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Abstract

Plant-parasitic nematodes are a major problem for horticultural production, causing significant economic losses.
Chemical nematicides are a common nematode control strategy but can negatively impact the environment

and human health. In this review, we provide an overview of the use of fungi for the biological control of plant-
parasitic nematodes in horticultural crops. Fungal bio-control represents an alternative, environmentally friendly
strategy for managing nematodes. The use of fungi for the bio-control of nematodes has gained increasing attention
due to the potential benefits of selectivity, sustainability, and long-term control. Here, we discuss the different types
of fungi used for nematode management, the mechanisms of their action, the advantages and limitations of using
fungi for bio-control, and the factors affecting their efficacy. Additionally, we provide several case studies of fungal
bio-control against root-knot, cyst, and lesion nematodes in horticultural crops. The review concludes with a discus-
sion of future directions and research recommendations for implementing fungal bio-control in horticultural crops.

Keywords Fungi, Biological control, Nematode, Horticultural crops, Long-term control

Background

Plant nematodes are the most common phytopathogens,
comprising 80—90% of eukaryotic soil microbiota (Rueda-
Ramirez et al. 2022; Khan 2023). They can, however, also
seriously harm crops, causing large losses for the agricul-
tural and horticulture sectors. Over 4100 plant-parasitic
nematodes (PPN) species have been found. A few genera
are major plant pathogens, whereas others affect a lim-
ited range of crops and significantly impact economi-
cally important crops. Plant nematodes are suspected of
being responsible for a forecasted 12.3% ($157 billion)
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decrease in worldwide output. Crop roots are infected
by plant-parasitic nematodes, which feed on the root tis-
sues and interfere with the intake of nutrients and water
(Sikder and Vestergard 2020). This may cause wilting,
yellowing, stunted growth, and lower yields. The impact
of nematode damage on crops is exacerbated by the fact
that some nematode species are also plant virus vectors
(Hoysted et al. 2017; Desmedt et al. 2020).

Numerous nematode management techniques have
been developed for the long-standing recognition of
nematodes’ negative effects on crops and soil health. The
potential viability of these tactics may be compromised
due to their economic inefficiency, as well as the potential
loss of resistance over time. This resistance is attributed
to the significant diversity seen in the parasitism genes of
nematodes, along with the ongoing challenge of identify-
ing plant nematode resistance genes. The use of chemi-
cal nematicides, which have historically been utilized to
control nematodes, is being questioned more and more
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because of worries about the effects on the environment
and the emergence of resistance (Desaeger et al. 2020;
Poveda et al. 2020; Sasanelli et al. 2021). The suppression
of cyst nematode populations can be achieved by using
many taxonomically varied antagonistic fungi widely
distributed throughout the fungal kingdom. This accu-
mulation of fungi can ensnare and parasitize nematodes
(Nordbring-Hertz et al. 2001; Saxena 2018). A specific
subset of these fungi, known as egg parasites, exhibits a
parasitic relationship with stationary PPNs by targeting
their eggs and female individuals. This sub-group infects
the host using individual hyphae or specialized infection
structures such as the appressoria (Ashrafi et al. 2017).
The female individuals of cyst nematodes provide a viable
target for possible assault by nematophagous fungi. Dur-
ing nematode development, an immature female destroys
the roots, matures, lays eggs, and eventually dies as a
cyst; this cyst can persist in the soil as an infective agent
for several years without a host plant. This procedure
results in an extended duration of female and cyst nema-
todes being subjected to various species of egg-parasitic
fungi (Ashrafi et al. 2017; Haj Nuaima et al. 2021).

A number of these fungi have been shown to exhibit
a multifunctional lifestyle in the context of interactions.
Some fungi (Lecanicillium lecanii, Pochonia chlamydo-
sporia, and Purpureocillium lilacinum) exist as endo-
phytes of the host plant while also acting as pathogens
for nematodes or insects (Schouten 2016). Some other
species of fungi (Exophiala pisciphila and Pyrenochaeta
terrestris) parasitize the nematode eggs (Chen and Chen
2002). Recent studies reported the endophytic fungi
Exophiala salmonis and Polydomus karssenii from the
roots of Paris polyphylla and E. radices from the roots
of Microthlaspi perfoliatum (Wang et al. 2013; Macia-
Vicente et al. 2016; Ashrafi et al. 2023). Similarly, Polyphi-
lus frankenii and Polyphilus sieberi have been used as
nematode antagonistic fungi (Wennrich et al. 2023). Two
new species under consideration are Laburnicola nemat-
ophila and L. radiciphila, which show endophytic inter-
actions with plant roots and parasitic interactions with
nematode eggs (Knapp et al. 2022). Consequently, there is
an increasing interest in developing ecologically accepta-
ble and sustainable strategies for nematode control, such
as bio-control employing fungi and other soil bacteria
(Abd-Elgawad and Askary 2018; Bhat et al. 2023). In this
review, we will examine the role of fungi in controlling
nematodes in soil and crops, explore the mechanisms of
nematocidal action, and discuss the advantages and limi-
tations of using fungi for nematode management.

Lifecycle of nematodes and their damage to crops
Nematodes are a highly diverse and abundant group of
organisms that belong to the phylum Nematoda. The life
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cycle of nematodes is a complex process that comprises
several stages, including one embryonic stage, four to five
larval phases, and an adult stage (Fig. 1). The body size
of larvae grows with each molt, finally attaining sexually
mature adult size. First is the egg stage, during which the
adult nematode reproduces sexually or asexually, laying
eggs that are either fertilized or unfertilized. The eggs of
nematodes are typically small, oval-shaped, and covered
in a protective layer (Mathison and Pritt 2018). Second
is the larva stage, during which the eggs hatch into lar-
vae, which emerge from the egg as small, worm-like
organisms. The larvae have a body structure similar to
that of the adult nematode but smaller in size. They may
go through several molts before reaching the next stage
(Poinar 2012). Third, as the larvae continue to grow, they
eventually reach the juvenile stage. During this stage, the
larvae mature into young adult nematodes. This stage is
characterized by the development of reproductive struc-
tures and the ability to reproduce (Hand et al. 2016; Karp
2021). In the final stage of the life cycle, the adult nema-
tode reproduces and lays eggs, starting the cycle again
(Mkandawire et al. 2022). The adult nematode is respon-
sible for perpetuating the species and maintaining the
population. In addition to these stages, some species have
additional life cycle stages, such as the infective stage.
This stage occurs in parasitic nematodes and is charac-
terized by the development of specialized structures
(white cysts and crystal structure) that allow the nema-
tode to infect its host and reproduce (Gang and Hallem
2016; Vlaar et al. 2021).

