functions and introducing

some of their properties. Further, new classes of spaces, namely, fuzzy T1/5-spaces,

fuzzy Tψ�
1=5-spaces, and fuzzy ψ*T1/5-spaces, are introduced in the “Applications of Fψ*-

closed sets” section.
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Preliminaries
Throughout this paper, (G, τ) and (H, σ) (or simply, G and H) always mean fuzzy topo-

logical spaces. The members of τ are called fuzzy open sets, and their complements are

fuzzy closed sets. And φ : (G, τ) → (H, σ) (or simply, φ: G → H) denotes a mapping ϕ

from fts G to fts H.

For a fuzzy set D of (G, τ), fuzzy closure and fuzzy interior of D denoted by cl(D) and

int(D), respectively and are defined by cl(D) = ∧{E : E is fuzzy closed set of G, E ≥ D, 1

− E ∈ τ} and int(D) = v{S : S is fuzzy open set of G, S ≤ D, S ∈τ} [10].

Definition 2.1 A fuzzy set D of a fts G is called fuzzy α-open (briefly, Fα-open) if D

≤ int(cl(int(D))) and a fuzzy α-closed (briefly, Fα-closed) if D ≥ cl(int(cl(D))) [4]; the

intersection of all fuzzy α-closed sets of (G, τ) containing D is called fuzzy α-closure of

a fuzzy subset D of G and is denoted by αcl(D).

Definition 2.2 A fuzzy set D of a fts G is called fuzzy generalized α-closed (briefly,

Fgα-closed) [8] if αcl(D) ≤U whenever D ≤U and U is fuzzy α-open in (G, τ). The com-

plement of Fgα-closed set is called Fgα-open set.

Definition 2.3 Let (G, τ) and (H, σ) be two fuzzy topological spaces. A function ϕ :

(G, τ)→ (H, σ) is called as follows:

(i) Fα-continuous [10] if ϕ−1(V) is Fα-closed in G, for each V∈ FC (H);

(ii) Fgα-continuous [8] if ϕ−1(V) is Fgα-closed in G, for each V∈ FC (H);

(iii)F-irresolute [11] if ϕ−1(V) is F-closed in G, for each V∈ FC (H).

Definition 2.4 A function φ : (G, τ)→ (H, σ) is said to be fuzzy-open (fuzzy-closed)

[2] if the image of every fuzzy open (fuzzy-closed) set in G is fuzzy-open (fuzzy-closed)

set in H.

Fuzzy ψ*-closed sets in fts
In this section, we introduce fuzzy ψ*-closed sets in fuzzy topological space and discuss

some of its characterizations and relationships with other notions.

Definition 3.1 A fuzzy set D in (G, τ) is called fuzzy ψ*-closed (Fψ*-closed) if αcl(D)

≤ U whenever D ≤ U and U is Fgα-open in (G, τ). The complement of Fψ*-closed set is

called Fψ*-open set.

The class of fuzzy ψ*-closed sets of fts (G, τ) is denoted by Fψ*C(G).

Proposition 3.1 Every fuzzy α-closed set is fuzzy ψ*-closed.

Proof Let D be a Fα-closed set in (G, τ), and since every Fα-closed set is Fgα-closed.

Then, αcl(D) ≤ U whenever D ≤ U and U is Fα-open in (G, τ), and since every Fα-open

set is Fgα-open. So, αcl(D) ≤ U whenever D ≤ U and U is Fgα-open in (G, τ). Thus, D

is Fψ*-closed.

The converse of Proposition 3.1 needs not be true as seen from the following

example.

Example 3.1 Let G = {a, b, c} with fuzzy topology τ = {0, 1, {a0.5, b0.2, c0.7}, {a0.7, b0.8,

c0.3}, {a0.5, b0.2, c0.3}, {a0.7, b0.8, c0.7}}. The fuzzy subset D = {a0.4, b0.8, c0.7} is Fψ*-closed

set in (G, τ) but not Fα-closed set since cl(int(cl(D))) = {a0.5, b0.8, c0.7}.

