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Abstract 

This paper presents a critical evaluation of the physical aspects of lift generation to 
prove that no lift can be generated in a steady inviscid flow. Hence, the answer to the 
recurring question in the paper title is negative. In other words, the fluid viscosity is 
necessary in lift generation. The relevant topics include D’Alembert’s paradox of lift and 
drag, the Kutta condition, the force expression based on the boundary enstrophy flux 
(BEF), the vortex lift, and the generation of the vorticity and circulation. The physi-
cal meanings of the variational formulations to determine the circulation and lift are 
discussed. In particular, in the variational formulation based on the continuity equation 
with the first-order Tikhonov regularization functional, an incompressible flow with the 
artificial viscosity (the Lagrange multiplier) is simulated, elucidating the role of the artifi-
cial viscosity in lift generation. The presented contents are valuable for the pedagogical 
purposes in aerodynamics and fluid mechanics.
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1  Introduction
Can lift be generated in a steady inviscid flow? This question has been repeatedly raised 
in aerodynamics classes and popular science forums. In a strict sense, this is a hypo-
thetic question or pseudo-question since inviscid flow does not exist in the real world, 
which is not easy to be rigorously and sufficiently answered in non-mathematical lan-
guage. This directly mirrors the fundamental question in aerodynamics: how the lift 
is generated in flow. From an academic standpoint, a correct answer to this question 
is very meaningful due to its direct relevancy to the origin of the lift. Historically, the 
development of modern aerodynamics followed a sequence of mathematical simplifica-
tions from the Navier-Stokes (NS) equations to the Euler equations to the potential flow 
theory [1]. The analytical theory of aerodynamics has been largely developed based on 
the potential flow theory, and unfortunately the critical role of the fluid viscosity is not 
sufficiently emphasized and elucidated in most textbooks on aerodynamics. A complete 
and focused clarification on this question is lacking. Due to the recent publication by 
Gonzalez and Taha [2] who challenged the conventional understanding of the role of the 
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fluid viscosity in lift generation, this intriguing question attracts a considerable renewed 
attention, which should be examined carefully in some technical aspects related to lift 
generation.

It is well known that the lift of an airfoil can be calculated by solving the NS equa-
tions for viscous flows. The ideal fluid with no viscosity is considered as a simplification, 
which leads to the Euler equations for inviscid flow. An integral of the Euler equations 
is the Bernoulli equation giving a relation between static pressure and velocity along a 
streamline in the inviscid irrotational flow. Therefore, to calculate the lift by integrating 
surface pressure on an airfoil, a velocity field around the airfoil should be reconstructed. 
Instead of using the NS equations and the Euler equations, the continuity equation for 
an incompressible flow is considered to reconstruct a velocity field. Further, since the 
continuity equation with the two unknown velocity components is not closed, the veloc-
ity potential is introduced, and the continuity equation becomes the Laplace equation 
under the incompressible and irrotational flow assumption. The elemental solutions of 
the Laplace equations allow reconstruction of various flows over bodies including air-
foils [3, 4]. In general, the force (the lift and drag) of a three-dimensional (3D) body in 
the incompressible inviscid irrotational flow is zero, which is known as D’Alembert’s 
paradox of drag and lift. In a two-dimensional (2D) potential flow with a vortex, the 
most important result is the Kutta-Joukowski (K-J) theorem relating the sectional lift 
to the circulation [5]. However, the lift and circulation of an airfoil cannot be automati-
cally determined in the potential flow theory unless the Kutta condition is applied at the 
sharp trailing edge of the airfoil. The Kutta condition is generally considered as a phe-
nomenological representation of the viscous effect at the sharp trailing edge.

Physically, the fluid viscosity is necessary in lift generation. A question is whether 
there is a counterexample. In this paper, the physical aspects of the lift problem are 
examined to exclude the possibility of lift generation in a steady inviscid flow, including 
D’Alembert’s paradox, the K-J theorem in viscous flow, the Kutta condition, the BEF-
based force expression in viscous flow, the vortex force, and the generation of the vorti-
city and circulation. In particular, the physical meanings of the variational formulations 
for determining the lift and circulation are elucidated.

2 � No lift generated in steady inviscid flow
2.1 � D’Alembert’s paradox and Kutta‑Joukowski theorem

Figure 1 illustrates the flow over a wing (airfoil) at an angle of attack (AoA) enclosed by 
an outer control surface Σ at the incoming uniform freestream velocity U, where the 
boundary layers develop on the airfoil surface ∂B and shed into the wake. The velocity is 
decomposed into U + u, where u is the disturbance velocity generated by a body. As an 
idealized case, in inviscid, incompressible and irrotational flow where the boundary layer 
disappears, the force F acting on the body is calculated by integrating the surface pres-
sure p that is given by the Bernoulli equation [6, 7]. Further, the force can be expressed 
as a surface integral of the perturbed momentum flux across the outer control surface, 
that is, in the index notation,

(1)Fi =
∂B
(−pni) dS = ρUj

�

ujni − uinj dS,



Page 3 of 18Liu ﻿Advances in Aerodynamics             (2023) 5:6 	

where Uj (j = 1, 2, 3) is the incoming uniform flow velocity component, ui is the pertur-
bation velocity component, and ni is the unit normal vector to the body surface ∂B or the 
outer control surface Σ. According to Eq. (1), the near-field force expression equals to 
the surface integral of the perturbed momentum flux through the outer control surface. 
In the derivation of Eq. (1), the incompressible and irrotational conditions and the non-
penetrating boundary condition are used [6, 7]. This derivation was originally given by 
Jowkowski [5].

