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Robustness of radiomic features in
magnetic resonance imaging: review and a
phantom study
Renee Cattell1, Shenglan Chen1 and Chuan Huang1,2,3*

Abstract

Radiomic analysis has exponentially increased the amount of quantitative data that can be extracted from a single
image. These imaging biomarkers can aid in the generation of prediction models aimed to further personalized
medicine. However, the generalizability of the model is dependent on the robustness of these features. The
purpose of this study is to review the current literature regarding robustness of radiomic features on magnetic
resonance imaging. Additionally, a phantom study is performed to systematically evaluate the behavior of radiomic
features under various conditions (signal to noise ratio, region of interest delineation, voxel size change and
normalization methods) using intraclass correlation coefficients. The features extracted in this phantom study
include first order, shape, gray level cooccurrence matrix and gray level run length matrix. Many features are found
to be non-robust to changing parameters. Feature robustness assessment prior to feature selection, especially in
the case of combining multi-institutional data, may be warranted. Further investigation is needed in this area of
research.
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Introduction
Overview of radiomics
Radiomics is the extraction of high-dimensional and
quantitative mineable data from digital medical images
[1–3]. The prefix “radio-” refers to the use of radio-
logical images; these digital medical images can come
from various modalities, but are most frequently com-
puted tomography (CT), positron emission tomography
(PET) and magnetic resonance imaging (MRI) [1, 2].
Patients often receive numerous imaging studies to diag-
nose, stage, plan treatment and monitor disease progres-
sion. Currently in clinical practice, imaging data is only
qualitatively or semi-quantitively utilized and a dictated
report is created by the radiologist. Radiomic analysis
aims to maximize the amount of quantitative informa-
tion that can be extracted from the existing medical
images that may not be appreciable to the naked eye,

adding more valuable information that can be used for
patient care. The digital image is analyzed by mathemat-
ical algorithms and/or filtering of the data to result in a
quantitative value. These features are termed quantita-
tive imaging biomarkers. These features can be classified
into 2 different groups: semantic and agnostic.
Semantic features can be either qualitatively defined

by a radiologist or quantitatively defined by a mathemat-
ical algorithm. Examples of semantic features include
size, shape, location, vascularity, and spiculation [1, 2].
These are descriptors that are commonly used by radiol-
ogists in a qualitative fashion to identify and characterize
disease, such as in the case of breast tumors where the
size of tumor is indicative of treatment response (Response
evaluation criteria in solid tumors criteria) and spiculation
being a higher chance of malignancy (Breast Imaging
Reporting and Data System) [1, 4–6]. Quantitative extrac-
tion of semantic features is desired to give a more compre-
hensive and reproducible description of the region of
interest (ROI), whereas visual inspection by radiologist has
large intra- and inter-reader variability [5].
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Agnostic features aim to quantify the heterogeneity
within a ROI based on image intensity. Agnostic features
can be further broken down into first order features,
second-order features and higher-order features:
First order features are commonly histogram-based

and examine gray level signal intensity within a ROI
independent of spatial relationships between adjacent
voxels. Examples of these features include uniformity,
entropy, mean, median and kurtosis [1, 2].
Second-order features, commonly referred to as “tex-

ture” features, examine spatial relationship between gray
level signal intensities by constructing a gray-level de-
pendence matrix [1, 2]. These features give a measure of
intra-region heterogeneity. These were first explored by
Haralick et al. [7] in the advent of gray level cooccur-
rence matrix (GLCM) by analyzing the occurrence of
different gray level voxel pairs in different directions.
Over the development of radiomics, these features have
expanded to include different ways of quantifying spatial
relationship between voxels, such as gray level run
length matrix (GLRLM), which quantifies the number of
consecutive voxels with same gray level [8], and gray
level zone length matrix, which quantifies the size of a
homogenous area of an image [9].
Higher-order features involve application of a filter or

transformation to an image prior to feature extraction.
These features aim to identify patterns or highlight de-
tails within the image that are not initially perceivable by
the reader or are hard to interpret [1, 5]. An example of
this type of feature is wavelet transform [10].
As such, this analysis has exponentially increased the

amount of information that can be extracted from a sin-
gle digital image. A single image may contain valuable
sub-visual information of the tissue pathophysiology,
phenotype and microenvironment that can be captured
by quantitative analysis [2].
The suffix “-omics” refers to the combination of this

massive amount of quantitative features that can be extracted
from a single ROI using mathematical/statistical methods
with clinical characteristics to be used in clinical manage-
ment of patients [1, 2]. A goal of radiomics is to identify ro-
bust and consistent imaging biomarkers to aid in clinical
decision making, such as the diagnosis of a disease, monitor-
ing of treatment response or prediction of prognosis [1]. This
is a step towards “precision” or “personalized” medicine in
which these large number of quantitative features from the
image of a specific individual coupled with their individual
clinical characteristics (age, genomic profiling, etc.) can be
used to tailor treatment or assess risk [1, 2, 5].
A large area of study in the field of radiomics include