Proposition 3.2 Every fuzzy ψ*-closed set is fuzzy gα-closed set.

Proof Follows from the fact that every Fα-open set is Fgα-open.
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The converse of Proposition 3,2 needs not be true as seen from the following

example.

Example 3.2 In Example 3.1, the fuzzy subset D = {a0.5, b0.3, c0.7} is Fgα-closed set in

(G, τ) but not Fψ*-closed set.

Proposition 3.3 If D and E are Fψ*-closed sets in (G, τ), then D∪ E is also Fψ*-closed

set in (G, τ).

Proof If D v E ≤U and U are Fgα-open, then D ≤ and E ≤U. Since D and E are Fψ*-

closed, αcl(D) ≤U and αcl(E) ≤U, and hence αcl(D v E) = αd(D) v αd(E) ≤U. Thus, D v E

is Fψ*-closed set in (G, τ).

Proposition 3.4 If D is Fgα-open set and fuzzy ψ*-closed set in (G, τ), then D is fuzzy

α-closed set in (G, τ).

Proof Since D ≤ D and D is Fgα-open set and Fψ*-closed, then αcl(D) ≤ D. Since D ≤

αcl(D), then D = αcl(D), and thus D is Fα-closed set in (G, τ).

Proposition 3.5 Every fuzzy ψ*-open set is fuzzy gα-open.

Proof Let D ∈ Fψ*O(G). Then, 1 –D ∈ Fψ*C(G) and hence Fgα-closed set in (G, τ) by

Proposition 3.2. This implies that D is Fgα-open set in (G, τ). Hence, every Fψ*-open

set in G is Fgα-open set in G.

Proposition 3.6 If D is Fψ*-closed set in (G, τ) and D ≤ E ≤ αcl(A), then E is Fψ*-

closed set of (G, τ).

Proof Let U be a Fgα-open subset of (G, τ) such that E ≤U. Then, D ≤U and since

D ∈ Fψ*C(G), then αcl(D) ≤U. Now, αcl(E) ≤ αcl(D) ≤U. Then, E ∈ Fψ*C(G).

Corollary 3.1 If D is Fψ*-open set in (G, τ) and αint(D) ≤ E ≤D, then E is Fψ*-open

set.

Proof Let D ∈ Fψ*O(G), and αint(D) ≤ E ≤D. Then, 1 –D ∈ Fψ*C(G), and 1 –D ≤ 1 –

E ≤ αcl(1 –D). By Proposition 3.6, 1 – B ∈ Fψ*C(G). Hence, E ∈ Fψ*O(G).

Definition 3.2 For any fuzzy set D in a fts G, we have the fuzzy ψ*-interior of D

(briefly ψ*-int(D)) is the union of all fuzzy ψ*-open sets of G contained in D. That is,

ψ* − int (D) = v { E : E ≤D, E is Fψ* − open in G }.

Definition 3.3 Let (G, τ) be a fuzzy topological space. Then, for a fuzzy subset D of

G, the fuzzy ψ*-closure of D (briefly ψ*-cl(D)) is the intersection of all fuzzy ψ*-closed

sets of G containing D. That is, ψ* − cl(D) = ∧ {E : E ≥D, E is fuzzy ψ* − closed in G }.

Proposition 3.7 For any fuzzy sets D and B in a fts G, we have as follows:

ið Þ ψ�− int Dð Þ≤D:

iið Þ D is Fψ�−open⇔ψ�− int Dð Þ ¼ D:

iiið Þ ψ�− int ψ�− int Dð Þð Þ ¼ ψ�− int Dð Þ:

ivð ÞIf D≤B; then ψ�− int Dð Þ≤ψ�− int Bð Þ:

Proof (i) Follows from Definition 3.3.

(ii) Let D ∈ Fψ*O(G). Then, D ≤ ψ* − int (D). By using (i), we get D = ψ* − int (D).

