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Abstract

This paper presents a novel algorithm for planar G1 interpolation using typical curves with monotonic curvature.
The G1 interpolation problem is converted into a system of nonlinear equations and sufficient conditions are
provided to check whether there is a solution. The proposed algorithm was applied to a curve completion task. The
main advantages of the proposed method are its simple construction, compatibility with NURBS, and monotonic
curvature.
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Introduction
G1 interpolation is an essential problem in many ap-
plications such as path planning and curve comple-
tion. The goal is to find a transition curve that
matches the positions and associated unit tangent
vectors at two given endpoints [1]. Curve completion
aims to find a pleasing contour to fill in an object
boundary that is partially occluded [2, 3]. This
process differs significantly for humans and com-
puters. For example, the visual system of humans can
automatically complete missing parts of curves (Fig. 1),
which is called visual curve completion [4–6]. For
computers, it is necessary to identify a fairing curve
matching “boundary conditions” among potential
transition curves, which is called curve completion.
In computer-aided design (CAD) and computer-

aided geometric design, the measurement of the fair-
ness of curves typically depends on the curvature
distribution. Farin and Sapidis [7] assumed that a

fairing curve should have relatively few monotonic
curvature variation segments. By virtue of linear
curvature variation and the ability to minimize
changes in the total curvature, the Euler spiral is
considered to be the most pleasing curve for shape
completion [2], so it has been widely used in various
applications such as path planning and curve com-
pletion [2, 8–11]. However, the Euler spiral is de-
fined in the form of a transcendental function that is
computationally intensive and inefficient. Further-
more, the Euler spiral is not compatible with the
NURBS methods, which are the standard methods in
existing CAD software [12].
To overcome these shortcomings, some methods

using polynomial curves or arc splines to approxi-
mate Euler curves have been proposed [3, 13–16].
Another solution is to use a polynomial curve as a
design object directly. In highway design, a transition
curve is typically defined between a line and a circu-
lar curve or between two circular curves. Walton
et al. [17–19] used planar cubic Bézier spirals to
construct transition curves with G2 continuity for
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different boundary constraints and the results of refs.
[17, 19] were extended in refs. [20, 21]. Traditional
methods for designing Bézier curves with monotonic
curvature focused on adjusting the positions of con-
trol points until Mineur proposed the concept of a
typical curve [22], which indicates a special subset of
planar Bézier curves with control edges that main-
tain a specific geometric constraint. Sánchez-Reyes
[23] pointed out that these constrained typical
curves belong to the family of offset rational sinus-
oidal spirals and can also be expressed as a subset of
rational Bézier curves called p-Bézier curves [24].
Recently, Wang et al. [25] proposed a geometric proof
of the necessary and sufficient conditions for the
curvature monotonicity of typical curves. In 2006,
Farin [26] extended typical curves to 3D class-A
Bézier curves, whose control edges were generated
from a class-A matrix and initial control edge. How-
ever, the conditions of the class-A matrix have been
proven to be incomplete [27] and several counterex-
amples have been reported [28]. Yoshida et al. [29]
proposed an interactive method to generate general
class-A Bézier curves by perturbing the elements of a
planar typical class-A matrix. Furthermore, typical
curves converge to logarithmic spiral segments as the
degree is elevated and the drawable regions of typical

curves for boundary constraints under different de-
grees can be obtained.
In recent years, geometric continuity has also been

discussed based on trigonometric Bézier curves with
shape parameters [30–33]. Generalized trigonometric
Bézier curves are flexible and can achieve G2 con-
tinuity. However, these methods are more complex
than polynomials and have not provided a way to ob-
tain a monotonic variation of curvature. This study
analyzed the sufficient conditions for the G1
interpolation problem using typical curves and devel-
oped a novel algorithm to find a fairing solution,
which is applied to curve completion. For a given set
of constraints, multiple solutions may exist, so a suit-
able criterion must be defined to find the optimal so-
lution automatically. Furthermore, a designer can
modify data manually to obtain a fair solution to fit
different situations. The main contributions of this
work can be summarized as follows. The sufficient
conditions for G1 interpolation based on typical
curves are provided and curve completion using
Bézier curves with monotonic curvature is realized.
The remainder of this paper is organized as follows.

