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The skin microbiota of the axolotl 
Ambystoma altamirani is highly influenced 
by metamorphosis and seasonality but not by 
pathogen infection
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Abstract 

Background:  Microbiomes have been increasingly recognized as major contributors to host health and survival. 
In amphibians, bacterial members of the skin microbiota protect their hosts by inhibiting the growth of the fungal 
pathogen Batrachochytrium dendrobatidis (Bd). Even though several studies describe the influence of biotic and abi‑
otic factors over the skin microbiota, it remains unclear how these symbiotic bacterial communities vary across time 
and development. This is particularly relevant for species that undergo metamorphosis as it has been shown that host 
physiology and ecology drastically influence diversity of the skin microbiome.

Results:  We found that the skin bacterial communities of the axolotl A. altamirani are largely influenced by the meta‑
morphic status of the host and by seasonal variation of abiotic factors such as temperature, pH, dissolved oxygen and 
conductivity. Despite high Bd prevalence in these samples, the bacterial diversity of the skin microbiota did not differ 
between infected and non-infected axolotls, although relative abundance of particular bacteria were correlated with 
Bd infection intensity.

Conclusions:  Our work shows that metamorphosis is a crucial process that shapes skin bacterial communities and 
that axolotls under different developmental stages respond differently to environmental seasonal variations. Moreo‑
ver, this study greatly contributes to a better understanding of the factors that shape amphibian skin microbiota, 
especially in a largely underexplored group like axolotls (Mexican Ambystoma species).
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Background
Host associated microbiomes are vital for host health and 
survival, as they play relevant functions linked to nutri-
tion, reproduction, behavior, defense against pathogens 
or predators [1–5]. Specifically, some animal associated 

microbiomes contribute to host health due to their abil-
ity to inhibit the growth of pathogens responsible for 
infectious diseases threatening diverse host species such 
as bats, snakes, or amphibians [6–8]. For instance, it has 
been shown that some members of the amphibian skin 
microbiome inhibit the growth of the lethal pathogens 
Batrachochytrium dendrobatidis (Bd) and B. salamand-
rivorans [9–12], which have caused amphibian popula-
tions declines and extinctions worldwide [13].

Studies accumulated over the past two decades showed 
that the amphibian skin microbiome is influenced by 
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host associated factors (host genetics and development) 
[14–16], microhabitat related factors (environmental 
microorganisms, habitat abiotic conditions and pathogen 
presence) [17–21], and climatic and geographical factors 
(seasonality, precipitation, temperature or land use) [14, 
22–25].

In the case of host-associated factors, it has been shown 
that the skin microbiota of amphibians (specifically frogs) 
changes across development and particularly before and 
after metamorphosis [26–28]. During metamorphosis 
amphibians in larval stages transition to adults follow-
ing a series of physiological rearrangements such as tail 
reabsorption, limb development and remodeling of mus-
cles, heart, intestine brain, and skin [29]. Metamorphosis 
also induces immunosuppression in response to thyroid 
and corticosteroid hormone signaling and eventually the 
immune system reorganizes and gradually matures in 
newly metamorphosed adults [30].

Along with physiological rearrangements, many 
amphibian species go through behavioral and lifestyle 
changes, while larval stages inhabit aquatic environ-
ments, adults become terrestrial and only return to water 
environments in the reproductive season [31–33]. These 
changes in microhabitat occupancy could influence skin 
microbial composition since the environmental microbial 
communities are one of the main sources of microbial 
diversity [16, 17].

In the case of climatic factors, temporal variation of 
abiotic factors [34] such as temperature and precipitation 
have a strong influence over amphibian skin microbial 
community structure [22, 35]. For example, in tropical 
regions microbial diversity on the amphibian skin dif-
fers between wet and dry seasons [19, 26, 36]. In tem-
perate regions, where the four seasons are well defined 
through the year, seasonal changes have been linked to 
the temporal dynamics of the amphibian skin microbiota 
[22, 37–39]. In addition, it has been shown that spatial 
variation such as elevation gradients [40–42] or distinct 

microhabitats [43] influence the skin microbial diversity 
of amphibians.

Bd influence over the amphibian skin microbiota has 
been described in amphibian species with contrasting 
Bd infection status (infected–non-infected [19] and high 
Bd prevalence—low Bd prevalence [44]). These stud-
ies showed that disruption of skin microbiota follow-
ing Bd infection can influence host survival and that the 
final outcome of the infection depends on the interplay 
between host, microbiome and the environment [21, 23, 
45].

Here we analyzed the skin bacterial diversity of the 
axolotl Ambystoma altamirani, a stream dwelling sala-
mander endemic to conifer and oak-pine forest from the 
central region of Mexico [46]. A. altamirani is a faculta-
tive paedomorphic species in which, metamorphic (with-
out gills) and pre-metamorphic (with gills) individuals 
inhabit the same streams all year long [47, 48], allowing 
us to evaluate how metamorphosis and seasonality influ-
ence the skin microbiota in a species living in the same 
aquatic environment across time and development. In 
addition, we evaluated if skin microbiota differs from 
environmental bacterial communities and if Bd presence 
and infection intensity influence the skin microbiota of 
A. altamirani. We hypothesized that A. altamirani skin 
microbiota would (a) differ from environmental bacterial 
communities, (b) vary between metamorphic and pre-
metamorphic salamanders, (c) change across seasons and 
(d) differ according to Bd infection status.