According to Eq. (1), the drag as the projected component of Eq. (1) in the 
freestream direction is zero, i.e.,

which is classical D’Alember’s paradox of drag indicating zero drag of a body in steady 
inviscid, incompressible and irrotational flow. In contrast to D’Alember’s paradox of 
drag, D’Alember’s paradox of lift that has not been emphasized is more relevant to the 
present topic. In general, for a 3D body, the perturbation velocity magnitude |u| is in 
the order of r−3, where r is the distance from the body to the outer control surface [7]. 
In this case, Fi → 0 as r → ∞ since the product of the perturbation velocity magnitude 
|u| ∝ r−3 and the area element dS ∝ r2 in the surface integral, Eq. (1), is O(r−1). Therefore, 
the lift of a 3D body is zero along with the drag in steady inviscid, incompressible and 
irrotational flow, which is considered as D’Alember’s paradox of lift in 3D inviscid flow. 
D’Alember’s paradox can be derived from different ways [8–11]. The important implica-
tion of D’Alember’s paradox is that no lift can be generated in the inviscid potential flow.

In a 2D flow where |u| is in the order of r−1, Fi could be non-zero since the product 
of the perturbation velocity magnitude |u| ∝ r−1 and the line segment dl ∝ r in the 
contour integral, Eq. (1), is O(1) [7]. For a point vortex, the perturbation velocity is 

(2)D = FiUi/|U | = 0,

Fig. 1  Flow over a solid body (e.g. airfoil) enclosed by the outer control surface with the perturbed velocity 
and momentum flux
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expressed by the gradient of the velocity potential φ, i.e., u = ∇φ = (Γ/2π)∇θ, where θ 
is the polar angle and Γ is the circulation defined as

where Σ is a closed contour enclosing the airfoil, VΣ is a 2D flow domain enclosed by Σ, 
and ω is the spanwise component of the vorticity ω = ∇ × u. Eq. (1) gives the sectional lift

which is the Kutta-Joukowski (K-J) theorem.
The K-J theorem is the corner stone of the classical circulation theory of lift (the cir-

culation theory in short). The major critic was focused on the fundamental shortcom-
ings of the circulation theory. In the steady inviscid flow theory, it is difficult to explain 
how the circulation is generated. The appearance of Γ around an airfoil or a wing in the 
steady inviscid circulation theory evidently contradicts Kelvin’s circulation-conservation 
theorem indicating that the circulation can be neither created nor destroyed in an invis-
cid fluid. Interestingly, the K-J theorem coexists with D’Alember’s paradox of drag, and 
the lift-without-drag result is a dilemma in the inviscid circulation theory. According to 
D’Alamber’s paradox and the K-J theorem, the logical consequence is that the lift cannot 
be generated in steady inviscid, incompressible and irrotational flow unless the circula-
tion exists a priori. Since the circulation cannot be generated physically in inviscid flow, 
a further implication is that the lift is generated only in viscous flow since the vorticity is 
generated and concentrated in the boundary layer on the airfoil surface.

The classical argument on the origin of the circulation was given by Glauert [12] and 
Prandtl and Tietjens [13] based on flow visualizations in a starting flow, which was fur-
ther elaborated by Batchelor [7]. The airfoil circulation is inferred from the observed 
starting vortex generated by a suddenly accelerating airfoil according to Kelvin’s circu-
lation conservation theorem. However, as pointed out by McLean [14], this argument 
is more like logical inference than a physical explanation, which basically assumes the 
existence of the circulation in the airfoil, and fails to explain how it is generated.

2.2 � Kutta condition

To a great extent, the success of the circulation theory depends on the clever application 
of the Kutta condition that is an implicit manifestation of the viscous-flow effect on lift 
generation. It has long been recognized that the Kutta condition is a natural result of 
the viscous-flow processes at the sharp trailing edge, which is clearly elucidated by Sears 
[15]. From a phenomenological standpoint, the Kutta condition can be stated in different 
ways. For example, Glauert [12] stated “the flow must leave the trailing edge smoothly”; 
von Kármán and Burgers [16] stated “in the final steady flow, the rear stagnation point 
shall coincide with the trailing edge of the airfoil” [7]. In general, for a non-sharp trailing 
edge, the classical Kutta condition is not applicable since it does not represent the con-
dition of flow separation near the trailing edge, although Sears [15] extended the Kutta 
condition for moderately separated boundary layers.

