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Abstract

Improving resource utilization is an important goal of high-performance computing
systems of supercomputing centers. To meet this goal, the job scheduler of
high-performance computing systems often uses backfilling scheduling to fill
short-time jobs into job gaps at the front of the queue. Backfilling scheduling needs to
obtain the running time of the job. In the past, the job running time is usually given by
users and often far exceeded the actual running time of the job, which leads to
inaccurate backfilling and a waste of computing resources. In particular, when the
predicted job running time is lower than the actual time, the damage caused to the
utilization of the system’s computing resources becomes more serious. Therefore, the
prediction accuracy of the job running time is crucial to the utilization of system
resources. The use of machine learning methods can make more accurate predictions
of the job running time. Aiming at the parallel application of aerodynamics, we
propose a job running time prediction framework SU combining supervised and
unsupervised learning and verify it on the real historical data of the high-performance
computing systems of China Aerodynamics Research and Development Center
(CARDC). The experimental results show that SU has a high prediction accuracy
(80.46%) and a low underestimation rate (24.85%).

Keywords: High-performance computing, Job scheduling, Job running time
prediction, Machine learning, Prediction accuracy, Underestimation rate

1 Introduction
High-performance computing [1] has been widely used in the fields of science and engi-
neering. The explosive growth of scientific computing demand [2] provides a suitable
growth environment for the rapid development of high-performance computing. At the
same time, it also puts forward higher requirements for high-performance computing
systems. High-performance computing has the characteristics of powerful computing
capability and high scalability. Ensuring or even improving the preset service level
agreement (SLA) [3] and computing resources more rationally are also critical issues.
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On high-performance computing systems, the job scheduler is a crucial part. It is
responsible for scheduling the jobs submitted by users according to a certain strategy. To
improve the utilization of computing resources, the job scheduler usually adopts a back-
filling strategy, which schedules short-time jobs at the back of the job queue in advance if
these jobs don’t delay the execution of the first job in the queue. Usually, in this process,
the job scheduler captures the following job information: the submission time of the job
(Submit_time), the number of CPU cores required for the job to complete (CPU_req), the
job name (Job_name), the user name (User), the user ID (User_id), the job waiting time
(Wait_time) and estimated time for the job (Time_req), etc. Job backfilling scheduling
depends on the estimated time of the job. In the past, the estimation of the job’s running
time was provided by users, but Cirne et al. [4] showed that the estimated time given by
users of more than half of the job is five times or more than the actual running time of the
job. This behaviour is in line with the user’s desire to complete the job normally because
a running job will be killed if the time allocated to it has been exhausted. Moreover, many
users may not know about the job and the operating environment and tend to give the job
a running time that exceeds typical requirements. But for the system, this approach is not
beneficial and can cause a lot of waste of computing resources.
Using machine learning methods to predict the running time of the job can effectively

improve the inaccuracy of the time provided by users. Wu [5] et al. proposed the IRPA
algorithm, which significantly improved the accuracy of the running time prediction of
a single job. Pumma [6] et al. proposed a meta-heuristic prediction algorithm based on
a dynamic environment, which also achieved good results. Xiao [7] et al. proposed the
GA-Sim algorithm based on clustering, which improved the prediction accuracy and
underestimation of operating time.
Aerodynamics applications are typical applications in high-performance computing,

mainly used to study the force analysis and possible physical and chemical changes when
aircrafts and other equipmentmoves relative to air or other gases.With the rapid develop-
ment of more than half a century, this subject has become increasingly mature and serves
many fields such as aviation, aerospace, shipbuilding, and water conservancy. Aiming at
the parallel applications of aerodynamics, predicting their running time is of great signif-
icance for improving the throughput of the aerodynamic HPC system and improving the
efficiency of the system.
For the parallel application of aerodynamics, we comprehensively consider its comput-

ing characteristics and propose a job running time prediction framework SU (Supervised
and Unsupervised learning method) combining supervised learning and unsupervised
learning. In SU, supervised learning refers to a machine learning method with regres-
sion as the target value. We tried three supervised learning methods in SU. Unsupervised
learning refers to clustering, which is a machine learning method without a target value.
SU is implemented in two steps. In the first step, the jobs in the history log are clustered
to obtain multiple clusters of similar jobs S′

