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Abstract

Background: Triple tracer meal experiments used to investigate organ glucose-insulin dynamics, such as
endogenous glucose production (EGP) of the liver are labor intensive and expensive. A procedure was developed to
obtain individual liver related parameters to describe EGP dynamics without the need for tracers.

Results: The development used an existing formula describing the EGP dynamics comprising 4 parameters defined
from glucose, insulin and C-peptide dynamics arising from triple meal studies. The method employs a set of partial
differential equations in order to estimate the parameters for EGP dynamics. Tracer-derived and simulated data sets
were used to develop and test the procedure. The predicted EGP dynamics showed an overall mean R2 of 0.91.

Conclusions: In summary, a method was developed for predicting the hepatic EGP dynamics for healthy,
pre-diabetic, and type 2 diabetic individuals without applying tracer experiments.

Keywords: Endogenous glucose production (EGP), Non-linear system, Parameters, Diurnal information, Partial
differentiation

Background
The plasma glucose concentration in healthy humans is
strictly controlled. During fasting conditions the glucose
is around 90 mg/dl and after food intake it can reach a
concentration of 126-144 mg/dl [1]. The glucose comes
into the bloodstream by means of absorption from the
intestine, breakdown of glycogen (glycogenolysis) and glu-
coneogenesis [1].
The release of glucose resulting from glycogenolysis and

gluconeogenesis is called the endogenous glucose produc-
tion (EGP). The liver is the major contributor to EGP [2].
Within 1-2 h after a meal the EGP is suppressed to 30%-
50% of its fasting value [3–6]. Glucose from the ingested
meal will be taken up by the liver, brain, skeletal muscle
and adipose tissue in the hours after a meal. The EGP will
return to the fasting value after 4 h [7].
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Understanding the mechanisms regulating glucose
homeostasis is important to better comprehend the
effects of new therapies for diseases such as diabetes [8].
Information about EGP dynamics is relevant, because
the regulation of this important physiological process is
changed in diabetic patients [9–11]. For instance, when
fasting hyperglycemia develops in diabetic subjects, ele-
vated rates are observed for both gluconeogenesis and
glycogenolysis [12]. Increased gluconeogenesis activity
might even be an early feature in the development of
glucose dysregulation [13, 14].
Isotope tracer methods are used for the measurement of

metabolic (e.g. glucose) flux rates [15], and have been used
to investigate amongst others the glucose-insulin dynam-
ics in organs/tissue (e.g. EGP) [16]. Glucose triple trace
isotope labeling experiments can give reliable estimates
of EGP, but are expensive and labour intensive [17, 18].
It is therefore not feasible to perform these experiments
for large epidemiological and genetic studies. Therefore,
we looked for alternative approaches to determine EGP
dynamics that avoid the use of tracers.
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Several mathematical models describing human
glucose-insulin dynamics have been published in liter-
ature [19]. These models are constantly improved or
extended to increase their predictive power. Man et al.
(20) proposed a glucose dynamics model that describes
the glucose and insulin fluxes during a mixed meal.
This model is divided into various subsystems, such as
gastrointestinal tract, liver, β-cell, muscle and adipose
tissue. The various parameters of the model in [20] have
been estimated from data from glucose isotope labeling
experiments in normal humans and humans with type 2
diabetes (T2D). In [20], the EGP in the liver subsystem is
described using 2 differential equations and 6 parameters
and requires plasma glucose, plasma insulin and portal
insulin dynamics data.
Although the model [20] includes parameters settings

for normal and type 2 diabetic subject groups, it is of inter-
est to be able to determine these parameters of individual
subjects without the need for a new tracer experiment. In
this paper, a mathematical procedure is described that is
capable of calculating the glucose dynamics model param-
eters in the model [20] for the liver without glucose iso-
tope labeling experimental data to estimate diurnal EGP
dynamics.
Results
The proposed mathematical procedure to estimate the
parameters for EGP dynamics was tested on the 5 differ-
ent data sets. The resulting predicted EGP time profiles
were compared to the experimental ones. Residual plots
for each data set display the deviation of the predicted
EGP.
EGP parameter estimates
Application of the proposed procedure to data from nor-
mal, pre-diabetic and diabetic subjects receiving diurnal
mixed meals (data sets 1-5) resulted in parameter values
reported in Table 1.
In particular, the estimated hepatic glucose effective-

ness kp2 was found to have structurally higher values
and the portal insulin signaling parameter kp4 structurally
lower values compared to the true parameter values for
all data sets. The hepatic glucose effectiveness parameter
kp2 showed similar values when comparing simulated data
sets (healthy, both pre-diabetic conditions (θds3 and θds4)
and type 2 diabetic). The value of the estimated parameter
kp3 in all data sets showed small deviations compared to
the optimal parameter values. The parameter A, describ-
ing a changed insulin sensitivity during breakfast, showed
to be smaller than 1 for all data sets. Parameter differences
between the healthy data sets (data sets 1 and 2) and the
diabetic data set (data set 5) were observed.