Conversely, assume that D = ψ* − int (D). By using Definition 3.3, D ∈ Fψ*O(G).

(iii) By using (ii), we get ψ* − int (ψ* − int (D)) = ψ* − int (D).

(iv) Since D ≤ E by using (i), ψ* − int (D) ≤D ≤ E. That is, ψ* − int (D) ≤ E. By (iii), ψ*

− int (ψ* − int (D)) ≤ ψ* − int (E). Thus, ψ* − int (D) ≤ ψ* − int (E).

Proposition 3.8 For any fuzzy sets D and E in a fts G, we have as follows:
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ið Þψ�− int D ∧ Eð Þ ¼ ψ�− int Dð Þ∧ψ�− int Eð Þ:
iið Þ ψ�− int D v Eð Þ≥ψ�− int Dð Þvψ�− int Eð Þ:

Proof (i) Since D ∧ E ≤D and D ∧ E ≤ E, by using Proposition 3.7 (iv), we get ψ* − int (

D ∧ E) ≤ ψ* − int (D) and ψ* − int (D ∧ E) ≤ ψ* − int (E). Thus,

ψ�− int D ∧ Eð Þ≤ψ�− int Dð Þ∧ψ�− int Eð Þ: ð1Þ

By using Proposition 3.7 (i), we have ψ* − int (D) ≤D and ψ* − int (E) ≤ E. This im-

plies that ψ* − int (D) ∧ ψ* − int (E) ≤D ∧ E. Now applying Proposition 3.7 (iv), we get

ψ* − int (ψ* − int (D) ∧ ψ* − int (E)) ≤ ψ* − int (D ∧ E). By (1), ψ* − int (ψ* − int (D) ∧ ψ* −

int (ψ* − int (E)) ≤ ψ* − int (D ∧ E). By using Proposition 3.7 (iii),

ψ�− int Dð Þ∧ψ�− int Eð Þ≤ψ�− int D ∧ Eð Þ: ð2Þ

Forms (1) and (2), ψ* − int (D ∧ E) = ψ* − int (D) ∧ ψ* − int (E).

(ii) Since D ≤D v E and E ≤D v E, by using Proposition 3.7 (iv), we have ψ* − int (D) ≤

ψ* − int (D v E) and ψ* − int (E) ≤ ψ* − int (D v E). Thus, ψ* − int (D) v ψ* − int (E) ≤ ψ*

− int (D v E).
The equality in Proposition 3.8 (ii) need not be hold as seen from the following

example.

Example 3.3 In Example 3.1, consider D = {a0.4, b0.8, c0.7}, and E = {a0.6, b0.8, c0.5}. Then,

ψ* − int (D) = 0, and ψ* − int (E) = {a0.6, b0.2, c0.3}. That implies ψ* − int (D) v ψ* − int (

E) = {a0.6, b0.2, c0.3}. Now, D v E = {a0.6, b0.8, c0.7}; it follows that ψ* − int (D v E) = {a0.6,

b0.2, c0.7}. Then, ψ* − int (D v E) ≠ ψ* − int (D) v ψ* − int (E).

Proposition 3.9 For any fuzzy set D in a fts G, we have as follows:

ið Þ ψ�‐ int Dð Þð Þc ¼ ψ�‐cl Dcð Þ
iið Þ ψ�‐cl Dð Þð Þc ¼ ψ�‐ int Dcð Þ

Proof (i) By using Definition 3.3, ψ* − int (D) = v { E : E ≤D, E ∈ Fψ*O(G)}. Taking

complement on both sides, we get as follows:

ψ� int Dð Þð Þc ¼ sup E : B≤ D; E is Fψ�‐open in Gf gð ÞC
¼ inf Ec : Ec≥ Dc; Ec is F ψ�‐closed in Gf g:

Replacing Ec by C, we get

(ψ* int(D))c = ∧ {C :C ≥ Dc, C is Fψ* ‐ closed in G }. By Definition 3.4, (ψ* ‐

int(D))c = ψ* ‐ cl(Dc).