Results
We sampled a total of 279 A. altamirani individuals (85 
metamorphic and 194 pre-metamorphic) at four loca-
tions across four seasons. Additionally, 159 environ-
mental samples from sediment (80) and water (79) were 
collected. After quality control and rarefaction at 10,000 
reads per sample, 13 samples were discarded and the 
remaining 438 samples were used to perform all diver-
sity analyses (Table 1). A final table with a total of 72,408 

Table 1  Final list of collected samples that passed bioinformatic filters

Numbers in bold indicate the total number of samples collected for each sample type or season

Number of samples from the skin of A. altamirani individuals (metamorphic and pre-metamorphic) and environmental samples (sediment and water)

Metamorphic Pre-metamorphic Sediment Water Total 
samples 
(N)

Summer (July 2019) 25 41 19 20 105
Autumn (October 2019) 28 29 20 20 97
Winter (January 2020) 9 66 20 20 115
Spring (April 2020) 23 58 20 20 121
Total samples (N) 85 194 79 80 438
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amplicon sequence variants (ASVs) was obtained includ-
ing all samples.

A. altamirani skin microbiota differs from environmental 
bacterial communities
When comparing the number of unique and shared 
ASVs across sample types, we found that each sample 
type harbored many unique ASVs and only 2408 ASVs 
(3.32% of the total) were shared among the four sample 
types (Fig.  1A). Sediment and water samples were the 
samples with highest numbers of unique ASVs (20,031 
and 9902 respectively), while metamorphic and pre-
metamorphic samples had 8916, and 6650 unique ASVs 
respectively. Interestingly only 677 ASVs (1.16% of the 
total ASVs) were shared between metamorphic and 
pre-metamorphic salamanders.

Taxonomic results showed that, Burkholderiaceae 
was the most abundant bacterial family in all four sam-
ple types accounting for 32.6% and 51.1% of the rela-
tive abundance in metamorphic and pre-metamorphic 
samples respectively, and 14.6% and 40.8% of sediment 
and water respectively (Additional file 1: Figure S1). For 
the axolotl samples we found that Chitinophagaceae 
and Pseudomonadaceae varied in relative abundance 
according to host metamorphic status, with Chitin-
ophagaceae showing a higher abundance in pre-meta-
morphic axolotls (metamorphic 2.7%/pre-metamorphic 
27%) and Pseudomonadaceae being more abundant in 
metamorphic samples (metamorphic 18.1%/pre-meta-
morphic 6.4%).

Bacterial alpha diversity was significantly differ-
ent between sample types (metamorphic, pre-met-
amorphic, sediment and water) as measured by 
ASV richness (Kruskal–Wallis (KW), χ2 = 278.46, 
p-value < 0.001, df = 3), Shannon index (KW, χ2 = 
276.28, p-value < 0.001, df = 3) and Faith´s phylogenetic 
diversity (PD) (KW, χ2 = 286.91, p-value < 0.001, df = 3) 
(Fig. 1B). Post hoc pairwise comparisons for each alpha 
diversity index showed significant differences among 
all sample types (Additional file 2: Table S1) except for 
metamorphic salamanders and water in ASV richness 
(Wilcoxon, p-value = 0.48) and Shannon diversity index 
(Wilcoxon, p-value = 0.66). Sediment samples showed 
the highest alpha diversity values while pre-metamor-
phic salamanders always had the lowest values.

Bacterial community composition based on the 
weighted UniFrac distance matrix varied significantly 
among sample types (PERMANOVA, pseudo-F = 64.76, 
p-value < 0.001, df = 3) (Fig.  1C, Additional file  2: 
Table S2). Dispersion significantly differed among sam-
ple types according to the permutational test (PERM-
PUTEST, F = 34.5, p-value = 0.001, df = 3) (Fig.  1D, 
Additional file 2: Table S3).

The skin bacterial composition of A. altamirani is mainly 
influenced by metamorphosis
Clear differences in skin bacterial alpha and beta diversity 
were found between metamorphic and pre-metamorphic 
salamanders (Fig. 1B, C, D). To look deeper into the bac-
terial taxa driving these differences we used an analysis of 
composition of microbiomes (ANCOM) which identified 
45 bacterial families (out of 392 families in the axolotl 
skin samples) that were differentially abundant between 
metamorphic and pre-metamorphic samples (Fig.  2). 
Most of these bacterial families (40 out of 45) were 
enriched in metamorphic samples, being Verrucomicro-
biaceae, Caulobacteraceae and Sphingomonadaceae the 
families with higher W values. In contrast, five bacterial 
families were enriched in pre-metamorphic samples with 
Burkholderiaceae, Chitinophagaceae being the families 
with higher W values.

We identified the core skin bacteria in metamorphic 
and pre-metamorphic A. altamirani axolotls, as those 
ASVs shared in ≥ 90% of the samples on each specific 
morph. Four ASVs represented the bacterial core of 
metamorphic axolotls accounting for a cumulative rela-
tive abundance of 16.26% of the ASVs. Meanwhile, two 
ASVs represented the bacterial core of pre-metamorphic 
axolotls accounting for 45.78% of the relative abundance 
(Table 2).

We also identified the core bacteria of environmental 
samples (Additional file  2: Table  S4) and we found that 
metamorphic axolotls shared two core ASVs with the 
water core and another one with the sediment core. Core 
bacteria of pre-metamorphic axolotls are not present in 
the core of environmental samples.

Seasonality and location differentially influence skin 
bacterial diversity in metamorphic and pre‑metamorphic 
axolotls
Physicochemical variables measured at each sam-
pling location (pH, conductivity, dissolved oxygen, 
maximin, minimum mean and delta seasonal tempera-
tures) varied significantly across seasons (MANOVA, 
Wilks = 0.002, p-value < 0.001, df = 3) and sampling 
locations (MANOVA, Wilks = 0.0009, p-value < 0.001, 
df = 3). While all physicochemical variables varied across 
seasons, dissolved oxygen was the only variable that did 
not vary between sampling locations (Additional file  2: 
Table S5).

