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Abstract

The newly developed vortex-identification method, Liutex, has provided a new
systematic description of the local fluid rotation, which includes scalar, vector, and
tensor forms. However, the advantages of Liutex over the other widely used vortex-
identification methods such as Q, Δ, λ2, and λci have not been realized. These
traditional methods count on shearing and stretching as a part of vortex strength.
But, in the real flow, shearing and stretching do not contribute to fluid rotation. In
this paper, the decomposition of the velocity gradient tensor is conducted in the
Principal Coordinate for uniqueness. Then the contamination effects of stretching
and shearing of the traditional methods are investigated and compared with the
Liutex method in terms of mathematical analysis and numerical calculations. The
results show that the Liutex method is the only method that is not affected by either
stretching or shear, as it represents only the local fluid rigid rotation. These results
provide supporting evidence that Liutex is the superior method over others.

Keywords: Liutex, Vorticity, Vortex, Omega method, Transition flow, Velocity gradient
tensor, Principal coordinate, Principal tensor, Liutex tensor decomposition

1 Introduction
A vortex is recognized as the rotational motion of fluids. Within the last several de-

cades, a lot of vortex identification methods have been developed to track the vortical

structure in a fluid flow; however, we still lack unambiguous and universally accepted

vortex identification criteria. This is the impediment that has caused a lot of confu-

sions and misunderstandings in turbulence research [1]. In most research papers and

textbooks, the vorticity tube/filament is regarded as a vortex and the magnitude of the

vorticity as the local rotational strength. Many researchers widely acknowledged the

concept of vortex defined as the vorticity concentration and other vorticity-based

methods [2, 3] as the vorticity vector was believed to offer a mathematical definition of

fluid rotational motion. Zhou and Antonia (1993) [4] utilized the spatially phased-

correlated vorticity to characterize large-scale and organized structures in the cylinder

wake. However, problems arose while applying in viscous flows, particularly in turbu-

lent flows. In turbulent viscous flows, the rigid rotation strength is minimal near the
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wall, where shear stress is dominant. Many researchers in the literature have supported

this claim, indicating the inadequacies of vorticity-based methods. Epps (2017) [5] ob-

served that vorticity could not distinguish a vortical region with rotational motions

from a strong shear layer. Robinson (1991) [6] also uncovered the fact that the regions

of strong vorticity and actual vortices are weakly related. These vorticity-based methods

are the first generation (1G) of vortex identification methods as per [7], while sca-

lar based schemes such as Δ, Q, λ2, λci, and Ω are known as second-generation

(2G) criteria.

Attempting to remedy the problems of vorticity based methods, 2G vortex identifica-

tion criteria such as Δ [8, 9], Q [10], λ2 [11], λci [12], Ω [13, 14], etc., have been intro-

duced and extensively applied in visualizing vortex structures over the past three

decades. Although the 2G- schemes have been able to judge the presence of the local

rotational motion to some extent, these methods need an adjustment of threshold to

visualize the iso-surface plot accurately. This poses a problem as it is difficult to adjust

the threshold that will define the boundary of vortical structures in a particular case

[13, 15]. Moreover, the Q and λ2 methods are restrictive for incompressible flows due

to their incompressibility assumption. These and other issues of 1G and 2G vortex

identification methods prompted the development of a new vortex identification

method, the Liutex method [16, 17], also known as a third-generation vortex identifica-

tion scheme.

According to Chong and Perry (1990) [8], if the velocity gradient tensor of a three-

dimensional flow field has a pair of complex conjugate eigenvalues and a real eigen-

value, then the instantaneous streamline pattern presents a local swirling motion. Liu

et al. (2019) [7] acknowledged that these streamlined patterns are the direct result of

the real eigenvector of the velocity gradient tensor. In fact, this real eigenvector is the

axis of fluid rotation which is also known as the direction of Liutex. Unlike 2G

schemes, the Liutex method is a novel eigenvector-based method that is local, accurate,

unique, and systematic. Furthermore, the systematical definition of Liutex is given as a

vector which has its corresponding scalar and tensor forms [17]. The vector form of

Liutex gives the direction of the local fluid rotation, while the magnitude of Liutex rep-

resents the rotational strength of a fluid rotation. Also, the Liutex vector is Galilean in-

variant [18–20]. According to Liu et al. [7], the Liutex method, Liutex-Omega method

[16], Liutex Core Line method, and other Liutex-based methods [21–23] are the third

generation (3G) of vortex identification methods. The Liutex method is discussed

briefly in section 2.6.

After the introduction of the Liutex method in 2018, many doors of investigations of

fluid rotations and related topics have opened. Based on Liutex definition, Gao and Liu

proposed a velocity gradient tensor decomposition [24] in the rotated coordinate sys-

tem, which was somewhat lengthy and cumbersome. So, later in the same year, they

gave explicit expressions for the Rortex/Liutex tensor and velocity gradient tensor de-

composition [25] without coordinate rotation. Recently, Yu and Liu proposed a new

unique definition of Principal Coordinates and conducted a unique Principal Tensor

decomposition under the Principal coordinates [26]. In this paper, the concept of Prin-

cipal Coordinates and Principal Tensor decomposition is revisited briefly in section 3.