1, S
′
2, . . .. Then, for the job to be predicted,

find its k nearest neighbour jobs in its cluster (Suppose it is S′
1), and get a set of similar

jobs S′′
1. The second step adopts a supervised learning method to predict the running time

of the job. The results of verification on the real historical data of the high-performance
computing systems of CARDC show that the prediction accuracy reaches 80.46%, and the
underestimation rate is 24.85%.
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The main contributions of this paper include the following three aspects:

• Firstly, we propose the SU, a job time prediction framework, which combines the
advantages of supervised learning methods and unsupervised learning methods and
lays a foundation for the job running time prediction;

• Secondly, we integrate three machine learning regression models (linear regression,
random forest regression, and support vector regression) into the SU framework to
realize the prediction of job running time;

• Thirdly, based on the real historical data of the high-performance computing systems
of CARDC, the above algorithm is verified and tested. The results show that when the
SU framework adopts the SVR method, it has good accuracy and underestimation.

The main structure of this paper is as follows: Section 2 introduces the scheduling and
backfilling algorithms and several algorithms for predicting the job running time and ana-
lyzes their characteristics. Section 3 describes the job running time prediction framework
SU proposed in this paper in detail. In Section 4, we run the SU framework on the produc-
tion log provided by CARDC for verification. Finally, we summarize our work and future
challenges.

2 Related work
Scheduling algorithms usually include FCFS (first-come-first-served), SJF (short job first),
LJF (long job first), and WFP [8]. The common practice is to use FCFS to schedule jobs.
As the name suggests, this strategy sorts the scheduling order of jobs according to their
arrival order. FCFS is simple, fair, and easy to implement, but when idle resources cannot
meet the needs of jobs at the top of the queue, resources are wasted. In addition, short
jobs may need to wait until long jobs are completed, resulting in a longer average waiting
time, so this method makes resource utilization very low.
The SJF scheduling algorithm sorts the jobs in the increasing order of the estimated

running time and then delivers them to the system for scheduling. This scheduling algo-
rithm is beneficial to the situationwhere there aremany short jobs because a large number
of short jobs in the queue can be scheduled in advance. In extreme cases, long jobs in
the queue may need to wait forever. On the contrary, for the LJF scheduling algorithm,
its advantages and disadvantages are exactly the opposite of those of SJF’s. For the WFP
scheduling algorithm, it schedules the jobs in descending order of the score after scoring
the jobs according to a certain formula 1:

Score = CPU_req ∗ (Wait_time/Time_req)3 (1)

The WFP scheduling algorithm comprehensively considers the demand for computing
resources of the job and the waiting time of the job in the job queue. As the waiting time
for jobs increases, the job becomes more thirsty, and the score grows, which means it may
be executed in advance at some point. This is an exciting improvement. The previous
scheduling algorithm does not consider the problem of job thirst.
In the scheduling system, in addition to the job scheduling algorithm, there is usually

backfilling of jobs. That is, some small jobs at the back of the job queue are executed
in advance according to a certain algorithm without affecting the execution of the jobs
at the front of the queue. Backfilling can further utilize idle computing resource frag-
ments, thereby improving resource utilization. There are mainly conservative backfilling
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and EASY backfilling [8]. For conservative backfilling, as long as the small backfilled job
does not delay the previous jobs in the waiting queue, the backfilling will be executed.
Compared to conservative backfilling, the EASY method is more radical. As long as the
scheduled small job does not delay the first job in the queue, it will be scheduled. The
two types of backfilling have their own merits. In the former, there is no job thirst. In
the latter, jobs may experience unbounded delays. Usually, in HPC, similar jobs will be
called repeatedly, so you can choose a suitable backfilling method based on the actual job
scheduling situation.
Considering the importance of the accuracy of the estimated job running time in