Alpha PD of metamorphic axolotls varied significantly 
across seasons (KW, χ2 = 13.69, p-value = 0.003, df = 3) 
(Fig. 3A) and post-hoc pairwise comparisons showed that 
only the transition between winter-spring was significant 
(Wilcoxon, p-value = 0.005) (Additional file 2: Table S6). 
In contrast, PD of pre-metamorphic A. altamirani 



Page 4 of 17Martínez‑Ugalde et al. Animal Microbiome            (2022) 4:63 

Fig. 1  Bacterial diversity of A. altamirani skin and environmental samples. A Upset plot illustrating the number of unique and shared ASVs. Numbers 
aside the color bars indicate how many ASVs were present on each sample type (color bars) and shared between sample types (gray bars). B Alpha 
Faith’s Phylogenetic diversity (PD) across sample types. C Principal coordinate analysis (PCoA) based on weighted UniFrac distances across sample 
types. D Beta dispersion using Analysis of multivariate homogeneity of groups dispersions. Letters a–d indicate statistically significant comparisons
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Fig. 2  ANCOM results showing differentially abundant bacterial families between metamorphic and pre-metamorphic axolotls. Left panel 
shows ANCOM W values, the middle panel shows the relative proportion for each bacterial family, and the right panel shows the best taxonomic 
assignments according to the SILVA database at order (O), class (C) or family (F) level. Circles and bars are color-coded according to the host 
metamorphic status
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Table 2  Amplicon sequence variants (ASVs) defining the bacterial core of the microbiota of metamorphic and pre-metamorphic A. 
altamirani 

ASVs were considered part of the skin bacterial core if they were present in ≥ 90% of the samples of metamorphic or pre-metamorphic axolotls

ASV ID Taxonomy at family level Relative 
abundance

Persistence

Metamorphic 9936daae333af6e517a9deb4b9e18ffa Pseudomonadaceae 13.81 95.12

6d0c9d0395e6a2a7667eb0b07c17a275 Burkholderiaceae 1.40 97.56

17d60505100c3cf44d4f9fad620d1636 Pseudomonadaceae 0.73 93.90

be8eb25874b4202cf98050dbadeeb7ce Burkholderiaceae 0.33 93.90

Pre-metamorphic 3c28f0caf9183357de05d1882a943f8e Chitinophagaceae 25.03 96.84

ed5a79897d0f82525c3854759d384c26 Burkholderiaceae 20.75 98.42

Fig. 3  Seasonal influence over metamorphic and pre-metamorphic skin bacterial diversity. A Phylogenetic diversity (PD) across seasons in 
metamorphic samples. Letters a–d indicate statistically significant comparisons. B PD across seasons in pre-metamorphic samples. C Seasonal 
variation of pH, delta temperature and mean temperature of the stream water. D Principal coordinate analysis (PCoA) based on weighted UniFrac 
distances across seasons of metamorphic samples. E PCoA based on weighted UniFrac distances across seasons in pre-metamorphic samples. 
Circles in D and E panels are color-coded by season
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(Fig. 3B) did not differ across consecutive seasons (KW, 
χ2  = 0.21, p-value = 0.97, df = 3) (Additional fiie 2: 
Table S6).

Additionally, we found that seasonality significantly 
influenced skin bacterial community composition (PER-
MANOVA, pseudo-F = 12.37, p-value < 0.001, df = 3) 
(Fig. 3D, Additional file  2: Table S7), but not dispersion 
(PERMUTEST, F = 1.4, p-value = 0.24, df = 3) (Additional 
file  2: Table S8) of metamorphic axolotls. Seasonality also 
influenced skin bacterial community composition (PER-
MANOVA, pseudo-F = 15.69, p-value < 0.001, df = 3) 
(Fig. 3E, Additional file  2: Table S9) of pre-metamorphic 
axolotls, in addition we found that dispersion signifi-
cantly differed between seasons (BETADISPER, F = 2.7, 
p-value = 0.038, df = 3) (Additional file  2: Table  S10). 
Specifically, pairwise PERMANOVAs showed that met-
amorphic samples differed between winter-spring sea-
sons (PERMANOVA, pseudo-F = 14.92, p-value = 0.001, 
df = 1), while pre-metamorphic skin microbiota dif-
fered between autumn–winter (PERMANOVA, 
pseudo-F = 13.47, p-value < 0.001, df = 1) and winter-
spring seasons (PERMANOVA, pseudo-F = 12.61, 
p-value < 0.001, df = 1).

Three bacterial families were identified by ANCOM as 
differentially abundant in metamorphic samples between 
winter-spring seasons (Fig.  4). In the case of pre-meta-
morphic individuals, ANCOM identified three bacterial 

families that were differentially abundant between 
autumn–winter and eleven families differentially abun-
dant between winter-spring (Fig. 4). Pseudomonadaceae, 
Aquaspirillaceae and Shewanellaceae were significantly 
enriched in both metamorphic and pre-metamorphic 
axolotls during winter and spring seasons. However, 
Pseudomonadaceae was more abundant in metamor-
phic axolotls during spring and more abundant in pre-
metamorphic axolotls during winter. Shewanellaceae was 
more abundant in winter, and Aquaspirillaceae was pre-
sent in the winter and completely absent in the spring for 
both metamorphic and pre-metamorphic axolotls.