Diurnal EGP dynamics
Figure 1 displays the predictions of diurnal EGP dynamics
using the estimated parameter values (θds1-5) (Table 1) vs.

the experimental data of data sets 1 to 5. The mean coef-
ficient of determination (R2) for data set 1 was 0.91 and
for data set 2 0.91. R2 values for pre-diabetic subjects were
0.97 (data set 3), and 0.87 (data set 4). The R2 for a type 2
diabetic subject was 0.92 (data set 5). The less well approx-
imated EGP dynamics were seen in data set 1 and data
set 4, consisting of healthy and pre-diabetic subjects. The
EGP dynamics in data set 2 and 3 were most accurately
predicted.

Model performance
Figure 2 shows the residual plots for each data set to
indicate the model performance. Data set 1 showed the
highest error (0.6 mg/kg/min) between the predicted EGP
and experimental EGP for breakfast, lunch and dinner.
The model showed both under and over estimation for
this data set. Lower errors were observed for the data sets
2-5. The error range of the predicted EGP for data sets
(2-5) was ±0.3 mg/kg/min. Remarkable is that the model
systematically under estimated the data from data set 3.
On the other hand, the model overestimated the EGP in
data set 5.

Reliability of parameter estimates
The parameter values for the data sets 1-5 were obtained
without using the available experimental EGP data, how-
ever, this raised the question if these values were esti-
mated reliably compared to the optimal parameter values
obtained by fitting the Dalla Man [20] model to the exper-
imental EGP data. To approach this question parameter
identifiability analyses employing profile likelihood (PL)
estimates were performed. Parameters were considered
reliably estimated if they were located within the point-
wise confidence interval.
The PL estimates for the parameter values (kp2, kp3, kp4

and A) are shown in Fig. 3 for data set 1-5. The result-
ing plots reveal practically non-identifiable and identifi-
able parameters. However, the observed systematic bias is
negligible.

Discussion
This study describes the successful development of a new
procedure for the estimation of physiological parameters
in a mathematical description of diurnal EGP dynamics
in healthy, pre-diabetic and type 2 diabetic subjects. The
procedure exploits the assumption that certain relations
between the parameters do not vary between meals dur-
ing the day. The mathematical description is based on
a previously developed computational model describing
glucose and insulin dynamics during a mixed meal [20].
A subsystem in this model, duly parameterized, can esti-
mate the EGP using as input the plasma glucose, plasma
insulin and portal insulin dynamics data. The various
parameters of the subsystem in [20] are estimated from
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Table 1 EGP model parameter and mean coefficient of determination (R2) values for the healthy condition data sets (data set 1(θds1)
and data set 2 (θds2)), pre-diabetic condition data sets (data set 3(θds3) and data set 4 (θds4)), and the diabetic condition data set (data
set 5 (θds5)) determined using the proposed procedure

Name θds1 θds2 θds3 θds4 θds5 Unit

kp2 0.0056
(0.0029)

0.0025
(0.0021)

0.0044
(0.0021)

0.0034
(0.0021)

0.0042
(0.0009)

min−1

kp3 0.0109
(0.0119)

0.0109
(0.0093)

0.0049
(0.0047)

0.005
(0.0093)

0.0073
(0.0053)

mg/kg/min per
pmol/l

kp4 0.075
(0.09)

0.045
(0.062)

0.03
(0.062)

0.051
(0.062)

0.037
(0.074)

mg/kg/min per
pmol/kg

A 0.9
(0.8129)

0.90
(1.00)

0.85
(1.00)

0.88
(0.99)

0.88
(1.01)

dimensionless

R2 Breakfast 0.95 0.90 0.97 0.93 0.93

R2 Lunch 0.86 0.91 0.97 0.84 0.90

R2 Dinner 0.92 0.91 0.97 0.85 0.92

Values between brackets indicate the optimal parameter value obtained from directly fitting the experimental EGP data against the model (Eq. 20)

independently determined EGP dynamics, which requires
glucose isotope labeling experiments. The proposed pro-
cedure obviates the need for such isotope experiments
because it can estimate the model parameters directly
from data on plasma glucose, insulin and ISR dynamics
assembled during 3 consecutive meals.
Several articles reported that the insulin sensitivity is

different in the morning (breakfast) compared with the
rest of the day or evening [24, 27–29]. To take this diurnal
effect into account, we multiplied insulin sensitivity dur-
ing breakfast vs. the other meals by a factor A. Obtained
values of A were between 0.8 and 0.9 for the different data
sets. Interestingly, directly fitting the experimental EGP
data against the model also yielded an optimal A value
smaller than 1 for data set 1.
In the procedure proposed in the present paper, basal

EGP value (Eq. 5) was not predicted, but was given to the
model as a constant value extracted from the experimen-
tal EGP data (i.e., value at t = 0). As a future perspective,
a separate prediction procedure could be developed for
basal EGP.
The new procedure yielded estimates for the parame-

ters (kp2, kp3, kp4 and A) on the basis of which the EGP
dynamics were calculated using the model equation [20].