(3)Ŵ =

∮

�

u · ds =

∫

V�

ω dS,

(4)L’ = ρ |U | Ŵ,
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In a 2D steady viscous flow, the vortical wake must extend downstream unbound-
edly, and any contour Σ surrounding an airfoil must cut through the wake, leav-
ing some vorticity outside of Σ. In this case, since the Bernoulli equation no longer 
holds across the viscous wake, the original derivation of Eq. (4) by Jowkowski [5] is 
not strictly applicable. The applicability of the K-J theorem in a viscous flow was first 
studied experimentally by Bryant and Williams [17]. To explain the experimental find-
ings, Taylor [18] provided a theoretical account. If the downstream face of the outer 
contour Σ is a wake plane denoted by W, for Re ≫ 1, the lift and form drag are given by

where ΓΣ is the circulation along the outer contour Σ, and P is the total pressure. The 
condition imposed on Eq. (5) is that at the wake plane the net vorticity flux must vanish, 
i.e.,

where u is the velocity projected on the freestream direction. Eq. (7) indicates that the 
positive and negative advective vorticity fluxes (uω) from the boundary layers on the 
upper and lower surfaces are cancelled out in the wake in order to make the K-J theorem 
valid in viscous flows [19, 20]. Figure 2 illustrates the properties of the boundary layers 

(5)L’ = ρ |U |Ŵ� ,

(6)Dform =

∫

W
(P∞ − P)dS,

(7)
∫

W
uωdz = 0,

Fig. 2  Illustration of the boundary layer and wake around an airfoil. From Liu [19]
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on the airfoil surface and the cancelation of the vorticity fluxes from the upper and lower 
surfaces at the trailing edge [19].

Equation (7) is necessary for the circulation ΓΣ to be independent of the position of 
the wake plane (W). Sears [15] further proved that Eq. (7) would be equivalent to the 
requirement that the pressures at the outer edges of the boundary layers at the trailing 
edge on the upper and lower surfaces must be the same (the zero-pressure-difference 
condition at the trailing edge, i.e., the Kutta condition). This Taylor-Sears condition pro-
vides a viscous-flow-theoretical foundation for the empirical Kutta condition. Moreover, 
according to Eqs. (5)–(6), the K-J theorem naturally coexists with the form drag formula 
in the viscous-flow framework, which resolves the dilemma in the inviscid circulation 
theory associated with D’Alembert’s paradox of drag.

To examine the Taylor-Sears condition, Liu et  al. [21] presented the direct numeri-
cal simulation (DNS) of the low-Reynolds-number flow over a flat-plate airfoil at dif-
ferent AoAs. The difference of the Lamb vector integrals across the boundary layers on 
the upper and lower surfaces, i.e., ∆l = [uω]+− , is evaluated, where “+” and “- “denote 
the upper and lower surfaces, respectively. The Lamb vector difference Δl can be inter-
preted as the local loading on the flat plate, and at the same time ∆l = [uω]+− repre-
sents the net advective vorticity flux across the boundary layers on the flat-plate airfoil. 
Figure  3 shows the chordwise distributions of the normalized Lamb vector difference 
2∆l∗/α = 2∆l/U2

∞α on the flat plate at different AoAs in comparison with the normal-
ized pressure coefficient difference ΔCp/α given by the thin-airfoil theory. It is found that 
∆l = [uω]+− = 0 at the trailing edge, validating the Taylor-Sears condition in this viscous 
flow.

Fig. 3  The normalized chordwise distributions of the Lamb vector integral across the boundary layers on the 
flat-plate airfoil. From Liu et al. [21]
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2.3 � Force of a body in viscous flow

D’Alembert’s paradox is derived based on the assumption of steady inviscid, incompress-
ible and irrotational flow. The steady incompressible irrotational flow condition is strong 
and restricted. A question is whether this problem can be studied under a weaker condi-
tion directly based on the NS equations. For an unsteady compressible viscous flow over 
a stationary surface, an exact relation between surface pressure (p) and skin-friction (τ) 
was derived from the NS equations by Liu et al. [22] and Chen et al. [23], and it is written 
as

where a virtual source term fΩ is expressed as

where Ω = |ω|2/2 is the enstrophy, ∂/∂n is the derivative along the wall-normal direction, 
ω = ∇ × u is the vorticity, K is the surface curvature tensor, θ = ∇ ⋅ u is the dilation rate, 
μ is the dynamic viscosity, μθ is the longitudinal viscosity, and n is the unit normal vec-
tor of the surface. The subscript w in the variables and operators in Eq. (9) denotes the 
quantities on a wall. Eq. (8) holds instantaneously. In Eq. (9), the first term μ[∂Ω/∂n]w is 
the boundary enstrophy flux (BEF), and the second term is interpreted as a curvature-
induced contribution. The term ωw ⋅ K ⋅ ωw in Eq. (9) is formally interpreted as the inter-
action between the surface curvature and the vorticity on the surface. In general, fΩ is 
dominated by the BEF while the curvature term can be neglected. The BEF is an intrigu-
ing quantity that is particularly related to the topological features such as isolated critical 
points and separation/attachment lines in a skin-friction field [24, 25].