When analyzing the effect of location in the skin bac-
terial diversity, we found that PD of metamorphic sam-
ples differed significantly between sampling locations 
(KW, χ2 = 9.69, p-value = 0.02, df = 3), however post 
hoc paired test showed that PD only differed significantly 
between sites 2 and 3 (Additional file  1: Figure S2A). 
Bacterial PD of pre-metamorphic samples also varied 
significantly between sampling locations (KW, χ2 = 40.9, 
p-value = 6.71e-9, df = 3). Post hoc test showed that most 
pairwise comparisons were significant with the exception 
of sites 1 and 3 and sites 2 and 3 (Additional file  1: Figure 
S2C, Additional file  2: Table S11). Skin bacterial commu-
nity composition was also influenced by sampling loca-
tion in metamorphic (PERMANOVA, pseudo-F = 2.71, 
p-value = 0.006, df = 3) and pre-metamorphic samples 

Fig. 4  ANCOM results showing differentially abundant bacterial families in metamorphic and pre-metamorphic axolotls across consecutive 
seasons: autumn to winter seasons in pre-metamorphic axolotls, and winter to spring seasons for metamorphic and pre-metamorphic axolotls. 
From left to right: ANCOM comparisons color-coded by season, ANCOM W values, the relative bacterial family proportion and the best taxonomic 
assignment according to SILVA at order (O), class (C) or family (F) level. Circles and bars are color-coded by season. Shared bacterial families between 
metamorphic and pre-metamorphic axolotls between winter and spring seasons are shown in bold
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(PERMANOVA, pseudo-F = 31.34, p-value = 0.001, 
df = 3) (Additional file  1: Figure S2B, D). Pairwise com-
parisons showed that bacterial community composi-
tion only differed between sites 2 and 3 in metamorphic 
axolotls (Additional file  2: Table S12), while community 
composition differed between all sampling locations for 
pre-metamorphic samples (Additional file  2: Table S13). 
Interestingly dispersion did not vary across locali-
ties for metamorphic axolotls (PERMUTEST, F = 0.29, 
p-value = 0.8, df = 3) (Additional file  2: Table S14), but we 
found significant differences in dispersion for pre-meta-
morphic axolotls (PERMUTEST, F = 6.68, p-value = 0.01, 
df = 3) (Additional file  2: Table S15).

Biotic and abiotic factors influence the skin bacterial 
community structure of A. altamirani
Our results showed that bacterial community composi-
tion of A. altamirani skin is influenced by seasonality and 
location. To assess the specific influence of all the biotic 
and abiotic factors measured in this study we performed 
a distance-based Redundancy Analysis (dbRDA) on the 
skin bacterial beta diversity. After forward model selec-
tion, that incorporates all the variables measured, only 
the biotic and abiotic factors that better explained com-
munity composition were included in the dbRDA regres-
sion model: host metamorphic status, host weight, pH, 
dissolved oxygen, conductivity, mean temperature, sea-
son delta temperature (difference between the maximum 
and minimum seasonal temperature) and site elevation.

The dbRDA calculated eight canonical components for 
the PCA, however anova.cca (by = axis) showed that only 
four of these canonical components were statistically sig-
nificant. These four statistically significant canonical axes 
explained 26.47% of the variation in the weighted Uni-
Frac distance matrix (Fig. 5, Additional file  2: Table S16). 
Permutational analysis (anova.cca, by = terms) over 
each variable in the model showed that the metamor-
phic status of the host (PERMANOVA, pseudo-F = 39.1, 
p-value = 0.001) had the greatest effect-size over the 
variation, followed by seasonal delta temperature (PER-
MANOVA, pseudo-F = 19.8, p-value = 0.001), pH (PER-
MANOVA, pseudo-F = 15.85, p-value = 0.001) and 
seasonal mean temperature (PERMANOVA, pseudo-
F = 12.05, p-value = 0.001) (Fig. 3C, Table 3).

Skin bacterial diversity of A. altamirani is not influenced 
by Bd infection status but specific bacterial taxa 
abundances correlate with infection intensity
Pathogen prevalence and infection intensity were con-
ducted by Basanta et al. [49]. Briefly we found a Bd prev-
alence of 70.3% across all samples specifically 54 (out of 
85) metamorphic and 142 (out of 194) pre-metamorphic 
axolotls resulted positive for Bd infection.

Alpha PD did not differ between infected and non-
infected samples in both metamorphic (KW, χ2 = 0.09, 
p-value = 0.76, df = 1) (Fig.  6A) and pre-metamorphic 
(KW, χ2 = 0.51, p-value = 0.47, df = 1) A. altamirani sam-
ples (Fig.  6C). Additionally, beta diversity based on the 
weighted UniFrac distance matrix did not vary between 

Fig. 5  Distance based redundancy analysis of A. altamirani skin 
bacterial communities. Distances in the PCA are based on a weighted 
UniFrac distance matrix. Vector directions indicate the type of 
correlation of each predictor variable. Distance of each sample with 
respect to vectors highlight the weight of the correlation with a 
given predictor variable. Non quantitative variables are represented 
as centroids (outlined circles larger). Circles are color-coded by host 
metamorphic status

Table 3  Permutational like ANOVA results of each variable 
introduced in the dbRDA regression model

Columns indicate: F statistic, p-values calculated by Permutational like ANOVA 
for each variable

Numbers in bold indicate significant p-value

F p-value

Developmental stage 39.121 0.001
Delta temperature 19.889 0.001
pH 15.854 0.001
Mean temperature 12.053 0.001
Elevation 5.334 0.001
Dissolved oxygen 4.478 0.002
Conductivity 3.470 0.005
Weight 2.604 0.018
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infected and non-infected samples for metamorphic 
(PERMANOVA, pseudo-F = 1.37, p-value = 0.19, df = 1) 
(Fig. 6B) and pre-metamorphic axolotls (PERMANOVA, 
pseudo-F = 2.45, p-value = 0.08, df = 1) (Fig. 6D).