Fig. 1 Schematic representation of the liver model in [20]. The inputs
of the liver subsystem are the plasma glucose, plasma insulin and
portal insulin concentrations. The output of the system is EGP

In general the estimated parameter values for the 5 indi-
vidual data sets showed some deviations compared to the
true values. The PL was therefore used to determine the
reliability of the obtained parameter values for the differ-
ent data sets. The analysis demonstrated that a systematic
bias is negligible and that most parameters values were
reliably estimated because they were located within the
defined confidence interval.
One interesting point is that parameter differences

between the healthy data sets (data sets 1 and 2) and the
diabetic data set (data set 5) were not clearly observed. In
fact, while Dalla Man [20] report different values for dia-
betic vs healthy datasets [20], no standard deviations are
reported so one cannot judge the statistical significance
of these differences. In the present study, the estimated

Fig. 2 Dataset 1. Time courses of plasma glucose, plasma insulin, ISR
and EGP after breakfast, lunch and dinner for a representative healthy
subject. This data set was constructed from data in [28] as described
in the text and in (Additional file 1: Figure S1)
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Fig. 3 Dataset 2. Simulated time courses of plasma glucose, plasma
insulin, ISR and EGP concentrations after breakfast, lunch and dinner
for a normal, healthy subject obtained using the simulation model
in [20]

parameters for data sets 1 and 2 and the diabetic data set
(data set 5) may well not differ because they are depend-
ing on the particular input data from single individuals.
From the PL analysis it can be appreciated that this is
indeed the case, as judged from the fairly large confi-
dence intervals around the estimated parameter values.
It may still well be possible that when comparing results
for groups of individuals, the mean estimated parame-
ter values for the healthy and diabetes groups will show
significant differences but this requires a separate, more
exhaustive study.
The inaccuracy of the predicted EGP in data set 1, which

was extracted from experimental data on healthy subjects,
was higher compared to the other data sets (data sets 3-
5), as judged from the residuals and R2 values. The model
showed to systematically overestimate the EGP in data set
5. This indicates that the predicted EGP reflects a health-
ier condition than the experimental EGP. However, the
maximal error range is rather small with 0.3 mg/kg/min.
Thus, despite the deviations observed for the parame-
ter estimates, the procedure showed a generally accurate
prediction of the EGP dynamics for 3 consecutive meals.
In theory, our procedure has broader relevance for a

wider spectrum of physiological models. Notably, the pro-
cedure might be transferable to models wherein a time-
dependent variable (here: EGP) cannot be directly mea-
sured whereas a deterministic set of equations is available
that relates this variable to other time-dependent variables
(here: Gp, Id, and Ipo) that are measurable.
In this study, five data sets were available for the

development of the new and promising methodology to
determine EGP dynamics. Only one data set contained
experimental diurnal EGP dynamics. However, since the

associated experimental errors were not given, it could
not be assessed whether the predicted EGP was within
the bandwidth set by the experimental inaccuracy. There-
fore, it is difficult to precisely judge the quality of the EGP
prediction in this procedure. In general, an experimental
inaccuracy could be caused by recycling of labeled glu-
cose via glycogenolysis and/or gluconeogenesis, and the
equilibration of the tracer/tracee ratio [30]. A next step
towards application of the new method in clinical stud-
ies will therefore the search for, and possible de novo
acquisition, of multiple individual experimental data sets
of different subtypes (healthy, pre-diabetic, T2D subjects),
however this is subject of a separate investigation.

Conclusions
In conclusion, a procedure was developed to retrieve
physiologically based parameters for the description of
diurnal EGP dynamics in subjects without the use of tracer
techniques. The procedure makes use of input data con-
sisting of diurnal dynamics of plasma glucose, insulin and
ISR. The developed procedure accurately predicted (with
an overall mean R2 of 0.9) diurnal EGP dynamics data for
one experimental and four simulated data sets of healthy,
pre-diabetic and type 2 diabetic subjects. The advantage
is that diurnal EGP dynamics can be personally predicted.
In the long run, more experimental data from healthy, pre-
diabetic, and type 2 diabetic subjects could contribute to
further and extensive validation of the procedure required
for clinical applications.