Skin friction lines (τ-lines) and surface pressure gradient lines (∇p-lines) are distrib-
uted on a surface as a dense network, which are coupled through Eq. (8). As an exam-
ple, Fig. 4 shows the distributions of τ-lines and ∇p-lines in the complex separated flow 
on the 70o-delta wing at AoA of 20o, the Mach number of 0.55 and the total pressure 
of 100 kPa [22]. The zoomed-in view in Fig.  4b shows the detailed network topology 
indicating the separation line is locally orthogonal to ∇p-lines. In general, τ-lines and 
∇p-lines are neither parallel nor orthogonal. Therefore, integration of ∇p along a τ-line 
allows the determination of surface pressure. Along a τ-line, Eq. (8) is re-written as

where s = τ/|τ| is the unit vector along a τ-line and ds is the differential length along a 
τ-line. Therefore, the surface pressure is given by the path integral along a τ-line, i.e.,

where P(x) and P0(x0) denote a point and a starting point on a τ-line, respectively. In 
principle, a set of the starting points P0(x0) from which τ-lines are originated could be 
selected such that the points P(x) on a set of τ-lines can cover densely the whole surface. 
Therefore, Eq. (10) symbolically expresses a surface pressure field.

(8)τ · ∇p = µf�,

(9)f� = µ

[
∂�

∂n

]

w

− µωw·K ·ωw + µθ(ωw × n)·∇θw ,

dp/ds = s · ∇p = µf�|τ |
−1,

(10)p(x) = µ

∫ P(x)

P0(x0)

f�|τ |
−1ds = µ

∫ P(x)

P0(x0)

∂|ω|

∂n
ds,
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From Eq. (10), Liu et al. [21] gave the BEF-based force expression formally given in a 
surface integral, i.e.,

Equation (11) explicitly describes the critical role of the fluid viscosity in generat-
ing the force (the lift and drag). For an inviscid flow with μ = 0, we have F = 0. Thus, 
D’Alembert’s paradox of drag and lift is naturally recovered in the viscous-flow frame-
work. According to Eq. (11), the lift and drag (including the pressure and skin-friction 
drags) coexist as a result of the viscous flow over an airfoil. Physically, the lift cannot be 
generated without the cost of generating the viscous drag at the same time. Note that Eq. 
(11) has been used to derive a viscous-flow lift formula of a flat-plate airfoil [21].

2.4 � Vortex lift

The question in the paper title is further discussed based on the general force expres-
sions for viscous flows. From the NS equations, the force acting on a body in an incom-
pressible flow is expressed as [26, 27]

where q = |u| is the magnitude of velocity, Vf denotes the control volume of fluid, ∂B 
denotes the surface of the body B, Σ denotes the outer control surface enclosing the 

(11)F =

∮

∂B
(−pn+ τ ) dS = −µ

∮

∂B
n dS

∫ P(x)

P0(x0)

∂|ω|

∂n
ds + µ

∮

∂B
ω × n dS.

(12)

F = −ρ

∫

Vf

∂u

∂t
dV

︸ ︷︷ ︸

A

+ ρ

∫

Vf

u× ω dV

︸ ︷︷ ︸

B

−

∮

�

p n dS

︸ ︷︷ ︸

C

−

∮

�

ρ
q2

2
n dS

︸ ︷︷ ︸

D

+

∮

�

n · τ dS

︸ ︷︷ ︸

E

−

∮

∂B
ρ
q2

2
n dS

︸ ︷︷ ︸

F

,

Fig. 4  Skin friction lines (solid red lines) and surface pressure gradient lines (dashed blue lines) on the 
70o-delta wing at AoA of 20o, the Mach number of 0.55 and the total pressure of 100 kPa: a global view, and b 
zoomed-in view of the region of interest near the left corner of the wing. From Liu et al. [22]
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body, and n is the unit normal vector pointing to the outside of the control surface. The 
term A in Eq. (12) is a volume integral of the local acceleration of fluid induced by a 
moving solid body and unsteady flow structures as the unsteady inertial effect. The term 
B is a volume integral of the Lamb vector, l = u × ω, which represents the vortex force. 
The terms C and D are the surface integral of the total pressure (the total head) p + ρq2/2 
on the outer control surface Σ and the term E is the surface shear stress on the outer 
control surface Σ. The term F is the boundary term related to the motion of body bound-
ary ∂B. In an inviscid irrotational unsteady flow where the terms B, C, D and E in Eq. 
(12) vanish, the remaining terms A and F together are interpreted as the added-mass 
force in ideal fluid mechanics. The general force expressions for viscous flows have been 
comprehensively discussed by Wu et al. [28–30] by transforming the pressure term to 
the velocity-related terms. However, the physical meanings of some complicated terms 
cannot be easily elucidated and their relative contributions to the lift and drag cannot be 
clearly distinguished.

A good lift formula should have a minimal number of the terms with lucid physical 
meanings such that flow structures responsible to lift generation can be clearly identi-
fied. For a rectangular outer control surface Σ where the upper and lower faces are suffi-
ciently far away from the wing, from Eq. (12), the two-term lift formula for a viscous flow 
over a wing is given by Wang et al. [26], i.e.,

where Lvor is the vortex lift and La is the lift associated with the fluid acceleration, and 
k is the unit vector normal to the freestream. In a limiting case where a moving body is 
in an inviscid irrotational flow, La is interpreted as the added-mass lift. The vortex lift is 
exclusively contributed by the Lamb vector l = u × ω that is distributed very near a wall 
in the boundary layer on a body, as illustrated in Fig. 2. Therefore, it is inferred that the 
true cause of the lift is the boundary-layer vorticity that cannot be generated in invis-
cid flow. The classical results, including the K-J theorem and the unsteady thin-airfoil 
theory, can be reduced from Eq. (13) in the viscous-flow framework [20, 26].