Many nematodes can cause significant damage to hor-
ticultural crops, such as vegetables, fruits, and ornamen-
tal plants (Table 1). Numerous ways exist for nematodes
to destroy crops. Some nematode species are plant para-
sites that feed on crop roots, damaging the root system
and impairing the plant’s capacity to absorb water and
nutrients, leading to the plant’s eventual death (Pulavarty
et al. 2021). Some other nematode species can result in
the establishment of galls, which are swollen, deformed
growths that appear on the roots or stems of crops. Galls
prevent plants from absorbing water and nutrients,
which causes stunted growth and decreases yields (Ber-
nard et al. 2017). Additionally, some species of nema-
todes act as vectors, transmitting plant pathogens from
one plant to another and causing soil-borne diseases that
reduce crop yields and lead to plant death (Gamalero and
Glick 2020; Wielkopolan et al. 2021).

Fungi as biological control agents

Bio-control is a strategy used to manage pests and dis-
eases in agriculture and horticulture by utilizing natural
predators and pathogens to control pest populations. In
the context of managing nematodes, bio-control refers to
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Table 1 Prevalence and diversity of nematode-induced diseases in horticultural crops

Nematode Scientific Affected Symptoms References

disease name crops

Root knot nematode Meloidogyne spp. Tomato, pepper, cucumber,  Stunted growth, yellowing (Philbrick et al. 2020;
eggplant, beans, melons, of leaves, wilting, root galls Sikandar et al. 2020; Hajji-
squash, and many other Hedfi et al. 2022)
crops

Citrus nematode Tylenchulus Citrus trees Stunted growth, yellowing (Verdejo-Lucas and McK-

semipenetrans

Northern root knot nema-
tode

Meloidogyne hapla

Columbia lance nematode Hoplolaimus columbus

vegetables

Sting nematode Belonolaimus longicaudatus

strawberry

Carrots, beets, parsnips,
lettuce, spinach, onions,
and other crops

Turfgrass, ornamentals,

Sweet potato, turfgrass,

leaves, root damage, fruit
drop

enry 2004; Nasir et al.
2021)

Stunted growth, reduced (Hussain and Zouhar 2017)

yield, root galls

Stunted growth, chlorosis, (Garcia et al. 2022)

root damage

Root damage, plants become (Grabau et al. 2022)
stunted, wilt, and with a

severe infestation, die.

the use of nematode-trapping fungi, bacteria, and other
nematode-parasitic organisms (Table 2). Nematodes are
preyed upon by these natural predators, which lower
their population and limit crop damage (Nyaku et al.
2017; Liang et al. 2019; Zhang et al. 2020). Incorporation
of fungi into cropping systems can be an effective way to
reduce nematode populations and improve plant health
(Collange et al. 2011). Fungi have adopted several differ-
ent mechanisms against nematodes.

Direct mechanisms employed by fungi to combat
nematodes

There are reportedly over 100,000 species of fungi, and
there are undoubtedly many more that have yet to be
found and identified. Among them, a small group of
microfungi that can capture, kill, and digest nematodes
are called nematophagous fungi (NF) (Nordbring-Hertz
et al. 2001). They live on the exterior or interior of the
host organism, exploiting it for nutrition. Nematopha-
gous fungi are crucial agents that balance the nematode
population by parasitizing, capturing, and poisoning in
the natural world. They use particular traps for catch-
ing, conidia for adhering, and hyphae tips for parasitizing
females and eggs or generating toxins to attack nema-
todes (Fig. 2). On this basis, the NFs have been tradi-
tionally categorized into four groups: (1) predatory fungi
use specialized structures, (2) egg parasitic fungi invade
nematode eggs or females with their hyphal tips, (3)
endoparasitic fungi use their spores, and (4) toxin-pro-
ducing fungi immobilize nematodes before invasion (Liu
et al. 2009; Abd-Elgawad and Askary 2018; Rahman et al.
2023). G protein-coupled receptors are the most com-
mon conserved signaling pathway involved in trap for-
mation in response to several environmental stimuli. The

G protein B subunit gpbl mutant in C. elegans exhibits
impaired functionality, particularly affecting trap forma-
tion (Li et al. 2007; Yang et al. 2020). G protein recep-
tors coordinate with mitogen-activated protein kinases
(MAPK) in trap formation. One of MAPK cascade SLT2
was found to be involved in trap formation in filamen-
tous fungi A. oligospora (Zhen et al. 2018). The cAMP-
dependent protein kinase A signaling pathway is also
involved in trap formation. The downstream genes of the
cAMP/PKA pathway were downregulated in ras2 and
rheb mutants (Yang et al. 2021).