the HPC systems, more and more work is devoted to improving the accuracy of the
job running time and reducing the underestimation rate. The main effect of reduc-
ing the underestimation rate is to reduce the severe waste of resources caused by the
underestimation of the system.
In the study of job running time prediction, Tsafrir et al. [9] first proposed the Last-2

method. This method is straightforward. It takes the average of the actual running time
of the last two submitted jobs by the same user as the predicted time of the newly job
submitted by this user. However, the accuracy and underestimation rate of this method
cannot meet expectations.
Wu [5] et al. proposed an integrated learning model IRPA based on specific types of

jobs (VASP). The model is shown in Fig. 1. This model combines a variety of machine
learning methods and takes into account some unique characteristics of the VASP. This
model firstly uses three sub-models, including Random Forest Regression, Support Vec-
tor Regression, and Bayesian Ridge Regression, to predict the job time, respectively. Then,
the three predicted values obtained are used as the input of the random forest classifi-
cation model. Finally, the prediction result is determined by these four machine learning
methods. The IRPA model has achieved high accuracy for VASP, but it does not consider
the underestimation of the predicting time.
Pumma et al. [6] proposed a meta-heuristic optimization algorithm with classification

and linear regression technology based on a dynamic environment to predict job run-
ning time. The method is mainly divided into three steps: firstly, when the job arrives,
it uses MICA to extract some job features related to running time and uses perf to cre-
ate a workload profile (including branch prediction, multi-instruction, etc.). Then, the
result obtained in the first step is fed back to the decision tree to classify the job. In the

Fig. 1 IRPA
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experiment, there are seven classes in total. Finally, the regression model of the corre-
sponding category is used to predict the operating time. In the last step, the author uses
the ABC algorithm (artificial bee colony algorithm) to find the relationship between input
attributes and running time, which is a meta-heuristic algorithm. Themodel has achieved
good results, but there are some limitations to this method. First, the job is divided into
seven categories, but once the newly arrived job does not belong to one of the categories,
the method will fail. Second, it is a method based on a dynamic environment and needs
to consider whether the user and the system can accept the time spent in the predicting
process.
In [10], Fan Y et al. mainly started from the point of view of data processing, hop-

ing to optimize and filter data to improve job running time prediction accuracy. A lot
of work before this has been devoted to improving the prediction accuracy by reducing
the overestimation of running time but did not solve the problem of underestimation. As
we know, underestimating timemeans disastrous consequences. Unfortunately, these two
goals conflict, and improving the prediction accuracy of overestimated jobs may increase
the probability of underestimation. Fan Y et al. proposed an online adjustment frame-
work, TRIP, starting from data. TRIP uses the data truncation capability of the Tobit
model. In TRIP, data that does not meet the conditions is truncated so that more effec-
tive data brings more accurate running time predictions. The TRIP model is shown in
Fig. 2. For each incoming job, TRIP first searches the library for historical information
with the same user, project, and job. Then, if the number of information found is less
than the threshold, the time provided by the user will be used. Otherwise, it compares
whether the average accuracy of historical jobs is greater than a certain threshold. If it is,
the time prediction provided by the user will be used. Otherwise, the Tobit model will be
used for prediction. Experimental results prove that this method significantly reduces the
underestimation rate, but the average accuracy does not change much.
In [11], Guo J et al. considered data categories and believed that considering the overall

performance index is unfair for the data with a small number. Therefore, an evaluation
standard for a few types of data is proposed. In the experiment, Guo J et al. used XGBoost
and RF machine learning methods to classify and predict data and then proposed evalu-
ation criteria for a small number of data. At the same time, it was also found that when
the jobs were classified by application name, higher recall rates, precision rates, and F1

Fig. 2 TRIP
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scores were obtained. However, this method fails when the user is not required to provide
an estimated time for the job.
It can be found that when using machine learning methods to predict the running time

of a job, many aspects need to be taken into account at the same time. In response to
the problems in related work, we designed the SU framework, taking into account the
prediction accuracy and underestimation issues. At the same time, the generalization
performance of the algorithm is better.