Methods
Computer software
Published data in graphical format was digitized for use
in the present paper using the accurate data extraction
program GraphClick [21, 22]. All model equations were
implemented and analyzed in MATLAB (MATLAB, Ver-
sion R2012, The MathWorks, Inc., Natick, Massachusetts,
United States) (Additional file 2). Ordinary differential
equations were simulated using the variable step solver
ode15s. The insulin secretion rate (ISR) data were calcu-
lated from deconvolution of the C-peptide time course
data using the software program ISEC [23].

Published equations for Endogenous Glucose Production
(EGP)
The objective was to develop a method for predicting
the parameters of Endogenous Glucose Production (EGP)
dynamics in the Dalla Man [20] model from experimental
data without needing to apply isotope tracer experiments.
The EGP dynamics after a meal in Dalla Man [20] are
expressed as a function of glucose and insulin concentra-
tions as schematically shown in Fig. 4.
From this model, the liver subsystem equations were

used to formulate a set of equations to calculate EGP
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Fig. 4 Dataset 3. Simulated time courses of plasma glucose, plasma
insulin, ISR and EGP concentrations after breakfast, lunch and dinner
for a glucose intolerant subject obtained using the simulation model
in [20]

dynamics without the need of tracer experiments. From
these EGP equations, partial derivatives were formulated
and applied to calculate the liver subsystem parameters for
estimating diurnal EGP dynamics as explained below.
In the following, the Dalla Man [20] equations (Eqs. 1–

5) for the liver subsystem are repeated for convenience.
The EGP is described as a function of inputs Gp (mg/kg)
(glucose mass in plasma), Id (pmol/l) (a delayed insulin
signal) and Ipo (pmol/kg) (insulin in the portal vein) using
Eq. 1:

EGP(t) = kp1−kp2 ·Gp(t)−kp3 · Id(t)−kp4 · Ipo(t), (1)
wherein parameter kp1 (mg/kg/min) is the extrapolated
EGP at zero glucose and insulin, kp2 (min-1) is liver glucose
effectiveness, kp3 (mg/kg/min per pmol/l) is a parameter
controlling the amplitude of insulin action on the liver, and
kp4 (mg/kg/min per pmol/kg) is a parameter determining
the amplitude of portal insulin action on the liver.
The glucose mass in plasma Gp is described using Eq. 2:

Gp = G(t) ∗ Vg , (2)

wherein Vg is the distribution volume of glucose set to
1.88 dl/kg (healthy) or 1.49 dl/kg (type 2 diabetic) andG(t)
is the experimental plasma glucose concentration (mg/dl)
in time.
The delayed insulin signal, Id, is described using a chain

of two-compartments:

İ1(t) = −ki · (I1(t) − I(t)) I1(0) = Ib
İd(t) = −ki · (Id(t) − I1(t)) Id(0) = Ib,

(3)

wherein I is the plasma insulin concentration (pmol/l) and
the rate parameter ki (=0.0079 min-1 (healthy) or 0.0066

min-1 (type 2 diabetic) from [20]) determines the delay
between the insulin signal and the insulin action.
The portal insulin Ipo(pmol/kg) dynamics is described

by

Ipo = ISR(t)
γ

, (4)

wherein the pancreatic insulin secretion rate (ISR(t)
(pmol/kg/min)) can be calculated from experimental C-
peptide data (details in “Experimental data set: healthy
subject” section), and parameter γ (=0.5min-1) is the fixed
transfer rate constant between portal vein and liver.
Parameter kp1 is calculated as:

kp1 = EGPbasal+kp2 ·Gp,basal+kp3 ·Id,basal+kp4 ·Ipo,basal,
(5)

where the basal data values for EGP, Gp, Id, and Ipo were
extracted from experimental/simulated data sets (details
in “Data” section) and kp2, kp3, kp4, and A were estimated
as described in the following.

Development of an objective function based on partial
derivatives to estimate model parameters
Analyzing the different partial derivatives of Eq. 1 shows
interesting relationships. For example, the partial differ-
entiation ( ∂EGP

∂kp2 ) is to first order equal to Gp, ( ∂EGP
∂kp3 ) to

Id, and ( ∂EGP
∂kp4 ) to Ipo. This suggests that EGP dynamics

might be directly derived from experimental data for Gp,
Id and Ipo dynamics. We investigated further based on
this interesting observation, by recombining Eq. 1 to find
an alternative way to obtain the liver subsystem model
parameters i.e. by using experimental data for Gp, Id, Ipo
available from diurnal data (3 meals) without the need for
isotope tracer experiments.
Taking the partial derivative of Eq. 1, with respect to kp2,

kp3 and kp4, results in Eqs. 6, 7, and 8, respectively:

∂EGPi(t)
∂kp2

= −Gi
p(t) + ∂kip1

∂kp2
(6)

∂EGPi(t)
∂kp3

= −Iid(t) + ∂kip1
∂kp3

(7)

∂EGPi(t)
∂kp4

= −Iipo(t) + ∂kip1
∂kp4

, (8)

where i denotes breakfast (b), lunch (l), or dinner (d).
During the day, biochemical and physiological mecha-

nisms are changing [24]. Especially, a strong variation in
glucose tolerance during the day has been observed in dif-
ferent studies [25, 26]. It has also been demonstrated that
the insulin responses in healthy subjects are different in
the morning (breakfast) compared to the evening (din-
ner) [27]. Therefore, we decided to introduce a change
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in the insulin sensitivity during breakfast meal dynam-
ics. To make this assumption more likely to be true, we
explicitly took into account the only known intraday vari-
ation in EGP regulation, i.e. by introduction of parameter
A. Parameter kp4 is related to the portal insulin concen-
tration, Ipo, therefore kp4 was multiplied by an additional
parameter A only during breakfast dynamics:

∂EGPb(t)
∂k∗

p4
= −Iipo(t) + ∂kbp1

∂k∗
p4
, (9)

where k∗
p4 = A · kp4 only during breakfast meal dynamics

(EGPb).
Multiplying Eq. 6 by kp2, Eq. 7 by kp3 and Eq. 8 by kp4

results in sensitivities, i.e. the change in EGP for normal-
ized changes in the liver parameters, in Eqs. 10, 11, and 12:

kp2 · ∂EGPi(t)
∂kp2

= −kp2 · Gp
i(t) + kp2 · ∂kip1

∂kp2
(10)

kp3 · ∂EGPi(t)
∂kp3

= −kp3 · Idi(t) + kp3 · ∂kip1
∂kp3

(11)

kp4 · ∂EGPi(t)
∂kp4

= −kp4 · Ipoi(t) + kp4 · ∂kip1
∂kp4

, (12)

Subtracting Eq. 11 from Eqs. 10, 12 from Eqs. 10, and 12
from Eq. 11, results in Eqs. 13, 14 and 15, respectively:

kp2 · ∂EGPi(t)
∂kp2

− kp3 · ∂EGPi(t)
∂kp3

= −[ kp2 · Gi
p(t) − kp3 · Iid(t)]+Ci

23,
(13)

wherein Ci
23 = kp2 · ∂kp1

∂kp2

i − kp3 · ∂kp1
∂kp3

i

kp2 · ∂EGPi(t)
∂kp2

− kp4 · ∂EGPi(t)
∂kp4

= −[ kp2 · Gi
p(t) − kp4 · Iipo(t)]+Ci

24,
(14)

wherein Ci
24 = kp2 · ∂kp1

∂kp2

i − kp4 · ∂kp1
∂kp4

i

kp3 · ∂EGPi(t)
∂kp3

− kp4 · ∂EGPi(t)
∂kp4

= −[ kp3 · Iid(t) − kp4 · Iipo(t)]+Ci
34

(15)

wherein Ci
34 = kp3 · ∂kp1

∂kp3

i − kp4 · ∂kp1
∂kp4

i

The Ci
23, C

i
24, and Ci

34 values represent meal-specific
weighted differences of sensitivities of kp1 (extrapolated
EGP at zero glucose and insulin) vs. multiple param-
eter pairs (kp2 and kp3, kp2 and kp4, and kp3 and kp4,
respectively).

To estimate single values for kp2, kp3, kp4, and A for
a single subject it was assumed that the mathemati-
cal constructs called sensitivities (Ci

23, C
i
24, and Ci

34) do
not vary between meals. These mathematical constructs
themselves do not translate to simple biological concepts,
however they relate parameters that are linked to reg-
ulation of EGP. In essence, the assumption is therefore
that EGP regulation does not change between 3 successive
meals, resulting in:

Cb
23 = Cl

23 = Cd
23 (16)

Cb
24 = Cl

24 = Cd
24 (17)

Cb
34 = Cl

34 = Cd
34 (18)

The model EGP dynamics objective function to obtain
the parameter values of kp2, kp3, kp4, and A is therefore
formulated by combining Eqs. 16, 17, 18:

θ̂ = arg min

√
√
√
√

∑

i,j,i�=j

((

Ci
23 − Cj

23

)

+
(

Ci
24 − Cj

24

)

