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Abstract

Background: Hepatitis E virus (HEV) is a major cause of human hepatitis worldwide. Zoonotic genotypes of the
virus have been found in diverse animal species with pigs playing a major role. Putative risk of zoonotic infection
from livestock particularly swine in Sub-Saharan Africa including Ghana is poorly understood due to scarcity of
available data, especially HEV sequence information.

Methods: Serum samples were collected from cattle, sheep, goats and pigs from Kumasi in the Ashanti region of
Ghana. Samples were subjected to nested RT-PCR screening and quantification of HEV RNA-positive samples using
real-time RT-PCR and the World Health Organization International Standard for HEV. Testing of all pig samples for
antibodies was done by ELISA. Sanger sequencing and genotyping was performed and one representative complete
genome was generated to facilitate genome-wide comparison to other available African HEV sequences by phylogenetic
analysis.

Results: A total of 420 samples were available from cattle (n = 105), goats (n = 124), pigs (n = 89) and sheep (n=102). HEV
Viral RNA was detected only in pig samples (10.1%). The antibody detection rate in pigs was 77.5%, with positive samples
from all sampling sites. Average viral load was 1 x 10° (range 1.02 X 10° to 3.17 x 10°) International Units per mL of serum
with no statistically significant differences between age groups (S 6 month, > 6 months) by a T-test comparison of means
(t=14272,df =7, p=0.1966). Sequences obtained in this study form a monophyletic group within HEV genotype 3.
Sequences from Cameroon, Ghana, Burkina Faso and Madagascar were found to share a most recent common ancestor;
however this was not the case for other African HEV sequences.

Conclusion: HEV genotype 3 is highly endemic in pigs in Ghana and likely poses a zoonotic risk to people exposed to
pigs. HEV genotype 3 in Ghana shares a common origin with other virus strains from Sub-Saharan Africa.

Keywords: Foodborne diseases, One health, Zoonoses, Livestock, Infectious disease reservoirs, Viral hepatitis

* Correspondence: Victor.corman@charite.de
Charité-Universitdtsmedizin Berlin, Humboldt-Universitét zu Berlin, Berlin
Institute of Health, Institute of Virology, Berlin, Germany

9German Centre for Infection Research, Berlin, Germany

Full list of author information is available at the end of the article

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if

changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.


http://crossmark.crossref.org/dialog/?doi=10.1186/s42522-020-00018-3&domain=pdf
http://orcid.org/0000-0002-3605-0136
http://creativecommons.org/licenses/by/4.0/
mailto:Victor.corman@charite.de

El-Duah et al. One Health Outlook (2020) 2:10

Background
Hepatitis E virus (HEV) is a major cause of hepatitis in
humans worldwide. HEV is a single stranded RNA virus
with a genome size of approximately 7.2 kb. According to
the International Committee on Taxonomy of viruses
(ICTV), it is classified into the family Hepeviridae. Most of
the HEV strains infecting humans belong to the virus spe-
cies Orthohepevirus A (Genus Orthohepevirus), which
comprise eight genotypes (gt), of which 1 to 4 and 7 have
been found in humans. Genotypes 1 and 2 seem to be re-
stricted to humans while the other three human genotypes
are zoonotic and occur in other animals, including pigs
(gt3—6), rabbits (gt3) and camelids (gt7) [1-4]. HEV gtl
and gt2 are transmitted faeco-orally and have been re-
sponsible for outbreaks in low socioeconomic settings,
particularly in Africa [5, 6]. Major risk factors for zoonotic
transmission of HEV include contact with infected ani-
mals especially pigs and consumption of undercooked ani-
mal products [4, 7]. High detection rates of HEV RNA in
pigs at slaughter have been demonstrated in different
countries with up to 41% in Canada, and up to 44% in the
UK [8-11]. This places people like pig handlers and abat-
toir workers at high risk of infection [12].

Zoonotic subtypes of HEV have also been detected in
other major livestock, such as sheep, goats and cattle

Page 2 of 9

[13-15]. The role these species play in zoonotic trans-
mission has not been extensively explored and is there-
fore not known whether these livestock species also
serve as natural reservoirs or were accidentally infected
by swine derived strains [16].

Waterborne transmission of Genotypes 1 and 2 are be-
lieved to be the main cause of HEV infection in endemic
regions of Africa, including Ghana [11]. However, exten-
sive knowledge of HEV types and their abundance in
livestock species in Ghana and Sub-Saharan African is
scarce [17] and as such the putative risk of zoonotic in-
fection from livestock particularly swine in these regions
have not been well understood. The purpose of this
study was to determine the occurrence and diversity of
HEV in major livestock species in a developing country.