3 SU predicting framework
The SU framework is implemented based on a combination of supervised learning and
unsupervised learning. Supervised learning methods mainly include classification and
regression. Our numerical prediction of job time is a regression method. To obtain high-
precision prediction results, we must first extract effective data and features, which is
difficult to achieve by supervised learning alone. Therefore, we combine clustering, a typi-
cal unsupervised learningmethod, cluster similar things together by calculating similarity
and then provide effective data dependence for supervised learning. As shown in Fig. 3,
SU is mainly composed of clustering, k-nearest neighbours, and prediction.

• Through clustering of unsupervised learning, similar jobs in the history log are
clustered together, and multiple similar jobs sets S′

1, S
′
2,. . . are obtained. Here we use

the shortest edit distance algorithm on User and Job_name to calculate the distance
matrix and use this as the standard of clustering to obtain the set of similar jobs S′ .

• According to the job to be predicted, SU selects its k nearest neighbor jobs in the
corresponding set S′ to form a similar job set S′′ , and uses it as a training set.

• SU uses supervised learning to estimate the running time of the job. It should be noted
that when a new user appears, that is, the job to be predicted does not belong to any
previous cluster. Then we look for its k neighbor jobs in the history log and predict
running time with these jobs. The job features used in SU are shown in Table 1.

Fig. 3 SU Predicting framework
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Table 1 Job features

Features Meanings

Elapsed The actual running time of the job

CPU_req The number of CPU cores required

Submit_time Job submission time

Job_name Job name

User User name

3.1 The shortest edit distance matrix LD

The shortest edit distance algorithm is the first step to realize the SU framework. As
shown in Fig. 3, we calculate the LD matrix for clustering. It is the basis needed to com-
plete the clustering, and it can better measure the distance between strings. Here we use
the Levenshtein distance [12] to define the edit distance, which can be used to indicate
how many steps string A needs to undergo to transform into string B. There are three
editing operations: add, delete and replace. To transform a string into another, three oper-
ations are generally used in combination.What we want to get is the shortest edit distance
from string A to string B, which describes the degree of similarity between the two strings.
The shorter the edit distance between two strings, the higher the similarity between
them.
We use dynamic programming to measure the shortest edit distance between two

strings. In SU, we combine User and Job_name to form a new string User_job. We select
two samples from this new feature. Since the samples are very long, they are cut into the
string ‘son’ and ‘sun’. The process of solving the shortest edit distance is as follows:
Initialize the matrix of string A and B (shown in Table 2).
Calculate the value of position (1,1) (shown in Table 3): at this time ’s’=’s’, so the value of

(1,1) is min1+1,1+1,0+0=0, that is, the left number of the position (1,1) plus 1, the upper
number plus 1, and the upper left number plus 0, then take the minimum value. It should
be noted that when the compared two characters are not the same, the numbers in the
three positions are all increased by 1.
Repeat the rule from the upper left corner to the lower right corner to calculate the

value of the remaining positions until the matrix is filled (shown in Table 4).
Finally, the value 1 in the lower right corner is obtained, which is the shortest edit dis-

tance between string A and string B. This is consistent with the phenomenon that only
needs to replace an intermediate character to complete the transformation.
We refer to the above dynamic programming method to calculate the shortest edit dis-

tance between each sample and obtain an n*n LD distance matrix. Here, n is the number
of jobs, and LD is a symmetric matrix whose main diagonal is all 0. In actual calculations,
only the upper-half angle or the lower half-angle needs to be calculated. Such a matrix LD
is the sample input when the job is clustered.