Also, the issue of shear and stretching contamination of 1G and several 2G vortex iden-

tification methods is investigated in terms of mathematical analysis and numerical
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calculations. Our investigation involves calculating the velocity gradient tensor at a

point inside the numerical domain (flow field). Then, a unique Principal Tensor de-

composition is performed in the Principal Coordinates. In other words, the velocity

gradient tensor is uniquely decomposed into its rigid rotation part, stretching part, and

shearing part in the Principal Coordinates. From our investigation, it is found that 1G

and several 2G vortex identification methods misinterpret shearing and stretching as a

constituent of vortical structure, which is not true. Also, these methods have dimen-

sional problems at different physical levels, which are discussed in section 4 in detail.

The organization of this paper is as follows: In Section 2, some traditional vortex

identification methods are revisited including vorticity tube/filaments, Δ, Q, λ2 and λci
methods. Section 3 describes the Liutex-based Principal Tensor Decomposition in the

unique Principal Coordinates. Based on the unique Principal Tensor Decomposition in

the Principal Coordinates, the theoretical contamination analysis of the vorticity, Δ, Q,

λ2, λci and Liutex schemes are examined and presented in Section 4. Numerical experi-

ments and their results can be found in Sections 5 and 6, respectively, and some con-

cluding remarks are made in the last section.

2 Review of 1G and 2G vortex identification methods
2.1 Vorticity-based method

Since Helmholtz introduced the concept of vorticity tube/filament in 1858 [2], many

researchers have believed that vortices consist of small vorticity tubes which are called

vortex filaments, and the magnitude of vorticity gives the vortex strength. The vorticity

vector is mathematically defined as the curl of the velocity. i.e.

Vorticity ¼ ∇� v ¼
i j k
∂
∂x

∂
∂y

∂
∂z

u v w

�������
������� ¼ i

∂w
∂y

−
∂v
∂z

� �
− j

∂w
∂x

−
∂u
∂z

� �
þk

∂v
∂x

−
∂u
∂y

� �

ð1Þ

Helmholtz also defined vortex lines and vortex filaments based on the vorticity vec-

tor. According to Helmholtz, vortex lines are drawn through the fluid mass so that

their direction at every point coincides with the direction of the momentary axis of ro-

tation of the water particles lying on it. He also defined vortex filament as the portions

of the fluid mass cut out from it by way of constructing corresponding vortex lines

through all points of circumference of an infinitely small surface element. Another

vorticity-based method to define a vortical structure is vortex-tube. Lamb [27] defines

vortex-tube as: “If through every point of a small, closed curve we draw the corre-

sponding vortex-line, we mark out a tube known as vortex-tube.”

2.2 Δ method

The Δ method defines a vortex to be the region where the velocity gradient tensor ∇ v!
has a pair of complex conjugate eigenvalues and a real eigenvalue [8]. If λ1, λ2 and λ3
are the eigenvalues of the 3 ×3 matrix of ∇ v!; then the characteristic equation can be

written as

λ3 þ I1λ
2 þ I2λþ I3 ¼ 0 ð2Þ
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where, I1, I2, and I3 are the first, second, and third principal invariants of the character-

istic eq. (2) and given by

I1 ¼ λ1 þ λ2 þ λ3ð Þ ¼ tr ∇ v!� � ð3Þ

I2 ¼ λ1λ2 þ λ2λ3 þ λ3λ1 ¼ −
1
2

tr ∇ v!2
� �

− tr ∇ v!ð Þ2
h i

ð4Þ

I3 ¼ λ1λ2λ3 ¼ det ∇ v!� � ð5Þ

The discriminant of the characteristic eq. (2) is given by

Δ ¼
~Q
3

� �3

þ
~R
2

� �2

ð6Þ

where ~Q ¼ I2 − 1
3 I1

2 and ~R ¼ − I3 − 2
27 I13 þ 1

3 I1I2.

For incompressible flow, the first principal invariant I1 = 0, which results in eq. (6) be-

coming Δ ¼ ðI23Þ
3 þ ðI32 Þ

2
: If Δ≤ 0, all three eigenvalues of ∇ v! are real, but if Δ > 0,

there exists one real and two conjugate complex eigenvalues. The latter means that the

point is inside a vortex region. Although the Δ-method can capture the vortex region

successfully, it is susceptible to the threshold value, which is man-made and arbitrary

in general.

2.3 Q method

Proposed by Hunt et al. (1988) [10], the Q method is one of the most popular methods

used to visualize the vortex structure. According to Chakraborty et al. (2005) [28], Q is

also the second principal invariant of the velocity gradient, and the value of Q can be

calculated as half of the difference of squares of the Frobenius norm of the vorticity

tensor and strain-rate tensor. i.e.,

Q ¼ 1
2

Bk k2F − Ak k2F
� � ð7Þ

where A and B are the symmetric and anti-symmetric part of the velocity gradient ten-

sor, respectively.

A¼ 1
2

∇ v!þ ∇ v!T
� �
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� �
1
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2
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2
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ð8Þ

B¼ 1
2
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� �
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ð9Þ

The Q method considers that a vortex occurs in the region where Q > 0. Using the Q

method, it is easy to track the vortical structure by iso-surface plotting. However, Q is

scalar-valued, and a proper threshold, which in general does not exist, is required to
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visualize the vortex region. Also, there exists an inconsistency between the Δ method

and Q method as ð~R2 Þ
2

is always positive, and even if Q < 0, it is still possible that Δ

could be positive.

