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Abstract 

Parasitic infections disturb gut microbial communities beyond their natural range of variation, possibly leading to dys-
biosis. Yet it remains underappreciated that most infections are accompanied by one or more co-infections and their 
collective impact is largely unexplored. Here we developed a framework illustrating changes to the host gut micro-
biome following single infections, and build on it by describing the neutral, synergistic or antagonistic impacts on 
microbial α- and ß-diversity expected from co-infections. We tested the framework on microbiome data from a non-
human primate population co-infected with helminths and Adenovirus, and matched patterns reported in published 
studies to the introduced framework. In this case study, α-diversity of co-infected Malagasy mouse lemurs (Microcebus 
griseorufus) did not differ in comparison with that of singly infected or uninfected individuals, even though commu-
nity composition captured with ß-diversity metrices changed significantly. Explicitly, we record stochastic changes in 
dispersion, a sign of dysbiosis, following the Anna-Karenina principle rather than deterministic shifts in the microbial 
gut community. From the literature review and our case study, neutral and synergistic impacts emerged as common 
outcomes from co-infections, wherein both shifts and dispersion of microbial communities following co-infections 
were often more severe than after a single infection alone, but microbial α-diversity was not universally altered. 
Important functions of the microbiome may also suffer from such heavily altered, though no less species-rich micro-
bial community. Lastly, we pose the hypothesis that the reshuffling of host-associated microbial communities due to 
the impact of various, often coinciding parasitic infections may become a source of novel or zoonotic diseases.
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Introduction
Multicellular life evolved in an environment of unicel-
lular, microbial co-inhabitants, and is  forced to interact 
with and, eventually, host already present microbiota 
[1, 2]. As a collaborative venture, hosts entrusted partial 
sovereignty of important functions to the microbiome, 
including modulation of host metabolism [3], develop-
ment [4], behaviour [5] and immunity [6–8]. The gut 

microbiome takes up many of these tasks. A high micro-
bial diversity and constant direct and indirect molecular 
crosstalk between the genomes of interacting hosts, bac-
teria, viruses and fungi (i.e., holobiont) maintain a stable 
gut microbial community, optimise microbial functions 
and buffer against disturbances [9, 10]. The most radi-
cal changes in the commensal microbial community are 
often connected to macro- and microparasitic infections 
(e.g., viruses [11]; bacteria [12]; helminths [13], fungi 
[14]).

Parasites exploit unused metabolic products, induce 
inflammation or compete for space and resources with 
commensal bacteria [15, 16]. As a consequence, parasites 

Open Access

Animal Microbiome

*Correspondence:  Dominikwerner.schmid@uni-ulm.de

1 Institute of Evolutionary Ecology and Conservation Genomics, Ulm 
University, Ulm, Germany
Full list of author information is available at the end of the article

http://orcid.org/0000-0001-8908-3882
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42523-022-00198-5&domain=pdf


Page 2 of 15Schmid et al. Animal Microbiome            (2022) 4:48 

may transform a microbial community into a disturbed 
or dysbiotic microbiome (i.e., pathobiome) benchmarked 
by changes in intra-individual microbial diversity (i.e., 
α-diversity), shifts or dispersal inter-individual diversity 
(i.e., ß-diversity) and overdominance or disappearance of 
specific bacterial taxa (conceptualised in Fig. 1; [9]). Hel-
minth-infections, for example, modulate the abundance 
of immune-regulatory commensals in horses (Fig.  1A; 
[17]), while infections with the human immunodefi-
ciency virus (HIV) lower overall gut microbial richness 
and evenness [18, 19]. In wild populations of Malagasy 
mouse lemurs (Microcebus griseorufus), inter-individual 
similarity in microbial composition differed between 
uninfected and Adenovirus+ individuals (Fig.  1B; [11, 
20]). The microbiomes of chimpanzees infected with the 
Simian immunodeficiency virus were more dissimilar 
between infected individuals compared with uninfected 
hosts (Fig. 1C; [21]).

In turn, an infection can undermine microbe-medi-
ated, metabolic or immunological functions and facilitate 
further infections [23–26]. The protozoan Toxoplasma 
gondii, for instance, repeatedly caused declines in ASVs 
(amplicon sequence variants) of the family Proteobacteria 
and Bacteroidetes in a murine model [27]. Bacteroidetes 

are key to inducing inflammation responses and coun-
ter infections. SARS-CoV-2—the latest installment of a 
series of viruses with pandemic potential and zoonotic 
origin—was documented to shift the host gut microbi-
ome community and allow opportunistic and pathogenic 
bacteria to take over [28, 29]. Importantly, however, com-
mensals are not defenseless against parasitic invaders 
[10]. In the case of patients with COVID-19, four com-
mensal Bacteroides species were found to downregulate 
the expression of the ACE2 receptor, which is used by 
the disease agent SARS-CoV-2 to enter host cells [28]. 
Disturbances of the microbial community may be symp-
tomatic of an unhealthy host or a reaction to optimize 
immune-regulatory functions against an invader [9], but 
shifts away from homeostasis may invite secondary infec-
tions to take hold. In brief, the interaction between the 
host microbiome and an infection undoubtably contrib-
utes to disease severity, progression and recovery [30].