Even though alpha and beta diversity did not vary 
according to Bd infection status, Kendall’s correlation 
test showed that the relative abundance of 139 and 129 
ASV present in infected metamorphic and pre-metamor-
phic samples respectively, significantly correlated with 
pathogen infection loads (Additional file  1: Figure S3). 

Specifically, 116 (out of 139) and 52 (out of 128) bacterial 
ASVs had positive correlations with pathogen infection 
loads in metamorphic and pre-metamorphic samples, 
respectively.

Almost all the ASVs that correlated with pathogen load 
in metamorphic samples had low relative abundances 
ranging from 0.001 to 0.67% (Additional file  1: Figure 
S3A), while in pre-metamorphic samples, correlated 
ASVs ranged from 0.001 to 28.5% (Additional file  1: Fig-
ure S3B). Among the ASVs that correlated with pathogen 

Fig. 6  A. altamirani skin bacterial diversity with respect to Bd infection status. A Alpha phylogenetic diversity (PD) between infected and 
non-infected in metamorphic axolotls. B Principal coordinate analysis (PCoA) based on weighted UniFrac distances in infected vs non-infected 
metamorphic axolotls. C PD between infected and non-infected in pre-metamorphic axolotls. D PCoA based on weighted UniFrac distances in 
infected vs non-infected in pre-metamorphic axolotls. Circles are color-coded by Bd infection status
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infection intensities, twelve of them were shared between 
metamorphic and pre-metamorphic axolotls and half of 
these ASVs had a differential type of correlation between 
morphs (e.g., positive in metamorphic and negative in 
pre-metamorphic) (Additional file  2: Table  S17). Two 
of these ASVs were classified as members of the Chitin-
ophagaceae family and both were positively correlated 
with Bd infection intensity in metamorphic axolotls and 
negatively correlated in pre-metamorphic axolotls.

Discussion
The aim of this study was to evaluate the influence of 
metamorphosis, seasonality and pathogen presence over 
the skin microbiota of the axolotl A. altamirani. Since 
this is the first study exploring the skin microbiota of A. 
altamirani, we also evaluated if skin bacterial diversity 
differed from environmental bacterial communities of 
the streams where this species inhabits.

Consistent with previous studies showing differences 
between amphibian skin microbiota and their surround-
ing environmental bacterial communities [20, 50], we 
found that A. altamirani skin bacterial microbiota sig-
nificantly differed from environmental samples, and that 
a great portion of the ASVs were unique to each sample 
type (ie, sediment, water, metamorphic and pre-meta-
morphic axolotls, Fig.  1A), supporting the idea that the 
amphibian skin hosts a distinctive bacterial repertoire 
compared to the environmental samples [18, 35, 37, 43, 
51]. Our results highlight differences on the microbial 
diversity between the bacterial communities of the skin 
and the environment. We identified differences in alpha 
and beta diversity compared to water and sediment. Also, 
we identified core bacteria that were unique to axolotls 
or were clearly enriched on their skins compared to the 
environment.

Several studies have shown that amphibian skin micro-
biota varies significantly across host development [26, 
27, 41]. These studies focused on amphibian species that 
transition from an aquatic larval stage to a terrestrial 
adult stage [22, 36, 37, 52], making it difficult to tease 
apart the effects of host development stage and habitat 
conditions on skin microbial diversity [17, 18]. For spe-
cies where adult and larval stages coexist in the same 
aquatic environment (i.e., newts), host developmental 
stage has had contrasting results in different species; for 
example adult and larvae of Lissotriton boscai showed 
clear differences in skin bacterial community composi-
tion, however this pattern was not observed in Triturus 
marmoratus [52].

In this study, we evaluated the influence of metamor-
phosis over skin bacterial diversity on a paedomorphic 
salamander species (axolotl) in which metamorphic and 
pre-metamorphic stages coexist in permanent streams 

along their life cycle [47, 53]. Our results showed that 
A. altamirani skin bacterial communities are strongly 
shaped by metamorphosis. Specifically, we found that 
pre-metamorphic individuals harbor less diverse and 
more variable skin bacterial communities compared to 
metamorphic individuals.

These differences could be explained by differences 
in skin mucus composition, immune response, or gene 
expression before and after metamorphosis as it has been 
proposed that mucus chemical composition (e.g., pro-
duction of antimicrobial peptides) play a critical role in 
shaping the skin microbiota as well as in defense against 
pathogens [30, 54, 55]. Antimicrobial peptide repertory 
of the skin changes through development in some frog 
species [56], and some bacteria can induce the synthesis 
of specific antimicrobial peptides [51]. In addition, the 
number and distribution of Leydig cells, which have been 
associated with the secretion of mucus [57], changes 
across urodele development [58, 59].

In addition, the core microbiota analysis and ANCOM 
results shown here highlighted differences in composi-
tion between metamorphic and pre-metamorphic axo-
lotls. Specifically, pre-metamorphic skin microbiota was 
composed by fewer core members and had less differen-
tially abundant bacterial ASVs when compared to meta-
morphic skin microbiota. It is interesting to highlight that 
both analyses identified that families Chitinophagaceae 
and Burkholderiaceae were enriched in pre-metamorphic 
samples, specially two ASVs from these families conform 
the core microbiota of pre-metamorphic axolotls which 
account 45.7% of relative abundance in these samples.

Bacteria from the family Chitinophagaceae and Burk-
holderiaceae have been isolated from other amphibian 
hosts and have shown the ability to inhibit Bd [60–62]. 
Moreover, some members of the Chitinophagaceae fam-
ily such as Chitinophaga pinenis can degrade chitin [63] 
which is a main component of fungal cell wall. In our 
study, the high prevalence of these bacterial families on 
the skin of A. altamirani could suggest that these bacteria 
play a protective role against chytrid pathogens.