(ii) By using (i), (ψ* ‐ int(Dc))c = ψ* ‐ cl(Dc)c = ψ* ‐ cl(D). Taking complement on both

sides, we get ψ* ‐ int(Dc) = (ψ* ‐ cl(D))c.

Proposition 3.10 Let D be a fuzzy set in a fts G. Then, D ∈ Fψ*C(G) if and only if Dc

is Fψ*-open.

Proposition 3.11 For any fuzzy sets D and E in a fts G, we have as follows:

ið Þ D≤ψ�−cl Dð Þ
iið Þ D is Fψ�−closed⇔ψ�−cl Dð Þ ¼ D

iiið Þ ψ�−cl ψ�−cl Dð Þð Þ ¼ ψ�−cl Dð Þ
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ivð ÞIf D≤E; then ψ�−cl Dð Þ≤ψ�−cl Eð Þ

Proof (i) Follows from Definition 3.4.

(ii) Let D ∈ Fψ*C(G). By using Proposition 3.10, Dc ∈ Fψ*O(G). By using Proposition

3.9 (ii), ψ* ‐ int(Dc) =Dc⇔ (ψ* ‐ cl(D))c =Dc⇔ ψ* ‐ cl(D) =D.

(iii) By using (ii), we get ψ* − cl(ψ* − cl(D)) = ψ* − cl(D).

(iv) If D ∧ E ≤D and D ∧ E ≤ E By using Proposition 3.7 (iv), ψ* ‐ int(Ec) ≤ ψ* ‐ int(Dc).

Taking complement on both sides, we get (ψ* ‐ int(Ec))c ≥ (ψ* ‐ int(Dc))c. By using Prop-

osition 3.9 (ii), ψ* − cl(E) ≥ ψ* − cl(D).

Proposition 3.12 Let D be a fuzzy set in a fts G. Then, int(D) ≤ α − int (D) ≤ ψ* − int (

D) ≤D ≤ ψ* − cl(D) ≤ α − cl(D ) ≤ cl(D).

Proof It follows from the definition of corresponding operators.

Proposition 3.13 For any fuzzy sets D and E in a fts G, we have as follows:

ið Þ ψ�−cl D v Eð Þ ¼ ψ�−d Dð Þvψ�−cl Eð Þ
iið Þ ψ�−cl D∧ Eð Þ≤ψ�−d Dð Þ∧ψ�−cl Eð Þ

Proof (i) Since ψ* ‐ cl(D ∨ E) = ψ* ‐ cl((D ∨ E)c)c, by using Proposition 3.9 (i), we have

ψ* ‐ cl(D ∨ E) = (ψ* ‐ int(D ∨ E)c)c = (ψ* ‐ int(Dc ∧ Ec))c. By using Proposition 3.8 (i), we

have ψ* ‐ cl(D ∨ E) = (ψ* ‐ int(Dc) ∧ ψ* ‐ int(Ec))c = (ψ* ‐ int(Dc))c ∨ (ψ ∗ ‐ int(Ec))c.

By using Proposition 3.9 (i), we have ψ* ‐ cl(D ∨ E) = ψ* ‐ cl(Dc)c ∨ ψ* ‐ cl(Ec)c = ψ* ‐

cl(D) ∨ ψ* ‐ cl(E).

(ii) Since D ∧ E ≤D and D ∧ E ≤ E, by using Proposition 3.11 (iv), we have ψ* − cl(D ∧

E) ≤ ψ* − cl(D) and ψ* − cl(D ∧ E) ≤ ψ* − cl(E). This implies that ψ* − cl(D ∧ E) ≤ ψ* −

cl(D) ∧ ψ* − cl(E).