Yet our knowledge about the impact of parasitic infec-
tions on the microbiome largely stems from single infec-
tions, aiming to link cause and effect. Little attention has 
been paid to the impact of co-infections even though they 
are the norm in nature [24, 25]: for instance, 46% of all 
bank voles (Myodes glarolus) infected with the tick-borne 

Fig. 1  The impact of single infections on α- and ß-diversity of the host’s microbiome with examples. A Single infections can have a directional 
effect on microbial species diversity. Equine gut microbial α-diversity, for instance, decreased following helminth infection [17]. B Single infections 
may result in deterministic changes to the microbial community composition (i.e., ß-diversity), which are characterized by a shift of the centroid 
(= black dot; e.g., analysed by Permutational Multivariate Analysis of Variance, Permanova). In this case, the dispersion stays similar (e.g. analysed by 
Permutational Analysis of Multivariate Dispersions, Permdisp). For example, the gut microbial composition shifted in Adenovirus-infected mouse 
lemurs [11]. C Alternatively, single infections may lead to a changed dispersion, which can be visualized as distance to centroid (spread = black 
arrow). An example are chimpanzees infected by the simian immunodeficiency virus, which had a more dispersed gut microbiome [21]. D Single 
infections can also lead to both stochastic and deterministic effects. Three-spined stickleback (Gasterosteus aculeatus), for instance, infected with 
the cestode Schistocephalus solidus had a more dispersed and shifted gut microbial community [22]. * = significant differences (i.e., p-value < 0.05); 
ns = non-significant differences (i.e., p-value > 0.05)
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bacterium “Candidatus Neoehrlichia mikurensis” were 
co-infected with the zoonotic Lyme disease agent Borre-
lia afyelii [31]; and 79% of field voles (Microtus agrestis) 
were co-infected with a protozoan, virus and/or bacteria 
[32]; 72% of helminth-infected marbled spinefoot rab-
bit fish Siganus rivulatus were also infected with at least 
one additional helminth species [33]; viral co-infections 
in virus-positive bats range from approximately 1% [34] 
to up to 40% [35]. In humans, co-infections are conserv-
atively estimated at 30%, even though some estimates 
extend as high as 80% for some communities [36]. For 
example, co-infections with HIV and hepatitis B virus 
range between 3 and 25% [37], and even triple infections 
with bacteria that use shared transmission pathways, 
like syphilis, reach a prevalence as high as 30% in some 
developed nations [38]. The occurrence of co-infections 
is probably underestimated since targeted detection 
approaches based on a priori expectations likely overlook 
unknown or unexpected parasites [39].

Given the importance of microbiome homeostasis for 
host health [6–8], changes to the microbiome arising 
from single infections alone, the universality of co-infec-
tions in nature, and the increased infection risk of hosts 
in anthropogenically changed habitats [30, 40], inves-
tigating the impact of co-infections on the host micro-
biome is particularly timely [9, 11]. This review begins 
with sketching out a framework for expected impacts of 
co-infections on host microbial communities. We draw 
examples from an extensive literature search and embed 
the empirical findings in our framework. Moreover, we 
re-analysed a published data set from a wild popula-
tion of Malagasy mouse lemurs (M. griseorufus; [11, 20]) 
under inclusion of co-infection information and align the 
findings with our framework, adding to the few published 
examples. Finally, we critically dissect limitations, point 
to unanswered questions and frame the importance of 
co-infection research in the context of disease ecology 
and One health considerations.

Expected impacts of co‑infections on microbial 
communities: a theoretical framework
Broadly speaking, different parasites infecting the same 
host can assist, counter or disregard one another in 
their impact: some helminths, for instance, suppress 
the host’s inflammatory responses, which favors the 
establishment and rapid growth of micro- or macro-
parasites [24–26]. Wild rabbits infected with the hel-
minth Trichostrongylus retortaeformis, but not with the 
helminth Graphidium strigosum, experienced greater 
infection intensity when co-infected with the immu-
nosuppressive myxoma virus [41]. Other parasites 
compete for limited host resources [24–26], result-
ing in negative correlations between the abundance of 

co-infecting parasites. Such inverse relationships were 
found in domestic sheep [42] and wild mice (genus: 
Peromyscus) [43] infected with the protozoan Eimeria 
and Campylobacter or helminths, respectively. Some 
co-infecting parasites even actively offset the develop-
ment and manipulation of other parasites to advance 
their own survival and transmission [44]. In any case, 
parasite-specific traits likely govern these parasite-par-
asite interactions [24, 26]. Hence, trait-mediated effects 
are equally likely to determine parasite-parasite-micro-
biome interactions and, thus, the impact of co-infec-
tions on host microbiome stability.