Predatory fungi

Predatory fungi use specialized hyphal structures as traps
to capture nematodes (Fig. 3). The nematode’s cuticle is
damaged by the traps produced by the mycelium of the
fungi. The hyphae spread throughout the interior of the
worm body and create a penetration peg. Eventually, the
hyphae develop over the exterior of the colonized nema-
todes (Nordbring-Hertz et al. 2001). Adhesive branches,
adhesive networks, adhesive knobs, constricting rings,
and non-constricting rings are all structures (Fig. 3) used
by the trapping fungi to entrap nematodes (Jiang et al.
2017). Compared to regular hyphae, adhesive traps have
a longer lifespan (Bedekovic and Brand 2022). These
structures (traps) are used by over two hundred species
of fungi (spread among the Zygomycota, Basidiomycota,
and Ascomycota) to catch free-living nematodes in soil
(Liu et al. 2009). More than 80% of the nematode-trap-
ping fungi in the Ascomycota belong to the Orbiliaceae
family; however, due to relatively inadequate isolation
and culture methods, nematode-trapping fungi within
Zygomycota have not been well studied (Saikawa 2011).
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Fig. 2 Mechanism of fungi as a bio-control against nematodes. Dendritic cell activating receptor (DCAR1), a part of the defense mechanism,
is a G protein-coupled receptor that binds to endogenous ligand 4-hydroxyphenyl lactic acid (HPLA), which activates G12 a protein. This protein
undergoes activation via the conserved p38 mitogen-activated protein kinase (MAPK) pathway to produce antimicrobial peptides released

in the epidermis of the nematode (Zugasti et al. 2014)

Adhesive branches Adhesive branches, also known
as adhesive columns, are the simplest trapping organs
in terms of morphology. These branches consist of one
to three cells that simply join to form adhesive rings or
networks with two dimensions that look like crochet or
lines. The nematodes are trapped if they come into con-
tact at any point with the thin adhesive layer that com-
pletely envelops these branches. As these branches are
often close together, a nematode will quickly become
attached to other branches during the struggle to break
free. These are typical trapping mechanisms of Mona-
crosporium cionopagum and Momnacrosporium gephy-
rophagum (Saxena 2018). Dactylella cionopaga is the
most commonly isolated species from temperate soils
with sticky branches (Poinar 2012). M. cionopagum
produces sticky branches that trap and immobilize the
sugar beet cyst nematode Heterodera schachtii (Anders-
son et al. 2014). Similarly, Gamsylella gephyropaga

produces adhesive branches to trap nematodes (Zhang
et al. 2014).

Adhesive hyphal network An adhesive network is a
highly dispersed trap formed by a vertical lateral branch
that consists of three-dimensional complex networks and
develops and grows 20-25 pum from the primary hypha
(Niu and Zhang 2011). Adhesive networks are formed by
bending a single lateral branch and can fuse with paren-
tal hyphae. More lateral hyphae are produced from the
parental hyphae, or the loop is formed to produce more
loops. Nematodes are attracted to the surface of the net-
work, which is covered with a fine layer of adhesive. A.
oligospora is the most common species of fungi found to
form this type of trapping structure worldwide (Wang
etal. 2023).
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Adhesive knobs Adhesive or sticky knobs are mor-
phologically unique cells covered with an adhesive
film. When the nematode comes into contact with the
adhesive mass, which has formed a thick pad, the fun-
gus takes over, significantly increasing the attachment
area and ensuring that the captured nematode is firmly
bound. The penetration of fungus into the nematode
body is a combination of enzymatic and physical activ-
ity. For example, the synthesis of collagenase may help
the fungus to penetrate the nematode’s cuticle, but the
added strength and hardness of attachment provided
by the thick sticky pad is necessary if the penetrating
hyphae are to reach the cuticle (Poinar 2012). Assimila-
tive hyphae then emerge from the newly formed globular
infection bulb to consume the nematode’s internal organs

(Bahadur 2021). Dactylellina arcuata, D. copepodii, Dac-
tylella asthenopaga, and D. ellipsospora produce adhesive
knobs to capture nematodes (Jiang et al. 2017). Similarly,
All Basidiomycota-trapping fungi use spores and adhe-
sive knobs (Thorn et al. 2000).

Non-constricting rings Non-constricting rings are
three-celled rings that grow on a slender support stem
from prostrate septate hyphae. They are passive in the
process of nematode predation. The point of contact
between the stalk and the ring was found to be weak-
ened during the nematode’s struggle to escape, and the
ring often breaks off, suggesting that the fungus wants
the captured nematode to escape with the non-constrict-
ing ring, which is tightly wrapped around the prey body.
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This appears to be a preferred method of achieving wide
dispersal in the soil (Poveda et al. 2020). Fungi that pro-
duce non-constricting rings, such as Dactylaria candida
and Dactylella lysipaga, often form sticky knobs and
capture nematodes through non-constricting rings (Wu
et al. 2012). A similar pattern has been observed with
Drechslerella daliensis (Su et al. 2008).

Constricting rings Constricting rings are circu-
lar hyphal branches, usually consisting of three cells.
They are the most sophisticated traps and actively cap-
ture prey. When a nematode enters the ring, the three
cells quickly triple their volume, seal the ring, and hold
the nematode in place. Hyphae then enter the body and
consume the nematode (Liu et al. 2012). The volume of
the cells forming the ring is likely to increase as a result
of rapid water uptake (Feng et al. 2016). The mega-traps
of D. brochopaga mutants are rings eight times the size
of normal traps, and it was found that each cell releases
drops of fluid at the expense of cell volume (Liu et al.
2012). Water from the atmosphere can easily move in
and out of these cells by changing the relative humidity
of the environment. There is also a relationship between
the ambient humidity and the frequency of ring closures.
It has been investigated that the water source is mainly
exogenous, although it is initiated by stem cells or myce-
lium (Liu et al. 2022). This view is supported by the dis-
covery that rings can continue to spread effectively even
after being detached from the initial source (stem) over
which they first developed (Barron and Thorn 1987).
Moreover, there was no visible movement of intracellular
components after stalk cell closure, suggesting that water
is reserved for the atmosphere. This hypothesis is reason-
able, as live worms are typically covered by a thin layer
of water, which may provide sufficient fluid for ring clo-
sure. In addition to physical methods of inflation, chemi-
cal induction of ring closure has also been observed in D.
brochopaga (Dowsett et al. 1977), whose traps expanded
within 10 to 15 seconds when cultures of this fungus
were exposed to solutions containing methanol, ethanol,
propanol, butanol, or chlorobutanol vapor. On the other
hand, benzene, ether, and chloroform had no effects,
suggesting that some unknown factors controlled this
extraordinary event (Zachariah 1989). Twelve species of
hyphomycetes have been identified as forming constrict-
ing rings, varying in size from 20 to 40 um internal diam-
eter (Poinar 2012).