oncological applications, attributed to Quantitative Imaging
Network, funded by National Institutes of Health and the
Quantitative Imaging Biomarker Alliance, organized by the
Radiological Society of North America [2, 5]. Cancer has

been noted to be a highly heterogenous disease on both an
inter-patient and intra-patient level [2, 11, 12]. There are
many applications of radiomics in oncological applications.
There is a need for a non-invasive imaging biomarker to
better characterize lesions, such as tumor aggressiveness,
because a single needle biopsy cannot capture the entire
landscape of a tumor [5]. In the case of a more aggressive
tumor, it is possible that a more intensive treatment regi-
men may be tailored to those patients resulting in an im-
proved prognosis [11]. Additionally, characterizing a lesion
as malignant or benign could be a useful tool for clinicians
to make a more informed diagnosis, reducing stress for the
patient and identifying the correct course of action. Fur-
thermore, radiomic analysis could aid in the monitoring of
treatment response; current criteria include mainly size and
shape changes, whereas there may be subtle changes in the
image appearance, not clinically appreciable to the naked
eye, which is informative of response [5, 11]. It is possible,
that in the case of a clearly non-responding tumor, the pa-
tient may be switched to a different/more effective therapy
and avoid side effects associated with a treatment from
which they are not expected to receive clinical benefit.
As previously mentioned, radiologic images including

CT, PET and MRI have been used in radiomics studies.
In this article, we focus on MRI. Each modality has its
own characteristics which could affect the radiomic ana-
lysis. CT and PET have pixel/voxel values with a physical
meaning, namely characterizing the x-ray attenuation of
tissue through Hounsfield units and cellular activity
through Standard Uptake Value, respectively. Thus, the
diagnostic or prognostic implications resulting from
radiomic analysis will have variable interpretations.

Radiomics in MRI
Overview
MRI is a commonly used modality for radiomic analysis
owing to its’ rich contrast mechanisms (such as T1, T2,
chemical exchange, diffusion, perfusion, contrast en-
hancement) and fine soft-tissue detail [13]. A majority of
MRI radiomic analysis is performed in oncological appli-
cations such as head and neck, prostate, brain and breast
cancer.

Head and neck cancer Numerous studies have per-
formed MRI radiomic analysis on head and neck cancer.
Analyzed endpoints included pathological classification,
segmentation and prognostic/predictive biomarkers of
progression, survival or treatment, with reports of radio-
mic model performance showing promising results in
most studies [13].

Prostate cancer Multiparametric MRI is an important
tool in the diagnosis of prostate cancer, with T2-weighted,
dynamic contrast enhanced and diffusion weighted imaging
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being the core imaging sequences in the Prostate Imaging
Reporting and Data System [14]. Detection of prostate can-
cer is the main focus of radiomics as it applies to prostate
cancer, specifically with identification and delineation of the
tumor region being the priority [15].

Brain cancer MRI is a standard of care for brain tu-
mors, most commonly in the form of the contrast-
enhanced imaging which can identify tumor areas
through their leaky vasculature and breakdown of the
blood brain barrier. Main clinical applications of radio-
mics in brain cancer include prediction of prognosis
(survival time), classification of glioblastoma subtypes
and discrimination of radiation necrosis tissue from re-
current tumor tissue [16].

Breast cancer MRI is the modality of choice for asses-
sing extent of disease and monitoring treatment re-
sponse in patients diagnosed with breast cancer. Similar
to brain cancer, a dynamic contrast enhanced series is
commonly performed to identify areas of increased, dis-
organized vascularity associated with malignancy. Stud-
ies performed have looked at differentiating benign from
malignant lesions, prediction of treatment response, pre-
diction of lymph node metastasis, prediction of molecu-
lar profile and prediction of risk of recurrence [17–19].

Others Aside from oncological applications, radiomic
analysis has been explored in other pathologies such as
Alzheimer’s disease, multiple sclerosis, ischemic stroke
and epilepsy [20–23].

Steps of MRI radiomics
Radiomic analysis of MRI generally consists of 4 main
steps: image acquisition, ROI segmentation, feature ex-
traction and feature selection.
Image acquisition factors include scanner (make, model,

field), coil, sequence [sequence type, echo time (TE), repeti-
tion time (TR), acceleration, voxel size, bandwidth, etc.] and
reconstruction algorithm (parallel imaging, compressed
sensing, regularization parameters, coil combination, etc.).
ROI segmentation includes automatic, semi-automatic

or manual delineation of the ROI in the image.
Feature extraction includes pre-processing steps

(normalization, binning to a defined number of gray
levels) and application of mathematical algorithms or
filters to calculate the feature within the ROI.
Feature selection and model construction includes re-

duction techniques to reduce the number of redundant
features and selection by means of machine learning
(least absolute shrinkage and selection operator, support
vector machine, etc.).
Changing parameters at any steps in the process could re-

sult in different feature values, and thus lessen the consistent

and reliable predictive performance. Although many of the
parameters in this pipeline are easy to standardize, some of
them suffer from more variabilities in MRI radiomics.