This means multiple infections are predicted to alter 
the host’s microbiome in their own specific way. In recent 
years, high-throughput 16S ribosomal RNA amplicon 
and shotgun sequencing data pushed the study of micro-
bial communities to a new era. The ability to look at 
community patterns rather than just specific taxa alone 
also meant that new and old analytical tools, regularly 
employed by community ecologists, were now avail-
able to microbiologists and that these observations and 
patterns are now embedded in rich ecological theory 
adapted for microbial communities (e.g., keystone spe-
cies; α/ß-diversity; Anna-Karenina principle; reviewed in 
[15, 45–47]). And yet, a cohesive framework of theoreti-
cal predictions outlining how co-infections could impact 
gut microbial communities is currently lacking.

Our framework builds on these ideas (Fig. 2). Specifi-
cally, we developed testable predictions of the impact 
of co-infections using common community and diver-
sity metrices. The null hypothesis to be tested follows 
the same principle as for single infections (Fig.  1 i.e., 
α-diversity of uninfected group does not change follow-
ing single infections), namely that a co-infection does not 
alter the diversity of the gut microbial community when 
compared to the singly infected reference groups (Fig. 2). 
Importantly though, the impact of co-infections on the 
microbiome must primarily be levelled against that of the 
single infections. Hence, when compared to the effect of 
single infections on the host microbiome, co-infections 
can either be neutral, synergistic or antagonistic. How-
ever, the choice of reference markedly influenced the 
outcome, meaning that for observational studies indi-
viduals with single infections of either pathogen should 
be compared against the co-infected group (see “Case 
study: Neutral and synergistic effects of a co-infection on 
the gut microbiome of a non-human primate” section), 
while for experimental studies the sequence of infection 
determines which group represents the reference. In the 
following we outline our framework in more detail and 
showcase empirical evidence from 14 studies (Table  1; 
selected from 397 that fit the search criteria; see Addi-
tional file for details on the systematic literature search; 
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Additional file 1: Fig. S1, Table S1) that report and com-
pare the impact of single and co-infections.

Neutral effects
If a single infection does not result in observable changes 
to the gut microbiome compared to the uninfected group, 
then the effect is negligible or neutral. For instance, the 
microbial α-diversity—a measure of intra-individual spe-
cies richness, evenness and phylogenetic diversity—of 
mouse lemurs infected with an Adenovirus (AdV) was 
indistinguishable from uninfected individuals [11]. Simi-
larly, and by extension, if a co-infection does not alter the 
gut microbiome beyond the change that a single infec-
tion caused i.e., when both the single and co-infection 
cause the same observable changes to the gut microbi-
ome, then the effect of the co-infection is said to be neu-
tral (Fig.  2A, D, G, J). In other words, neutral impacts 

emerge when one co-infecting parasite does not inter-
fere with the manipulation of the other. Neutral effects 
can be observed when considering both α- and ß-diver-
sity. Whilst α-diversity reflects intra-individual diver-
sity, ß-diversity is a measure of inter-individual diversity 
in microbial communities. Impacts on the latter can be 
investigated in two different ways: by testing for deter-
ministic effects, which move the microbiome communi-
ties towards a different but consistent configuration (i.e., 
shifted centroid location in ordination space), or stochas-
tic effects (i.e., Anna-Karenina principle [AKP]), which 
translate into unique configurations of each individual 
microbial community (i.e., changed dispersion from a 
common group centroid; Figs. 1 and 2 top banner).

Neutral effects of additional infections on gut microbial 
α-diversity were demonstrated in at least one experimen-
tal murine study [54], a study on domestic pigs [48] and 

Fig. 2  A framework to assess the impact of co-infections on α- and ß-diversity of the host’s microbiome. The top banner provides an overview of 
different α-diversity metrics, and the patterns created by a shift in centroid (i.e., a deterministic effect with centroid = black dot) or when plotted 
as distance from centroid (i.e., a stochastic effect with spread = black arrow), both describing ß-diversity. Based on the impact a single infection 
(yellow) has on uninfected hosts (blue), the effect of a co-infection (red) can be classified as either neutral, synergistic or antagonistic. Animal 
symbols are in reference to the focal organism of studies featured in Table 1 and the number represents the frequency a similar result was found. 
* = significant differences (i.e., p-value < 0.05); ns = non-significant differences (i.e., p-value > 0.05)
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in several medical studies on humans ([56–58], Table 1, 
Fig. 2A). Neutral effects are also present among wild ani-
mals. In a free-ranging African buffalo (Syncerus caffer) 
population infected with both bovine tuberculosis (Myco-
bacterium bovis, TB) and gastrointestinal helminths, gut 
microbial α-diversity differed only between uninfected 
and helminth-infected, but TB-negative buffalos [61]. 
Microbial richness of co-infected buffalos was indistin-
guishable from buffalos either only TB-positive or only 
helminth infected (Fig. 2A). Thus, the effect of TB infec-
tion on α-diversity was neutral with respect to the change 
seen in buffalos solely infected with helminths. Addition-
ally, the study finds the gut microbial community com-
position to remain unaffected by co-infections compared 
to the single infections status (Fig.  2D, G; [61]). Lastly, 
this work highlights some of the potential from wildlife 
research in the context of co-infections (Box  1). Taken 
together, neutral impacts might be a common outcome of 
co-infections (Table 1).