2.4 λci criterion

The λci criterion [12, 28] uses the imaginary part of the complex eigenvalues of the vel-

ocity gradient tensor to visualize the vortex structure. It is based on the idea that the local

time-frozen streamlines exhibit a rotational flow pattern when ∇ v! has a pair of complex

conjugate eigenvalues. In this case, the tensor transformation of ∇ v! is given by

∇ v!¼ v!r v!cr v!ci
	 
 λr 0 0

0 λcr λci
0 − λci λcr

2
4

3
5 v!r v!cr v!ci
	 
 − 1

; ð10Þ

where λr is the real eigenvalue with the corresponding real eigenvector v!r and the pair

of complex conjugate eigenvalues are λcr ± iλci with corresponding eigenvectors v!cr ± i

v!ci: In this case, in the local curvilinear system (c1, c2, c3) spanned by the eigenvector

( v!r; v
!

cr ; v
!

ciÞ, the instantaneous streamlines exhibit a spiral motion. The equations of

such streamlines can be written as:

c1 tð Þ ¼ c1 0ð Þeλr t ð11Þ

c2 tð Þ ¼ c2 0ð Þ cos λcitð Þ þ c3 0ð Þ sin λcitð Þ½ �eλcr t ð12Þ

c3 tð Þ ¼ c3 0ð Þ cos λcitð Þ − c2 0ð Þ sin λcitð Þ½ �eλcr t ð13Þ

Despite being used by many researchers to track the vortical structure, the strength

of this swirling motion may not be quantified accurately by λci. This is largely because

the tensor transformation given by (10) is a similar transformation, but not an orthog-

onal transformation, since v!r; v
!

cr; v
!

ci are not orthogonal. In a non-orthogonal sys-

tem, vorticity is not invariant ( j ∇� v! ∣≠2λciÞ: As well-known that vorticity is

invariant in any orthogonal transformation system and therefore, λci cannot be used as

the strength of fluid rotation. We cannot use a coordinate transformation which

changes the vorticity, and the new tensor is different from the original tensor, or ∇V
!

is

not ∇ v!; making it clear that transformation used in λci method is not Galilean invari-

ant. On the other hand, the Liutex transformation is an orthogonal transformation that

preserves the invariance of vorticity.

2.5 λ2 criterion

The λ2-criterion is calculated based on the observation that in a vortical region, pres-

sure tends to be the lowest on the axis of a swirling motion of fluid particles. This hap-

pens because the centrifugal force is balanced by the pressure force (the cyclostrophic

balance). This method is valid only in a steady inviscid and incompressible flow [11].

However, this assumption fails to accurately identify vortices under compressible, un-

steady, and viscous conditions. By neglecting these unsteady and viscous effects, the

symmetric part S of the gradient of the incompressible Navier–Stokes equation can be

expressed as:
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S ¼ A2 þ B2 ¼ −
∇ ∇pð Þ

ρ
ð14Þ

where p is the pressure and eq. (14) is a representation of the pressure Hessian matrix.

(∇(∇p))ij =
∂2p
∂xi∂yi

. To capture the region of local pressure minimum in a plane perpen-

dicular to the vortex core line, Jeong & Hussain defined the vortex core as a connected

region with two positive eigenvalues of the pressure Hessian matrix, i.e., a connected

region with two negative eigenvalues of the symmetric tensor S. If λS1, λS2 & λS3 are

three real eigenvalues of the symmetric tensor S and when setting them in order in

such a way that λS1 ≥ λS2 ≥ λS3, there must be λS2 < 0 as two eigenvalues are negative,

which confirms the existence of a vortex. In general, λS2 cannot be expressed in terms

of eigenvalues of the velocity gradient tensor; however, in some special cases when ei-

genvectors are orthonormal, λS2 can be exclusively determined by eigenvalues of the

velocity gradient tensor. Vortex structure can be visualized as iso-surface by selecting a

proper threshold of λS2 [7]. The relation between the eigenvalues of the symmetric ten-

sor A2 + B2 and second invariant Q is given by:

Q ¼ −
1
2
tr A2 þ B2
� � ¼ −

1
2

λS1 þ λS2 þ λS3ð Þ ð15Þ

While the Q-criterion measures the excess of vorticity rate over the strain rate magni-

tude in all directions, the λ2 criterion looks for this excess only on a specific plane [11].

For comparative studies of different schemes, another article, “on the relationship be-

tween vortex identifications methods” by Chakraborty & Balachandar [28] is also rec-

ommended. There is yet another article by Liu et al., “Third generation of vortex

identification methods”, which reviews the second generation of vortex identification

methods. These 2G methods are based on the eigenvalues of ∇ v!. Afterward, we are

presented with the novel third generation of vortex identification methods [7].

2.6 Liutex

Definition 1: Liutex is a vector defined as R
!¼ R r!, where R is the magnitude of Liu-

tex, and r! is the direction of Liutex.

According to Ref. [29], r! is the normalized real eigenvector of the velocity gradient

tensor such that ω!∙ r! > 0 and the explicit formula of R is

R ¼ ω!∙ r!−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω!∙ r!

� �2
− 4λ2ci

q
; ð16Þ

Dr. Liu classified the Liutex method as the third generation of vortex identification

method, while the Q method, λci criterion and λ2 criterion are all classified as second-

generation methods since they are all scalar and eigenvalue related. Liutex is a vector

which overcomes the drawbacks of the scalar methods, e.g., it can give the direction of

rotation and represents the rotational strength accurately. Liutex is finally found as a

mathematical definition of fluid rigid rotation or vortex.

3 Principal coordinates and principal decomposition
Definition 2: The Principal Coordinate at a point is a coordinate that satisfies [26]:
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1. Its Z-axis is parallel to the r! (direction of Liutex) and ω!∙Z
!