Feature robustness in MRI radiomics
Importance of robustness of features in medical imaging
A fundamental requirement to draw reliable conclusions
based on any radiomics imaging biomarker is that its
value must be stable under different conditions and two
measurements obtained under the same conditions must
be consistent [24]. There is currently no consensus on
how to assess the robustness [25–30] (others may refer
to it as “stability” [31–36],“reproducibility” [26, 37–40]
or “repeatability” [24, 38, 41]) of radiomic features. However,
it is recommended in image biomarker standardization ini-
tiative (IBSI) [42] to perform feature robustness assessment
prior to feature selection. It should be noted that robustness
is not a guarantee of the features’ discriminative power and
the predictive performance should be investigated [24].
Moreover, feature robustness could be application dependent
[43], meaning that a feature that is found to be highly precise
for a certain dataset/disease could have poor stability
when assessed for another dataset/disease. Several
studies [24, 28, 32, 37] emphasized that feature pre-
selection based on stability should be performed to gener-
ate more reliable results and reduce data dimensionality.

Robustness analysis in MRI
Most of the existing publications assessing image bio-
marker robustness investigated radiomic features from CT
and PET images [30, 44–48]. It was stated in a review
paper in 2016 [49] that “the repeatability of MR-based
radiomic features has not been investigated”. Since then,
there have been some studies in recent publications inves-
tigating the robustness of MRI radiomic analysis, but, due
to lack of standardization, frequently leads to inconsistent
conclusions. We performed a literature search on peer-
reviewed full-text articles that analyzed feature robustness
based on MRI and summarized them in Table 1 (16 on
human subjects, and 5 exclusively on phantoms). These
publications have assessed some parameters such as
vendor [33, 40, 51], scanner [31, 33], acquisition parame-
ters [52, 59], observers [26, 37, 39, 50] and pre-processing
parameters [24, 38, 50, 53, 54], however, there still re-
mains much to be investigated.
The importance of complete and clear reporting was also

highlighted in several studies. IBSI [42] presented inform-
ative reporting guidelines on image pre-processing and fea-
ture extraction. Additionally, the radiomics quality score
was proposed by the D-Lab [43]; this assigns a value based
on 16 key points on the reporting of radiomics studies. With
the aid of these two standards, it was found that many stud-
ies were lacking in the clear and concise description of (1)
software implementation (i.e., chosen setting parameters,
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equations), (2) pre-processing steps (i.e., normalization,
quantization) and (3) statistical methods use to quantify or
assess feature robustness [i.e., form of intraclass correlation
coefficient (ICC)]. Additionally, use of an external validation
set is an important step to robustness feature analysis that
was lacking in many of these studies.
We believe one option to improve robustness analysis of

MRI radiomics studies is to systematically evaluate the be-
havior of the radiomic features under various conditions.
With a well-defined “dictionary” of robust features, re-
searchers can perform a pre-selection step based on their
specific application. Here, we demonstrate such effort by
evaluating feature robustness to MRI image signal to noise
ratio (SNR), ROI delineation, small voxel size variation and
normalization methods through a phantom study. The
workflow of the study is displayed in Fig. 1. We measure de-
gree of robustness using ICC (2-way mixed-effects model,
single rater, absolute agreement) and separation into three
groups based on ICC values: high (> 0.9), moderate (0.5–
0.9) and low (< 0.5) for each of the conditions investigated.

Results and discussion
SNR
In MRI, there are many factors affecting the SNR of an
image even if all acquisition parameters are set to the
same values and acquisitions are performed on the same
scanner. Examples of these factors include coil load,

analog-to-digital gain, shimming, reconstruction method
and size of the patient. In fact, due to the inhomogeneity
of coil sensitivity, SNR can even vary within the same
slice of image. This can be due to both B1+ (transmit)
and B1- (receiving) properties of the coil. In this study,
we systematically evaluate the effect of several levels of
SNR using phantom data with added Gaussian noise.
We also analyze the effect of two normalization methods
on the radiomic results.
T2 weighted phantom images used in the analysis are

shown in Fig. 2a, with ROIs drawn on a pineapple core (red),
banana (blue), orange (orange) and kiwi (green). Regions of
interest used in SNR calculation are shown in Fig. 2b.
Complex Gaussian noise was added to the original

image (Fig. 3c) and magnitude images were used for the
analysis. Two noise levels [SNR 45 (Fig. 3a) and SNR 75
(Fig. 3b)] were generated from the original image whose
SNR is 124. To the naked eye, there isn’t a large visual
difference between SNR of 45 and SNR of 75. These
SNR levels are representative of those seen in clinical
images. As mentioned above, SNR is spatially varying in
MRI, the SNR values used here are simply representa-
tion of the overall noise level of the image.
Shape features were omitted from this part of the ana-

lysis because the same ROI was used across all SNR
steps. This portion of the study aimed to analyze only
the effect of added noise, and not intra- or inter-reader