BOX 1: Tracking changes in microbiomes from wild 
animals is difficult but feasible
Information about the impact of co-infections on the 
microbiome of wild animals, in particular, are scarce, 
not least because a diverse set of skills is needed to 
capture and analyse a variety of data (e.g., inten-
sive capture-recapture efforts in the field; molecular 
screening for parasites and microbes in the labora-
tory; -omics pipelines for data processing and analy-
sis). A possible source of more information are studies 
primarily dedicated to screening vectors for diseases 
with zoonotic potential. Since species richness pre-
dicts parasite diversity, highly diverse vector groups 
are targeted by a higher number of parasites than less 
diverse taxa [62]. Rodents, bats, primates and birds 
spearhead the list of diverse zoonotic vectors and res-
ervoirs with regular interactions with humans as we 
further encroach on their natural habitats [63, 64]. 
Moreover, these taxa are often highly co-infected [31, 
35, 65–67]. Infections in wildlife are likely so common 
that an uninfected state may prove itself to be a rare 
circumstance [65]. These vectors and reservoirs likely 
transmit a plethora of parasites to new hosts (follow-
ing the 80:20 rule of disease transmission [68]). Gre-
garious bats, for instance, often carry a variety of viral 
strains (e.g. [34, 35].) and have been implicated as res-
ervoirs of SARS-like CoVs [69] and sources of SARS-
CoV-2 [70]. Yet, fecal samples are easy to collect from 
trapped rodents and netted bats and birds (e.g., [71, 
72]), and tracking of vector populations on a regular 
basis would allow gathering of important temporal 
data on infection status and microbiome diversity [15, 

73]. Even perturbation studies aiming to vaccinate or 
treat against certain parasites can be a powerful, even 
if laborious endeavor and bring a more experimental 
approach to wildlife research [61]. Importantly, more 
detailed infection information will likely require more 
nuanced analytical approaches to deal with parasite-
specific and infection load related impacts, possibly 
also not easily captured by diversity metrices. Vec-
tors and reservoirs are ideal natural model systems to 
study such dense infection information and the sub-
sequent impact of co-infections on host microbiomes.

Synergistic effects
As an alternative to neutral effects, single infections can 
increase or decrease microbial α-diversity and change 
centroid position and/or dispersion patterns of ß-diver-
sity (Fig.  1). A single infections with HIV, for instance, 
can lower gut microbial richness and evenness [18, 19]. 
However, if a co-infection compounds the changes 
caused by a single infection even further, then the effect 
can be either synergistic or antagonistic, depending on 
the direction of these changes. In the case of synergistic 
effects, the impact of a co-infection is greater than the 
measured effect of a single infection alone. For example, if 
a single infection reduces (or increases) α-diversity, then 
a co-infection would further reduce (or further increase) 
gut microbial α-diversity (Fig. 2B). Such synergistic effect 
was showcased in a study on mice infected with the pro-
tozoan Guardia lamblia and an enteroaggregative E. coli 
(Table  1; [53]). The abundance of Enterobacteriaceae 
increased following co-infection. As a  consequence, co-
infection altered microbiome functionality (e.g., muscle 
metabolism and energy expenditure regulation governed 
by the creatine:creatinine ratio and nicotinamide path-
ways, respectively) [53].

The same prediction can also be formulated for ß-diver-
sity. When looking at deterministic effects, shifts in a gut 
microbial community structure following a single infec-
tion could be accentuated during co-infection (Fig.  2E). 
Besides further reductions in microbial α-diversity, mice 
experimentally co-infected with Schistosoma japonicum 
and T. gondii displayed such a shift in microbiome com-
position further along ordination axis 1 than found in any 
of the singly infected groups (Table  1; [55]). Both para-
sites are known to change the host microbiome indepen-
dently from one another [27, 55, 74, 75]. The helminth S. 
japonicum causes schistosomiasis leading eventually to 
periportal and liver cirrhosis. Schistosomiasis-induced 
alteration of the microbiome composition in murine [74] 
and human hosts [75] is thought to underlie changes in 
Th1/Th2 responses linked to the development of hepatic 
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fibrosis [55]. Yet, rather than worsening host health, the 
shift in diversity and composition in co-infected mice 
likely ameliorated S. japonicum-induced liver fibro-
sis, presumably due to the promotion of Th1 immune 
responses by T. gondii [55, 76].

When looking at stochastic effects, an increased (or 
decreased) community dispersion following a single 
infection could become more pronounced during co-
infection (Fig.  2H). On their own, infections with HIV 
[18] and the hepatitis C virus (HCV) [77] result in more 
dysbiotic guts. HIV-HCV co-infected individuals experi-
ence significantly lower α-diversity (Fig. 2B) and a more 
pronounced ß-diversity dispersion (Fig.  2H), indicating 
fewer similarities between individual microbial commu-
nities, compared with HIV singly infected patients [60]. 
Moreover, the observational study found all groups to 
differ in their metabolome with the co-infected group 
being most dissimilar [60]. Collectively, these findings 
suggest synergism driving the dispersion in co-infected 
patients.