> 0

2. The velocity gradient tensor under this coordinate is in the form of:

∇V ¼
λcr

∂U
∂Y

0

∂V
∂X

λcr 0

∂W
∂X

∂W
∂Y

λr

2
666664

3
777775; ð17Þ

where λr and λcr are the real eigenvalue and real part of the conjugate complex eigen-

value pair of the velocity gradient tensor, respectively, for rotation points.

3. ∂U
∂Y < 0 and j ∂U∂Y j≤ j ∂V∂X j.

4. The rotational angle of the X-Y coordinates around the Z-axis must be smaller

than 90° or −90° < θ ≤ 90°

The following two theorems are valid in the Principal Coordinate.

Theorem 1: Under the Principal Coordinates, ∂U∂Y ¼ − R
2, where R is the magnitude of

Liutex.

Proof: For an arbitrary velocity gradient tensor ∇v, there exists a special orthogonal

rotation matrix Qr that aligns the Z-axis of the new frame XYZ with the Liutex direc-

tion r! after rotation.

∇V ¼ Qr∇vQ
T
r ¼

∂U
∂X

∂U
∂Y

0

∂V
∂X

∂V
∂Y

0

∂W
∂X

∂W
∂Y

∂W
∂Z

2
666664

3
777775 ð18Þ

Where xyz is the original frame and XYZ is the new frame after Qr-rotation.

Then, we apply a second rotation Pr around the new Z-axis to get the Principal

Coordinates.

After the Pr− rotation, the corresponding velocity gradient tensor ∇Vθ can be written as

∇V θ ¼ Pr∇VPT
r ¼

∂U
∂X

����
θ

∂U
∂Y

����
θ

0

∂V
∂X

����
θ

∂V
∂Y

����
θ

0

∂W
∂X

����
θ

∂W
∂Y

����
θ

∂W
∂Z

����
θ

2
6666664

3
7777775
; ð19Þ

where the rotation matrix Pr is given by

Pr ¼
cosθ sinθ 0
− sinθ cosθ 0
0 0 1

2
4

3
5 ð20Þ

and,

∂U
∂Y

����
θ
¼ α sin 2θ þ φð Þ − β ð21Þ
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∂V
∂X

����
θ
¼ α sin 2θ þ φð Þ þ β ð22Þ

∂U
∂X

����
θ
¼ − α cos 2θ þ φð Þ þ 1

2
∂U
∂X

þ ∂V
∂Y

� �
ð23Þ

∂V
∂Y

����
θ
¼ α cos 2θ þ φð Þ þ 1

2
∂U
∂X

þ ∂V
∂Y

� �
ð24Þ

α ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂v
∂y

−
∂u
∂x

� �2

þ ∂v
∂x

þ ∂u
∂y

� �2
s

ð25Þ

β ¼ 1
2

∂v
∂x

−
∂u
∂y

� �
ð26Þ

φ ¼

arctan

∂v
∂x

þ ∂u
∂y

∂v
∂y

−
∂u
∂x

0
BB@

1
CCA;

∂v
∂y

−
∂u
∂x

≠0

π
2
;
∂v
∂y

−
∂u
∂x

¼ 0;
∂v
∂x

þ ∂u
∂y

> 0

−
π
2
;
∂v
∂y

−
∂u
∂x

¼ 0;
∂v
∂x

þ ∂u
∂y

< 0

8>>>>>>>>>><
>>>>>>>>>>:

ð27Þ

Then, according to Liu et al., (2019) [7] the Liutex magnitude/rotational strength is

defined as

R ¼ 2 βj j − αð Þ; β2 > α2

0; otherwise

�
ð28Þ

From part (2) in Def. 2,

∂U
∂X

����
θ
¼ ∂V

∂Y

����
θ

ð29Þ

thus,

cos 2θ þ φð Þ ¼ 0 ð30Þ

Which implies sin(2θ + φ) = 1 or − 1. This leads us to the following four cases.

Case 1: β > 0 and sin(2θ + φ) = 1

∂U
∂Y

����
θ
¼ α − β ¼ −

1
2
R ð31Þ

Case 2: β > 0 and sin(2θ + φ) = − 1

∂U
∂Y

����
θ
¼ − α − β ð32Þ

∂V
∂X

����
θ
¼ − αþ β ð33Þ

However,

− α − βj j > − αþ βj j ð34Þ

This contradicts part 3 in Def. 2, therefore, sin(2θ + φ) ≠ − 1.
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Case 3: β < 0 and sin(2θ + φ) = 1

∂U
∂Y

����
θ
¼ α − β ð35Þ

∂V
∂X

����
θ
¼ αþ β ð36Þ

However,

α − βj j > αþ βj j ð37Þ

This contradicts part 3 in Def. 2, therefore, sin(2θ + φ) ≠ 1.

Case 4: β < 0 and sin(2θ + φ) = − 1

∂U
∂Y

����
θ
¼ α − β ¼ −

1
2
R ð38Þ

Theorem 2: For an arbitrary velocity gradient tensor with one real eigenvalue and

two conjugated complex eigenvalues, the Principal Coordinate is unique.

Proof: From the proof of theorem 1, if β > 0, then cos(2θ + φ) and sin(2θ + φ) must be

0 and 1, respectively. Thus, 2θ þ φ ¼ π
2⇒θ ¼ 1

2 ðπ2 − φÞ. Similarly, if β < 0, then cos(2θ +

φ) and sin(2θ + φ) must be 0 and − 1, respectively. So, 2θ þ φ ¼ 3π
2 ⇒θ ¼ 1

2 ð3π2 − φÞ .
Therefore, the angle of rotation around the Z-axis is unique, and so is the Principal

Coordinate.