Materials and methods
Sample collection and RNA extraction
Serum samples from four major domestic livestock
namely cattle, sheep, goats and swine were collected
from Kumasi in the Ashanti region of Ghana in Decem-
ber, 2011 (Fig. 1) [18].

Blood was collected by venipuncture from swine,
goats, sheep, and cattle into clot activation tubes by vet-
erinary officers and centrifuged the same day to obtain
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Fig. 1 Distribution of samples collected in the study. a Map of Ghana. Livestock samples were collected in the Ashanti region around the Kumasi
Metropolis (b). GPS coordinates from the various sampling sites were plotted using Quantum GIS version 3.6.2 and data freely available from
openstreetmap.com. Vector map data on Ghana was obtained from www.diva-gis.org. Coloured dots indicate the sampling locations of the

different livestock species
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serum. Serum was stored at —20°C until testing. Viral
RNA was extracted from serum in pools of six with a
total starting volume of 120 pl using the MagNaPure96
nucleic acid extraction system (Roche Diagnostics Ltd.,
Risch-Rotkreuz, Switzerland) with the Viral NA Small
Volume Kit. Elution volume was 100 pl.

HEV-RNA detection and complete genome
characterization

Detection and sequencing of HEV-RNA was done as
previously described [19]. Briefly, we applied a hemi-
nested reverse transcriptase (RT)-PCR using broadly re-
active primers targeting a 338-nucleotide fragment of
the RNA-dependent RNA polymerase (RdRp) gene of
HEV with the Superscript III one-step RT-PCR kit
(Thermo Fischer, MA, USA). All pools that tested posi-
tive by RT-PCR were resolved by testing the component
samples individually. Quantification of viral RNA in
positive samples was performed by real-time RT PCR as
described previously [20, 21]. Standard curve generation
for quantification was done using the World Health
Organization International Standard for HEV [22].

The complete genome of one representative swine
HEV from Ghana was obtained using hemi-nested RT-
PCR assays targeting overlapping regions of HEV-3
followed by Sanger sequencing (Microsynth Seqlab, Got-
tingen, Germany). Oligonucleotides and protocols used
for the whole genome sequence generation were pub-
lished by our group elsewhere [23].

Serological testing

To investigate past HEV exposure of pigs, all pig sera
were tested by a commercial Anti-HEV IgG ELISA
(PrioCHECK® HEV Ab porcine ELISA kit; Thermo Fi-
scher, MA, US) according to manufacturer’s instruc-
tions. Briefly, buffer-diluted serum samples were
incubated for 1 h at 37 °C followed by conjugate incuba-
tion for 30 min also at 37 °C. Detection was done with
Chromogenic TMB for 30 min at 22 °C.

For antibody testing of HEV-RNA-negative livestock
species, a species-independent Anti-HEV ELISA capable
of capturing total antibodies (IgG, IgM and IgA) (DRG
Instruments GmbH. Marburg, Germany) was used ac-
cording to manufacturer’s instructions. Positive out-
comes were confirmed by serum IgG detection using a
more specific recombinant, indirect, immunofluores-
cence assay (IFA) based on transfected African green
monkey kidney cells (Vero B4) expressing a truncated
HEV gt 7 capsid. All sera were tested at a dilution of 1:
80. Secondary antibody detection for cattle, pigs, sheep
and goats was done using Alexa Fluor 488-conjugted
goat anti-bovine, goat anti-swine, donkey anti-sheep,
and donkey anti-goat antibodies (Dianova GmbH,
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Hamburg, Germany) which have been shown previously
to work for these species [24, 25].

Data analysis
Descriptive and inferential statistical analysis were per-
formed using R statistical package version 3.6.0 (R Core
Team, Vienna, Austria). Multiple sequence alignments
were performed as translation alignments using Gen-
eious Prime 2019 (https://www.geneious.com). Recom-
bination analyses were made using RDP4 [26].

Phylogenetic analyses was done by Bayesian inference
with Bayesian Evolutionary Analysis by Sampling Trees
(BEAST) [27] programme version 1.10.4 using a General
time reversible nucleotide substitution model with a
Gamma distribution across sites and proportion of in-
variable sites. A Markov chain Monti Carlo sampling ap-
proach with a chain length of 10,000,000 sampled every
1000 steps and the default constant size coalescent
population model was used. Final trees were annotated
and visualized with TreeAnnotator and FigTree from the
same BEAST package.

Subtyping of the full genome sequence was done by
phylogenetic comparison with proposed full genome
subtypes from other studies.