2.5 � Vorticity and circulation

Naturally, the further question is how the vorticity is generated on a wall. The origin of 
the vorticity was studied by Lighthill [31, 32], who gave a pair of equations for pressure 
and vorticity on a wall, i.e.,

where s and n are the local coordinates in the tangent and normal directions on  a 
streamline,  respectively, and μ is the dynamic viscosity of fluid. Eq. (14) indicates the 
viscous coupling between surface pressure and vorticity. The tangential pressure gradi-
ent can generate new vorticity at the rate measured by the boundary vorticity flux (BVF) 
defined by μ∂ω/∂n. Then, the vorticity generated by the BVF at the wall diffuses into the 
fluid and advects downstream by the tangential pressure gradient. The causality of the 
physical processes in Eq. (14) can be elucidated based on an estimate of the time scales 

(13)L = Lvor + La = ρ k ·

∫

Vf

u× ω dV − ρ k ·
d

dt

∫

Vf

u dV ,

(14)
∂p

∂s
= µ

∂ω

∂n
,
∂p

∂n
= −µ

∂ω

∂s
,
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of pressure propagation and vorticity diffusion. When a body moves in fluid, pressure is 
generated as the first causal mechanism, which is an inviscid process with the timescale 
tp ∼ c/a, where c is the characteristics length of the body and a is the speed of sound. 
The diffusion time scale of the vorticity is tω ∼ δ2/v, where δ is the effective viscous diffu-
sion distance and ν is the kinematic viscosity. If the estimated boundary-layer thickness 
is δ ∼ cRe−n

c  , there is an estimate tp/tω ∼ MRe2n−1
c  , where Rec = U∞c/ν is the Reynolds 

number, M is the Mach number, and n is a positive exponent. For an incompressible flow 
with M → 0, there must be tp/tω ≪ 1.

In a transient starting motion of an airfoil in a viscous fluid, establishing a pressure 
field around an airfoil is much faster than  that of the corresponding vorticity field. 
Therefore, in the very early stage where the vorticity field is not diffused yet, the estab-
lished pressure field would be similar to that in inviscid flow, generating zero lift due 
to a lack of the viscous effect. In this sense, an inviscid flow could be realized in a very 
short time at the beginning of the starting viscous flow. This conjecture is confirmed by 
numerical simulations conducted by Zhu et al. [33] on a laminar accelerating uniform 
incoming incompressible flow over a NACA0012 airfoil at AoA of 6o.

In a very short time period immediately after the flow starts up, as shown in Fig. 5, the 
pressure field and the tangential pressure gradient on the airfoil surface are instantly estab-
lished, and thus the BVF is generated almost at the same time through the pressure-vorti-
city coupling at the surface according to Eq. (14). However, in such a short time period, the 
generated boundary vorticity is not yet diffused into the fluid since the diffusion timescale 
is much larger than the molecule relaxation time. Therefore, the flow field over the airfoil 
exhibits the typical topology of the inviscid irrotational flow, in which a semi-saddle 

Fig. 5  Streamline pattern of the starting flow over an airfoil at the very early stage t/Tref = 0.002, exhibiting 
the inviscid irrotational flow topology, where Tref is the time scale from the start to the onset of the steady 
flow. a illustration of global topology, and b local topology near the trailing edge. Adapted from Zhu et al. 
[33]
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(the rear stagnation point) occurs on the upper surface rather than at the trailing edge. At 
this moment, the circulation and lift are zero, and the Kutta condition is not established yet. 
As the boundary layer develops on the airfoil surface as time increases, the lift and circula-
tion increase and approach their steady-state values [33]. Accordingly, the several versions 
of the Kutta condition are gradually established. This numerical result evidences that no 
lift is generated when the effect of the fluid viscosity is not activated in a short time and the 
generation of the circulation and lift is a viscous-flow phenomenon.

Interestingly, the above time-scale analysis and numerical simulation indicate the feasi-
bility of creating the potential flow pattern over a starting airfoil in a short time in normal 
viscous fluids (such as water and air) in conventional fluid mechanics experiments. For flow 
measurements in such experiments, the diffusion time scale of the vorticity tω ∼ δ2/v should 
be sufficiently large to capture global velocity data, and therefore the kinematic viscosity ν 
should be small (water could be a suitable fluid). In the real world, superfluid flow at near-
zero Kelvin is close to inviscid flow. Craig and Peillam [34] measured the lift on an airfoil 
in a velocity field of perfect superfluid flow within liquid helium II in a “superfluid wind 
tunnel”. It was found that for sufficiently low velocity, the flow was pure potential flow with 
no circulation and lift such that the Kutta condition did not hold. This is the first reported 
experimental evidence indicating that no lift is generated in a hydrodynamic flow without 
the fluid viscosity. However, since this experiment, no further force measurement in super-
fluid flow has been reported.