+
(

Ci
34 − Cj

34

))2
,

(19)

wherein i and j are any two combinations of breakfast (b),
lunch (l) and dinner (d).
This methodology thus focuses on obtaining estimates

only for the parameters which are directly involved in the
general EGP dynamics equation (Eq. 1). The parameters
ki, Vg , and γ relating to glucose kinetics and insulin secre-
tion processes are not directly in the EGP equation and
therefore not fitted. However, although these parameters
do not appear directly in the equation, they still influence
the result of the EGP equation since they multiply/divide
the values of measured quantities. An inaccurate assump-
tion of their value could lead to a wrong estimation of the
directly involved parameters kp2, kp3 and kp4. The model
parameter values ki, Vg , and γ were extracted from Dalla
Man (Table 1) [20]. Here, they obtained these values for
normal and type 2 diabetic subjects. So, if the fasting glu-
cose value is below 99 mg/dl (5.5 mmol/l) then the Dalla
Man parameter values (ki, Vg , and γ ) for normal sub-
jects should be used. Parameter values of type 2 diabetic
should be used if the fasting plasma glucose value is higher
than 126 mg/dl (7.0 mmol/l). For fasting glucose values
between 99 mg/dl (5.5 mmol/l) and 126 mg/dl (7 mmol/l)
estimates for ki, Vg , and γ can be obtained through lin-
ear interpolation of Dalla Man [20] normal, and type 2
diabetic subject parameter values.
Briefly, the derivation evolves around a liver-related

parameter kp1 which itself explains a rather virtual con-
cept, namely the extrapolated EGP at zero glucose and
insulin. This parameter is used to describe the specific
behavior of EGP in the virtual condition that no glucose
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and insulin were present. In the model EGP dynam-
ics objective function, the sensitivity of this parameter
to other parameters (i.e. proportional changes of kp1
in response to changes in parameters kp2, kp3 and kp4)
are used. These terms originate in Eqs. 6–8 and appear
weighted in Eqs. 10–12. Then, coefficients consisting of
differences of pairs of these weighted terms are formed
in Eqs. 13–15. The central assumption is that these coef-
ficients do not differ between 3 subsequent meals as
expressed in Eqs. 16–18. Hence, the parameter values for
a single person are obtained and are equal for break-
fast, lunch, and dinner. As stated earlier, the essence of
the underlying biological hypothesis is that the parame-
ters for regulation of hepatic EGP production do not vary
during 3 consecutive meals within a single day, but the
derivation follows a mathematical rather than a biological
reasoning.

Data
The procedure was applied to an experimental data set
and simulated data sets (5 data sets in total) representing
different health conditions of subjects as follows:

Experimental data set: healthy subject

Data set 1: Healthy subject Experimental mean 3-meal
data curves of 20 healthy subjects (i.e. mean plasma glu-
cose, plasma insulin, C-peptide and EGP) were extracted
from Fig 1A, 1B, and 2A in [28] usingGraphClick [22]. The
data were converted to the desired units (Glucose: mmol/l
to mg/dl (×18.02); EGP: μmol/kg/min to mg/kg/min
(×0.18)). Each segment (breakfast, lunch and dinner),
starts when the meal is given at time zero, and ends 240
minutes later. The ISRwas calculated from C-peptide data
(Fig 1B in [28]) using the software program ISEC [23].
Preprocessing of the data set was necessary in order

to obtain a single set of plasma glucose, plasma insulin
and ISR data curves for a hypothetical representative indi-
vidual subject in the study of [28] that were consistent
with the mean EGP curves of the 20 subjects. We adopted
this procedure because the individual data sets remained
unavailable. The procedure is explained and the raw data
can be seen in (Additional file 1). The result, i.e. the final
input data for the model, is depicted in Fig. 5. Data was
collected at time points 0, 15, 30, 45, 60, 90, 120, 150, 180,
210, 240 minutes. This data set is referred to as data set 1
throughout the paper.

Simulated data sets: healthy, pre-diabetic, and diabetic
subjects
Data set 2: Healthy subject Simulated 3-meal data
curves (i.e. plasma glucose, plasma insulin, ISR and EGP)
for a healthy subject were generated using the meal simu-
lation model in [20]. To this end, the in silico model in [20]

Fig. 5 Dataset 4. Simulated time courses of plasma glucose, plasma
insulin, ISR and EGP concentrations after breakfast, lunch and dinner
for a subject with a decreased insulin action obtained using the
simulation model in [20]

was implemented in MATLAB and the parametric por-
trait of a normal subject (Table 1 in [20]) was used for
simulation.The predicted plasma glucose, plasma insulin,
ISR and EGP were based on 3 consecutive meals i.e. a
breakfast (8 a.m.) meal of 45 gram, a lunch (12 p.m.) meal
of 70 gram, and a dinner (8 p.m.) meal of 70 gram. Each
meal segment starts when the meal is given (t=0 for that
segment) and ends 240 min later. Data was collected at
time points 0, 15, 30, 45, 60, 90, 120, 150, 180, 210, 240
min. The data is referred to as data set 2 throughout the
paper, and can be seen in Fig. 6.