Typical curves Section introduces typical curves compre-
hensively. Methods Section discusses the G1
interpolation problem, provides sufficient conditions for
a typical curve solution, and presents a novel algorithm
to solve G1 boundary constraints. In Results and discus-
sion Section, some examples are presented to demon-
strate the practicability and superiority of the proposed
algorithm. The method is then applied in the application
of curve completion. Finally, this paper is concluded in
Conclusions Section.

Typical curves
A planar Bézier curve of degree k can be expressed as

P tð Þ ¼
Xk
i¼0

biBi;k tð Þ; t∈ 0; 1½ � ð1Þ

where bi are the two-dimensional control points and Bi,

k (t) is the i-th Bernstein polynomial of degree k. Let the
forward difference vector Vi = bi + 1 − bi (i = 0,…, k − 1)
be the control edge. Then, a typical curve is obtained
with control edges satisfying

V i ¼ s � Rθ � V i−1 ð2Þ

where s is a positive scale factor and Rθ is a second-
order rotation matrix with a rotation angle θ∈½− π

2 ;
π
2� . A

k-degree typical curve exhibits monotonic curvature
variation if and only if

Fig. 1 Kanizsa triangle consisting of three discs, each of which is
missing a triangular section, and three pairs of lines. Most humans
will have the impression that there is an upright triangle with black
edges and an inverted triangle with white edges, which do not
really exist

He et al. Visual Computing for Industry, Biomedicine, and Art            (2021) 4:28 Page 2 of 12



s � cosθ≥1; s≥1
s≤ cosθ; 0 < s < 1

�
ð3Þ

When θ∈½0; π2� , it is assumed that the control edge
rotates counterclockwise (Fig. 2(a)) and the relative
curvature is assumed to be positive (Fig. 2(b)). In this
case, if the scale factor s > 1, then the curve P(t) has a
monotonically decreasing curvature. If 0 < s < 1, then P(t)
has a monotonically increasing curvature. When θ∈½− π

2 ;

0� , it is assumed that the control edge rotates clockwise
(Fig. 2(c)) and the relative curvature is negative (Fig.

2(d)), so the monotonicity of curvature is opposite to θ∈½
0; π2� . As a result of the construction process of control
edge vectors, the generated curve can only be ‘C’ shaped
rather than ‘S’ shaped.

Methods
This section presents the G1 interpolation algorithm
based on typical curves. First, the G1 interpolation prob-
lem based on typical curves is introduced briefly. The
given endpoint-orientation pairs are then divided into

Fig. 2 The differences between different rotation angles with opposite signs. a: θ∈½0; π2�, s > 1, and s ⋅ cos θ ≥ 1; b: The curvature is positive and
decreases; c: θ∈½− π

2 ; 0�, s > 1, and s ⋅ cos θ≥ 1; (d): The curvature is negative and increases

Fig. 3 Pre-transformation of arbitrary given endpoints such that P'A = (0, 0)T and P'AP'B denotes the positive direction of the x axis. This is
essentially just a transformation of the local coordinate system. a: Arbitrary given endpoints; b: After pre-transformation
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two cases, and a novel algorithm for constructing a typ-
ical curve under the given boundary constraints is
proposed.

G1 Hermite interpolation problem
In many interpolation problems, not only positions, but
also the corresponding derivative values or higher-order
derivatives at endpoints are required to be equal, which

is called Hermite interpolation. If the interpolation curve
matches the given unit tangent vectors at the two end-
points, it is a two-point G1 Hermite interpolation. Add-
itionally, if the given curvatures at the two endpoints are
also matched, it is called two-point G2 Hermite
interpolation [1].
Although G2 interpolation has better continuity, it

also introduces stronger constraints for the
interpolation curve and the high-order continuity at
endpoints is sometimes difficult to guarantee. In
some applications, G1 interpolation is preferable to
G2 interpolation when considering cost effectiveness,
such as curve completion or path planning using Eu-
ler spirals [1]. Consider two different points PA =
(xA, yA)