3 � Variational formulations
3.1 � Hertz’ principle

Gonzalez and Taha [2] proposed a variational theory of lift by applying Hertz’ principle of 
least curvature that is rarely used in physics to inviscid flow to determine the airfoil cir-
culation as an alternative to the Kutta condition. It is claimed that this theory challenges 
the accepted wisdom about the Kutta condition being a manifestation of viscous effects. 
Further implication of their work is that the circulation and lift of a body with a sharp or 
blunt trailing edge can be determined in inviscid flow by this condition that is irrelevant 
to the effects of the fluid viscosity. Their main argument is that the lift can be determined 
in inviscid flow and the role of the fluid viscosity is not critical in lift generation. Here, it is 
necessary to examine the physical meanings of the variational principle proposed by Gon-
zalez and Taha [2].

Applying Hertz’ principle of least curvature in analytical mechanics to steady inviscid 
flow, Gonzalez and Taha [2] proposed the functional

where a is the acceleration of fluid, Ω is a fluid domain, and x = (x1, x2) are the 2D Car-
tesian coordinates. In Eq. (15), the underlying assumption is that a velocity field can be 
explicitly expressed as a function of the circulation Γ. To determine the circulation Γ, 
they considered an unconstrained variational problem

(15)S(Ŵ) =
1

2
ρ

∫

�

|a|2 dx =
1

2
ρ

∫

�

|u(x;Ŵ) · ∇u(x;Ŵ)|2 dx,

(16)S(Ŵ) → min.
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This variational method was applied to a Joukowski airfoil in potential flow to deter-
mine the circulation Ŵ̂ at which S

(

Ŵ̂

)

= min . For a Joukowski airfoil with a sharp 

trailing edge, this method gave the circulation Ŵ̂ that was approximately consistent 
with that given by using the Kutta condition. For the airfoil with a non-sharp trailing 
edge, Ŵ̂ is smaller than the value given by the Kutta condition. Gonzalez and Taha [2] 
attempted to prove that Eq. (16) is consistent with the Euler equations (the pitfalls of 
their derivation are discussed in Section  3.2). Such a variational constraint is not 
unique, and other constraints could be proposed to determine the circulation as long 
as they are physically reasonable. In general, a variational formulation itself as a math-
ematical constraint imposed on the flow does not directly elucidate the physical role 
of the fluid viscosity in lift generation.

For an incompressible inviscid irrotational flow, Eq. (15) is equivalent to

In fact, according to Eq. (17), the condition S(Γ) → min removes the singularity 
at a sharp trailing edge where |∇p|2 → ∞ and |∇|u|2| → ∞. Essentially, Eq. (17) is 
a smoothness functional for a velocity field. In the real world, only when the flow is 
viscous, the singularity disappears such that |∇p|2 and |∇|u|2| are finite at the sharp 
trailing edge. From this perspective, this variational functional for a sharp trailing 
edge is physically consistent with the Kutta condition, but it is weaker than the classi-
cal Kutta condition with zero-pressure jump Δp = 0 or zero-velocity jump Δu = 0. The 
effect of the viscosity is imbedded in Eq. (16).

Similar to the Kutta condition, the adapted form of Hertz’ principle of least cur-
vature for ideal flows should be considered as a physical model rather than the first 
principle since its validity has not been proved for a wide range of separated flows 
over round bodies. More critically, Eq. (16) assumes that the circulation exists in 
the flow over a body, and therefore the variational theory of lift itself cannot explain 
where the circulation comes from. As pointed out in Section  2.5, the circulation is 
generated as a viscous-flow phenomenon. From an operational standpoint, a velocity 
field cannot be generally expressed as an explicit analytical function of the circulation 
Γ except for a few simple cases like the Joukowski airfoil. In short, this unconstrained 
variational formulation neither provides a solid evidence supporting the argument 
that the lift can be generated in inviscid flow, nor elucidates explicitly the effect of the 
viscosity on lift generation.

3.2 � Hertz’ principle constrained by continuity equation

Gonzalez and Taha [2] also attempted to prove that Eq. (16) based on Hertz’ principle 
constrained by the continuity equation corresponds to the Euler equations uncondition-
ally. However, in their derivation, the regularization functional of the velocity divergence 
is not non-negative and the variational operator is only applied to the time derivative of 
velocity rather than the velocity. In addition, they treated the Lagrange multiplier as the 
fluid pressure without a justification of its physical meaning. Here, their problem is re-
formulated. We consider the functional

(17)S(Ŵ) =
1

2
ρ

∫

�

|∇p|2 dx =
1

4
ρ

∫

�

∣
∣
∣∇|u|2

∣
∣
∣ dx.
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where u = (u1, u2) is the velocity in a 2D flow, ut = ∂u/∂t is the time derivative of veloc-
ity, and β is a Lagrange multiplier. In Eq. (18), the first term is the equation term based 
on Hertz’ principle, and the second term is the regularization term based on the con-
tinuity equation. In the regularization term, the L2 norm of ∇ ⋅ u is used to ensure the 
positive nature of the term compared to the integral of ∇ ⋅ u used by Gonzalez and 
Taha [2]. Unlike Eq. (15), Eq. (18) does not assume that the velocity field can be explic-
itly expressed as a function of the circulation. Equivalently, the continuity equation and 
Hertz’ principle can be used as the equation term and the regularization term, respec-
tively, and the same Euler-Lagrange equation can be obtained.