Note that if X- and Y-axes are rotated by additional 180°, the new coordinates are still

satisfied with the principal coordinate definition. However, since we limit the P-

rotation angle to be less than 90° or −90° < θ ≤ 90°. Under such a limit, the Principal

Coordinate is unique.

Definition 3: The Principal Decomposition is the decomposition of velocity gradient

tensor under the Principal Coordinates i.e.

∇V ¼
λcr −

R
2

0

R
2
þ ε λcr 0

ξ η λr

2
6664

3
7775 ¼

0 −
R
2

0

R
2

0 0

0 0 0

2
6664

3
7775þ

0 0 0
ε 0 0
ξ η 0

2
4

3
5þ

λcr 0 0
0 λcr 0
0 0 λr

2
4

3
5 ¼ Aþ Bþ C ð39Þ

Here A represents the rotation part, B represents the shear part, and C represents the

stretching part.

Mathematically, the popular Cauchy-Stokes decomposition is correct, but the phys-

ical meaning is dubious. For instance, according to the Cauchy-Stokes decomposition,

the velocity gradient tensor 0 2y
0 0


 �
decomposes to anti-symmetric tensor 0 y

− y 0


 �
and

symmetric tensor 0 y
y 0


 �
. This indicates that shear flow has rotation. But, in gen-

eral, the shear flow does not represent fluid rotation. Also, the Cauchy-Stokes de-

composition depends on the choice of coordinates, and hence it is not Galilean

invariant. Yu et al. [26] used the Cauchy-Stokes decomposition to decompose the

velocity gradient tensor into the rotation, deformation, and stretching matrices

and found out that the norm of rotation, symmetric deformation, and stretching

matrices are all different, except for 2-norm, under different coordinates. Then, a

question arose. Under which coordinates, does the Cauchy-Stokes tensor
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decomposition give the right stretching (compression) and deformation? In other

words, is it possible to decompose a velocity gradient tensor into the rotation,

deformation, and stretching matrices without being affected by a coordinate

change? Yu et.al [26] presume that there must be a unique coordinate that can

give a unique tensor decomposition for stretching (compression), deformation,

shear, and rotation. They call these coordinates as the “Principal Coordinates” and ten-

sor decomposition as the “Principal Tensor Decomposition”. The Principal Decompos-

ition, being Galilean invariant, correctly and uniquely decomposes the velocity gradient

tensor into its rotation part, shear part, and stretching part. This decomposition expresses

that the shear and stretching contamination analysis can only be uniquely done in the

Principal Coordinates as decomposition in Principal Coordinates is not affected by coord-

inate changes. The detailed information about the Principal Coordinates and Princi-

pal Tensor Decomposition can be found in reference [26].

4 Theoretical contamination analysis
Kolar et al [32] numerically investigated the stretching response of several popular vor-

tex identification methods and found that Liutex does not respond to uniaxial stretch-

ing coupled with an inevitable uniform radial contraction for incompressible flow. In

this paper, we give mathematical expression that shows the effect of strectching and

shearing on several vortex identification methods. Also, these effects are presented

numerically.The velocity gradient tensor, ∇V
!¼

λcr − R
2 0

R
2 þ ε λcr 0
ξ η λr

2
4

3
5 in Principal Coordi-

nates, which shows the relation between Liutex and λci is λci ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R
2 ðR2 þ εÞ

q
. Apparently,

λci is contaminated by ε (shear). The vortex structure drawn by Liutex and λci are quite

different and detailed analysis can be found in [17]. λci considers shear deformation ε

as a part of the fluid rotation and thus may not represent the pure/rigid rotational

strength of fluid motion correctly. A detailed explanation with mathematical expression

about how shear affects λci is given later in chapter 4.3. λci is also characterized as a

scalar-valued criterion [7].

The velocity gradient tensor in the Principal Coordinate is:

∇ V
!¼

λcr −
1
2
R 0

1
2
Rþ ε λcr 0

ξ η λr

2
6664

3
7775 ð40Þ

Then the Principal Decomposition is given by

∇ V
!¼

λcr −
1
2
R 0

1
2
Rþ ε λcr 0

ξ η λr

2
6664

3
7775 ¼

0 −
R
2

0

R
2

0 0

0 0 0

2
6664

3
7775þ

0 0 0
ε 0 0
ξ η 0

2
4

3
5þ

λcr 0 0
0 λcr 0
0 0 λr

2
4

3
5 ¼ Aþ Bþ C

ð41Þ

A is the rotation part, B is the shear part and C is the stretching part.

For the first time in the literature, we are defining the several vortex identification

schemes in the Principal Coordinate, which will allow us to analyze the contamination

effects on these traditional vortex identification methods.
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4.1 Contamination of vorticity

Plugging in the gradient components from (40) into the eq. (1) gives us the vorticity

vector as

ω ¼ η; − ξ;Rþ εð ÞT ð42Þ

and its magnitude is

ωk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 þ ξ2 þ Rþ εð Þ2

q
ð43Þ

From the eqs. (42) and (43), it can be concluded that a vorticity vector does not only

represent rotation but also claims shearing and stretching components to be a part of

the vortical structure, which is clearly contaminated by shears.

4.2 Contamination of Q method

First, we perform the Cauchy-Stokes decomposition on the Principal Coordinate. Then,

the scalar magnitude of the Q method can be calculated based on the definition pro-

vided by eq. (7).