T and PB = (xB, yB)
T with the corresponding

unit tangent vectors TA = (cosθA, sinθA)
T and TB =

(cosθB, sinθB)
T, where the three vectors TA, TB, and

PAPB = PB − PA are not all parallel. G1 Hermite
interpolation is used to find a fairing curve that joins
PA and PB on the condition that the tangent vectors
at the endpoints match TA and TB, respectively.
Walton et al. [1, 34] proposed an improved Euler

spiral algorithm for shape completion. However, the Eu-
ler spiral is not compatible with NURBS. Therefore, the
paper proposes a more intuitive algorithm for the G1
interpolation problem based on a typical curve, which is
easier to construct.

G1 interpolation problem based on a typical curve
Proposition 1
Consider the positions of two endpoints PA = (xA, yA)

T

and PB = (xB, yB)
T, and their associated unit tangent

vectors TA = (cosθA, sinθA)
T and TB = (cosθB, sinθB)

T,
where θA and θB are orientation angles with multiple
values. When θA or θB are increased or reduced by
2m ⋅ π(m ∈ Z), the unit tangent vector remains

Fig. 4 Angle from vector TA to vector PAPB, and from PAPB to TB

Fig. 5 Case I: φA ⋅ φB > 0. a: φA > 0, φB > 0; b: φA < 0, φB < 0
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unchanged. The sufficient condition for the existence
of a k-degree typical curve matching the boundary
constraints is that the following equation has real
number solutions satisfying s ⋅ cos θ ≥ 1 (s ≥ 1) or s ≤
cos θ (0 < s < 1):

xA þ
Xk
i¼1

V 0k k � si−1 � cos θA þ i−1ð Þ � θ½ � ¼ xB

yA þ
Xk
i¼1

V 0k k � si−1 � sin θA þ i−1ð Þ � θ½ � ¼ yB

8>>>><
>>>>:

ð4Þ

where ‖V0‖ and s are free variables with positive values
and θ = (θB − θA)/(k − 1).

Proof
When the degree k is fixed, θ= (θB− θA)/(k− 1) is the rota-
tion angle of the typical curve. If there are real number solu-
tions such that s ⋅ cos θ ≥ 1 (s ≥ 1) or s ≤ cos θ (0 < s < 1),

which are the sufficient and necessary conditions for the
monotonic curvature of a typical curve, the curvature of the
Bézier curve constructed using this method must be
monotonous.
Now we are going to analyze the sufficient conditions for

the existence of solutions for Eq. (4). Considering the de-
gree k as a free variable in Eq. (4), there are three free vari-
ables k ∈Z+, s > 0, and ‖V0‖ > 0. Eliminating ‖V0‖ yields

Xk
i¼1

si−1 � yB−yAð Þ � cos θA þ i−1ð Þ � θð Þ− xB−xAð Þ � sin θA þ i−1ð Þ � θð Þ½ � ¼ 0 ð5Þ

Because Bézier curves are invariant under affine trans-
formations, one can place the first endpoint PA = (xA,
yA)

T at the origin and the second endpoint PB = (xB, yB)
T

at the positive half of the x axis using a pre-
transformation, which leads to x'A = 0, y'A = 0, x'B > 0 and
y'B = 0 (Fig. 3). Then, Eq. (5) is converted into

Fig. 6 Case II: φA ⋅ φB < 0. a: φA > 0, φB < 0; b: φA < 0, φB > 0

(a) (b)

Fig. 7 An instance of case I. a: Typical curve obtained by the proposed algorithm; b: Corresponding curvature plot
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Xk
i¼1

si−1 � −x0B � sin θ0A þ i−1ð Þ � θð Þ½ � ¼ 0 ð6Þ

The superscript ' indicates a new variable obtained
from the pre-transformation. The pre-transformation
can be used to construct a new local coordinate sys-
tem. Equation (6) is a polynomial of degree k and
one can infer the number of positive roots from the
Descartes rule of signs [35]. The number of sign
changes in the coefficients is equal to the number of
sign changes in sin[θ'A + (i − 1) ⋅ θ], i = 1, …, k. There-
fore, a sufficient condition to guarantee that Eq. (6)
has at least one positive solution is that sin[θ'A + (i −
1) ⋅ θ] changes signs an odd number of times, mean-
ing that after pre-transformation, the sign of the sine
angle for all control edges changes an odd number
of times.