Temporal and spatial dynamics of amphibian skin 
microbiota have been linked to variation in environmen-
tal factors such as temperature, precipitation or elevation 
[25, 26, 34, 35, 52]. Specifically, temperature fluctuations 
over short periods of time [22] and seasonal variations 
(dry–wet) [38] have been linked to differences in bacte-
rial skin diversity on amphibians inhabiting aquatic envi-
ronments. Our results showed that seasonal variation of 
temperature (delta temperature and mean temperature), 
pH, conductivity, and dissolved oxygen influence axolotl 
skin bacterial diversity.

Previous studies have shown that spatial variation 
has an influence on skin bacterial diversity of terrestrial 
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salamanders [14, 41, 64]; for example populations of 
Ensatina eschscholtzii from different geographic loca-
tions vary in bacterial community composition [15]. In 
this study we found that sampling location significantly 
influences skin bacterial diversity, and this effect is 
stronger in pre-metamorphic axolotls. Considering that 
the main source of diversity of the skin microbiota are the 
environmental microbial communities and that they vary 
in response to environmental variation [65–67] it is likely 
that the skin microbiota reflect to some extent the envi-
ronmental variations across localities as seen in the case 
of pre-metamorphic axolotls. It has been shown that skin 
bacterial diversity vary in response to precipitation [19, 
23] temperature [22] or elevation gradients [24, 41, 42]. 
However, genetic differences across populations could 
also explain some of our results, since a previous study 
showed that A. altamirani populations of sites 2 and 3 
are genetically differentiated [68]. Additional work is 
needed to tease apart the effects of environment and host 
genetics on the skin microbial diversity of A. altamirani.

Stability as a characteristic of an ecological commu-
nity could be defined as the response to disturbance, 
comprising resilience and resistance against external 
disturbances [69, 70]. It has been shown that the stabil-
ity of the amphibian skin microbiota can change after the 
experimental exposure to fungal [71] and viral pathogens 
[72]. Also, it has been shown that skin microbiomes with 
higher diversity are less stable to a pathogen induced dis-
turbance [72].

Environmental variation across seasons is a different 
kind of perturbation for microbial communities, and it 
has been shown that seasonality influences microbial 
communities of soil [73–75], water [76, 77] and host-
associated microbiomes [78, 79]. We found that skin bac-
terial communities of A. altamirani vary across seasons, 
particularly in pre-metamorphic axolotls which have 
a lower bacterial diversity compared to metamorphic 
axolotls.

Together our results suggest that more diverse bacte-
rial communities (as the ones present in metamorphic 
axolotls) allow for a more stable microbiota that could 
be either more resistant or resilient to the environmental 
variation. Similar patterns of diversity—stability trough 
time have been described in populations of Rana sierrae 
[39]. Further studies are needed to evaluate if these pat-
terns of stability across seasons influence the function of 
the skin bacterial communities of A. altamirani, as it has 
been shown that less stable bacterial communities show 
less functional redundancy [80].

Disruption of the skin microbiota following Bd 
infections has been previously documented in naive 
amphibian populations before and after Bd infection 
[20, 21], and in populations with different pathogen 

intensities where Bd seems to be present in an enzootic 
stage [23, 44]. Even when Bd was highly prevalent in A. 
altamirani populations [49], we did not find any sig-
nificant influence of Bd presence over the skin bacterial 
diversity.

Of the 279 axolotls sampled only two individuals exhib-
ited clear signs of infection [81] (lethargy, skin ulceration 
and extreme skin sloughing) and they died soon after we 
sampled them. Apart from these two cases, the remaining 
individuals showed no signs of infection. These observa-
tions suggest that this population is able to tolerate Bd 
infection. Further studies testing the survival rates of A. 
altamirani against Bd are needed to elucidate if this spe-
cies is resistant or susceptible to chytridiomycosis.

It has been shown that Bd presence have contrasting 
effects over skin microbiota diversity inducing changes 
in skin microbiota composition following infection [21, 
23, 71] or not influencing diversity of skin microbial com-
munities [42, 44] as we found in this study. However, it 
also has been shown that relative abundances of some 
bacterial members of the skin microbiota correlates with 
chytrid infection intensity [19, 44, 45] and its suggested 
that according to the type of correlation these groups 
could act as anti Bd bacteria [19]. We identified several 
bacteria with positive and negative correlations with Bd 
infection intensities and most of these ASVs exhibited 
low relative abundances.

Observations in several amphibian species indicate that 
certain bacteria with properties such as biofilm forma-
tion [82] or putative inhibitory ability [55] are positively 
or negatively corelated with a decrease of Bd prevalence. 
Thus, we expect that bacteria with negative correlations 
to infection intensity could be important in the defense 
against Bd in A. altamirani. However, these Bd-inhib-
itory bacteria exhibited reduced abundances over the 
amphibian skin [83, 84].