Egg and female parasitic fungi

These fungi use appressoria, lateral mycelial branches,
and penetrating pegs to parasitize eggs, females, and
other growth stages of PPNs (Lopes et al. 2021). The
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parasitism of ten isolates of Pochonia chlamydosporia
was assessed in vitro against the eggs of Globodera pal-
lida, with pathogenicity ranging from 34 to 49%. Impul-
sive hatching was observed when P chlamydosporia
isolates parasitized immature eggs more aggressively
than eggs with second-stage juveniles. The efficacy of
Beauveria bassiana 08F04 on Heterodera filipjevi in vitro
was investigated, and significant differences in growth
rate and bio-control potential were found between some
of the transformants, mainly G10. Also, the use of wild-
type Beauveria bassiana 08F04 and transformant G10
significantly minimized the population of cereal cyst
nematodes (female) in the roots (Zhang et al. 2020). Sim-
ilarly, in a greenhouse experiment, the AMF Glomus etu-
nicatum on Heterodera glycines caused a 28% reduction
in female nematodes in the root systems of mycorrhizal
plants, compared to the untreated roots, suggesting that
G. etunicatum encourages host plants to tolerate the
presence of the soybean cyst nematode (SCN) (Benedetti
etal. 2021).

Endoparasitic fungi

Endoparasitic fungi produce spores (conidia, zoospores)
to infect nematodes. The spores either are ingested by
nematodes or adhere to the nematode epidermis before
the infection (Braga and de Aratjo 2014; Zhang et al.
2020). Drechmeria coniospora is a nematode-aggressive
endoparasitic fungus. The strain YMF1.01759 had high
infection efficiency against nematodes. It inhibited egg
hatching, infected nematodes with spores, and produced
active metabolites to kill nematodes (Wan et al. 2021). In
greenhouse experiments, D. coniospora can reduce the
number of root-knot nematodes forming galls on toma-
toes and alfalfa (Liu et al. 2009; Wan et al. 2021). Studies
have shown variation in the number of conidia produced
by fungi on a single infected nematode. D. coniospora
fungi produce a large number of conidia compared to
hyphal material, which produces 10,000 conidia, and Hir-
sutella rhossoliensis produces 100—1000 conidia on each
infected nematode. Upon infection, conidia rapidly gemi-
nate, and assimilative hyphae grow and ultimately pen-
etrate the outer layer of nematodes and enter their body.

Toxin production

Some nematophagous fungi produce toxins that kill nem-
atodes. Toxin-producing fungi come from a wide range
of orders and families. The fungus attacks nematodes
without physical contact by secreting inhibitory metabo-
lites. Once the nematodes immobilized, the hyphae pen-
etrate their cuticle. Fungi that produce toxins are mostly
basidiomycetes. Many Pleurotus species produce toxins
with nematotoxic activity. For example, P. ostreatus pro-
duces trans-2-decanoic acid, a compound derived from
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linoleic acid that is toxic to insects, nematodes, and
other fungi. It is important to note that basidiomycetes
are not the only fungi that produce such toxins; certain
fungi produce toxins that are harmful to nematodes but
are not nematophagous. These compounds have a wide
range of chemical properties, including simple fatty acids
and other organic acids such as lactone pyrones, anth-
raquinones, benzoquinones, alkaloids, furans, peptaibi-
otics, and cyclodepsipeptides. The mechanisms of these
toxins against nematodes are diverse and multifaceted,
as shown by recent studies on the basidiomycetous fungi
(Coprinus comatus and Stropharia rugosoannulata) (Luo
et al. 2006).

Enzymes of NF

Physical barriers are present in the composition of
nematodes, protecting them from the activities of natu-
ral predators (Ekino et al. 2017). NF can overcome this
barrier by penetrating the nematode cuticle and egg-
shell using mechanical and enzymatic (protease and chi-
tinase) means (Liang et al. 2010). There is an abundance
of proteins belonging to these enzymes. The key enzymes
involved in cuticle degradation are alkaline and neutral
serine proteases, which catalyze the hydrolysis of the
peptide bonds of cuticle proteins (Rao et al. 1998). Serine
proteases hydrolyze peptide bonds by using a specifically
triggered serine residue in the substrate-binding pocket
(Siezen and Leunissen 1997). Alkaline serine protease
induced cuticle destruction within hours and inhibited
the nematode Panagrellus redivivus (Yang et al. 2005).
Neutral serine protease produced by A. oligospora can
control Haemonchus contortus and Caenorhabditis ele-
gans in vitro (Junwei et al. 2013). High levels of serine
protease produced by the fungus Monacrosporium thau-
masium are destructive to Meloidogyne javanica eggs (de
Souza Gouveia et al. 2017). Serine protease is, therefore, a
vital enzyme in the fungus-initiated infection process. In
addition, the shell of nematode eggs is rich in chitin and
proteins. Endochitinases and exochitinases catalyze the
hydrolysis of glycosidic linkages between the N-acetyl-
glucosamine groups of chitins (Tikhonov et al. 2002).
M. thaumasium is an NF that produces chitinases and
showed nematocidal activity against the nematode Pana-
grellus redivivus (de Freitas Soares et al. 2014; Soares
et al. 2015). Furthermore, these enzymes have shown
nematocidal activity alone in the absence of fungi (Soares
et al. 2015). Thus, chitinases also play an important role
in infection and the digestion of shells (Khan et al. 2004).