Angle sign change condition
Consider PA as the origin and PAPB as the positive direc-
tion of the x axis. In this new local coordinate system,
the function sinα (θ'A ≤ α ≤ θ'B) only changes its sign an
odd number of times.

Proposition 2
If the ASC condition is satisfied, then one can always
find an appropriate degree k such that the solutions of
Eq. (4) or (6) satisfy Eq. (3).

Proof
Because the affine transformation does not change
the solution of the curve, Eqs. (4, 6) have the same
solution and the ASC condition guarantees a positive
solution for Eq. (4). When the degree k gradually in-
creases in Eq. (6) and the rotation angle θ ¼ θB−θA

k−1 →

0 cosθ→ 1, there is an sk > 0 such that sk ⋅ cos θ ≥
1 (sk ≥ 1) or sk ≤ cos θ (0 < sk < 1), meaning the solu-
tions of Eq. (4) or (6) satisfy Eq. (3).

Corollary 1
For Eq. (4) or (6), if there is a typical curve satisfying the
constraints when k =m ≥ 2, then there are also typical
curve solutions when k ≥m + 1. This means that the G1
interpolation problem has multiple solutions consisting
of typical curves and the limit of the solutions increases
θ→ 0 with an increase in the degree k.
The ASC condition is a sufficient condition for the

positive solution of Eq. (6). Even if the ASC condition is
not satisfied, Eq. (4) or (6) may still have a positive root.
In contrast, the ASC condition cannot guarantee solu-
tions satisfying Eq. (3) under a fixed degree.

Two cases of G1 constraints
For convenience of expression, homogeneous coordi-
nates will be used to represent points and vectors for
the remainder of this paper. For a 2D point (x, y)T, its
homogeneous coordinate can be written as (ωx, ωy,
ω)T, where ω ≠ 0. This study used ω = 1. For a 2D
vector (x, y)T, the homogeneous coordinate can only
be expressed as (x, y, 0)T.
For an arbitrary PA = (xA, yA, 1)

T, PB = (xB, yB, 1)
T, TA =

(cosθA, sinθA, 0)
T, and TB = (cosθB, sinθB, 0)

T, one can
divide the G1 constraints into two cases according to
the relationship between the relative positions of the
three vectors TA = (cosθA, sinθA, 0)

T, TB = (cosθB, sinθB,
0)T, and PAPB = (xB − xA, yB − yA, 0)

T. This analysis does

Table 1 The specific data of typical curve for Example 1

k s ‖V0‖ θ

5 0.797364 27.680619 π/6

(a) (b)

Fig. 8 An instance of case II. a: Typical curve obtained by the proposed algorithm; b: Corresponding curvature plot
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not consider the degenerate case in which all three vec-
tors are parallel.
Let −π ≤ φA ≤ π denote the angle from vector TA to

vector PAPB (Fig. 4). The sign of φA indicates the direc-
tion and φA > 0 indicates that TA is on the right side of
PAPB. Similarly, −π ≤ φB ≤ π denotes the angle from vec-
tor PAPB to vector TB.
Considering the signs of these two angles, one can div-

ide all potential constraints into two cases as follows:
Case I φA ⋅ φB > 0, meaning TA and TB are located on

opposite sides of PAPB (Fig. 5).
Case II φA ⋅ φB < 0, meaning that TA and TB are lo-

cated on the same side of PAPB (Fig. 6).
Because θA and θB can be increased or decreased

by 2m ⋅ π (m ∈ Z) while keeping the unit tangent vec-
tors TA and TB unchanged, the rotation angle θ = (θB
− θA)/(k − 1) can be either positive or negative, and
the labeling of the given endpoint-orientation pairs
can be swapped. Based on these features, there are
different constructions for typical curves under the
given conditions. This paper presents a practical
method for choosing a suitable curve based on the
position relationship between the unit tangent vectors
TA TB and the vector PAPB.