Proposition 3.14 For any fuzzy sets D and E in a fts G, we have as follows:

ið Þ ψ�−cl Dð Þ≥D v ψ�−cl ψ�− int Dð Þð Þ
iið Þ ψ�− int Dð Þ≤D v ψ�− int ψ�−cl Dð Þð Þ
iiið Þ int ψ�−cl Dð Þð Þ≤ int cl Dð Þð Þ
ivð Þ int ψ�−cl Dð Þð Þ≥ int ψ�−cl ψ�− int Dð Þð Þð Þ

Proof (i) By Proposition 3.11 (i), D ≤ ψ* − cl(A) . Again, using Proposition 3.7 (i), ψ*

− int (D) ≤D. Then, ψ* − cl(ψ* − int (D)) ≤ ψ* − cl(D) .

Then, we have D v ψ* − cl(ψ* − int (D)) ≤ ψ* − cl(D).

(ii) By Proposition 3.7 (i), ψ* − int (D) ≤D. Again, using Proposition 3.11(i), D ≤ ψ* −

cl(D). Then, ψ* − int (D) ≤ ψ* − int (ψ* − cl(D)). Then, we have ψ* − int (D) ≤D v ψ* −
int (ψ* − cl(D)).

(iii) By Proposition 3.12, ψ* − cl(D) ≤ cl(D). We get int(ψ* − cl(D)) ≤ int (cl(D)).

(iv) By (i), ψ* − cl(D) ≥D v ψ* − cl(ψ* − int (D)). Then, we have int(ψ* − cl(D)) ≥ int (D

v ψ* − cl(ψ* − int (D))). Since int(D v E) ≥ int (D) v int (E), int (ψ* − cl(D)) ≥ int (D) v
int (ψ* − cl(ψ* − int (D))) ≥ int (ψ* − cl(ψ* − int (D))).

Fuzzy ψ*-continuous and fuzzy ψ*-irresolute functions in FTS
As application of fuzzy ψ*-closed set, we identify some types of fuzzy functions and

introducing some of their properties.
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Definition 4.1 A function φ : (G, τ)→ (H, σ) is said to be fuzzy ψ*-continuous (Fψ*-

continuous) if ϕ−1(V) is Fψ*-closed in G, for each fuzzy closed set V in H.

Proposition 4.1 Every Fα-continuous function is Fψ*-continuous.

Proof Let V ∈ FC (H). Since φ is Fα-continuous, then ϕ−1(V) is Fα-closed in G. Since

every Fα-closed set is Fψ*-closed set, then ϕ−1(V) ∈ Fψ*C(G). Thus, φ is Fψ*-

continuous.

The converse of Proposition 4.1 need not be true as seen from the following

example.

Example 4.1 Suppose that G = {a, b, c} with fuzzy topology τ = {0, 1, {a0.5, b0.2, c0.7},

{a0.7, b0.8, c0.3}, {a0.5, b0.2, c0.3}, {a0.7, b0.8, c0.7} and H = {x, y, z} with fuzzy topology σ = {0,

1, {x0.8, y0.2, z0.3}}. Let φ : (G, τ) → (H, σ) be defined by φ (a) = x, φ (b) = y, and φ (c) =

z. φ is Fψ*-continuous function, but it is not a Fα-continuous function, since V = {x0.2,

y0.8, z0.7} ∈ FC(H) but ϕ−1(V) ∉ FαC(G).

Proposition 4.2 Every Fψ*-continuous function is Fgα-continuous.

Proof Let V ∈ FC (H). Since φ is Fψ*-continuous, then ϕ−1(V) ∈ Fψ*C(G). By Propos-

ition 3.1, every Fψ*-closed set is Fgα-closed set; then, ϕ−1(V) is Fgα-closed. Thus, φ is

Fgα-continuous.

The converse of Proposition 4.2 need not be true as seen from the following

example.