Table 2 Initialization

s o n

0 1 2 3

s 1

u 2

n 3
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Table 3 Calculation for the first step

s o n

0 1 2 3

s 1 0

u 2

n 3

3.2 Using k-means++ clustering to obtain similar job set s
′

After obtaining the LD matrix, we use the matrix to clustering. Cluster analysis is a
method of unsupervised learning, which aims to discover the relationship between them
in the data, and group these data. The greater the similarity of data within a cluster and
the smaller the similarity of data between clusters, the better the clustering effect. This
is not the same as classification. Clustering gathers similar data together and gives each
cluster of data a label. It does not care about this label when dividing, and even the number
of labels is uncertain. The classification is when the number of labels has been deter-
mined, and it is hoped that a classifier will be used to classify the data into suitable labels.
This is a method of supervised learning. Data clustering mainly includes Partition-based
Methods, Density-based methods, and Hierarchical Methods. Here we use the classic
Partition-based clustering methods, k-means++ [13].
k-means++ is evolved based on k-means [14]. The principle of the k-means algorithm

is relatively simple, and the convergence speed is fast. Its time complexity is close to lin-
ear, so in the case of a relatively large sample size in the SU framework, the efficiency
is relatively high. But the k-means algorithm also has certain defects. First, the number
of clusters k needs to be given in advance, which requires certain prior knowledge. The
second is that in k-means, it is necessary to set a clustering center to perform the initial
division at the beginning and then optimize the division, so the choice of the initial focus
will have a greater impact on the clustering results, which may cause damage to the effect
of clustering.
The random allocation of initial centroids in k-means will lead to the problem that the

final result may only be a local optimal value. In the SU framework, the k-means++ algo-
rithm is used to cluster the sample points. Its basic idea is that the initial clustering centers
should be sufficiently far apart, and usually, multiple clustering is performed each time a
different center is initialized, and the smallest inertial clustering result is used as the final
clustering result. The calculation formula of inertial is as follows:

inertial =
k∑

i=1

∑

(x∈Ei)
||x − ui||22, (2)

Among them, ui is the center of each cluster, and x represents the sample point. Inertial is
a measure of the degree of aggregation within a cluster. The smaller the value, the higher
the similarity of samples in the cluster.

Table 4 The end result

s o n

0 1 2 3

s 1 0 1 2

u 2 1 1 2

n 3 2 2 1
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In the SU framework, we calculate the LD matrix on the data obtained from CARDC
and then use k-means++ for clustering to obtain similar job sets. Considering that the
amount of data is relatively large and each cluster in the final clustering result belongs
to the same user, the sample points of each user are clustered separately, which greatly
reduces the clustering time. When clustering, the interval of k can be specified according
to certain prior knowledge, and the best k value can be calculated. Usually, we use SSE
(Sum of Squared Errors) and Calinski-Harabasz index to measure the pros and cons of
the k value. SSE is the within-cluster sum of squared errors, which can be calculated by
Equation 2. The smaller the value is, the better the k is. Calinski-Harabasz considers the
density of clusters and the degree of dispersion between clusters. Its calculation process
is also very simple. The larger the score of Calinski-Harabasz is, the better the k is. The
formula is as follows:

Cscore =[ tr(Bk)/tr(Wk)] ∗[ (n − k)/(k − 1)] , (3)

Among them, n is the number of samples, k is the number of clusters, Bk is the covariance
matrix between cluster samples,Wk is the covariance matrix of the samples in the cluster,
and tr() is the trace of the matrix. A high Calinski-Harabasz score means that the covari-
ance of the samples in the cluster is small, and the covariance of the samples between
clusters is large. Both of them indicate that the clustering effect is well.
Figures 4 and 5 are the clustering results of a sample of a certain user. The defini-

tion of SSE measures the similarity of the samples in the cluster. The lower the value,
the higher the sample similarity. The k value when the elbow appears in the figure is
generally a good choice. For Calinski-Harabasz, it measures the cluster density and dis-
persion between clusters of the sample. Generally, the value of k corresponding to the
high Calinski-Harabasz value is selected and the SSE corresponding to this k usually has

Fig. 4 SSE changes with the value of k
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Fig. 5 Calinski-Harabasz changes with the value of k

an elbow shape. It can be seen from the figure that SSE has an elbow shape when k=4 and
Calinski-Harabasz takes the maximum value at this time. Therefore, for this user’s sam-
ple, when k=4, the clustering effect is the best. In the realization of SU, we finally group
the samples into 15 clusters according to the shortest edit distance matrix LD.