∇ V
!¼

λcr −
1
2
R 0

1
2
Rþ ε λcr 0

ξ η λr

2
6664

3
7775 ¼

λcr
1
2
ε

1
2
ξ

1
2
ε λcr

1
2
η

1
2
ξ

1
2
η λr

2
66664

3
77775þ

0 −
1
2
R −

1
2
ε −

1
2
ξ

1
2
Rþ 1

2
ε 0 −

1
2
η

1
2
ξ

1
2
η 0

2
66664

3
77775 ¼ AQ þ BQ ð44Þ

Q ¼ 1
2

BQ

�� ��2
F
− AQ

�� ��2
F

� �
¼ 1

2
2

R
2
þ ε
2

� �
þ 2

ξ
2

� �2

þ 2
η
2

� �2
" #

−
1
2

2 λcr
2 þ λr

2 þ 2
ε
2

� �2
þ 2

ξ
2

� �2

þ 2
η
2

� �2
" #

¼ R
2

� �2

þ 1
2
R∙ε − λcr

2 −
1
2
λr

2

ð45Þ

In the expression of Q above, there are not only R (the magnitude of rotation) but

also ε, λcr and λr, which are components of either the shear part or stretching part.

Therefore, the value of Q is undoubtedly contaminated by shear and stretching. Also,

Q contains an R2 term, indicating dimensional distortion of a fluid rotation.

4.3 Contamination of λci criterion

The characteristic equation of velocity gradient tensor given by (40) is

λ − λrð Þ λ − λcrð Þ2 þ R
2

R
2
þ ε

� �
 �
¼ 0 ð46Þ

Thus, the eigenvalues are.

λ1 = λr, λ2 ¼ λcr þ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R=2ðR=2þ εÞp

, λ3 ¼ λcr − i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R=2ðR=2þ ε:Þp

Since rotation is orthogonal, eigenvalues are the same as the original velocity gradient

tensor,

λ2 ¼ λcr þ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R=2 R=2þ εð Þ

p
¼ λcr þ iλci
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λ3 ¼ λcr − i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R=2 R=2þ εð Þ

p
¼ λcr − iλci

Therefore, we have

R
2

R
2
þ ε

� �
¼ λ2ci ð47Þ

Thus,

λci ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R
2

R
2
þ ε

� �s
ð48Þ

Despite being dimensionally correct, the expression of λci has ε, which is a compo-

nent of the shear part and thus is contaminated by shear.

4.4 Contamination of Δ method

In section 4.2, the three roots of the characteristic equation are

λ1 = λr, λ2 ¼ λcr þ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R=2ðR=2þ εÞp

, λ3 ¼ λcr − i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R=2ðR=2þ εÞp

Plug their values into (2),(3), and (4)

I1 ¼ λ1 þ λ2 þ λ3 ¼ λr þ 2λcr ð49Þ

I2 ¼ λ1λ2 þ λ2λ3 þ λ3λ1 ¼ 2λrλcr þ λ2cr þ
R
2

R
2
þ ε

� �
ð50Þ

I3 ¼ λ1λ2λ3 ¼ λr λ2cr þ
R
2

R
2
þ ε

� �
 �
ð51Þ

~Q ¼ I2 −
1
3
I1

2 ¼ −
1
3

λcr − λrð Þ2 þ R
2

R
2
þ ε

� �
ð52Þ

~R ¼ − I3 −
2
27

I1
3 þ 1

3
I1I2 ¼ 2

27
λcr − λrð Þ3 þ 2

3
λcr − λrð ÞR

2
R
2
þ ε

� �
ð53Þ

Then, the expression for Δ can be written as

Δ ¼
~Q
3

� �3

þ
~R
2

� �2

¼ 1
243

9
R
2

� �3 R
2
þ ε

� �3

− 6
R
2

� �2 R
2
þ ε

� �2

λcr − λrð Þ2 þ 5R
2

R
2
þ ε

� �
λcr − λrð Þ4

" #

ð54Þ

The expression of Δ includes ε, λr and λcr, indicating the contamination of Δ method

by shear and stretching. Moreover, Δ contains the sixth power of R, which confirms

that it cannot accurately denote rotation strength.

Next, we investigate the contamination of these schemes with the help of a numerical

example.

5 Vortex example: Burgers vortex
In this test case, Burgers vortex is examined to justify the comparison of the effects of

shearing and stretching/compression on different criteria. The Burgers vortex is an exact

steady solution of the Navier-Stokes equation that can be used to model fine scales of
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turbulence [30]. The Burgers vortex forms when an inward radial flow concentrates and

spins around the symmetric axis and the flow moves out in both directions along the z-

axis [31]. The velocity gradient tensor is obtained from the Burgers vortex.

The velocity components of Burgers vortex in the cylindrical coordinate system are

given by:

vr ¼ − ξr ð55Þ

vθ ¼ Γ
2πr

1 − e
− r2ξ
2ν

� �
ð56Þ

vz ¼ 2ξz ð57Þ

where Γ is the circulation that characterizes the intensity of the vortex and ξ is another

constant representing the axisymmetric strain rate, ν the kinematic viscosity, and r is

the distance of the chosen point from the centerline in the Burgers vortex.