Fig. 1 Schematic representation of workflow in this study. Image segmentation is performed manually on a single image. The ROIs are
interpolated to images of different in-plane resolutions for voxel size analysis. Gaussian noise is added to generate different signal to noise ratio
steps and generate 10 different noise realizations for test-retest analysis. Shape, first order, GLCM and GLRLM features are calculated for each ROI.
GLCLM and GLRLM features are calculated after normalization (mean ± 3SD or zero to maximum) and discretization (64 gray levels). ROI Region of
interest, GLCM Gray level cooccurrence matrix, GLRLM Gray level run length matrix
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variability in ROI delineation. Details of the study is de-
scribed in the Methods section, summarily, three most
commonly used types of features (first order features,
GLCM features, and GLRLM features) were studied
using 10 different noise realizations and 2 different
normalization techniques. Specifically, features within
each group and their respective ICCs (2-way mixed-
effects model, single rater, absolute agreement) are
summarized in Table 2. The results using the first
normalization technique (mean ± 3SD) are shown in
Table 3 and Fig. 4a. The majority of first order features,
11 out of 13 have an ICC greater than 0.9, indicating
high robustness to added noise. However, only 5 out of
22 GLCM features have an ICC greater than 0.9. A ma-
jority of the GLCM features (14 out of 22) were found
to be of moderate robustness, represented by ICC be-
tween 0.5 and 0.9. All GLRLM features were found to
have moderate robustness (0.5–0.9).
Second order texture features, namely GLCM and

GLRLM, are impacted by the normalization procedure. The
prior SNR analysis used mean ± 3 SD for normalization.
Analysis was also performed by using zero to maximum
normalization. Each method has its respective limitations.
Mean ± 3SD normalization should be able to provide better
separation due to a decrease in dynamic range, as compared

to zero to maximum normalization making it more sensitive
to small changes. However, mean ± 3SD is more likely to be
sensitive to noise. Results using zero to maximum
normalization procedure are summarized in Table 3 and
Fig. 4b. First order features are not affected by
normalization/quantization because they directly use all in-
tensity value independently. As compared to the mean ±
3SD method, for GLCM features there is a trend toward
higher ICC values, with no features in the low robustness
group (ICC < 0.5). For GLRLM features, there is a similar
trend, with higher proportion of features in the high robust-
ness category (ICC > 0.9). As mentioned previously, Table 2
includes the full list of features and their respective ICC
values. It is noted that in the ICC plots there is an observed
clustering. It is hypothesized that these are because (1) a
limited number of regions of interest are being compared,
and (2) calculated features may be highly correlated.

ROI delineation
In practice, intra- and inter-reader variability in the
manual segmentation of regions of interest is inevitable.
Subjective determination of abnormal tissue may not be
consistent across readers due to variables such as differ-
ence in experience or difference in contrast windowing.

Fig. 3 Magnitude images at different signal to noise ratio (SNR) steps: (a) SNR = 45, (b) SNR = 75 and (c) SNR = 124

Fig. 2 Image of (a) regions of interest under investigation in this study, namely pineapple core (red), banana (blue), orange (orange) and kiwi
(green), and (b) regions of interest used for signal to noise ratio calculation
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Table 2 Average of intraclass correlation coefficient value over 10 noise realizations in reference to variation in signal to noise ratio,
region of interest dilation/erosion and small variation in voxel size

Normalization Mean ± 3SD Zero to maximum

SNR ROI erosion ROI dilation Voxel size SNR ROI erosion ROI dilation Voxel size

First order (n = 13) Energy 1.00 0.99 1.00 0.87 1.00 0.99 1.00 0.87

Kurtosis 0.95 0.97 0.78 0.88 0.95 0.97 0.78 0.88

Maximum 1.00 0.99 1.00 0.99 1.00 0.99 1.00 0.99

Mean deviation 0.99 0.99 0.98 0.99 0.99 0.99 0.98 0.99

Mean 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Median 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Minimum 1.00 1.00 0.78 1.00 1.00 1.00 0.78 1.00

Range 0.99 0.99 0.81 0.97 0.99 0.99 0.81 0.97

Root mean square 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Skewness 0.93 0.81 0.63 0.76 0.93 0.81 0.63 0.76