Fungal-induced defense against nematodes

Some fungal species, such as Trichoderma, mycor-
rhizal, and endophytic fungi, can induce plant resist-
ance against nematodes. This is an indirect mechanism
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that fungi mitigate the harm caused by plant-parasitic
nematodes (Martinez-Medina et al. 2016; Kubicek et al.
2019). Trichoderma’s alteration in transcripts, pro-
teins, and metabolites leads to systemic defense stimu-
lation, enhancing the plant’s immunological response
for quicker reactions to future pathogen attacks. As a
result, the likelihood of the disease spreading is reduced
(Mendoza-Mendoza et al. 2018). This induced systematic
resistance (ISR) is controlled by the hormone (JA/ET/
SA) signaling pathways (Fig. 4). SA signaling is reduced
during the first phases of M. javanica infection in tomato
roots. Conversely, the response mediated by JA/ET is
stimulated in tomato roots treated with the fungus, sug-
gesting that Trichoderma triggers the activation of ISR
inside the plant (Martinez-Medina et al. 2017). However,
new research has shown that the SA route plays an active
role in this regulation (Jogaiah et al. 2018).

Mycorrhizal fungi can also activate ISR in plants, pro-
tecting against nematodes, as evaluated by multiple stud-
ies (Vos et al. 2012a; Xu et al. 2019). The introduction of
Funneliformis mosseae to tomato roots decreased infec-
tion rates of M. incognita and Pratylenchus penetrans by
modifying the release of substances from the roots. These
mechanisms involve the activation of specific genes
responsible for encoding chitinases, PR (pathogenesis-
related) proteins, enzymes that aid in the detoxification
of ROS (which accumulate due to nematode-induced
cell hypertrophy and death), such as glutathione S-trans-
ferase and superoxide dismutase (SOD) (Sharma and
Sharma 2017; Balestrini et al. 2019). Similarly, the split
root system methodology has been utilized to study sys-
temic resistance caused by endophytic fungi, such as F
oxysporum against M. incognita in tomatoes and bananas
against Radopholus simili (El-Fattah Adnan Dababat
and Alexander Sikora 2007; Martinuz et al. 2015). Root
nematodes may be effectively controlled with the help of
bio-control microorganisms. The endophytic fungi that
possess the ability to produce nematotoxic metabolites
have significant promise as viable biocontrol agents. By
lowering nematode penetration, postponing develop-
ment, or limiting reproductive potential, these fungi can
efficiently inhibit and suppress nematodes (Grabka et al.
2022). Endophytic fungi such as Acremonium scleroti-
genum (Yao et al. 2023), Neotyphodium coenophialum
(Choi et al. 2022), and Chaetomium globosum (Bairwa
et al. 2023) play pivotal roles in regulating nematode
pathogenesis in various crops. The fungi and nematodes
compete for space and nutrients in the soil as both are
required for survival. Metabolites released by plants are
also overtaken by fungi and nematodes for their survival.
Nematodes do not decompose organic matter but act as
parasites for plants, while fungi decompose organic mat-
ter available to plants (Brady et al. 2008). The plants take
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in the soil

deep roots to allocate carbon and other nutrients to hori-
zontal soil volume (Iversen et al. 2011).

Biological control against nematodes in horticultural crops
Fungal bio-control has been studied and applied in vari-
ous horticultural crops with promising results. Many
notable case studies have been reported. For example, the
application of certain fungi P. lilacinus in tomatoes can
effectively reduce populations of root-knot nematodes,
resulting in improved plant growth and yield (Moreno-
Gavira et al. 2020; Giri et al. 2022). In another study of
tomatoes, a strain of the fungus Verticillium chlamydo-
sporium has been found to control root-knot nematodes
effectively. This fungus colonizes the roots and nematode
galls, reducing the nematode population and improving
plant health. One study showed that the application of
the fungal species T. harzianum and Gliocladium virens
in tomato crops reduced root-knot nematode popula-
tions and improved plant growth and yield (Khan et al.
2022; Tyskiewicz et al. 2022). Additionally, Phanerochaete
chrysosporium has been used to control the population
of nematodes (Du et al. 2020). In carrots, the use of the
fungus G. virens has been shown to reduce populations

of dagger nematodes, resulting in healthier and more
productive crops (Villate et al. 2012). Similarly, in straw-
berries, the application of fungal bio-control agents
(Aureobasidium pullulans) has effectively reduced popu-
lations of root-lesion nematodes, leading to improved
plant growth and fruit yield (Hong et al. 2022). Thus, the
application of the fungus can significantly reduce nema-
tode populations and improve plant growth and yield.

In controlling cyst nematodes, the fungus P. lilacinum
has been shown to infect and parasitize the nematode
eggs, effectively reducing the hatching rate and nema-
tode population in the soil (Rumbos et al. 2008). The
fungal species H. rhossiliensis has been shown to con-
trol potato cyst nematodes (Gartner et al. 2021; Dubovs-
kiy et al. 2023). In ornamental crops, such as roses and
chrysanthemums, strains of the fungus P. lilacinum have
been found to control root-knot nematodes effectively
(Sanchez and Cardona 2018).

Fungal control against root-knot nematodes

Root-knot nematodes are one of the most destructive
plant-parasitic nematode species, causing extensive dam-
age to root systems and reducing crop yields. The fungus
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Metarhizium anisopliae has been shown to effectively
control root-knot nematodes in tomato, cucumber, and
eggplant crops (Youssef et al. 2020; Panyasiri et al. 2022).
Besides, P lilacinum is commonly used to control root-
knot nematodes in tomatoes, pepper, and cucumber
(Osman et al. 2020), and Verticillium lecanii has been
shown to suppress root-knot nematodes in several veg-
etable and ornamental crops (Uddin et al. 2023). Addi-
tionally, several Trichoderma species have been used to
suppress root-knot nematodes in tomatoes and other
crops (d’Errico et al. 2022); Coniothyrium minitans has
been successfully used in several crops, including toma-
toes, cotton, and peanuts (Forghani and Hajihassani
2020); Pasteuria penetrans species, which can infect the
root-knot nematode larvae and form spores inside the
nematode body (Kariuki and Dickson 2007), has been
demonstrated to be efficient at lowering root-knot nema-
tode populations in crops like tomatoes, peppers, and
cotton. The genus Arthrobotrys spp., containing numer-
ous species that produce sticky traps to capture and
eliminate root-knot nematodes, has been demonstrated
to lower nematode numbers in crops like tomatoes and
cotton (Philbrick et al. 2020).