The constrained variational formulation is

Equation (19) minimizes the weighted average of the two positive terms to approach 
the theoretical limit J(u) = 0. From a standpoint of applications, it is suitable to select 
a positive Lagrange multiplier. We consider a perturbed velocity field u + εv, where v 
is a test function (a variation or perturbation) and ε is a parameter (a magnitude). The 
optimality condition is

where a = ut + u ⋅ ∇u is the fluid acceleration and the irrotational conditions ∇ × u = 0 and 
∇ × v = 0 are imposed to obtain the divergence term ∇ ⋅ [a(u ⋅ v)]. Using Green’s theorem, 
we have

where ∂Ω is the boundary of a fluid domain Ω, and n is the normal vector on ∂Ω. 
When it is assumed that the boundary condition n ⋅ a = 0 holds on ∂Ω, Eq. (21) is zero. 
When the continuity equation ∇ ⋅ u = 0 holds on ∂Ω, Eq. (22) is zero. Therefore, Eq. (20) 
becomes

Therefore, the Euler-Lagrange equation is

where α = β−1 is a coefficient that is also a Lagrange multiplier. The first and sec-
ond terms in Eq. (24) correspond to the continuity equation and Hertz’ principle as a 

(18)J (u) =
1

2

∫

�

|ut + u · ∇u|2 dx + β

∫

�

|∇ · u|2 dx,

(19)J (u) → min.

(20)
dJ (u+εv)

dε

∣
∣
∣
ε=0

=
∫

�[∇ · [a(u · v)]− (u · v)∇ · a]dx

+ β
∫

�
{∇ · [(∇ · u)v]−∇(∇ · u) · v}dx = 0

,

(21)
∫

�

∇ · [a(u·v)]dx =

∫

∂�

n · [a(u · v)]ds,

(22)
∫

�

∇ · [(∇ · u)v]dx =

∫

∂�

n · [(∇ · u)v]ds,

(23)
∫

�

[u∇ · a + β∇(∇ · u)] · vdx = 0.

(24)∇(∇ · u)+ αu∇ · a = 0,



Page 14 of 18Liu ﻿Advances in Aerodynamics             (2023) 5:6 

constraint, respectively. It is noted that when β is a function of the position x included in 
the integral in the regularization functional in Eq. (18), the same Euler-Lagrange equa-
tion can be obtained.

The physical meaning of the acceleration divergence term ∇ ⋅ a is discussed by Chen 
and Liu [35]. From the Euler equations, we have the pressure Poisson equation

where Q is the second invariant of the strain rate tensor. The second invariant Q is 
defined as

where S2 = tr (S ST) and Ω2 = tr (Ω ΩT), S and Ω are the symmetric and antisym-
metric components of ∇u. The components of S and Ω are Sij = (∂ui/∂xj + ∂uj/∂xi)/2 
and Ωij = (∂ui/∂xj − ∂uj/∂xi)/2 (i, j = 1, 2). The second invariant Q represents a balance 
between the vorticity magnitude and shear strain. When Q is positive, the rotational 
motion locally prevails over the shearing motion. Hunt et al. [36] proposed that a vortex 
could be defined as a compact region with the positive second invariant Q. Therefore, 
the second term in Eq. (24) is αu∇ ⋅ a =  − 2αuQ representing the flux of Q. From this per-
spective, Hertz’ principle as a constraint introduces the rotation motion characterized 
by Q, implying the presence of the circulation in flow. This physical meaning is interest-
ing, providing some justification of Eq. (15) in the unconstrained variational problem 
for determining the circulation. Clearly, Eq. (24) is not the Euler equations, indicating 
that the variational formulation based on Hertz’ principle does not correspond to the 
Euler equation. Due to the use of Hertz’ principle, Eq. (24) is a non-linear partial differ-
ential equation system that has higher order than the Euler equations, which is difficult 
to solve.

3.3 � Continuity equation constrained by Tikhonov regularization functional

The continuity equation is not closed since there are the two unknown velocity compo-
nents in the single equation. Instead of using the velocity potential in the potential flow 
theory, the smoothness regularization functional is used for not only the closure of the 
continuity equation as an inverse problem, but also removing the singularity of a velocity 
field at a sharp trailing edge. This is different from the potential flow theory where the 
Kutta condition is imposed as an extra condition at a trailing edge to remove the velocity 
or pressure singularity.