Lastly, since each parasite may induce either determin-
istic or stochastic changes in the microbial ß-diversity 
community, co-infections might yield mixed results (i.e., 
a shifted and more/less dispersed community; Fig.  2K). 
The only evidence for this comes from experimental stud-
ies on poultry (Table 1). For instance, Histomonas melea-
gridis causes histomonosis in poultry [78]. The protozoan 
compromises the intestinal mucosal barrier of its host, 
disrupting nutrient uptake and enabling the establish-
ment of other pathogens, such as the avian pathogenic 
E. coli. In domestic chickens (Gallus gallus domesticus) 
co-infected with H. meleagridis and an avian pathogenic 
E. coli strain, ß-diversity was both more dispersed and 
shifted in co-infected pullets, while E. coli singly infected 
hosts clustered tightly together [49]. The co-infection 
with H. meleagridis also reduced the abundance of com-
mensal bacteria, such as the Ruminococcaceae, which 
are involved in the breakdown and conversion of feed to 
body weight, hence co-infected chicken lost significantly 
more weight over the course of the experiment [49]. In 
both poultry studies, co-infections also favored the estab-
lishment of unique compositions of competitive, patho-
genic bacteria, more distinct than those found in singly 
infected individuals [49, 50]. Such compositional reshuf-
fling following frequent infections and aggressive anti-
microbial treatments on animal farms has led, and is 
likely to lead, to the emergence of new potentially patho-
genic bacteria [63, 79].

Antagonistic effects
In contrast to synergistic effects, co-infections can 
counteract the effects of a single infection  seemingly 
to return the gut microbial α- or ß-diversity (closer) 

toward its uninfected state (Fig.  2C, F, I, L). Such 
an effect can be described as antagonistic and likely 
evolved in some parasites as a mechanism to modulate 
host- and microbiome-mediated immunity in order 
to protect itself (and by extension its host) from a co-
colonizing competitor [26]. It is important to note here 
that antagonistic effects are marked by a change in 
direction rather than entirely nullifying the effect of a 
single infection. Co-infections with helminths are likely 
prime candidates to observe antagonistic effects owing 
to their ability to modulate inflammatory responses 
and maintain gut homeostasis for their own benefit 
[80]. A cross-sectional study on 37 children from rural 
parts of Argentina co-infected with the eukaryotic 
protozoan Giardia duodenalis and helminths found 
antagonistic effects of the co-infection compared to 
single infections with either parasite: co-infected chil-
dren showed higher microbiome α-diversity than G. 
duodenalis singly infected children, but lower diver-
sity than those children only infected with helminths 
[59]. Yet, α-diversity of co-infected children was actu-
ally comparable to uninfected infants [59]. This indi-
cates counteractive microbiome modification by either 
parasite (Fig.  2C). Critically though, the microbiomes 
of co-infected children lost the ability to biosynthesize 
Vitamin B12 in sufficient quantities, possibly as a result 
of a shifting microbiome composition with anaerobic 
Prevotella becoming the leading taxa in the G. duade-
nalis singly and co-infected group [59]. The loss of an 
obligatory bacteria-derived micronutrient may explain 
some of the pathologies (e.g. malabsorption, diarrhea) 
observed with G. duodenalis infections [81], but also 
showcases that, even though co-infections resulted in 
microbial α-diversity akin to that of uninfected chil-
dren, changes in microbial composition associated with 
a single disease agent can transform microbiome func-
tions with debilitating consequences for the host.

Antagonistic impacts of co-infection on the microbi-
ome were also investigated in an observational study on 
130 Columbian children infected with the malaria para-
site Plasmodium vivax and either of two common hel-
minths (Trichuris trichiura, Ascaris lumbricoides; [58]). 
While microbiome α-diversity was similar between un-, 
singly and co-infected children, the microbiome compo-
sition differed deterministically (Fig. 2F): Prevotella copri 
and Clostridiaceae were less abundant, whereas Bacte-
roides were more common in individuals only infected by 
P. vivax than in uninfected, helminth-only or co-infected 
children [58]. The findings indicate modulation by the 
helminth to maintain microbiome homeostasis, but 
equally suggests strong impacts of single infections with 
P. vivax. Interestingly, singly and co-infected individuals 
with P. vivax still had altered immunological parameters 
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such as interleukins and hematocrit, indicating that P. 
vivax likely modulates immunity directly rather than via 
the gut microbiome.