Fungal control against cyst nematodes

Cyst nematodes cause severe economic loss and are a
pest of several crops worldwide. Fungus bio-control has
also been used to suppress cyst nematode populations,
G. virens have been used for bio-control of cyst nema-
todes in a variety of crops, including potato, cotton, and
soybean. Trichoderma species can reduce populations
of cyst nematodes in crops such as tomatoes and cotton
(Khan et al. 2022; Mhatre et al. 2022). Penicillium funicu-
losum has also been used to reduce populations of cyst
nematodes in tomato and cucumber crops (Martinez-
Beringola et al. 2013). Other examples include Pythium
oligandrum, which has been used for bio-control of cyst
nematodes in crops such as tomato and cotton (Luca
et al. 2022), Coniothyrium minitans in crops such as soy-
bean and potato (Sun et al. 2022), Hirsutella minnesoten-
sis in crops such as soybean and potato (Sun et al. 2015),
and Metarhizium anisopliae in a variety of crops includ-
ing cotton, soybean, and tomato (Liu et al. 2022).

Fungal control against root-lesion nematodes

The majority of root-lesion nematodes’ habitat is within
plant roots, making them difficult biological control tar-
gets (Stirling 1991). However, using biological control
of nematodes in potatoes is promising, although its use
in agriculture is restricted, and its efficacy is unknown
(Palomares-Rius et al. 2014). Several “trapping” fungi
have been studied for their potential biological control
of P. penetrans, including A. oligospora, H. rhossiliensis,

Page 13 of 24

Monacrosporium ellipsosporum, Verticillium balanoides,
Drechmeria coniospora, and Nematoctonus spp. that
produce adhesive conidia; however, only H. rhossiliensis
(24-25% reduction of population) has proven to be suc-
cessful in potatoes (Timper and Brodie 1993). In a dif-
ferent investigation, H. rhossiliensis similarly suppressed
nematode penetration, resulting in a 25% reduction in P
penetrans penetration of potato roots (Timper and Brodie
1994). Similarly, the quantity of Pratylenchus brachyurus
per gram of root in pineapple was considerably reduced
by the arbuscular endomycorrhizal Glomus spp. injected
with pineapple microplants (Guillemin et al. 1994).
Another study examined the effects of AMF on nema-
todes. Potted apple seedlings were modified with several
AMEF species in the presence of nematode P. penetrans. A
positive relationship was found between the percentages
of root length when colonized by AMF species, while a
significant reduction of nematodes in the soil of the apple
seedlings was observed (Ceustermans et al. 2018). Addi-
tionally, the development of carrots was inhibited by
the root-lesion nematode P. penetrans; however, the soil
densities of P. penetrans were reduced by 49% through
soil inoculation with Glomus spp. spores (Talavera et al.
2001), and similarly, G. mosseae systematically reduced
the soil densities of P penetrans in tomatoes (Vos et al.
2012b). Moreover, AMF mitigated the damage caused by
Pratylenchus coffeae to banana cultivars (Musa spp.) in
their roots (Elsen et al. 2003a, b). These case studies dem-
onstrate the potential of fungal bio-control as a valuable
tool in managing plant-parasitic nematodes in horticul-
tural crops and suggest that further research and devel-
opment in this field could lead to even more widespread
adoption of this approach.

Advantages of using fungi for biological control

Using fungi as nematode control agents has several
advantages over chemical or physical control methods
(Fig. 5). The advantages of using fungi for bio-control
include selectivity, environmental safety, long-term effec-
tiveness, sustainability, and compatibility with other
management strategies, which are discussed separately
below.

Selectivity and environmental safety

One of the most significant benefits of bio-control is its
specificity. In contrast to chemical control approaches,
which can be dangerous to a broad variety of organisms,
fungi can selectively target and control nematode popu-
lations, lowering the potential of injury to non-target
organisms such as beneficial microorganisms, insects,
pollinators, and wildlife (Sandhu et al. 2012; Gill et al.
2014; Sponsler et al. 2019). This is important because
these non-target organisms play important roles in soil
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health and productivity, such as breaking down organic
matter, cycling nutrients, and maintaining soil structure
or other biodiversity. These organisms are expected not
to be killed by pesticides. Fungal selectivity also helps
reduce the risk of developing nematode populations
resistant to bio-control agents (Khan et al. 2022). When
nematodes are exposed to non-selective nematicides,
they may develop resistance over time, making it more
difficult to manage them in the future (Lima et al. 2018;
Wram et al. 2022). However, using fungal bio-control
agents, which are specific to nematodes, it is less likely
that they will develop resistance. Fungal selectivity is a
major benefit of using fungal bio-control agents for man-
aging plant-parasitic nematodes (Liarzi et al. 2016). Due
to the specificity, fungal bio-control agents are generally
more environmentally friendly than chemical control.