Variance 1.00 0.99 0.95 0.98 1.00 0.99 0.95 0.98

Entropy 0.65 0.77 0.47 0.43 0.65 0.77 0.47 0.43

Uniformity 0.76 0.86 0.87 0.84 0.76 0.86 0.87 0.84

Shape (n = 10) Mesh surface N/A 1.00 1.00 1.00 N/A 1.00 1.00 1.00

Pixel surface N/A 1.00 1.00 1.00 N/A 1.00 1.00 1.00

Perimeter N/A 0.99 1.00 1.00 N/A 0.99 1.00 1.00

Perimeter to surface ratio N/A 0.96 0.97 0.99 N/A 0.96 0.97 0.99

Sphericity N/A 0.99 0.99 0.99 N/A 0.99 0.99 0.99

Spherical disproportion N/A 0.99 0.99 0.99 N/A 0.99 0.99 0.99

Maximum 2D diameter N/A 1.00 1.00 1.00 N/A 1.00 1.00 1.00

Major axis length N/A 0.99 0.99 1.00 N/A 0.99 0.99 1.00

Minor axis length N/A 0.99 0.99 1.00 N/A 0.99 0.99 1.00

Elongation N/A 1.00 1.00 1.00 N/A 1.00 1.00 1.00

GLCM (n = 22) Autocorrelation 0.97 0.99 0.43 0.90 0.99 0.98 0.99 0.98

Cluster prominence 0.79 0.92 0.95 0.89 1.00 1.00 1.00 0.99

Cluster shade 0.96 0.68 0.95 0.84 0.94 0.69 0.90 0.75

Cluster tendency 0.81 0.98 0.79 0.89 1.00 0.99 0.99 0.99

Contrast 0.61 0.93 0.93 0.90 0.68 1.00 0.95 0.94

Correlation 0.62 0.94 0.93 0.90 0.63 0.93 0.93 0.90

Difference entropy 0.67 0.98 0.98 0.96 0.77 1.00 0.95 0.98

Dissimilarity 0.62 0.95 0.98 0.93 0.70 1.00 0.96 0.96

Energy 0.34 0.96 0.99 0.92 0.72 0.99 0.97 0.99

Joint entropy 0.45 0.97 0.96 0.91 0.87 0.99 0.97 0.99

Inverse difference 0.58 0.98 1.00 0.94 0.69 1.00 0.98 0.97

Homogeneity 0.58 0.98 1.00 0.94 0.69 1.00 0.98 0.97

Informational measure of correlation 1 0.53 0.99 0.97 0.97 0.65 0.99 0.98 0.98

Informational measure of correlation 2 0.51 0.98 0.95 0.96 0.66 0.95 0.97 0.94

Inverse difference moment normalized 0.61 0.93 0.94 0.90 0.68 1.00 0.95 0.94

Inverse difference normalized 0.62 0.96 0.98 0.93 0.70 1.00 0.96 0.96

Inverse variance 0.57 0.98 1.00 0.94 0.71 1.00 0.98 0.97

Joint maximum 0.07 0.65 0.62 0.06 0.66 0.96 0.93 0.87

Sum average 0.98 0.95 0.12 0.88 0.99 0.99 0.99 0.99
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The effect of ROI dilation and erosion was also studied
to evaluate feature’s robustness to ROI variations.
Two types of ROI manipulations were performed: dila-

tion (by 1 pixel) and erosion (also by 1 pixel) as shown
in Fig. 5. Similar to above, analysis was performed using
2 different normalization techniques: mean ± 3SD and
zero to maximum.
For ROI erosion using mean ± 3SD normalization, re-

sults are summarized in Table 4 and Fig. 6a. All 10
shape features and 20 out of 22 GLCM features are
found to be highly robust. However, only 10 out of 13
first order features and 6 out of 11 GLRLM features are
found to be highly robust to ROI erosion. No feature is
found to have an ICC less than 0.5. Results using zero to
maximum normalization are summarized in Table 4 and
Fig. 6b. By definition, first order and shape features are
not affected by normalization differences. There is an
upward trend in robustness of GLRLM feature, where all
features are highly robust to ROI erosion using
normalization method zero to maximum.

For ROI dilation, mean ± 3SD normalization results
are summarized in Table 5 and Fig. 6c. Shape is a highly
robust feature. However, the other feature categories
have relatively poorer robustness, with only 7 out of 13,
15 out of 22 and 7 out of 11 features with ICC greater
than 0.9 for first order, GLCM and GLRLM groups, re-
spectively. Table 2 lists individual features and their re-
spective ICC values. Zero to maximum normalization
results are summarized in Table 5 and Fig. 6d. There is
an upward trend of ICC values using zero to maximum
normalization method. Similar clustering is observed
within ICC plots as described previously.
As expected, dilation resulted in poorer robustness

when compared to erosion. This is because dilation may
incorporate tissue that is outside the ROI, whereas ero-
sion still only includes voxels in the original ROI. It is
noted that in our study dilation of the ROI may include
"fruit skin", which can be highly different in visual
appearance than the interior, or surrounding air. In non-
phantom study, such as a ROI of a tumor, the

Table 3 Number of features of high, moderate and low robustness in each feature class, as defined by average of intraclass
correlation coefficient over 10 noise realizations, in reference to signal to noise variation with normalization of mean ± 3SD or zero
to maximum

Feature group High (ICC > 0.9) Moderate (ICC 0.5–0.9) Low (ICC < 0.5)