Fig. 6 Dataset 5. Simulated time courses of plasma glucose, plasma
insulin, ISR and EGP concentrations after breakfast, lunch and dinner
for a type 2 diabetic subject obtained using the simulation model
in [20]
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Fig. 7 Predictions (solid line) versus measurements (dashed line) of EGP during breakfast, lunch and dinner for (top to bottom) data set 1, data set 2,
data set 3, data set 4, and data set 5

Data sets 3 and 4: Pre-diabetic subjects The in sil-
ico model in [20] implemented in MATLAB was used
to obtain simulation data for 2 pre-diabetic subjects hav-
ing different subtypes i.e.(1) glucose intolerance, and
(2) decreased insulin action. For the glucose intolerant

subject, the parameter values for normal subjects ([20],
Table 1) were used, except that Vmax and kp3, were halved.
For the subject with decreased insulin action, parame-
ter values for normal subjects were used except that K
and β were halved. The predicted plasma glucose, plasma
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insulin, ISR and EGP were based on 3 consecutive meals
i.e. a breakfast (8 a.m.) meal of 45 gram, a lunch (12 p.m.)
meal of 70 gram, and a dinner (8 p.m.) meal of 70 gram.
Each meal segment starts when the meal is given (t=0 for
that segment) and ends 240 min later. Data was collected
at time points 0, 15, 30, 45, 60, 90, 120, 150, 180, 210, 240
min. The data are referred to as data set 3 (glucose intol-
erant subject) and data set 4 (subject with a decreased
insulin action) throughout the paper, and can be seen in
Figs. 7 and 8.

Data set 5: type 2 diabetic subject The in silico model
in [20] implemented in MATLAB was used to obtain sim-
ulation data for a type 2 diabetic subject. The parameter
values for type 2 diabetic subjects ( [20], Table 1) were
used. The predicted plasma glucose, plasma insulin, ISR
and EGP were based on 3 consecutive meals i.e. a break-
fast (8 a.m.) meal of 45 gram, a lunch (12 p.m.) meal of 70
gram, and a dinner (8 p.m.) meal of 70 gram. Each meal
segment starts when the meal is given (t=0 for that seg-
ment) and ends 240 min later. Data was collected at time
points 0, 15, 30, 45, 60, 90, 120, 150, 180, 210, 240min. The
data are referred to as data set 5 throughout the paper, and
can be seen in Fig. 9.

Parameter optimization strategy
The EGP data fitting procedure was implemented in Mat-
lab with the function lsqnonlin, minimizing the model
EGP dynamics objective function (Eq. 19). Lower bound-
aries were set to 0.0009, 0.001, 0.01, 0.8 and upper bound-
aries to 0.02, 0.05, 0.09, 1.4 for kp2, kp3, kp4 and A,
respectively. The function multistart was used to start
the lsqnonlin function from multiple start points (150) in

order to increase the probability of finding a global opti-
mum. The reported parameters for each data set were
those for which the model EGP dynamics objective func-
tion achieved its minimal value.
The obtained parameter values for each data set were

also checked against the optimal values, which are deter-
mined from directly fitting the experimental EGP against
the model. These optimal parameter values were calcu-
lated by minimizing the following cost function (V) with
the above explained settings:

V (p) =
√

(EGPcalci,j (p, t) − EGPexpi,j (t))2, (20)

wherein the cost function V is defined as the squared
difference between the model output (EGPcalci,j ) and exper-
imental EGP (EGPexpi,j ) for every time step, i, the model
parameters p, and for breakfast, lunch and dinner, j. Here
5 data sets that originated from the experimental and
simulated data (Figs. 5, 6, 7, 8 and 9) were treated as
experimental data (EGPexpi,j ).

Parameter identifiability analysis
To investigate the reliability of the obtained parameter
estimates (kp2, kp3, kp4 and A), parameter identifiability
analysis using PL [31] was performed. PL allows to derive
the identifiability of parameters in non-linear models, to
design optimal experiments that improve parameter iden-
tification and to calculate likelihood-based confidence
intervals.
First, the weighted sum of squared residuals was set

as the PL objective function measuring the agreement of

Fig. 8 Residual analysis plot of EGP during breakfast, lunch and dinner for data set 1, data set 2, data set 3, data set 4, and data set 5 calculated by
subtracting the predicted EGP from the experimental EGP
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Fig. 9 Profile likelihood estimates (Y-axis) (PL; continuous black line) vs. model parameters (X-axis) for the model with (top to bottom) data set 1,
data set 2, data set 3, data set 4, and data set 5. The parameter estimates (cf. Table 1) obtained using the new approach are indicated by gray asteriks

experimental data with model-predicted data:

χ2(θ) =
m

∑

k=1

d
∑

l=1

(

yexpkl − ycalkl (θ)

σ
exp
kl

)2

(21)

where yexpkl denotes the experimental EGP data for each
observable time point k, σ

exp
kl is the measurement error

of the experimental data and was assumed to be nor-
mally distributed. Here 5 data sets that originated from
the experimental and simulated data (Figs. 5, 6, 7, 8 and 9)
were treated as experimental data

(

yexpkl
)

.
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The ycalk are calculated EGP values at time points when
experimental data were measured, m is the number of
time points and d is the number of meal segments.
In the PL procedure, the parameters were calculated

numerically:

θ̂ = arg min
[

χ2(θ)
]

, (22)

where the value χ2(θ̂) corresponds to the maximum like-
lihood estimation for Gaussian measurement noise. The
PL is determined by an iterative procedure where the
first of the parameters is slightly shifted from its optimal
value [31, 32] whereafter the other parameters are fitted
again. Then the parameter is shifted again and the other
parameters are fitted again. The shifting is done both
towards smaller values, and towards higher values. This
procedure for a given parameter will end in either direc-
tion when a threshold in the likelihood is met. After that,
the procedure is repeated for the other parameters. The
likelihood-based confidence interval for a parameter was
calculated to define a confidence region [31, 33]:

{θ | χ2(θ) − χ2(θ̂) < �α} with �α = χ2(α, df ),
(23)

with df the number of degrees of freedom and α the con-
fidence level. The df gives for df=1 the point-wise and for
df=4 (number of fitted parameters) the simultaneous con-
fidence interval, both to the confidence level α of 0.68,
which corresponds to one standard deviation.
A parameter is identifiable if the confidence interval

[σ−, σ+] of its estimate θ̂ is finite. This indicates that
this parameter can be calculated from experimental data
sets. Practical non-identifiability occurs when a parame-
ter shows a likelihood-based confidence region which is
infinite extended in the direction of θ , even if the like-
lihood has a unique minimum for this parameter [31].
The confidence interval of a practically non-identifiable
parameter is not automatically infinitely extended to both
sides; a finite lower or upper bound of the confidence
interval [σ−, σ+] can still exist. Resolving a practi-
cally non-identifiable parameter is possible by increas-
ing the amount and quality of experimental data and/or
the choice of the time points [31]. Structural non-
identifiability occurs if the confidence interval is infinite to
both sides. Structural non-identifiability cannot be solved
by a more accurate experimental data set, and indicates
that there is missing information [31].
With this method, obtained parameter values were

inspected on the deviations from χ2(θ̂) and if the corre-
sponding predicted model observable (ycalkl ) was in agree-
ment with experimental noise, assumed to be yexpkl ∗ 0.1 +
max(yexpkl ) ∗ 0.05, so as to gain information on the quality
of the model predictions.

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/s42490-019-0030-z.

Additional file 1: Preprocessing of data set 1 (experimental data
set).
Ref. [28] gives mean data input curves of 20 subjects. To test the new
procedure developed in this paper, a set of data curves for plasma glucose
(Gp), plasma insulin (Ip) and insulin secretion rate (ISR) for a single subject
needed to be generated that would produce the mean EGP data curves of
the 20 subjects.
To this end, the parameters (p), kp2, kp3 and kp4 plus additional parameters
representing the mean input data (i.e. Gp , Ip and ISR) at time points 20, 30,
60, and 90 minutes for 3 meals (see below), were optimized using the
gradient-based least squares solver lsqnonlin in MATLAB (see Additional
file 1: Figure S1). This was performed by minimizing the preprocessing
experimental data objective function (Eq. 24):

Obj(p) =
√

(EGPcalci,j (p, t) − EGPexpi,j (t))2, (24)

wherein the function Obj is defined as the squared difference between the
Dalla Man [20] model output (EGPcalci,j ) and experimental EGP (EGPexpi,j ) for
every time step, i, and for breakfast, lunch and dinner, j. For experimental
data (EGPexpi,j ) in Eq. 24 is taken from Saad et al. [28].
The additional parameters for single-subject Gp , Ip , and ISR at t=20, 30, 60,
and 90 minutes were defined as the shifts from the mean data values and
were constrained within ±10 mg/dl, ±25 pmol/l, and ±1 pmol/kg/min,
respectively. Additional file 1: Table S1 displays the values for these shifts
that resulted from the optimization procedure. The resulting single-subject
data were used as data set 1 (Fig. 2).

Additional file 2: mATLAB code. MATLAB code of the described
methodology.
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