Long-term effectiveness

Fungal bio-control can provide long-term control of
plant-parasitic nematodes (Balla et al. 2021), which helps
reduce the need for repeated applications and improve
the sustainability of agricultural systems. Fungal bio-
control provides long-term control of plant-parasitic
nematodes through several mechanisms. First, they can
persist in the soil for extended periods, allowing them
to infect and control nematodes continuously over time
(Usta 2013). This persistence is attributed to the abil-
ity of some fungal species to form resistant structures,
such as spores and sclerotia, which can survive in the
soil for long periods. Second, fungal bio-control agents
can reproduce and spread in the soil, allowing them to
reach new areas and infect additional nematodes (Lou-
lou et al. 2022). This reproduction helps maintain and
increase the population of fungal bio-control agents in
the soil over time, providing a long-term source of con-
trol for nematodes. Third, fungal bio-control agents can
induce systemic resistance in plants, helping reduce the
impact of nematode-feeding damage. By inducing sys-
temic resistance, fungal bio-control agents protect plants
from future nematode infections and provide long-term
control of nematodes (Walters et al. 2013; Fontana et al.
2021). Finally, the integration of fungal bio-control with
other nematode management strategies, such as cultural
practices and chemical nematicides, can help to improve
the efficacy and sustainability of nematode management
in crops (Devi 2018; Yigezu Wendimu 2021).

Sustainability

Fungal bio-control is economically sustainable, particu-
larly in the long term, as the fungi can persist in the soil
and control nematode populations over multiple crop-
ping cycles (Dutta et al. 2019; Forghani and Hajihas-
sani 2020). Additionally, fungal bio-control is often less

Page 15 of 24

labor-intensive and requires fewer inputs, such as ferti-
lizer, water, and energy, than chemical control (Chaud-
hary et al. 2022). The use of fungi can help maintain soil
health by preserving soil structure, improving nutrient
cycling, and promoting the growth of beneficial microor-
ganisms (Chamkhi et al. 2022). Taken together with other
advantages shown above, fungal bio-control is a sustain-
able management strategy that offers environmental, eco-
nomic, and agronomic benefits.

Compatibility with other management strategies

Fungal bio-control can be combined with other nematode
management strategies, such as crop rotation, resistant
varieties, and chemical nematicides. The integration of
multiple management strategies allows for a more com-
prehensive approach to controlling nematodes, reducing
the risk of developing nematode populations resistant to
any single control method (Fourie et al. 2016). For exam-
ple, using a combination of cultural practices, such as
crop rotation and nematode-resistant varieties, with fun-
gal bio-control can help reduce the nematode population
in the soil over time (Xiang et al. 2018). Cultural practices
can help reduce the number of nematodes in the soil,
creating a less favorable environment for nematode sur-
vival and reproduction, while fungal bio-control agents
can directly control nematodes and help maintain the
reduced nematode population (El-Saadony et al. 2021).
Another example is the integration of fungal bio-control
with chemical nematicides. Chemical nematicides pro-
vide quick and effective control of nematodes in the short
term, while fungal bio-control can help reduce the nema-
tode population over the long term (Abd-Elgawad 2020).
This combination can help reduce the required chemical
nematicides (Kawanobe et al. 2019; Gowda et al. 2022).
Finally, fungal bio-control agents can also be used with
biostimulants, such as compost and microbial inoculants,
which can help improve soil health and plant growth
while also reducing nematode populations (Naik et al.
2020; Aioub et al. 2022; Jindo et al. 2022).

Factors limiting the efficacy of fungal biological control

The efficacy of fungal bio-control agents as a nematode
management strategy depends on several factors, which
can significantly limit the ability of the fungi to reduce
nematode populations and improve plant health. These
factors must be considered when deciding on the most
appropriate management strategy for controlling plant-
parasitic nematodes (Fig. 6). Some key factors affecting
the efficacy of fungal bio-control are discussed below.

Environmental conditions
Environmental conditions, such as temperature, mois-
ture, and light, can considerably influence the efficacy of
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biological
control

-Can trigger a plant's natural
defences

-Improves water and nutrient
absorption

-Increase stress tolerance

Effectiveness

-Sustainable and environment
friendly

-Targets a wide range of pests
and pathogens

-Can provide long-term
protection

-Does not harm beneficial
organisms

Advantages

-May require specific fungal
strains

-Requires proper application
and integration

-Effectiveness may vary with
environmental conditions

-Requires knowledge of
fungal-plant interactions
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Chemical
pesticides

-Immediate control of pests
or pathogens

-Broad-spectrum control

-Can target specific pests or
pathogens

-Quick and effective in the
short term

-Easily accessible and widely
available

-Can provide rapid knockdown
of pest populations

-May harm beneficial
organisms

-Can lead to pesticide
resistance

-Environmental and health
concerns

Fig. 6 A comparison of fungal and other management (cultural and chemical) shows fungal bio-control’s effectiveness

fungal bio-control agents (Veldsquez et al. 2018; Bamisile
et al. 2021). For example, changes in these conditions can
affect the growth and activity of fungal agents, leading
to variations in their efficacy. High temperatures or low
moisture levels can reduce the growth and viability of
fungal agents, while high moisture levels can increase the
risk of fungal disease and reduce their efficacy (Mohapa-
tra et al. 2017; Davies et al. 2021). Additionally, some
fungi may be sensitive to light and may perform poorly
in brightly light areas, which can limit their use in some

crops or growing regions (Losi and Gértner 2021). Envi-
ronmental sensitivity can bring out inconsistent perfor-
mance (Chandler et al. 2011).

Soil characteristics, such as pH, nutrient content,
and texture, also affect the efficacy of fungal bio-con-
trol agents (Neina 2019; Scavo et al. 2019; Sharma et al.
2021). Fungal bio-control agents may perform poorly in
soils with low moisture levels, as the fungi require a cer-
tain level of moisture to grow and reproduce (Dannon
et al. 2020; Stenberg et al. 2021). Similarly, some fungi
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require specific nutrients to grow and reproduce effec-
tively (Kowalska et al. 2022), so they may not work well
in a barren field. The pH of the soil can affect the perfor-
mance of fungal bio-control agents, as some fungi prefer
slightly acidic or alkaline soils, while others perform best
in neutral soils (Zhang et al. 2016; Msimbira and Smith
2020). In addition, soil structure, such as the presence of
organic matter, can also influence fungal performance by
changing the penetration and persistence of the fungal
agents in the soil (Meurer et al. 2020).