Mean ± 3SD Zero to maximum Mean ± 3SD Zero to maximum Mean ± 3SD Zero to maximum

First order 11/13 11/13 2/13 2/13 0/13 0/13

GLCM 5/22 8/22 14/22 14/22 3/22 0/22

GLRLM 0/11 3/11 11/11 8/11 0/11 0/11

The denominator in the table signifies the total number of features in the feature class (i.e., first order, GLCM or GLRLM). GLCM Gray level cooccurrence matrix,
GLRLM Gray level run length matrix, ICC Intraclass correlation coefficient

Table 2 Average of intraclass correlation coefficient value over 10 noise realizations in reference to variation in signal to noise ratio,
region of interest dilation/erosion and small variation in voxel size (Continued)

Normalization Mean ± 3SD Zero to maximum

Sum entropy 0.89 0.98 0.89 0.77 0.99 0.98 0.99 0.98

Sum variance 0.99 0.97 0.26 0.90 0.99 0.98 0.99 0.98

Joint variance 0.92 0.93 0.27 0.83 0.98 0.99 0.99 0.99

GLRLM (n = 11) Gray level non-uniformity 0.69 0.69 0.96 0.70 0.96 0.96 0.98 0.98

High gray level run emphasis 0.51 0.74 0.59 0.43 0.99 0.98 0.98 0.98

Long run emphasis 0.51 0.98 0.99 0.91 0.54 1.00 0.99 0.95

Long run high gray level emphasis 0.55 0.99 0.99 0.92 0.83 0.99 0.98 0.98

Long run low gray level emphasis 0.54 0.52 0.24 0.50 0.72 0.99 0.99 0.89

Low gray level run emphasis 0.58 0.53 0.14 0.52 0.73 0.99 0.99 0.91

Run length non-uniformity 0.55 0.98 0.99 0.91 0.65 0.99 0.99 0.96

Run percentage 0.54 0.98 0.99 0.91 0.62 1.00 0.99 0.96

Short run emphasis 0.54 0.98 0.99 0.91 0.62 1.00 0.99 0.96

Short run high gray level emphasis 0.65 0.99 0.98 0.92 0.99 0.98 0.98 0.97

Short run low gray level emphasis 0.58 0.54 0.13 0.52 0.72 1.00 0.99 0.90

It is noted that two normalization methods were performed: mean ± 3SD and zero to maximum. Highly robust features (ICC > 0.9) are highlighted by bold text.
GLCM Gray level cooccurrence matrix, GLRLM Gray level run length matrix, ICC Intraclass correlation coefficient, SNR Signal to noise ratio, ROI Region of interest, N/
A Not applicable
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overestimation or dilation of an ROI would likely in-
clude surrounding tissue and not surrounding air. How-
ever, there are tumors which are located next to air
cavities, such as nasopharyngeal cancer, and robustness
of features to dilation may be application based. The re-
sult of this comparison indicates that it may be more
beneficial to be conservative when defining an ROI.

Small voxel size variation
In order to accommodate the different sizes of patients,
it is a general practice for the technologist to adjust the
field of view (FOV) on the fly without changing other
parameters. Although strictly speaking, changing FOV
will always affect some other parameters such as TE,
bandwidth, gradient slew rate, which in turns affecting

SNR. The effect of these small voxel size variations, and
its relation to radiomic feature robustness, is understud-
ied. In this part of the study, variation of voxel size was
introduced by acquiring images with slight change of the
FOV and matrix size. To remove effect of SNR varia-
tions caused by pixel size changes, all images were nor-
malized to the same SNR. Previous studies have tried to
solve this problem by performing interpolation, however,
interpolation introduces other complications and affect
feature robustness [27].
The same slice was acquired with 4 different in-plane

resolutions of 0.47, 0.50, 0.56 and 0.67mm as shown in
Fig. 7a-d, respectively. All other parameters were kept the
same when possible. The SNRs of individual images were
normalized to an SNR level of 75 by adding Gaussian
noise and 10 different noise realizations were performed
numerically. Results with mean ± 3SD normalization are
summarized in Table 6 and Fig. 8a. Even though minor
voxel size variation will affect ROI, which in turn affects
shape features, all shape features were found to be robust
to minor voxel size variations. First order, GLCLM and
GLRLM features groups are found to have 8 out of 13, 12
out of 22 and 6 out of 11 features, respectively, to be
highly robust to small differences in voxel sizes. Individual
feature ICCs are reported in Table 2. Results for zero to
maximum normalization are summarized in Table 6 and
Fig. 8b. Similar upward trends in ICC of GLCM and
GLRLM are noted. Similar clustering is observed within
ICC plots as described previously.
Small variability in voxel size does not result in a

large visual difference, however differences are ob-
served in radiomic feature extraction as reported here.
Since small variation in voxel size can result in a re-
duction in robustness, it is expected that this result is
even more concerning when comparing voxel sizes of
larger differences. Especially in multi-institutional
studies, it is common to see a large range of different
voxel sizes used in analysis.