Case study: neutral and synergistic effects 
of a co‑infection on the gut microbiome 
of a non‑human primate
Non-human primates pose a significant zoonotic risk 
to humans owing to a more recent, shared evolutionary 
past [82] and an overlap in habitats following increased 
human encroachment [83–85]. Zoonotic Adenoviruses 
(AdVs), for instance, which can cause diarrhoea and mild 
to severe diseases in humans and other primates [86], 
originate more often than expected from primates [62]. 
Similarly, 20% of primate-borne helminths, although 
much more host specific, are estimated to also infect 
humans [87]. Monitoring programs make wild non-
human primate populations a natural model system to 
explore the impact of infections, including co-infections, 
on the host’s microbiome [88]. In order to emphasise this 
point, we re-analysed microbiome data from helminth 
and AdV-infected Malagasy mouse lemurs [11, 20].

The raw microbiome sequence data was accessed from 
the NCBI database (BioProject: PRJNA715730) for 86 
samples with known infection status and processed using 
the same bioinformatics pipeline as described in [20]. 
The metadata revealed that a total of 40 samples were 
uninfected hosts, while 11 were AdV+, 25 helminth+ 
and 10 infected with both parasites. Like AdV infection, 
helminth infection represents a binomial variable with-
out information on helminth species or infection load. 
Quality analysis following the Qiime 2 (version 2020.8) 
pipeline recovered an average of 43,070 (range 22,150–
102,421) reads per sample after taxonomic assignments 
using the Silva classifier (v138; [89]). After applying a 
0.1% prevalence threshold [45], the gut microbial com-
munity of the mouse lemurs was dominated by 34.5% 
Bacteroidota, 28.9% Actinobacteriota, 25.7% Firmicutes, 
followed by 4.6% Campilobacterota and Proteobacteria 
(< 2% Patescibacteria, Fusobacteriota, Cyanobacteria and 
Spirochaetota), which was coherent with previous find-
ings [11]. Investigating the effect of infection status (i.e., 
uninfected, helminth+, AdV+ or co-infected) on four 
common α-diversity metrices (i.e., Faith’s phylogenetic 
diversity, Chao1, Shannon diversity, Simpson) consist-
enly yielded no differences in α-diversity across infection 
groups (Analysis of Variance: F3,82 = 0.616–1.585; p > 0.05, 
Fig.  3A). This is in line with one study showing no dif-
ference in α-diversity between AdV+ and AdV− mouse 
lemurs [11], but in contrast with another study using 
143 AdV-tested lemurs [20], which reported an increase 
in Faith’s phylogenetic diversity in AdV+ individuals. 
Yet collectively these results suggests a neutral impact 

of co-infection (Fig.  2A). Interestingly though, the vari-
ance between the groups differed for Faith’s phylogenetic 
diversity (Bartlett-test: p = 0.029), Chao1 (Bartlett-test: 
p = 0.022) and Simpson (Flinger-Killeen-test: p = 0.049), 
suggesting less variation in the singly and co-infected 
groups, despite their lower sample size.

To differentiate deterministic from stochastic effects, 
we compared the effect of infection status using PER-
MANOVAs (i.e., shifted centroid position) and PER-
MDISPs (i.e., altered dispersion) based on two ß-diversity 
metrices (unweighted and weighted UniFrac, [90]). 
Whereas no difference in centroid position was appar-
ent among infected groups (PERMANOVAs—weighted 
UniFrac: F3,82 = 0.855, R2 = 0.03, p = 0.606; unweighted 
UniFrac: F3,82 = 1.274, R2 = 0.04, p = 0.122), gut micro-
bial ß-diversity was differently dispersed (PERMDISPs—
weighted UniFrac: F3,82 = 4.527, p = 0.008; unweighted 
UniFrac: F3,82 = 6.189, p = 0.002). Pair-wise comparisons 
revealed that, based on weighted UniFrac distances, all 
infected groups were significantly less dispersed than the 
uninfected group (Helminth+: p = 0.014; AdV+: p = 0.030; 
co-infected: p = 0.027), but did not differ significantly 
from one another in terms of their structural composition 
of ASVs (Fig. 3B; Additional file 1: Table S2). Unweighted 
UniFrac distances drew a different picture (Fig. 3C): here 
the gut microbiome community composition of AdV+ 
and co-infected individuals differed from uninfected 
ones (AdV+: p = 0.012; co-infected: p = 0.002), while 
Helminth+ were not dissimilar to the microbiomes from 
uninfected individuals (Helminth+: p = 0.144). Crucially 
though, singly infected groups differed compared to the 
co-infected group (Helminth+ vs. co-infected: p = 0.014; 
AdV+ vs. co-infected: p = 0.069). Collectively, these 
results rule out a deterministic shift of the mouse lemur 
gut microbiome, but suggest a rather stochastic contrac-
tion following anti-AKP expectations [15]. In short, gut 
microbial communities became less dispersed and, thus, 
more similar following a co-infection. Anti-AKP dynam-
ics, in this context, describe precisely the opposite pat-
tern to a frequent observation among microbiologists: ‘all 
healthy microbiomes are similar; each dysbiotic microbi-
ome is dysbiotic in its own way’ (in reference to the open-
ing line of Tolstoy’s Anna Karenina: ‘all happy families 
are alike; each unhappy family is unhappy in its own way’ 
[15]). Yet both are feasible outcomes: AKP, anti-AKP and 
non-AKP (possibly deterministic) effects were found to 
be as common as 50%, 25% and 25% in humans suffering 
from microbiome-associated diseases [91].