In general, if the fungi are not well-suited to the envi-
ronmental conditions of the crop or growing region,
they may not establish well or effectively control nema-
tode populations. Some fungi may require specific tem-
perature or moisture conditions to grow and control
nematodes, and if these conditions are not present, the
fungi may not perform well. Therefore, it is important to
consider the environmental conditions and select fun-
gal bio-control agents well-suited to the specific soil and
environmental conditions of the target area.

Nematode diversity and abundance

Nematode diversity and abundance play a significant
role in the efficacy of fungal bio-control of plant-para-
sitic nematodes. A high level of nematode diversity can
reduce the efficacy of fungal bio-control agents, as dif-
ferent nematode species may have different levels of sus-
ceptibility to the fungal agents (Chanu et al. 2015; Garcia
et al. 2022). In addition, high nematode abundance can
increase the challenge of controlling nematode popu-
lations, as a large number of nematodes can quickly
repopulate the soil and reduce the impact of the fungal
bio-control agent (Biittner et al. 2021; Sukhanova et al.
2022). This information can help select the most appro-
priate fungal bio-control agent and determine the best
application rate and timing to achieve the desired level of
nematode control.

Crop management practices

Crop management practices, such as tillage, fertilization,
and pest management, also impact the efficacy of fungal
bio-control agents (Manik et al. 2019; Pirttild et al. 2021).
Certain practices, including tillage or heavy pesticide
use, may disturb or kill the fungi, reducing their effec-
tiveness, while other practices, such as reduced tillage
or integrated pest management, help maintain and pro-
mote fungal populations, their distribution, and longev-
ity (Alyokhin et al. 2020; Kumar et al. 2021; Orru et al.
2021). Crop rotation is reported to result in an altered
nematode population density (Rueda-Ramirez et al.
2022). Growing crops that are not hosts for particular
nematode species lowers their numbers and enhances
the effectiveness of fungus-based bio-control treatments.
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The kind and quantity of fertilizer used on the crops
affect how well nematodes are controlled by biological
agents (El-Saadony et al. 2022). A high-nutrient environ-
ment caused by excessive use of fertilizer may encourage
the establishment of nematodes and lessen the effective-
ness of fungal bio-control treatments (Zin and Badalud-
din 2020). Irrigation techniques influence soil moisture
levels, whose impact on the effectiveness of bio-control
agents has been discussed above (Café-Filho et al. 2018;
Liineberg et al. 2019). The growth and reproduction of
fungal bio-control agents can be aided by maintaining
the ideal soil moisture levels through proper watering
techniques.

Limitations of using fungi for biological control
Fungi typically take time to establish in the soil, colonize
roots, and reduce nematode populations (Molinari et al.
2022). Furthermore, the inconsistency or slow-acting
performance of fungal agents often makes it difficult for
farmers to predict the outcome of fungal bio-control
applications. Another affecting factor is the cost. Cur-
rently, chemical nematicides are often cheaper and more
readily available. However, the production, formulation,
and distribution of fungal bio-control agents are often
complex and time-consuming, and therefore their costs
can be passed on to growers and farmers (Mawar et al.
2021). Additionally, the cost of fungal bio-control agents
can be influenced by factors such as the availability and
cost of the raw materials used to produce the fungi, the
size of the market for fungal bio-control, and the levels of
competition among suppliers (Daou et al. 2021).
Additionally, some fungal bio-control agents may be
subject to regulatory restrictions. Regulatory hurdles
can include requirements for the registration of fungal
bio-control agents, the approval of their use for specific
crops, and the establishment of performance stand-
ards (Palmieri et al. 2022). These requirements can be
time-consuming, complex, and costly to meet, and they
can limit the availability and feasibility of fungal bio-
control agents for farmers. Taken together, all these fac-
tors or limitations can have a significant impact on their
effectiveness as bio-control agents for plant-parasitic
nematodes.

Future directions and research recommendations

Further research is needed to identify the most effective
fungi for controlling certain nematode pests in horti-
cultural crops. To optimize their integration into pest
management programs, it is necessary to conduct stud-
ies to determine the compatibility of fungal bio-control
agents with other nematode management strategies,
such as chemical treatments. It is crucial to create scal-
able, affordable manufacturing techniques for fungal
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bio-control agents to make this strategy more available
and useful for growers. For fungal bio-control products
to operate better in the field, it is important to under-
stand how environmental factors like temperature and
moisture affect their efficiency. More investigation is
required to determine the long-term effects of fungal
bio-control on nematode populations and plant health
to guarantee that fungal bio-control is sustainable as a
management method. New and efficient procedures for
identifying and quantifying fungal bio-control agents in
soil and plant tissues must be developed to track their
effectiveness and enhance their application in the field.
It is also important to perform studies to assess the
capability of fungal bio-control in various agricultural
systems and to ascertain its applicability to varied agro-
ecological circumstances. The future of fungal bio-con-
trol as a viable and successful management technique
against nematode pests in horticulture crops will be
secured by implementing these suggestions.

Conclusion

This review discussed using fungi as a bio-control agent
against plant-parasitic nematodes and how fungi can
effectively reduce nematode populations and improve
plant health in horticulture crops. The emphasis was
given to thoroughly detail the key elements, includ-
ing environmental circumstances, nematode diversity
and abundance, soil properties, and crop management
practices that may impact the effectiveness of fun-
gal bio-control. Several case studies have also been
detailed, including fungi that control cyst, root-knot,
and lesion nematodes. We also discussed the pros and
cons of employing fungi for biocontrol and concluded
that despite certain drawbacks, using fungi for bio-con-
trol can be a viable and efficient method for controlling
plant-parasitic nematodes in horticulture crops when
correctly combined with other management practices.
Future studies should emphasize the importance of the
complexity of microbial communities in soil and their
interactions with other soil biotas to properly compre-
hend their potential for bio-control.
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