Fig. 4 Average intraclass correlation coefficient over 10 noise realizations of first order, GLCM and GLRLM features by using (a) mean ± 3SD and
(b) zero to maximum normalization for signal to noise analysis. ICC Intraclass correlation coefficient, GLCM Gray level cooccurrence matrix, GLRLM
Gray level run length matrix

Fig. 5 Dilation and erosion of region of interest (ROI), with the inner
most (blue) ring being the eroded ROI, the center (red) ring being
the original ROI and the outermost (green) ring being the dilated
ROI for (a) pineapple core, (b) kiwi, (c) orange and (d) banana
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Limitations
Our study has several limitations. Firstly, the results
from phantom study cannot always be transferred to
clinical studies. However, we note that robustness of
radiomic features are application dependent and phan-
toms can still be used to investigate feature pre-selection
pipeline. One way to show the transferability of phantom
study is to compare the variability of each feature ob-
tained from phantom to that calculated from tumors
[60]. Secondly, we investigated only one sequence from
one particular scanner. Although there are fundamental
differences between scanners, inter-scanner variability
could be addressed if the bias is corrected in image pre-
processing step [51]. Lastly, we only investigated 2D

radiomic features of certain classes. Future work should
explore robustness of 3D features including filter-based
features from multi-scanner images combined with clin-
ical data.

Conclusions
Radiomic analysis is a step towards personalized medi-
cine by an exponential increase in the amount of quanti-
tative data that can be extracted from medical images. In
current literature, feature robustness in MRI is under-
studied and feature extraction techniques are not univer-
sally standardized. There is a need for systematic
evaluation of feature robustness. This is required to en-
sure that a predictive biomarker is reproducible and

Table 4 Number of features of high, moderate and low robustness in each feature class, as defined by average of intraclass
correlation coefficient over 10 noise realizations in reference to erosion of region of interest with normalization of mean ± 3SD or
zero to maximum

Feature group High (ICC > 0.9) Moderate (ICC 0.5–0.9) Low (ICC < 0.5)

Mean ± 3SD Zero to maximum Mean ± 3SD Zero to maximum Mean ± 3SD Zero to maximum

First order 10/13 10/13 3/13 3/13 0/13 0/13

Shape 10/10 10/10 0/10 0/10 0/10 0/10

GLCM 20/22 21/22 2/22 1/22 0/22 0/22

GLRLM 6/11 11/11 5/11 0/11 0/11 0/11

The denominator in the table signifies the total number of features in the feature class (i.e., first order, shape, GLCM or GLRLM). GLCM Gray level cooccurrence
matrix, GLRLM Gray level run length matrix, ICC Intraclass correlation coefficient

Fig. 6 Average ICC over 10 noise realizations of first order, shape, GLCM and GLRLM features with (a and b) erosion of region of interest by one
pixel with mean ± 3SD or zero to maximum normalization, respectively, and (c and d) dilation of region of interest by one pixel with mean ± 3SD
or zero to maximum normalization, respectively. ICC Intraclass correlation coefficient, GLCM Gray level cooccurrence matrix, GLRLM Gray level run
length matrix
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generalizable, especially across different institutions
where parameters can be very variable. Application-
based feature pre-selection step will be pivotal in antici-
pation for incorporation of radiomics-based tools in the
clinic.

Methods
Phantom MR imaging
A pineapple, a gold kiwi, an orange, a banana and a
strawberry placed on Styrofoam box served as radiomics
phantom for our study. All images were acquired on a 3
T Siemens scanner (Biograph mMR) with a T2-weighted
Turbo Spin Echo sequence using a 12 channel PET
compatible head-coil. Acquisition parameters: echo train
length = 18, TE = 98ms, TR = 7360 ms, slide thickness/

gapping = 2/0 mm, pixel bandwidth = 219 Hz, flip angle =
150 degree, 100% phase sampling, 100% phase FOV,
body coil transmission, 1 average. Different axial resolu-
tions were acquired by changing matrix size and FOV
with parameters listed in Table 7.

Image segmentation
First, image segmentation was performed manually on one
slice of Series 2 using ITK-SNAP (version 3.6.0; http://
www.itksnap.org). The ROIs on different fruits were then
interpolated with linear method on the same slice of the
rest of the series using MATLAB R2019a. To be conserva-
tive with ROI, threshold was set to 1. All interpolated ROIs
were visually checked and corrected manually to exclude
the fruit/air interface and discontinuities.

Table 5 Number of features of high, moderate and low robustness in each feature class, as defined by average of intraclass
correlation coefficient over 10 noise realizations in reference to dilation of region of interest with normalization of mean ± 3SD or
zero to maximum

Feature group High (ICC > 0.9) Moderate (ICC 0.5–0.9) Low (ICC < 0.5)

Mean ± 3SD Zero to maximum Mean ± 3SD Zero to maximum Mean ± 3SD Zero to maximum

First order 7/13 7/13 5/13 5/13 1/13 1/13

Shape 10/10 10/10 0/10 0/10 0/10 0/10

GLCM 15/22 21/22 3/22 1/22 4/22 0/22

GLRLM 7/11 11/11 1/11 0/11 3/11 0/11

The denominator in the table signifies the total number of features in the feature class (i.e., first order, shape, GLCM or GLRLM). GLCM Gray level cooccurrence
matrix, GLRLM Gray level run length matrix, ICC Intraclass correlation coefficient