To sum up, both neutral (Fig.  2G) and synergis-
tic (Fig.  2H) effects of a co-infection were observed: 
the AdV + infections, for instance, seem to shrink the 
microbiome irrespective of a co-infecting helminth, 
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whereas a single infection with a helminth somewhat 
maintains similarities with a healthy gut microbial com-
position and only contracts to become more homoge-
nous with the addition of the co-infecting virus. In this 

wild population, co-infecting parasites, therefore, shape 
the host’s microbiome in a way that no longer resem-
bles its uninfected configuration.

Fig. 3  Differences in gut microbial α- and ß-diversity in uninfected, single-infected and co-infected mouse lemurs (M. griseorufus). A α-diversity 
measured by Faith’s phylogenetic diversity, Chao1, Shannon diversity, Simpson (left to right) and B ß-diversity measured by weighted and C 
unweighted UniFrac distances and illustrated by non-metric multi-dimensional (NMDS) ordination plots. Displayed are uninfected (blue squares), 
single-infected (helminth+: yellow triangle, AdV+: orange circles) and co-infected (red diamonds) mouse lemurs
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Discussion
Parasitic infections are a constant in nature. But rather 
than linking single parasites with a single disease or 
pathology as proposed by early pioneers of microbiology, 
modern disease ecology understands that the outcome of 
disease is largely determined by four interacting factors: 
the host, the parasite, the environment and the microbi-
ome - the most recent addition [30]. As extension to the 
former disease triangle [92], the concept of the disease 
pyramid captures the direct and indirect four-way inter-
actions between habitat disturbance, host susceptibility, 
pathogenicity and microbiome stability [30] and helps 
explain a rise in emerging or re-emerging infectious dis-
eases in wildlife [93, 94], which in part cross trans-species 
boundaries to become public health problems [63, 64]. 
Three key realizations make the microbiome an essential 
addition in the light of the One health framework: the 
host microbiome is readily and directly impacted by hab-
itat disturbance [40], host health [95] and parasitic infec-
tions (e.g., [11, 96]), the microbiome itself shapes host 
health and disease progression [9, 10], and a dysbiotic 
microbiome is a breeding ground for potentially harmful 
bacteria [97, 98]. Particularly, the acquisition of patho-
genic or antibiotic properties via horizontal gene trans-
fer or de novo mutations in the pressure cooker that is 
a highly destabilized microbiome, is daunting for human 
and animal health alike.

Parasitic infections are particularly conducive to caus-
ing microbial dysbiosis (Fig.  4). Parasites evolved to 

outmaneuver host-associated commensals and host 
defenses. As such, parasitic infections either impact host-
associated microbial communities directly or indirectly 
via host health or the manipulation of host immunity. 
Distinguishing between the direct competition with host 
microbial communities and microbiome- or host-medi-
ated pathways is a major challenge for future research 
in this field (e.g., [58, 96]). An attempt was made with an 
elaborate experiment on mice co-infected with the hel-
minth Trichinella spiralis and a murine Norovirus [52]. 
Even though T. spiralis changed the abundance of several 
bacterial families independently of the co-infecting virus, 
the study showed empirically that compositional changes 
likely stem from altered interactions between the micro-
biome and host immunity even though only the latter 
was manipulated directly by the parasite [52]. Such com-
plexity is laborious to unravel. It requires a push for novel 
study designs and analytical workflows to make sense of 
information-dense host and microbe data, which must 
include infection status.

Additionally, anthropogenically disturbed and biologi-
cally depauperated habitats tend to experience increased 
parasite diversity and prevalence (Fig.  4; e.g., [71, 99, 
100]). This emphasizes the importance of understanding 
host-microbiome-parasite interactions. However, even 
information on the impact of single infections is scarce, 
notwithstanding findings from model organisms or path-
ogens with current relevance to human disease manage-
ment. But single infections are not a realistic scenario, 
neither for wildlife (e.g., [24, 25]) nor for humans (e.g., 
[37, 38]) and the co-infection risk is likely to increase fol-
lowing further human encroachment into nature. There-
fore, we hypothesize that, matching the disease pyramid 
[30], more pronounced anthropogenic disturbances (e.g., 
via habitat fragmentation, agricultural intensification, 
environmental pollution, climate change) coupled with 
increased parasite pressure likely lead to more dysbiotic 
host-associated microbial communities, which, in turn, 
may facilitate the emergence and transmission of novel 
and potentially pathogenic bacteria (Fig. 4).