Proposed algorithm
Given two endpoint-orientation pairs, the G1
interpolation algorithm is used to find the optimal so-
lution to Eq. (4), where the degree k ≥ 2 is an integral
and the rotation angle θ may have multiple values.
s > 0 and ‖V0‖ > 0 are the variables to be determined.
The value of k can be increased from two to a set
maximum value kmax. For a fixed k, one must deter-
mine the value of θ = (θB − θA)/(k − 1), which is
equivalent to determining Δθ = θB − θA. The proposed
algorithm provides a rule for determining Δθ auto-
matically. For case I, let Δθ = φA + φB. For case II, let
Δθ = φA + φB − sign(φA) ⋅ 2π, where sign(φA) is the sign
of φA. In this manner, the algorithm can find the typ-
ical curve with the lowest degree and smallest total
angle between TA and TB.
Once k and Δθ are determined, one can use an

optimization process to obtain s and ‖V0‖ such that

f s; V 0k kð Þ ¼ xA þ
Xk
i¼1

V 0k k � si−1 � cos θA þ i−1ð Þ � θ½ �−xB
( )2

þ

yA þ
Xk
i¼1

V 0k k � si−1 � sin θA þ i−1ð Þ � θ½ �−yB
( )2

ð7Þ

becomes zero. If s > 0, ‖V0‖ > 0, and Eq. (3) is satisfied,
then a typical curve segment can be constructed using

these values. Otherwise, the steps of the iteration should
be repeated by increasing the degree k.
The pseudo code for the proposed algorithm is pre-

sented in Algorithm 1.

The algorithm first calculates an angle Δθ, which is
determined by the position relationship between, TA, TB,
and PAPB. Then, Eq. (7) is minimized to a value of zero
iteratively by the optimization process. This step was im-
plemented using the interior point method, which can
find the minimum value of a constrained nonlinear mul-
tivariable function. For the obtained s > 0 and ‖V0‖ > 0,
the algorithm checks whether Eq. (3) is satisfied. Once
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the solutions satisfy Eq. (3), iteration can be stopped and
a typical curve can be generated from the obtained data.
The algorithm proposed above avoids outputting

multiple solutions by choosing an appropriate rotation
angle θ = (θB − θA)/(k − 1), but this does not mean that
there is only one typical curve solution under the
given constraints. The main principle of the proposed
algorithm is to select the minimum rotation angle
Δθ = θB − θA under the given conditions and then
choose the lowest degree k to satisfy the constraints.
Additional solutions can be obtained by increasing
the value of the degree k, modifying the angle value
Δθ = θB − θA while leaving the unit tangents TA and
TB unchanged, or even by exchanging the labels of
PA and PB or TA and TB. These methods are dis-
cussed in detail in Results and discussion Section.

Results and discussion
This section presents some numerical experiments based
on the proposed algorithm and discusses the existence
of multiple solutions.

Examples of two cases of constraints
This section presents different results for two cases of
constraints.

Example 1
Consider data PA = (0, 0, 1)T, θA = 0, TA = (1, 0, 0)T, PB =

(50, 50, 1)T, θB ¼ 2π
3 , and TB ¼ ð− 1

2 ;
ffiffi
3

p
2 ; 0ÞT (Fig. 7). It is

easy to verify that this is an instance of case I that satis-
fies the ASC condition. In the proposed algorithm, Δθ =
θB − θA is chosen as Δθ ¼ 2π

3 and a solution is obtained
when the degree k = 5 (Fig. 7). Figure 7(a) presents the
boundary constraints and resulting curve, where PA and
TA are marked in blue, and PB and TB are marked in
green. Figure 7(b) presents an increasing curvature plot.
The data obtained from the typical curve are presented
in Table 1.