Example 4.2 Suppose that G = {a, b, c} with fuzzy topology τ = {0, 1, {a0.5, b0.2, c0.7},

{a0.7, b0.8, c0.3}, {a0.5, b0.2, c0.3}, {a0.7, b0.8, c0.7} and H = {x, y, z} with fuzzy topology σ = {0,

1, {x0.5, y0.6, z0.3}}. Let φ : (G, τ)→ (H, σ) be defined by φ (a) = x, φ (b) = y, and φ (c) = z.

φ is Fgα-continuous function, but it is not a Fψ*-continuous function, since V = {x0.5,

y0.4, z0.7} ∈ FC(Y) but ϕ−1(V) ∉ F ψ* C(X).

Definition 4.2 A function φ : (G, τ)→ (H, σ) is said to be Fψ*-irresolute (Fψ*-irreso-

lute) if ϕ−1(V) ∈ Fψ*C(G), for each Fψ*-closed set V in H.

Proposition 4.3 Every Fψ*-irresolute function is Fψ*-continuous.

Proof It follows from the definitions.

The converse of Proposition 4.3 need not be true as seen from the following

example.

Example 4.3 In the Example 4.1, Let φ : (G, τ)→ (H, σ) be defined by φ (a) = x, φ (b)

= y, and φ (c) = z. φ is Fψ*-continuous function, but it is not a Fψ*-irresolute function,

since V = {x0.2, y0.7, z0.4} ∈ Fψ* C(H) but ϕ−1(V) ∉ F ψ* C(G).

Proposition 4.4 Let φ :G→H and γ :H→W be any two functions. Then, as follows:

(i) γ o φ is Fψ*-continuous if g is fuzzy continuous, and φ is Fψ*-continuous.

(ii) γ o φ is Fψ*-irresolute if both φ and g are Fψ*-irresolute.

(iii) γ o φ is Fψ*-continuous if g is Fψ*-continuous, and φ is Fψ*-irresolute.

Proof Let V ∈ FC(W). Since γ is fuzzy continuous, then γ−1(V) ∈ FC(H). Since φ is

Fψ*-continuous, then we have ϕ−1(γ−1(V)) ∈ Fψ* C(G). Consequently, γ o φ is Fψ*-

continuous.

(ii) - (iii) By similarity.

Applications of Fψ*-closed sets
As applications of Fψ*-closed sets, three fuzzy spaces, namely, fuzzy T1/5-spaces, fuzzy

Tψ�
1=5-spaces, and fuzzy ψ*T1/5-spaces are introduced.
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We introduce the following definitions.

Definition 5.1 A fuzzy topological space (G, τ) is called as follows:

(i) Fuzzy T1/5-space if every Fgα-closed set in G is a Fα-closed set in G.

(ii) Fuzzy Tψ�
1=5-space if every Fψ*-closed set in G is a Fα-closed set in G.

(iii) Fuzzy ψ*T1/5-space if every Fgα-closed set in G is a Fψ*-closed set in G.

Proposition 5.1 If φ : G → H is Fψ*-continuous and G is fuzzy Tψ�
1=5-space; then φ is

Fα-continuous.

Proof Let V ∈ FC (H); since f is Fψ*-continuous, then ϕ−1(V) ∈ Fψ*C(G). Since G is F

Tψ�
1=5-space, then ϕ−1(V) is Fα-closed set in G. Thus, φ is Fα-continuous.

Proposition 5.2 If φ :G→H is Fψ*-irresolute and G is fuzzy Tψ�
1=5 -space, then φ is

Fα-continuous.

Proof By Theorem 5.1.

Proposition 5.3 If φ :G→H is Fgα-continuous and G is fuzzy ψ*T1/5-space, then φ is

Fψ*-continuous.

Proof Let V ∈ FC (H); since φ is Fgα-continuous, then ϕ−1(V) is Fgα-closed set in G.

Since G is Fψ*T1/5-space, then ϕ−1(V) ∈ Fψ*C(G). Thus, φ is Fψ*-continuous.

Proposition 5.4 Let φ :G→H be onto Fψ*-irresolute and Fα-closed. If G is fuzzy

Tψ�
1=5-space, then H is also a fuzzy Tψ�

1=5-space.