The impact of co-infections is likely fundamental to 
understand these dynamics. Even from the few studies 
published to date, it can be said that co-infections mold 
how the four-way interactions pan out and host health 
and microbiome stability are affected. Since effects on the 
gut microbiome (and other microbiome communities, 
such as of the skin; [101]) are likely parasite-specific, it is 
useful to outline a predictive framework to conceptual-
ize coupled effects (Fig.  2). In doing so, we found some 
instances in which co-infections altered host microbial 
α-diversity, but others where α-diversity seemed statisti-
cally indistinguishable from uninfected or singly-infected 
individuals. By contrast, ß-diversity was frequently 

Fig. 4  Pathways to novel, potentially pathogenic bacterial disease 
agents. Aside from direct changes to the host microbiome caused 
by habitat disturbances (blue arrows), parasites directly impact host 
microbiome (red solid arrow) and indirectly via manipulation of 
host health (red dashed arrow). Since anthropogenically disturbed 
habitats facilitate the transmission and persistence of parasites, direct 
and indirect parasite-mediated changes to a host’s microbiome may 
become more frequent, and a dysbiotic gut may become a source of 
harmful bacteria. Adapted from [30]
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shifted farther or dispersed more widely than after a sin-
gle infection alone. Shifts in microbial communities could 
indicate either a cohesive (host- or microbiome-directed) 
response to mitigate an infection (e.g., [28]) or modula-
tion by the parasite to enable its own establishment and 
persistence (e.g., [41]). Such dysbiosis may favor the 
persistence of harmful bacteria usually competitively 
excluded or down-regulated [97]. Co-infections did, for 
instance, often change the abundance of Clostridiaceae 
and Bacteroides (Table  1), both competitive bacterial 
families with opportunistically pathogenic members.

In contrast to deterministic shifts, dispersion fol-
lowing the Anna-Karenina principle may seem as if 
the host and/or microbiome were unable to form a 
coherent response to the infection stress [15]—pos-
sibly expected when encountering a novel pathogen. 
Alternatively, dispersion may be seen as an evolution-
ary strategy to uncover an effective response from more 
divergent microbial communities (following similar 
principles behind host genetic diversity in relation to 
selection). The results of at least one study are sugges-
tive: the skin microbiome of the recently re-discovered 
neotropical Green-eyed frog (Lithobates vibicarius) was 
more divergent among those individuals encountering 
frequent human disturbance [102]. The disturbed skin 
microbiome, however, was rich in bacteria with putative 
inhibitory function against the chytrid fungus Batra-
chochytrium dendrobatis (Bd), which drove the original 
decline of the species. These findings offer the possibil-
ity of microbiome-mediated assistance to combat infec-
tions via a changed microbial configuration and hence 
function. By contrast, anti-AKP dynamics, as observed in 
single and even more pronounced in co-infected mouse 
lemurs (Fig. 3; [11, 20]), reduce variation in the microbial 
community to a core when the (co-)parasitic challenge is 
too severe. Unlike AKP, anti-AKP could thus lower the 
microbiome’s ability to aid host recovery. Irrespective of 
whether through a shift or dispersion in the microbial 
community, host health is expected to decline because 
essential microbiome-mediated functions are abandoned 
(e.g., [49]). As host health further deteriorates, genetic 
control of its microbiome is likely to suffer, accelerating 
“pathobiome-genesis”.

A picture emerges that co-infections may contribute 
to the severity of disease [30] and, as we propose here, 
the emergence of novel, potentially harmful bacteria con-
cocted in a dysbiotic gut (Fig. 4). Habitats at the intercept 
between human- and wildlife-dominated environments 
and crowded with parasites materialize as breeding 
grounds for novel bacterial strains and, simultaneously, 
as research hotspots (Box 1). Recent zoonotic outbreaks 
and the SARS-CoV-2 global pandemic stress the inter-
connected nature of wildlife and human health. In fact, 

a global One health perspective has never been more apt. 
Since microbial communities are an intricate component 
of every ecosystem [30], their inclusion in planetary One 
health considerations is overdue [103]. Thus, understand-
ing and predicting their response to challenges requires 
the verbalisation of a priori expectations, which we have 
formulated here with respect to host infection status 
(Fig. 2). Demystifying the black box that is the four-way 
interaction between environment, hosts, parasites and 
the microbiome will necessitate a multi-disciplinary 
approach from environmental, evolutionary, medical and 
computational scientists.

Conclusion
Microbial ecology lacked a predictive framework out-
lining the possible impacts of co-infections on host 
microbiomes. For this reason, we introduced a cohe-
sive framework that can be employed as a tool to test a 
priori expectations. Recognizing how parasites interact 
to shape the host microbiome may facilitate identifying 
patterns of (gut) microbial dysbiosis. Nevertheless, while 
this review is expansive, many questions remain unre-
solved. Most urgently, how consistent is the degree and 
direction of parasite-induced change to the microbiome, 
how do multiple infections shape commensal gut micro-
bial communities and advance dysbiosis, and how far do 
feedback loops spiral and possibly threaten host health, 
co-inhabiting animal hosts and the encroaching human 
society? Understanding microbial diversity and its resil-
ience will be of central importance for the future of the 
One health approach.
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