Example 2
Consider data PA = (10, 40, 1)T, θA = 0, TA = (1, 0, 0)T,
PB = (40, 0, 1)T, θB = 0, and TB = (1, 0, 0)T (Fig. 8). This is
an instance of case II, where Δθ is chosen as Δθ = 2π
and one solution is found when k = 13 (Fig. 8). The
resulting curve satisfies s > 1 (Fig. 8(a)), so its curvature
plot decreases (Fig. 8(b)). The specific data are presented
in Table 2.

Discussion of multiple solutions
Under the given constraints, there are three main rea-
sons for generating multiple solutions: an increase in the

Table 2 The specific data of typical curve for Example 2

k s ‖V0‖ θ

13 1.204772 2.900292 π/6

Fig. 9 Multiple solutions of typical curves with different degrees
under the same conditions

Table 3 The specific data of typical curves with different degree

Color k s ‖V0‖ θ

Red 6 1.264905 8.780173 π/5

Purple 9 1.189868 4.753024 π/8

Carmine 20 1.090728 1.704246 π/19

Fig. 10 Two typical curves with different Δθ values
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degree k, different chosen values of Δθ, and the ex-
change of labels of two endpoint-orientation pairs. Ex-
amples of these cases are discussed below.

Increasing the degree k
According to Corollary 1, multiple solutions with differ-
ent degrees exist. Figure 9 presents three typical Bézier
curves with different degrees k under the given boundary
conditions, where PA = (10, 20, 1)T, θA = 0, TA = (1, 0, 0)T,
PB = (−20, 70, 1)T, θB = π, and TB = (−1, 0, 0)T. The three
curves in different colors represent three typical curves
with different degrees k. With an increase in k, the argu-
ments of the typical curves trend toward the limits s→ 1
and θ→ 0 (Table 3).

Different values of Δθ
The proposed algorithm provides a criterion for the de-
termination Δθ. This is a practical rule. In fact, one can
add 2m ⋅ π(m ∈ Z) to the tangent vector angle while
keeping the tangent direction unchanged. Therefore, one
can obtain new solutions that satisfy G1 interpolation by
adding 2m ⋅ π(m ∈ Z) to the Δθ selected by the previ-
ously proposed algorithm. Figure 10 presents two typical
curves with different Δθ, both meeting the given condi-

tions of PA = (0, 0, 1)T, θA ¼ π
6 , TA ¼ ð

ffiffi
3

p
2 ; 12 ; 0Þ

T
, PB =

(30, 50, 1)T, θB ¼ 2π
3 , and TB ¼ ð− 1

2 ;
ffiffi
3

p
2 ; 0ÞT . The Δθ

value of the carmine curve is 2π greater than that of the
red curve (Table 4).

Exchange of two endpoint-orientation pairs
The construction process of typical curves depends on
the sequence of endpoints. If one exchanges the labels of
endpoint-orientation pairs, one can obtain different solu-
tions that meet the given conditions. As shown in Fig. 11,
the red and carmine curves are two different typical
curves that match the same G1 constraint. The differ-
ence between the two results is that the red curve takes
the blue endpoint-orientation as the starting point and
the green endpoint-orientation as the ending point. This

means that PA = (10, 0, 1)T, θA ¼ 5π
6 , TA ¼ ð−

ffiffi
3

p
2 ; 12 ; 0Þ

T
,

PB = (40, 60, 1)T, θB = 0, TB = (1, 0, 0)T, and Δθ ¼ − 5π
6 .

The labels of the carmine curve are reversed, meaning
PA = (40, 60, 1)T, θA = 0, TA = (1, 0, 0)T, PB = (10, 0, 1)T, θB

¼ 5π
6 , TB ¼ ð−

ffiffi
3

p
2 ; 12 ; 0Þ

T
, and Δθ ¼ − 7π

6 . The specific data
for these two typical curves are presented in Table 5.