3.3 Using k-nearest neighbors to obtain similar job set S
′′

After k-means++ is used to obtain the set of similar jobs S′ , the idea of k-nearest neighbor
is used to obtain the k nearest neighbors of the job to be predicted. We select two numer-
ical attributes of the jobs to calculate the similarity between them. The two attributes are
the number of CPU cores required by the job CPU_req and the time the user submits
the job Submit_time. Among them, CPU_req is directly related to the job running time.
The use of Submit_time is to hope that the machine learning method can learn some
of the users’ submission habits. For example, the user may like to submit some larger
jobs at night and submit smaller jobs during the day. Of course, the Submit_time feature
needs to be processed. Firstly, it needs to be modulated from seconds to hours. Secondly,
considering that it is a cyclic variable and its size is relatively meaningless, it should be
coded.
For the coding of cyclic characteristics, the angle in the polar coordinate system is

used to describe each value of cyclic characteristics. At the same time, the angle can be
uniquely determined by using the sin function and cos function. Then we get Submit_sin
and Submit_cos. Finally, after standardizing CPU_req, Submit_sin, and Submit_cos, they
are denoted as (c, ss, sc). ci, ssi, sci are the cpu, sin value of Submit and cos value of Submit
of job i respectively, cj, ssj, scj are the cpu, sin value of Submit and cos value of Submit of
job j respectively, and formula 4 is used to calculate the similarity Sscore between job i and
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job j.

Sscore =
√

(|ci − cj|2 + |ssi − ssj|2 + |sci − scj|2, (4)

After calculating the job similarity, select k jobs with the smallest Sscore value. In this
way, after the two steps of clustering and k-nearest neighbors, the job similarity set S′′ of
the job to be predicted is formed.

3.4 Using supervised learning to predict job time

After obtaining a similar job set S′′ , we use k jobs that contain CPU_req, Submit_sin,
Submit_cos, and the actual job running time Elapsed to train the prediction model of the
job to be predicted. Among them, the first three features are used as model inputs, and
Elapsed is used asmodel output. In our experiment, we tried different regressionmethods
in SU’s job time prediction period and chose the best method as the prediction model.
In the final prediction time expression, an adjustment factor α is introduced, and the

value is determined by the best experimental effect. It can greatly reduce the underesti-
mation rate of the prediction under the condition of losing a little prediction accuracy.
We know that the prediction accuracy describes how close the predicted job time is to
the actual running time, and the underestimation rate refers to the proportion of the job
whose predicted time is lower than the actual time. When the prediction time interval
is multiplied by a coefficient greater than 1, the entire value interval will be larger. How-
ever, relative to the loss of prediction accuracy, the underestimation rate has been reduced
more, indicating that a considerable part of the prediction results is located below the
actual running time but very close to it. Thus, for the new job job_new, Predict represents
the predicting process, the final result Final can be expressed as:

Final = α ∗ Predict(job_new) (5)

4 Experiment
In the experiment, we implemented the SU framework and used real logs obtained from
CARDC to compare the effects of the three machine learning methods of linear regres-
sion, random forest regression, and SVR with SU framework and without SU framework.
Experiments have shown that when the SVR method is used in the prediction period of
the SU framework, it has the best prediction accuracy and underestimate rate.

4.1 Experimental platform and data set

Several machine learningmethods used in the experiment and the standardization of data
processing are all provided by the scikit-learn library [15].
The data required for the experiment is provided by CARDC and contains a total of

30,481 original samples generated in three months.
Before using SU to make predictions, we preprocessed the data. Firstly, we remove the

unsuccessful jobs. That is, the job did not finish within the specified time, and then we
remove the jobs missing the features shown in Table 1, leaving 26,208 valid jobs.