Fig. 7 Image of small variation in pixel size achieved by changes in acquisition parameters: (a) 0.47mm, (b) 0.50mm, (c) 0.56mm and (d) 0.67mm
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Image processing
In order to calculate the SNR of the original image the
mean intensity of a homogenous region within a ROI
(kiwi) is divided by the mean intensity of the back-
ground. These ROIs are shown in Fig. 2b. Because the

mean of a Rayleigh distribution is
ffiffiffiffiffiffiffiffi

π=2
p

σ , where σ is
the mode, the calculated SNR was further corrected by

dividing
ffiffiffiffiffiffiffiffi

π=2
p

. Complex Gaussian noise was added to
the original image and magnitude images were used for
the analysis. Two noise levels (SNR 45 and 75) were gen-
erated from the original image whose SNR is 124. Ten
different noise realizations were performed numerically
for each SNR level in order to identify the results with
test-retest imaging. In-built MATLAB imdilate and
imerode functions with a 3*3 stucturing element were
used to dilate and erode ROIs. The entire preprocessing
was implemented in MATLAB (MATLAB R2019a).

Feature extraction
A set of 56 features were extracted using an IBSI com-
pliant in-house software (in MATLAB) partially adapted
from the Vallieres radiomics toolbox [61] and ImFEAT-
box [62]. Features are summarized in Table 2. Thirteen
of the features were first order statistics based, 10 were

2D shape based, while texture features were computed
from the grey-level co-occurrence matrix (GLCM, 22
features) and grey-level run-length matrix (GLRLM, 11
features) merged from all four 2D directional matrices.
The definitions of first order statistics based and texture
features could be found in Parmar et al [63], while the
definitions of 2D shape features could be found in
Griethuysen et al [64]. Both first order and 2D shape
features were directly implemented in MATLAB based
on their definitions. For texture features, GLCM and
GLRLM matrix computation and GLRLM feature extrac-
tion was adapted from the Vallieres radiomics toolbox,
while GLCM features were adapted from ImFEATbox
based on their definitions. Prior to calculating texture
matrix, all images underwent intensity discretization to 64
levels based on IBSI recommendations, with intensity
values rescaled by mean ± 3SD or zero to maximum inten-
sity (to assess texture feature robustness on different
discretization scales).

Robustness analysis
Feature robustness was assessed using ICC when per-
formed at different SNR, different acquisition voxel size
and ROI transformation, assuming these variations pos-
sess no consistent bias for different ROIs. Each noise

Fig. 8 Average ICC over 10 noise realizations of first order, shape, GLCM and GLRLM features with small variation in voxel size with (a) mean ±
3SD and (b) zero to maximum normalization for voxel size variation. ICC Intraclass correlation coefficient, GLCM Gray level cooccurrence matrix,
GLRLM Gray level run length matrix

Table 6 Number of features of high, moderate and low robustness in each feature class, as defined by average of intraclass
correlation coefficient over 10 noise realizations in reference to pixel size with normalization of mean ± 3SD or zero to maximum

Feature group High (ICC > 0.9) Moderate (ICC 0.5–0.9) Low (ICC < 0.5)

Mean ± 3SD Zero to maximum Mean ± 3SD Zero to maximum Mean ± 3SD Zero to maximum

First order 8/13 8/13 4/13 4/13 1/13 1/13

Shape 10/10 10/10 0/10 0/10 0/10 0/10

GLCM 12/22 19/22 9/22 3/22 1/22 0/22

GLRLM 6/11 10/11 3/11 1/11 2/11 0/11

The denominator in the table signifies the total number of features in the feature class (i.e., first order, shape, GLCM or GLRLM). GLCM Gray level cooccurrence
matrix, GLRLM Gray level run length matrix, ICC Intraclass correlation coefficient
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level, voxel dimension and ROI transformation accounts
for a rater and each intensity mask (containing inten-
sities with selected voxels) accounts for a subject. Based
on ICC reporting guidelines [65], ICC (2,1) was selected
(“2-way mixed-effects model, single rater, absolute
agreement”) as features are considered to be stable if
their values remain the same across different variations.
ICCs were calculated in MATLAB (MATLAB R2019a).
For SNR and ROI dilation/erosion analysis, 5 ROIs were
analyzed for a single image resolution (0.5 mm × 0.5
mm × 2.0 mm), with 10 different noise realizations,
resulting in 50 samples per image. There were 2 groups
being compared (SNR = 45 versus SNR = 75, original
ROI versus eroded ROI, original ROI versus dilated
ROI). For voxel size analysis, 5 ROIs were analyzed with
10 different nose realizations, resulting in 50 samples
per image. These were analyzed across 4 different in-
plane resolutions (0.47, 0.50, 0.56, 0.67 mm). ICC was
assessed between groups for each calculated feature.
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