Results

Samples collected

A total of 420 samples were available from cattle (n =
105), goats (n = 124), swine (n =89) and sheep (n =102).
For cattle, goats, and sheep, majority of the individual
animals were more than 1year old. However, for pigs,
majority of the sampled animals were below 1 year
(Table 1). For all species, more female animals than
males were sampled with a combined proportion of
67.4% (Table 1).

Testing for HEV RNA and antibodies

RT-PCR testing of all livestock serum samples, resulted
in 9 swine serum samples identified to be positive for
HEV viral RNA, representing 10.1% of the collected
swine samples. Pigs sampled in 3 of the 8 swine sampling

Table 1 Characteristics of samples collected in the study
Livestock Sampled (N, %)

Cattle Goats Pigs Sheep Total
(105) (124) (89) (102) (420)
Age categories
<lyear 6(5.7) 12 (9.7) 83(933) 8(7.8) 109 (26.0)
>1year 99(943) 112(903) 6 (6.7) 94 (922) 311 (74.0)
Sex
Male 41 (39.1) 30 (242 39 (438) 27 (265) 137 (326)
Female 64 (609) 94 (75.8) 50 (56.2)  75(735) 283 (674)
N Number
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sites showed acute HEV infection. No other tested livestock
species were found to be positive by the screening RT-PCR.
To further estimate the importance of pigs as an HEV res-
ervoir in the sampling region, we further investigated past
HEV exposure of pigs to HEV. A total of 69 (77.5%) swine
samples from all sampling sites were found to be positive
for HEV IgG antibodies by ELISA testing. Out of the 9
HEV-RNA positive samples, 8 were also seropositive; which
indicates that the presence of IgG does not rule out the
presence of HEV RNA and suggests that the detected anti-
bodies might not provide sterile immunity. Swine ages
ranged from 4 months to 36 months with a median age of
6 months. Seroprevalence and RNA detection rate didn’t
differ between the age groups of 6 months or younger and
older than 6 months (Fisher’s exact test; p>0.9 and
p > 0.7 respectively, Table 2).

Average viral load as determined by quantitative real
time RT-PCR calibrated using the WHO standard for
HEV Viral RNA concentrations was 1x10° (range
1.02 x 10% to 3.17 x 10°) International Units per mL of
serum (Table 3), with no statistically significant differ-
ences between age groups (T-test comparison of means,
t=1.4272,df =7, p =0.1966, Table 3).

Among the RNA-negative livestock species, 25 cattle, 13
sheep and 7 goats tested positive for HEV-antibodies
using the species-independent ELISA, however only 2
positive outcomes in goats from the same sampling site
were confirmed by the immunofluorescence assay (Fig. 2¢
and d). The performance of the IFA was assessed by the
inclusion of a known camel positive sample (Fig. 2a) and
two of the ELISA positive swine samples from this study
all of which tested positive (Fig. 2e and f). The detection
of both camel gt7 and pig gt3 confirms the capability of
the IFA to detect antibodies to different genotypes of HEV
which may be present in the different livestock species.

Sequence analyses
For all HEV-RNA positive samples, a 316-nucleotide
fragment from the RARp gene, within Open Reading

Table 2 Determination of associations between test outcomes
and age categories of sampled pigs

Test Outcome  Age group Fisher's exact
performed N (%) N (%) test (P value)
< 6months > 6 months
HEV RNA Positive 6 (10.7%) 3 (9.0%) >09
(9, 10.1%)
Negative 50 (89.3%) 30 (90.9%)
(80, 89.9%))
HEV IgG Positive 44 (78,6%) 25 (75.8%) 0.7964
(69, 77.5%)
Negative 12 (21.4%) 8 (24.2%)
(20, 22.5%)

N Number
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Table 3 Serum viral loads of HEV positive pigs and comparison
between age categories

Pig sample Viral Load (IU/mL)

GHS 02 317%10°

GHS 07 8.15x 10"

GHS 10 505x 10"

GHS 74 9.14x 10"

GHS 78 137x10°

GHS 81 207x10°

GHS 86 102x10°

GHS 90 800x 10°

GHS 91 105%10°

Age group in months Minimum Mean Maximum
<6 800x 10° 127 x10° 317x10°
>6 102x10° 476 x10" 914 x 10"
Al 1.02x10° 1.00 x 10° 3.17x10°