Proof Let V ∈ Fψ*C(H); since f is Fψ*-irresolute, then ϕ−1(V) ∈ Fψ*C(G). Since G is F

Tψ�
1=5 -space, then ϕ−1(V) is Fα-closed set in G. Since φ is Fα-closed and onto, then we

have V is Fα-closed. Therefore, H is also a FTψ�
1=5-space.

Proposition 5.5 Let G, H, and W be ftss, and φ :G→H, γ :H→W and γ o φ :G→

W be functions, then if φ is Fα-irresolute function and γ is Fψ*-continuous function,

such that H is fuzzy Tψ�
1=5-space. Then, γ o φ is Fα-continuous function.

Proof Let U ∈ FC (W); since γ is Fψ*-continuous, then γ−1(U) is ∈ Fψ*C(H). Since H

is fuzzy Tψ�
1=5 -space, then γ−1(U) is Fα-closed set in H. But φ is Fα-irresolute function,

then ϕ−1(γ−1(U)) is Fα-closed set in H. But ϕ−1(γ−1(U)) = (γ o ϕ)−1(U). Therefore, γ o φ

is Fα-continuous function.

Definition 5.2 A map φ : (G, τ)→ (H, σ) is said to be Fψ*-open (Fψ*-closed) if the

image of every open (closed) fuzzy set in G is Fψ*-open (closed) set in H.

Proposition 5.6 Every fuzzy-open map is fuzzy ψ*-open map.

Proof The proof follows from the Definition 5.2.

The converse of Proposition 5.6 need not be true as seen from the following

example.

Example 5.1 Suppose that G = {a, b, c} with fuzzy topology τ = {0, 1, {a0.8, b0.2, c0.3}},

and H = {x, y, z} with fuzzy topology σ = {0, 1, {x0.5, y0.2, z0.7}, {x0.7, y0.8, z0.3}, {x0.5, y0.2,

z0.3}, {x0.7, y0.8, z0.7}. Let φ : (G, τ)→ (H, σ) be defined by φ (a) = x, φ (b) = y, and φ (c) =

z. φ is Fψ*-open map, but it is not a F-open map, since G = {a0.8, b0.2, c0.3} ∈ FO(G) but

ϕ(G) ∉ FO(H).

Proposition 5.7 Every fuzzy-closed map is Fψ*-closed map.

Proof The proof follows from the Definition 5.2.

The converse of Proposition 5.7 need not be true as seen from the following

example.
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Example 5.2 In the Example 5.1, let φ : (G, τ)→ (H, σ) be defined by φ (a) = x, φ (b)

= y, and φ (c) = z. φ is Fψ*-closed map, but it is not an F-closed map, since V = {a0.2,

b0.8, c0.7} ∈ FC(G) but ϕ(V) ∉ F C(H).

Proposition 5.8 If φ :G→H is F-closed map and γ :H→W is Fψ*-closed map, then

γ o φ :G→W is Fψ*-closed map.

Conclusion
In this paper, we have defined a new class of fuzzy sets, namely, fuzzy ψ*-closed sets

for fuzzy topological spaces, which is properly placed in between the class of fuzzy α-

closed sets and the class of fuzzy generalized α-closed sets. We have also investigated

some properties of these fuzzy sets. Fuzzy ψ*-continuous, fuzzy ψ*-irresolute functions,

and fuzzy ψ*-closed (open) functions have been introduced. We have proved that every

Fψ*-continuous function is Fgα-continuous, but the converse need not be true, and the

composition of two Fψ*-irresolute functions is Fψ*-irresolute. Fuzzy T1/5-spaces, fuzzy

Tψ�
1=5-spaces, and fuzzy ψ*T1/5-spaces have been established as applications of fuzzy ψ*-

closed set. In the future, we will generalize this class of fuzzy sets in fuzzy bitopological

spaces, and some applied examples should be given.
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