Considering a 2D incompressible flow described by the continuity equation ∇ ⋅ u = 0, 
we propose a functional

where u = (u1, u2) is the velocity in a 2D flow and α is a Lagrange multiplier. In Eq. (25), 
the first term is the equation term, and the second term is the first-order Tikhonov regu-
larization functional to remove any singularity of velocity at a sharp trailing edge [37]. 
The constrained variational formulation is

∇2p = −ρ∇ · a = 2ρQ,

Q ≡
(

Ω
2 − S2

)

/2,

(25)J (u) =

∫

�

|∇ · u|2dx + α

∫

�

(

|∇u1|
2 + |∇u2|

2
)

dx,
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Compared to Eq. (16), Eq. (26) does not assume the explicit existence of the circula-
tion. We consider a perturbed velocity field u + εv, where v is a test function (a variation 
or perturbation) and ε is a parameter (a magnitude). To find J(u) → min, the optimality 
condition is

where θ = ∇ ⋅ u is the dilatation rate. Using Green’s theorem, we have

where ∂Ω is the boundary of a fluid domain Ω, and n is the normal vector on ∂Ω.
When the continuity equation θ = ∇ ⋅ u = 0 and the Neumann condition n ⋅ ∇u = 0 hold 

on ∂Ω, Eq. (28) is zero and the first term in the RHS of Eq. (29) vanishes. Further, a class 
of the test functions is considered, satisfying the Laplace equation ∇2v = 0 with the Neu-
mann condition n ⋅ ∇v = 0. Therefore, Eq. (27) becomes

which leads to the Euler-Lagrange equation

The Neumann condition ∂u/∂n = 0 on ∂Ω is introduced in the derivation of Eq. (31). 
On a solid surface, the non-penetrating condition n ⋅ u = 0 is imposed as an extra con-
straint. Eq. (31) describes an incompressible flow with a smooth velocity field, providing 
a new method beyond the potential flow theory. Compared to Eq. (24), Eq. (31) is linear, 
which can be readily solved by using the standard numerical method. The solution of Eq. 
(31) is an interesting topic of future study, and the physical meaning of this equation is 
discussed here.

In the above derivation, only the incompressibility condition is used, and the inviscid 
irrotational condition is not explicitly applied. Interestingly, the Lagrange multiplier α 
acts as the artificial viscosity (the diffusion coefficient) in the diffusion term of Eq. (31) 
for controlling the smoothness of a velocity field. From this perspective, the first-order 
Tikhonov regularization functional with the artificial viscosity in Eq. (31) ensures no 
singularity at a sharp trailing edge, which replaces the Kutta condition in the classical 
potential flow theory. As a special unconstrained case, the potential flow with ∇2φ = 0 
satisfies Eq. (31) when the Lagrange multiplier is zero, where φ is the velocity potential. 
Therefore, the potential-flow solution is considered as a trivial reduced solution of Eq. 
(31). Different from the potential flow theory where the continuity equation is closed by 

(26)J (u) → min.

(27)
dJ (u+εv)

dε

∣
∣
∣
ε=0

=
∫

�
2[∇ · (θv)− v · ∇θ ]dx

+ α
∫

�

[
∇2(u · v)− u · ∇2v − v · ∇2u

]
dx = 0

,

(28)
∫

�

∇ · (θv)dx =

∫

∂�

n · (θv)ds,

(29)
∫

�

∇2(u · v)dx =

∫

∂�

[(n · ∇u) · v + u · (n ·∇v)]ds,

(30)
∫

�

v ·
(

2∇θ + α∇2u

)

dx = 0,

(31)∇(∇ · u)+ α∇2u = 0.



Page 16 of 18Liu ﻿Advances in Aerodynamics             (2023) 5:6 

introducing the velocity potential, Eq. (31) as a closed system of linear partial differential 
equations is obtained by introducing the smoothness constraint on a velocity field in the 
variational framework. In this sense, Eq. (31) describes a generalized (weak) form of the 
potential flow theory. Essentially, the constrained variational formulation describes an 
incompressible flow with the artificial viscosity, where the lift and circulation could be 
calculated without using the Kutta condition.

4 � Conclusions
The theoretical evidences are presented at different layers to prove that no lift can be 
generated in a steady inviscid flow. The physical meaning of D’Alembert’s paradox of lift 
and drag is examined, indicating that the lift cannot be generated in a 3D steady incom-
pressible inviscid irrotational flow. The apparent dilemma of the K-J theorem that coex-
ists with D’Alember’s paradox of drag in the potential flow theory can be resolved only in 
the viscous-flow framework. In fact, the Kutta condition applied to a sharp trailing edge 
to determine the circulation is a viscous-flow condition naturally compatible to the K-J 
theorem. Further, the BEF-based force expression indicates that the force (both the lift 
and drag) of a body in steady incompressible inviscid flow is zero. From the perspective 
of the vortex lift exclusively contributed by the Lamb vector, the vorticity as a key ele-
ment of lift generation is created on a solid wall through its viscous coupling with the 
surface pressure gradient. In summary, without the fluid viscosity, the circulation and lift 
cannot be generated.

In the variational theory of lift, a smoothness constraint functional is introduced to 
remove the singularity at a sharp trailing edge in a velocity field to determine the cir-
culation, which is consistent with the Kutta condition in this sense. In particular, in the 
variational formulation based on the continuity equation with the first-order Tikhonov 
regularization functional, the Euler-Lagrange equation is derived, indicating that the 
smoothness constraint functional represents a diffusion term with the Lagrange multi-
plier as an artificial viscosity. Therefore, this constrained variational formulation simu-
lates an incompressible flow with the artificial viscosity where the circulation and lift can 
be calculated. This reveals the role of the artificial viscosity in the determination of the 
circulation and lift. However, the variational formulation as an alternative to the Kutta 
condition cannot be used as a physical evidence supporting the questionable argument 
that the lift can be generated in a steady inviscid flow.
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