For post-processing, the velocity components are converted into the Cartesians co-

ordinate system given by:

u ¼ − ξx −
Γ

2πr2
1 − e

− r2ξ
2ν

� �
y ð58Þ

v ¼ − ξyþ Γ
2πr2

1 − e
− r2ξ
2ν

� �
x ð59Þ

w ¼ 2ξz ð60Þ

The existence of the vortex structure is highly contingent on the selection of parame-

ters. For the proper vortex structure visualization, we take dimensionless quantity ξ =

0.042, Γ = 1.45 and ν = 0.01. The calculation domain is limited to 50 ×20 × 20 grid

points with a step size of 0.5 due to the limited computational memory. The vortex

strength is strong in the core and becomes weak when moving away from the center.

The streamlines of the Burgers vortex exhibit a spiral pattern around the vortex rota-

tion axis line which is demonstrated in Fig. 1 a and b, which show that flows enter from

a radial direction and stretches outward spinning around the axis.

6 Numerical contamination analysis
The velocity gradient tensor in the Principal Coordinate is:

∇V¼

∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

∂w
∂x

∂w
∂y

∂w
∂z

2
6666664

3
7777775
¼

λcr −
1
2
R 0

1
2
Rþ ε λcr 0

ξ η λr

2
6664

3
7775 ð61Þ

where u, v and w are the three components of the velocity along the x, y, and z direc-

tions in Cartesian Coordinate.

Since our purpose is to demonstrate the shear and stretching contaminations of

different criteria numerically, we add shear and stretching components separately

and calculate how different criteria respond.
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6.1 Adding shear components

The matrix corresponding to shear is in the form of:

∇Vshear ¼
0 0 0
εa 0 0
ξa ηa 0

2
4

3
5 ð62Þ

The subscript “a” refers to the “adding” of shearing components.

The new velocity gradient tensor in the Principal Coordinates after adding shear is

∇V 1¼
λcr −

1
2
R 0

1
2
Rþ εþ εa λcr 0

ξ þ ξa ηþ ηa λr

2
6664

3
7775 ð63Þ

Under the Principal Coordinates, the local rotation axis is the Z-axis, so, ξa (value of
∂w
∂x component) and ηa (value of ∂w

∂y component) are not in the rotation plane. Thus,

these components will not influence the rotation strength. However, εa is in the rota-

tion plane, and thus affecting rotation strength. If εa is in the direction of rotation, the

Liutex magnitude remains unchanged, but if εa is in the reverse direction of fluid rota-

tion or negative and |εa| > ε, it may change the Liutex magnitude. This change occurred

not because Liutex was contaminated by shear but because j 12Rþ εþ εaj < R
2 which

causes the strength of Liutex reduced according to the Liutex definition that the magni-

tude of rotation strength is minfj ∂u∂y jθ; j
∂v
∂x jθg where j ∂u∂y jθ and j ∂v∂x jθ are the minimum

absolute values of ∂u
∂y and

∂v
∂x respectively. Here we assume the rotation is anti-clockwise

along the Z-axis. Therefore, when shear is in the opposite direction of rotation, minf
j ∂u∂y jθ; j

∂v
∂x jθg may change, affecting the Liutex magnitude. Following Proposition 1 gives

the accurate measure about when shear may change the Liutex magnitude.

Fig. 1 (Color online) Streamlines of Burger vortex from top and side view with Liutex magnitude, which
depicts the rotational strength of the fluid particles
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Proposition 1: The rotation strength does not change if εa ≥ − ε where ε > 0; the rota-

tion strength changes if εa < − ε.

Proof: If εa ≥ − ε, then j 12Rþ εþ εaj≥ j − 1
2Rj, which shows that the Liutex magnitude

is still R which is defined as twice the angular speed of the rigid rotation.

� Remark: Physically, εa < 0 means adding a shear against the rotation direction and

εa < − ε indicates that shear is strong to the extent that it can affect rotation

strength. So, keeping the rotation strength the same, the shear matrix we add

should satisfy the following requirement: εa ≥ − ε. In other words, Proposition 1 just

shows in some condition, external shear disturbance cannot change Liutex, but in

other conditions (εa < − ε), the external shear disturbance may. However, in any

case, for a certain velocity gradient tensor, Liutex is always defined to represent the

rigid rotation including the direction and strength. The definition has no shear and

no stretching and cannot be considered as contaminated by shear or stretching.

6.2 Adding stretching components

The matrix corresponding to stretching is of the form

∇Vstretching ¼
αa 0 0
0 βa 0
0 0 γa

2
4

3
5 ð64Þ

The subscript “a” means “adding” the stretching components.

The new velocity gradient tensor in the Principal Coordinate after adding

stretching is

∇V 2¼
λcr þ αa −

1
2
R 0

1
2
Rþ ε λcr þ βa 0

ξ η λr þ γa

2
6664

3
7775 ð65Þ

Proposition 2: The rotation strength does not change if αa = βa.

Proof: Based on theorem 1, the rotation strength of ∇V2 is still R. Therefore, to keep

the rotation strength unchanged, the added ∇Vstretching should satisfy αa = βa.

� Remark: Proposition 1 and Proposition 2 just give some conditions under which

Liutex may or may not change the magnitude and direction. They do not mean

Liutex could be contaminated by shear or stretching for a certain velocity gradient

tensor. Liutex is always a rigid rotation vector and never contaminated by any shear

and stretching. On the other hand, look eqs. (43), (45), (48) and (54), all vorticity,

Q, λci, Δ are contaminated by shear or stretching or both where R is defined as

twice the angular speed of rigid rotation of fluids. The external shear may change

Liutex under some conditions which means the external shear can change the

rotation strength but does not mean Liutex is contaminated by shear.
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6.3 Stretching contamination analysis

The following procedure was implemented to depict the reaction of the vortex identifi-

cation schemes over the change in stretching effects. Firstly, we select a point in Bur-

gers vortex whose velocity gradient tensor is:

∇V
!