Inhibitory potential against Bd has been described for 
several bacterial isolates mainly form Burkholderiaceae, 
Yersiniceae, Pseudomonadaceae or Xanthomondaceae 
families [60, 85–88], We found that Burkholderiaceae 
and Chitinophagaceae were highly abundant over A. 
altamirani skin. In line with our results, high abundance 
of Burkholderiaceae in Anaxyrus boreas skin microbiota 
correlated with reduced fungal presence over the skin 
during early life stages [27]. Additionally, populations of 
R. sierrae with contrasting Bd loads (high vs low) exhib-
ited differential abundances of Burkholderiaceae [21, 44]. 
In the case of Chitinophagaceae little is known about 
their inhibitory ability against Bd with only few isolates 
considered as Bd-inhibitory strains [25], and further 
work is needed to elucidate if members of this bacterial 
family present on A. altamirani skin display inhibitory 
functions against Bd.
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Conclusion
Our results show that host metamorphic status is a major 
determinant of A. altamirani, influencing diversity and 
structure of skin symbiotic bacterial communities. To our 
knowledge this study is the first to address how the effects 
of environmental variation over the skin bacterial com-
munities are dependent on the amphibian developmental 
stage; we demonstrate that seasonal environmental varia-
tion significantly influences bacterial skin diversity of A. 
altamirani, and that metamorphic and pre-metamorphic 
axolotls respond differently to environmental variation. 
Despite a growing body of literature suggesting that Bd 
influences skin bacterial diversity we did not find such 
an effect. Nonetheless, we found that particular bacterial 
taxa are likely interacting with Bd. Further studies using 
metagenomics and cultivation techniques could eluci-
date if changes in skin microbiota across development 
and across seasons are reflecting functional differences 
regarding Bd inhibition or other host symbiotic traits [89, 
90].

Methods
Sample collection
Skin samples were collected during four sampling peri-
ods at three-month intervals (July 2019, October 2019, 
January 2020, and April 2020) spanning all the seasons 
of a whole year at four localities at La Sierra de Cruces, 
Estado de México, México (Table  1, Additional file  2: 
Table  S18). Individuals of A. altamirani were captured 
at each location using dip nets and held individually in 
sterile plastic containers filled with stream water until 
swabbing. Sampling occurred for three consecutive 
hours across a 150  m transect along each stream. Each 
captured salamander was manipulated with sterile nitrile 
gloves, rinsed with 25  ml of sterile deionized water to 
remove transient microorganisms from the skin and 
swabbed 30 times (five times in their ventral and dor-
sal surface each and five times in each limb joint) using 
sterile rayon swabs (MWE, Corsham UK). Swabs were 
stored in 1.5 ml microcentrifuge tubes containing 170 μl 
of DNA/RNA Shield (Zymo Research, Irvine, USA) and 
kept at 4  °C during field work. Once in the laboratory 
tubes were stored at − 80  °C until processing. Imme-
diately after swabbing morphometric measurements 
of weight, tail and body length were registered for each 
individual. Once all axolotls were swabbed and meas-
ured, they were released at the same site of capture. Sam-
pling was approved by Subsecretaría de Gestión para la 
Protección Ambiental under the permit number: SGPA/
DGVS/5673/19.

For the purposes of this work, we classified axolotl sam-
ples as metamorphic and pre-metamorphic according to 

the presence or absence of gills as reported previously 
[59]. Recognizing that gilled individuals of A. altami-
rani could be either juvenile or paedomorphic adults, we 
classified non-gilled axolotls as metamorphic and gilled 
axolotls as pre-metamorphic respectively in order to 
evaluate the effect of the metamorphic status of the host.

Additionally, five samples of sediment and water were 
collected at each location in all sampling periods. Water 
samples were obtained by submerging a sterile rayon 
swab at approximately 20 cm deep inside water for 10 s, 
and sediment samples were obtained by submerging 
swabs inside the bottom sediment of the stream for 10 s 
[50].

Environmental characterization
Stream water temperature was recorded at 1 h intervals 
during one year at each sampling location using Onset 
HOBO dataloggers (Onset Computer Corporation, 
Bourne, USA) from June 2019 to April 2020. Addition-
ally, pH, dissolved oxygen and conductivity of the water 
was registered using a HANNA multiparameter HI98194 
(HANNA Instruments, USA) during each sampling. 
Measurements were taken at each location in triplicate 
across 10 m transects. To evaluate if these physicochemi-
cal variables vary between seasons and sampling loca-
tion, we applied a two-way MANOVA test in R (v 4.0.2).

DNA extraction and sequencing
Amplicon libraries of the 16S rRNA gene spanning the 
V4 region were constructed using 515F/806R primers 
following the Earth Microbiome Project standard pro-
tocol (www.​earth​micro​biome.​org) and previously pub-
lished studies [50, 91]. In brief, DNA was extracted from 
skin and environmental swabs using the Qiagen DNeasy 
Blood and Tissue kit (Qiagen, Valencia, USA) following 
manufacturer instructions with an initial lysozyme incu-
bation step at 37° for 1  h. Samples were PCR amplified 
in triplicate plus one negative control per sample, PCR 
products and negative controls were verified in 1% aga-
rose gels, and PCR products were pooled in one tube 
per sample. Pools were quantified using a Qubit 4.0 fluo-
rometer (Invitrogen, Thermo Fisher Scientific, Waltham, 
USA), samples were pooled in two amplicon libraries at 
a concentration of 240 ng per sample (221 and 217 sam-
ples each). Each pool was cleaned using the QIAquick 
PCR clean up kit (Qiagen, Valencia, USA). 16S amplicon 
libraries were sequenced in two sequencing runs (250 
single end) using v2 Illumina chemistry at Dana-Farber 
Cancer Institute of Harvard University.

Bioinformatic pipeline
Sequences were processed using Quantitative Insights 
Into Microbial Ecology (QIIME v2-2020.2) [92]. A total 

http://www.earthmicrobiome.org
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of 8,434,775 and 8,821,621 demultiplexed raw sequences 
were obtained from the sequencing facility for each 
sequencing run respectively. Prior to quality control 
primers were trimmed from the sequences using the cut-
adapt plugin in Qiime2 then sequences were quality fil-
tered and denoised independently for each run using the 
DADA2 plugin to obtain two single feature table. Feature 
tables obtained for each sequencing run were merged to 
generate a final Amplicon Sequence Variant (ASV) table 
containing 14,415,727 reads with a mean read depth of 
32,900 reads per sample.