4.2 Model evaluation criteria

In this article, three evaluation indicators are used, namely Average Predictive Accuracy
(APA), Mean Absolute Error (MAE), and Underestimate Rate (UR).
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APA describes the average prediction accuracy of all jobs to be predicted, that is, how
close the overall prediction is to the actual job time. The calculation formula for a single
job to be predicted is as follows:

APAi =
{
Prei/Elapsedi, Prei < Elapsedi
Elapsedi/Prei, Prei ≥ Elapsedi

(6)

Among them, Prei represents the predicted job running time of job i, and Elapsedi rep-
resents the actual running time of the job. In this way, the average prediction accuracy
APA of all jobs can be expressed as:

APA = (

n∑

i=1
APAi)/n (7)

Among them, n is the total number of jobs to be predicted, and the value of APA is
between 0 and 1. The closer to 1, the better the prediction effect.
MAE describes the difference between the predicted time of all jobs and their true

values, and its expression is:

MAE = (

n∑

i=1
|Prei − Elapsedi|)/n (8)

MAE and APA are complementary to each other.
UR describes the proportion of jobs that are predicted to be lower than the actual job

time. Such a prediction is meaningless and has greater damage to the utilization of system
computing resources. It should be reduced as much as possible. The calculation formula
is as follows:

UR = (

n∑

i=1
I(Prei < Elapsedi))/n (9)

Where I is an indicator function, defined as follows:

I(Prei < Elapsedi) =
{
1, Prei < Elapsedi
0, Prei ≥ Elapsedi

(10)

4.3 Experimental steps
• Filter the data according to the requirements of the data processing period.
• After calculating the shortest edit distance matrix, cluster the samples.
• Divide the jobs, get the training set and the test set, and get its neighbor job set

according to the job in the test set.
• Predict the job to be predicted.
• Evaluate the results of the experiment.

4.4 Experimental results and analysis

In the job time prediction period, we compared the effects of three machine learn-
ing methods: linear regression, random forest regression, and SVR with SU framework
and without SU framework. When the SU framework is not used, we do not perform
clustering and k-nearest neighbor operations on samples. After extracting CPU_req,
Submit_time, and Elapsed, we perform cycling encoding on Submit_time. Then we stan-
dardize CPU_req, Submit_sin, and Submit_cos, and finally, we predict the running time
of the job.
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Table 5 Predicting results of six methods

Method Linear RFR SVR Single-
Liner

Single-
RFR

Single-
SVR

MAE 3140.5 3181.9 2762.7 15039.3 10892.6 9488.0

APA 0.7482 0.7469 0.8046 0.2784 0.3769 0.5400

UR 0.3134 0.3022 0.2485 0.2871 0.2731 0.489

The values of the mean absolute error MAE, average prediction accuracy APA, and
underestimation rate UR obtained in the experiment are shown in Table 5. The Method
column represents the machine learning method used in the prediction period, and the
three on the left are linear regression, random forest regression, and support vector
regression with SU framework, and the three on the right are linear regression, random
forest regression, and support vector regression without SU framework.
Figure 6 shows the comparison of the mean absolute error under six different condi-

tions. When the SU framework is used, the average MAE obtained by the three machine
learning methods is 3028, which is 74% lower than the average without the SU frame-
work. This indicates that when the SU framework is used, the predicted value has higher
stability, and the MAE value is the lowest when using the SVR prediction method with
the SU framework.
Figure 7 shows the comparison of prediction accuracy under six different conditions.

When the SU framework is used, the average APA obtained by the three machine learning
methods is 76.66%, which is 36.8% higher than when the SU framework is not used. This
means that when the SU framework is used, the prediction has higher accuracy, and the
APA value is the highest when using the SVR prediction method with the SU framework.

Fig. 6 MAE comparison
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Fig. 7 APA comparison

Figure 8 shows the comparison of the underestimation rate under six different con-
ditions. The underestimation of the first five methods is relatively close, but the SVR
method with SU framework still obtains the lowest underestimation rate.