Curve completion
Curve completion is a geometric continuation of the
boundaries of objects that are temporarily interrupted by
occlusion [2]. Curve completion requires a visually
pleasing shape and is similar to G1 interpolation, but
more expansive. The principles for finding an optimal
completion curve include minimizing the total curvature
square [36] and minimizing the total curvature variation
[2]. In this section, these rules are simplified to realize
curve completion by achieving monotonic curvature.
Two sets of experimental results are presented to dem-
onstrate the application of the proposed method to
curve completion and discuss the differences between
the proposed approach and other interpolation methods.
Figure 12(a) presents a banana that is partially covered

by a piece of tape. Figure 12(b) presents the completed
curve drawn by the proposed method and Fig. 12(c) pre-
sents a local zoomed-in view of the completed curve.
Figure 12(d) presents the increasing curvature.
Figure 13(a) presents two overlapping leaves, one of

which is partially occluded by the other. The proposed
method completes the occluded boundary using a typical
curve, as shown in Fig. 13(b). The corresponding mono-
tonic curvature is presented in Fig. 13(c).

Table 4 The specific data of typical curves with different Δθ
Color Δθ k s ‖V0‖ θ

Red π/2 3 0.604212 35.719770 π/4

Carmine 5π/2 29 1.081436 1.759416 5π/56

Fig. 11 Different typical curves with the exchange of two
endpoint-orientation pairs

Table 5 The specific data of typical curve by exchanging the
two endpoint-orientation pairs

Color Δθ k s ‖V0‖ θ

Red −5π/6 8 1.091423 8.905500 −5π/42

Carmine −7π/6 17 1.026836 6.522758 −7π/96
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For the curve completion problem, many studies and
methods have been discussed, including methods based
on Euler spirals [2, 8, 10], Euler arc splines [3], and cubic
B-spline curves [37], but these methods have their own
disadvantages. The Euler spiral is expressed by tran-
scendent equations, which may lead to low computa-
tional efficiency. Another shortcoming of the Euler
spiral is incompatibility with NURBS. A typical curve is
a polynomial curve in the Bézier form and the G1
interpolation problem can be transformed into a simple
system of nonlinear equations.
An Euler arc spline [3], which consists of several arcs

with the same arc length, is considered to be an exten-
sion of the Euler spiral. Although it can be represented
by NURBS, the continuity at the internal connecting
points is only G1 continuous, rather than continuous
curvature. In contrast, the curvature of a typical curve is
continuous and monotonous over the entire curve.
For the cubic B-spline curve with monotonic curvature

mentioned in ref. [37], with an increase in the number
of control vectors, the B-spline curve gradually con-
verges to a straight line as the parameter trends toward
one. This feature makes the bending curvature

inadequate and leads to poor control flexibility. Further-
more, the algorithm for curve completion using a mono-
tonically cubic B-spline curve is a brutal algorithm and
the cases of boundary conditions have not been fully elu-
cidated. In the proposed method, the bending curvature
can be controlled well based on the rotation angle θ or
degree k, and the construction of a typical curve is sim-
pler than the cubic B-spline curve constructed in ref.
[37]. Additionally, the proposed algorithm can handle
more constrained cases, which makes it more widely
applicable.

Conclusions
This paper proposed a novel algorithm for G1
interpolation based on typical curves. G1 interpolation
was converted into a system of nonlinear equations and
a sufficient condition was provided to determine
whether there is a typical curve solution with monotonic
curvature in advance. The solution is obtained by means
of an optimization process and numerical examples
demonstrated the effectiveness and practicability of the
proposed algorithm.

(a)

(c)

(b)

(d)

Fig. 12 Banana border completion. a: Partially occluded banana; b: Typical curve; c: Local zoomed-in view; d: Curvature plot
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A single typical curve can only be ‘C’ shaped, but it
would be useful to extend the proposed method to ‘S’-
shaped curves and apply it to the G2 interpolation prob-
lem. In industrial production, applications with 3D
curves are valuable. Future work will involve construct-
ing 3D curves with monotonic curvatures.
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