A phylogenetic tree was generated using the repre-
sentative sequences of the ASV table using the q2-phy-
logeny plugin which first uses mafft to perform sequence 
alignment and then generate a phylogeny using FastTree. 
Samples were rarefied at 10,000 reads per sample accord-
ing to observed ASV rarefaction curves in order to pre-
serve the largest number of samples and sequences. After 
denoising and rarefaction at 10,000 reads per sample, 
seven axolotl (out of 279, three from metamorphic and 
four from pre-metamorphic) and eight environmental 
(out of 159, 3 from sediment and five from water) sam-
ples were discarded due to low read counts (< 10,000 
reads per sample). The rarefied table containing 10,000 
reads per sample was used for all further analyses includ-
ing to calculate alpha and beta diversity metrics using 
the q2-diversity plugin. Taxonomy was assigned using 
a naive Bayesian classifier pre-trained for the V4 region 
(515F/806R 16 s rRNA) on the SILVA 132 99% database 
[93].

Microbial diversity and composition analyses
Statistical analyses for alpha and beta diversity were 
carried out using the rarefied table at 10,000 sequences 
per sample; these analyses were computed in R (v 4.0.2) 
unless otherwise stated. We first perform Kruskal–Wallis 
(KW) and post hoc Wilcoxon ranks sum test were used 
to determine differences in alpha diversity (Shannon, 
Faith’s Phylogenetic Diversity (PD) and ASV richness) 
between sample types (metamorphic, pre-metamorphic, 
sediment, and water. In addition we perform KW and 
post hoc Wilcoxon ranks sum test to evaluate the influ-
ence of seasonality, sampling location and Bd infection 
status over the skin microbiota of metamorphic and pre-
metamorphic axolotls individually.

Beta diversity was evaluated using a weighted UniFrac 
distance matrix generated using the rarefied table at 
10,000 sequences per sample to determine differences 
in bacterial community structure across sample types. 
In addition, we generated two independent weighted 
UniFrac distance matrices for metamorphic and pre-
metamorphic axolotls to evaluate the influence of sea-
sonality, sampling location and Bd infection status. 

Statistical comparisons were conducted with permuta-
tional multivariate analyses (PERMANOVA) using the 
q2-diversity plugin in Qiime2 (v 2020.2). Beta diversity 
dispersion was calculated from the each weighted Uni-
Frac distance matrix using the function betadisper in 
the vegan package [94], and then we applied PERMUT-
EST based on 999 permutations to identify significant 
differences for dispersion, specifically we evaluate dis-
persion between sample types, as well between season-
ality and sampling locations for the metamorphic and 
pre-metamorphic distance matrices.

ANCOM [95] was used to identify bacterial families 
that were differentially abundant between metamor-
phic and pre-metamorphic salamanders and between 
samples from consecutive seasons (summer-autumn, 
autumn–winter, winter-spring). Prior to analysis low 
abundant ASVs (< 50 reads) were filtered out and then 
we collapsed all ASVs at family level, ANCOM was per-
formed using the q2-composition plugin in Qiime2. 
Briefly, ANCOM applies a centered log ratio transfor-
mation on the relative abundance of each bacterial fam-
ily and tests the null hypothesis that mean log absolute 
abundance of each family does not differ between sam-
ple types. An internal statistic (W) is calculated each 
time a taxon rejects this null hypothesis, then ANCOM 
generates an empirical distribution using W values 
in order to test which taxon in this case which bacte-
rial families are differentially abundant between sam-
ples. ANCOM between consecutive seasons was only 
applied if PERMANOVA results showed significant dif-
ferences between consecutive seasons (winter-spring 
for metamorphic salamanders and autumn–winter and 
winter-spring for pre-metamorphic salamanders).

Core microbiome was calculated independently for 
metamorphic and pre-metamorphic axolotls using the 
feature-table plugin in Qiime2. In brief, we generated 
four feature tables that contain all the ASVs present 
in each sample type (metamorphic, pre-metamorphic, 
sediment and water samples). Then we identify all the 
ASVs present in ≥ 90% of the samples of each sample 
type, using the core-features function.

Additionally, correlations between the relative abun-
dance of each ASV of the infected samples and Bd 
infection intensities were calculated with Kendall rank 
correlation coefficient correcting for multiple compari-
sons (Benjamini-Hochberg) using cor.test function of 
the stats package in R [96]. To generate graphics for all 
the results Qiime2 artifacts were imported to R using 
the package qiime2R [97], then figures were generated 
using packages ggplot2 [98, 99], Fantaxtic [100] and 
UpSetR [101], color pallet of the figures are colorblind 
friendly and were selected from the MetBrewer pack-
age in R [102].
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Biotic and abiotic factors influencing the skin microbial 
structure
In order to explore the specific influence of biotic (devel-
opmental stage, weight, tail length, snout vent length, 
Bd presence and Bd infection intensity) and abiotic fac-
tors (pH, conductivity, dissolved oxygen, mean season 
temperature, delta season temperature, and elevation) 
on skin bacterial community composition, we applied 
a distance-based redundancy analysis (dbRDA) on the 
weighted UniFrac distance matrix using the capscale 
function of the vegan package [94]. dbRDA is a canoni-
cal ordination method that applies multiple linear regres-
sion to a distance matrix and then computes a principal 
component analysis (PCA) [103]. Prior to analyses non-
categorical biotic and abiotic variables were z-scored to 
control for differences in magnitudes between factors. 
The ordistep function of the vegan package [94] was 
used for model selection in both directions with 999 
permutations to select the best regression model. Once 
the dbRDa was obtained anova.cca function was used to 
perform an ANOVA like permutation test to evaluate the 
significance of each calculated canonical axis (anova.cca, 
by = axix) and the specific significance of each factor in 
the regression model (anova.cca, by = terms).
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