-

Fig. 2 Immunofluorescent detection of HEV IgG antibodies in
livestock species. a depicts an ELISA positive camel sample showing
a positive signal. b shows a cattle sample from this study with a
negative outcome. ¢ and d depict IFA-positive goat samples
obtained in this study and (e and f) show two ELISA positive pigs
from this study also showing positive IFA signals. Cell nuclei were
stained with DAPI and are shown as dark blue and the bright green
impressions around the nuclei represent fluorescent
antibody-antigen complexes
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Fig. 3 Phylogenetic analysis of sequences obtained in the study in
comparison to reference sequences from GenBank. The figure
depicts clustering of the various genotypes of HEV with genotype 1
shown in brown, genotype 3 in red, genotype 4 in green, genotype
5 in yellow, genotype 6 shown in purple, genotypes 7 in blue and
genotype 8 in violet. Circular nodes represent branching with
posterior probabilities greater than 0.95. The tree was rooted with a
genotype 2 sequence shown in black. The sequences obtained in
this study are identified by sequence specific names in bold type
font and clustered with other genotype 3 viruses. The full genome
sequence is indicated by a red dot

J

Frame (ORF) 1 of HEV, was sequenced. A phylogenetic
analyses together with reference sequences defined by
Smith et al. [2] confirmed all HEV strains from this
study to belong to one distinct monophyletic group
within HEV gt3 (Fig. 3). For detailed genomic
characterization and to provide an avenue for compari-
son with other studies on African HEV sequences target-
ing different regions of the genome, we selected one
sample with the highest RNA concentration for full-
length genome sequencing. The obtained HEV sequence
showed typical genome organization for Orthohepevirus
A strains, including the presence of short 3" and 5° un-
translated regions at the genome termini and presence
of three predicted open reading frames (ORF1, ORF2,
and ORE3). There was no evidence hinting to recombin-
ation of the Ghanaian pig HEV strain with other Ortho-
hepevirus species or the known Orthohepevirus A
subtypes. A phylogenetic analysis using HEV gt3 sub-
types proposed by smith et al.,, [2] Vina-Rodriguez et al.,
[28] Wang et al., [29] and De Sabato et al., [30] showed
the full genome sequence from this study appeared to
belong to the subtype 3h (Fig. 4). All sequences were
submitted to GenBank and assigned accession numbers
MN714358 to MN714366.

The Ghanaian pig HEV shares an 87.5% nucleotide
identity averaged over the full genome with the most
closely related sequence strain from Mongolia (GenBank
Acc No: AB290312) followed by a sequence from France
(86.7%, GenBank Acc No: JQ013794). Partial sequences
obtained in the study had sequence identities ranging
between 87.7 to 89.9% and with the exception of GHS07
which was also found to be most closely related to the
sequence from Mongolia, all other partial sequences
were found to be most closely related to a sequence
from Germany (Acc No: FJ998008) (Table 4). A partial
section of the full genome in the same region as the
other partial sequences was also found to be most
closely related to the sequence from Germany. This
hints to the likelihood of all other partial sequences be-
ing more closely related to the sequence from Mongolia
at the full genome level.

To test if all African HEV gt3 sequences form a single
monophyletic group and might stem from a common
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Fig. 4 Phylogenetic analysis of the full-length sequence obtained in the study in comparison to proposed full length genotype 3 subtypes. The
figure depicts clustering of various genotype 3 subtypes. Circular nodes represent branching with posterior probabilities greater than 0.95.
Subtypes indicated are as proposed by Smith et al, [2]. Sequences included by Smith et al, but with unassigned subtypes were assigned
subtypes (indicated by superscripts) proposed by Wang et al. (a) [29] Vina-Rodriguez et al,, (b) [28] and De Sabato et al,, (c) [30]. The sequence
obtained in this study was identified by a bold type font and clustered with subtype 3 h and 3I* sequences

Table 4 Sequence identities of partial sequences obtained in the study

Sequence ID Sequence Identity (%) Most closely related reference sequence (Accession number)
GHS07 88.6 AB290312
GHS10 883 FJ998008
GHS74 89.9 FJ998008
GHS78 89.6 FJ998008
GHS81 89.2 FJ998008
GHS86 87.7 FJ998008
GHS90 87.7 FJ998008
GHS91 89.6 FJ998008
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ancestor, phylogenetic analyses of the RdRp region
within the ORF1 and the capsid region within ORF2
were done by adding all publicly available sequences
from Africa available in GenBank (as of 15th November
2019) to our analyses. Although sequences from
Cameroon, Ghana, Burkina Faso and Madagascar did
share a most common recent ancestor in capsid or RdRp
based phylogeny (Figure S1 to S2) other African HEV se-
quences from Nigeria, Democratic Republic of the
Congo, Uganda, and Sdo Tomé and Principe did not
cluster in the same monophyletic group and intermixed
with other non-African HEV strains (Figure S1 to S2).