B ¼
− 0:0419999994 − 0:0711665452 0:0000000000
0:0711665452 − 0:0419999994 0:0000000000
0:0000000000 0:0000000000 0:0839999988

2
4

3
5 ð66Þ

Then for convenience, the stretching matrix ∇Vstretching is added and the values of Q,

Δ, λ2, λci, and Liutex are recorded where ∇Vstretching is given by (note that it satisfies

the requirement of adding stretching):

∇Vstretching ¼
0:02 0 0
0 0:02 0
0 0 − 0:04

2
4

3
5 ð67Þ

The sum of diagonal elements of ∇Vstretching is equal to zero, so it satisfies the

continuity equation of incompressible flow. The stretching effect given by ∇Vstretch-

ing is increased repeatedly, step by step, and the values of every scheme are re-

corded. The results are presented in the following graph where the x-axis

represents the relative stretching rate (the ratio of stretching component and vorti-

city magnitude), and the y-axis gives the corresponding values of different vortex

identification methods.

The change in stretching components results in a change in Q, Δ, and λ2. On

the other hand, λci and L are not changed, indicating that λci and L are not con-

taminated by the stretching effect, as shown in Fig. 2. Further observation of Fig. 2

reveals that the increase in the stretching effect on Q decreases its value after a

certain point. The Q values ultimately become negative, indicating a non-vortical

structure. However, other criteria indicate there is a vortex structure. So, it can be

concluded that Q may conflict with other criteria and violate the Δ-rule. Theoretic-

ally, this is understandable as in Eq. (6), Δ could be positive even if Q is negative

provided that the square of the third variant is large enough. The computational

results shown in Fig. 2 coincide with the theoretical analysis given by Eqs. (45),

(48) and (54).

6.4 Shear contamination analysis

A similar procedure to the stretching effect is implemented for the graphic representa-

tion of the shearing effect on the vortex identification schemes. Again, for our conveni-

ence, the shearing matrix ∇Vshear is defined as:

∇Vshear ¼
0 0 0

0:02 0 0
0:02 0:02 0

2
4

3
5 ð68Þ

∇Vshear is added to ∇V
!

B a few times, and then the corresponding values of the dif-

ferent criteria are recorded. The results are presented in the following graph, where the

x-axis represents the relative shear rate, and the y-axis gives the corresponding values

of different vortex identification methods.
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The relative shear rate is the ratio of the shearing component over vorticity mag-

nitude. More precisely, it is the ratio of shear over vorticity at any point in our nu-

merical domain. The reason we are dividing shear by vorticity is to refrain shear

from getting too large. Fig. 3 indicates that Q, Δ, λ2, and λci are all affected by the

change in the shearing component, while Liutex has remained unaffected by shear.

It can be concluded from Fig. 2 and Fig. 3 that Q, Δ, λ2, and λci are affected by

Fig. 2 Line graphs depicting the effect of stretching on different vortex identification methods

Fig. 3 Line graphs depicting the effect of shear on different vortex identification methods
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either shear, stretching, or both at different levels, whereas the Liutex method is

unaffected by both.

Since the values of Δ are very small, Δ looks to be consistently zero because Δ has

sixth power of R which is small; however, if we use zoom in, it can be observed that

the Δ values are increasing. The Δ - plots are given in Fig. 4 below:

7 Conclusion
As the theoretical relation between Liutex and several 2G vortex identification methods

are given, and a numerical example of Burger vortex is implemented, the following con-

clusions can be summarized.

1) Mathematical relations between Liutex and the 2G vortex identification methods,

such as Q, Δ, λ2 and λci methods are derived mathematically, which clearly show

the second generation methods are severely contaminated by shearing, stretching,

or by both. On the other hand, Liutex is the exact mathematical definition of fluid

rotation or vortex.

2) The velocity gradient tensor in the Principal Coordinate can be uniquely

decomposed into its rigid rotational part, stretching/compression part, and

shearing part. This decomposition is known as the Liutex-based decomposition.

3) The Q method conflicts with Δ, λ2, and λci methods, meaning that at some points,

Q may mistreat the vortex point as a non-rotational point. Evidence of this can be

seen in the graphical representations (see Fig. 2).

4) According to Eqs. (43), (45), (48), (54), we can have the following table (Table 1) as

Liutex magnitude is defined as twice the angular speed of local rigid rotation.

5) The external shear may change Liutex under some conditions, especially when

large shear force is applied in the opposite direction of rotation, which means the

external shear can change the rotation strength but does not mean Liutex is

Fig. 4 Stretching and shearing effect on Δ method of vortex identification

Table 1 Contamination by stretching and shearing on different criteria

Methods Q Δ λ2 λci L

Contamination by stretching Yes Yes Yes No No

Contamination by shearing Yes Yes Yes Yes No
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contaminated by shear, which can be seen clearly in the formula of the Liutex

magnitude.

6) According to Table 1, Q, Δ, and λ2 are stretch sensitive, while Q, Δ, λ2, and λci are

affected by the shearing factor. The numerical results from the Burgers vortex

coincide with the theoretical analysis. However, Liutex remained the same and is

not affected. Therefore, we can conclude Q, λ2, and λci methods may not

appropriately represent vortex strength, while Liutex is the only one that correctly

represents fluid rotation or vortex.
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