Fig. 8 UR comparison
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Fig. 9 Cumulative error distribution

The SVR algorithm has the characteristics of good generalization performance and fast
convergence speed. On the three indicators, SVR with framework has the best perfor-
mance. This shows that the combination of the SU framework and SVR not only reduces
underestimation but also ensures the accuracy of the prediction.
Based on the previous work, we analyzed the cumulative distribution of the error of

predicting the job running time with the framework, as shown in Fig. 9.
The left and right sides of the vertical line x=0 represent the underestimation and over-

estimation of the job running time prediction. It can be seen that on the left side of x=0,
RFR and Linear are relatively close, but the underestimation of SVR is much better. At
the same time, when approaching the vertical line of x=0, the change of SVR is more sig-
nificant, indicating that many underestimations are close to the actual job running time.
Therefore, it is necessary to adjust the final prediction results with α. Compared with
the loss of prediction accuracy, the reduction of underestimation is more obvious. On
the right side of x=0, SVR is also closer to the real job running time than the other two
algorithms.
Furthermore, we analyze the prediction results when using the SVR method under the

SU framework according to the job classifications. The prediction results of 15 job clas-
sifications are shown in Fig. 10, the number of jobs and the distribution of times are
shown in Table 6. For I, K, and L, these three classifications of jobs have the best com-
prehensive performance on the three evaluation criteria. Among them, taking job L as an
example, its CPU requirements are 24, 64, and 96 respectively. At this time, the corre-
sponding maximum-to-minimum ratios of real job running time are 1.40, 1.01, and 1.37
respectively. The poor overall performance of job B has a CPU demand of 16, and the
maximum-to-minimum ratio of the real job running time is 12.7. It can be found that in
the case of a fixed job classification and a fixed CPU demand, the fluctuation of the real
job time has a great influence on the prediction result. The smaller the fluctuation range,
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Fig. 10 Results with job classifications

the higher the prediction accuracy and the smaller the underestimation. The larger the
fluctuation range, the lower the accuracy and the higher the underestimation. The same
pattern can be found in the remaining classifications of homework.
Finally, we performed simulated backfilling scheduling experiments on the above six

prediction results on the Slurm simulator [16] to verify its scheduling performance.
The Slurm simulator supports EASY backfilling and FCFS scheduling algorithms. We
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Table 6 Backfilling performance

Method Linear RFR SVR Single-
Liner

Single-
RFR

Single-
SVR

AWT 213.8 204.6 192.6 297.4 285.1 274.6

use Average Waiting Time (AWT) to evaluate scheduling performance under these two
strategies. The AWT under the six methods are shown in Table 6, from left to right are
linear regression, random forest regression, and support vector regression under the SU
framework and linear regression, random forest regression, and support vector regres-
sion under the non-SU framework. It can be found that the AWT of the three methods
when the SU framework is used is 29% lower than that of the three methods when the SU
framework is not used. Among them, when the SVR prediction method is used under the
SU framework, the scheduling performance is the best.
In summary, the SU framework can guarantee higher prediction accuracy and lower

underestimation rate without requiring users to provide estimated job running time. In
the high-performance computing systems of China Aerodynamics Research and Devel-
opment Center, most of the operations are CFD-related, and there are relatively few users.
At the same time, applications are relatively concentrated. In this scenario, it is also more
conducive to the play of the SU framework.

5 Conclusion
Although the SU framework has achieved good results in the real history log of aerody-
namics, the author believes that SU has room for improvement in prediction accuracy,
average absolute error, and underestimation. Some key job parameters are in the configu-
ration file, such as the number of grids. The number of grids represents the division unit
for force analysis. If the number of grids is large, more calculations are required, so it has
a close relationship with the job running time, but this type of data was not obtained in
this experiment. When the job classification and CPU demand are fixed, there is a close
relationship between the real job running time fluctuations and these parameters. So in
order to improve the prediction effect, it is hoped that this type of character data can be
captured in the future, which is believed to bring better prediction results and further
enhance the utilization of computing resources.
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