Discussion

Hepatitis E virus is known to be circulating in Ghana
with previous studies focused on humans reporting sero-
prevalences in people exposed to livestock and immuno-
compromised individuals [31, 32]. In Ghana, HEV
infections in pregnant women has been found to be a
serious cause of perinatal morbidity and mortality [33].
Exposure to HEV among pigs and humans appears to
significantly vary between regions with one study esti-
mating around 4.6% among blood donors in the Ashanti
region [34] but up to 58% among community members
and 88% in pigs in the Upper East region as against the
77.5% in pigs observed in this study [35]. Among the
viral causes of hepatitis in Ghana, HEV appears to be
second only to Hepatitis B [36]. Data on prevalence and
knowledge of circulating genotypes of HEV in the live-
stock population is however widely scarce due to lack of
studies reporting sequence information [37].

Beyond Ghana, HEV has been found in domestic and
wild animals from different parts of the world [38]. With-
out totally excluding domestic livestock like sheep, goats,
cows and equids, swine have been found to be the main
source of human infections worldwide [12-15, 37, 39, 40].
In line with these findings, cattle, sheep, and goats were
not found to harbour any active HEV infections and also
exhibited a low level of previous exposure in our study.
The fact that swine samples from all sampling sites were
found to be positive for HEV IgG antibodies suggests a
high infection rate in pigs independent of the farm of ori-
gin and are consistent with reports of HEV infection in
pigs in Europe, Asia, and the Americas [11], hinting to a
similar epidemiology of HEV gt3 in pigs worldwide.

Detection of HEV RNA among swine can be consid-
ered a measure of the risk to people in contact with
swine or swine products [41]. The detection rate how-
ever varies based on organs or tissues tested with the de-
tection rate of the virus in blood generally lower than
that from other organs like liver or in faeces and caecal
contents [42—-44].

Detection rate in blood in this study was higher than
in other studies conducted in Asia, Europe and South
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America [42, 45-48] possibly as a consequence of differ-
ences in husbandry practices [49] between sub-Saharan
Africa and other parts of the world. However, the aver-
age HEV viral load determined in this study was within
the range of another study conducted in the United
Kingdom which found a range from as low as below
100 IU/mL to as high as 10° IU/mL in plasma at slaugh-
ter [42]. Studies comparing infective doses of the differ-
ent HEV strains are lacking [6] however as a general
indicator for risk of zoonotic transmission, the viral load
has been found to influence the potential of getting in-
fected [12].

Age of detection of viremia in swine has also been
found to range from 2 to 6 months in previous studies
from different parts of the world [10, 50, 51] but was
slightly higher in this study. As the age of slaughter is
mostly below 1 year in many parts of the world including
Ghana, the risk of infection therefore also appears com-
parable worldwide [10, 52-54]. Adjusting slaughter age
to periods after this may help reduce the risk of human
infection, as also suggested in another study from France
that found a lower HEV RNA prevalence in pigs older
than 6 months as compared to those that were 3-4
months old [55].

Prevalence of seroconverted pigs reported varies
widely and are difficult to compare due to variations in
sensitivities of testing methods. However the antibody
detection rate reported in this study was comparable to
those from other studies worldwide [11].

In developed countries, eating raw or undercooked pork
is a major cause of zoonotic transmission of HEV [56]. In
Ghana, consumption of raw pork is not common due to
cultural consumption norms. The main risk of zoonotic
transmission is therefore more likely to be due to expos-
ure to pigs and pig products in occupationally exposed
people like slaughterhouse workers. This risk of zoonotic
transmission of HEV gt3 from pigs to humans is under-
lined by the remarkable RNA detection rate of 10% in
serum and the high virus concentration in these samples.

The fact that sequences from this study were found to
be most closely related to genotype 3 sequences from
other West African countries (Cameroon and Burkina
Faso) might hint to a common origin of some African
swine genotype 3 HEV viruses. However, the clustering
of African gt3 HEV viruses in different monophyletic
groups challenges this hypothesis. This inconsistency
can however be explained by the fact that trade of live
pigs and their HEV strains is common and pigs were
regularly imported into Africa from Europe and Asia in
previous times [57].

Conclusions
In summary, HEV genotype 3 appears to be the main
genotype circulating in pigs from Ghana with similar
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infection dynamics to those observed in other parts of
the world. The geographic origin of these viruses could
be from within sub-Saharan Africa but more studies
reporting sequences are needed to assess this. Viral loads
in slaughter age pigs in this study point to a high risk of
infection among slaughterhouse workers or people with
close contact to pigs in Ghana.
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based on partial and full-length sequences from the HEV gt3 RdRp
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