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Abstract 

Begomoviruses cause significant losses to a wide range of crops worldwide, and a great progress has been made in 
characterizing some noncanonical proteins encoded by begomoviruses. In the present study, a novel viral protein, 
C6, was detected in Nicotiana benthamiana plants infected with tomato leaf curl China virus (ToLCCNV). Sequence 
analyses revealed that the C6 ORF is on the complementary strand of approximately 36% reported begomovirus 
sequences with conserved amino acid sequence. ToLCCNV C6 specifically localizes to mitochondria. Analysis of dele‑
tion mutants showed that C6 possesses an internal mitochondrial targeting signal. Overall, these data uncover a novel 
begomovirus-encoded protein targeting distinct plant cell organelles.
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Background
Members of the genus Begomovirus in the family Gemi-
niviridae are plant-infecting DNA viruses that cause 
significant losses to a wide range of agronomic and hor-
ticultural crops worldwide (Hanley-Bowdoin et al. 2013). 
Begomoviruses are transmitted by the whitefly Bemisia 
tabaci (Hemiptera: Aleyrodidae), and over 400 species 
have been identified in the genus so far (Brown et  al. 
2015; Fiallo-Olivé et al. 2021). Based on geographic dis-
tribution and phylogenetic studies, begomoviruses can be 
broadly divided into the Old World (Eastern hemisphere) 
and the New World (Western hemisphere) groups 
(Rybicki 1994). According to genome organization and 
sequence similarity, begomoviruses can be further clus-
tered into monopartite and bipartite (Zerbini et al. 2017). 
The genome of monopartite begomoviruses comprises 
a circular single-stranded DNA (ssDNA) molecule of 
approximately 2.6 kb, encoding a viral coat protein (CP), 
a V2 protein, a replication-associated protein (Rep/C1), 

a transcription activator protein (TrAP/C2), a replication 
enhancer protein (REn/C3), and a C4 protein (Sunter and 
Bisaro 1991, 1992; Laufs 1995; Pooma and Petty 1996; 
Rojas et al. 2001; Fondong 2013). The genome of bipartite 
begomoviruses contains two DNA components, each of 
approximately 2.6 kb, referred to as DNA-A and DNA-B. 
The DNA-A component is equivalent to the genome of 
monopartite begomoviruses, while the DNA-B compo-
nent encodes a nuclear shuttle protein (NSP) and a cell-
to-cell movement protein (MP) (Lazarowitz and Beachy 
1999; Hanley-Bowdoin et al. 2000). In addition, begomo-
viruses are known to be frequently associated with differ-
ent types of satellite ssDNA molecules that participate in 
virus infection and symptom development (Zhou 2013; 
Li et al. 2018; Yang et al. 2019).

In recent years, a series of studies have revealed that 
in addition to the well-documented proteins, begomo-
viruses encode some noncanonical small accessary pro-
teins during the infection (Fontenelle et  al. 2007; Hu 
et al. 2020; Li et al. 2021; Chiu et al. 2022). For example, 
mungbean yellow mosaic India virus (MYMIV) encodes 
an AC5 protein of 9.2 kDa to facilitate infection through 
suppressing host post-transcriptional gene silencing 
(PTGS) and transcriptional gene silencing (TGS) (Li 
et al. 2015). A cis-Golgi localized V3 protein of 9.3 kDa, 
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encoded by tomato yellow leaf curl virus (TYLCV), is 
required for efficient virus cell-to-cell movement (Gong 
et  al. 2021, 2022). These findings collectively provide 
insight into the infection details of geminiviruses, sug-
gesting the involvement of more, yet-to-be characterized 
open reading frames (ORFs). To further investigate the 
molecular feature of begomovirus genomes, we focused 
on ORFs that have been neglected due to the small sizes 
using tomato leaf curl China virus (ToLCCNV) as a 
model. Here, an unexplored ORF in the complementary 
strand of the ToLCCNV genome, referred to as C6, was 
identified and characterized.

Results
Identification of a begomovirus‑encoded C6 protein
From the total protein of Nicotiana benthamiana plants 
infected with ToLCCNV (GenBank: AJ558119) alongside 
with its betasatellite ToLCCNB (GenBank: AJ704612), 
we recovered unique peptides corresponding to a novel 
virus protein through mass spectrometry (MS) analy-
sis (Fig.  1a, b). The identified ORF, designated as ToL-
CCNV C6, is in the complementary sense of the virus 
genome, partially overlaps with the CP and V2 ORFs, 
and encodes a polypeptide of 97 amino acids (Fig.  1c). 

To confirm that the C6 ORF was transcribed during the 
virus infection, the 556 bp ToLCCNV sequence upstream 
of the C6 translation initiation site was fused to the 
5’-end of the green fluorescent protein (GFP) reporter 
gene. An Agrobacterium tumefaciens strain harboring 
the resulting construct (pC6 (556)-GFP) was infiltrated 
in N. benthamiana leaves with a promoter-less negative 
control (pCambia-GFP) and a cauliflower mosaic virus 
35S promoter positive control (35S-GFP). Western blot 
analysis showed that the C6 upstream sequence could 
drive GFP expression (Fig.  1d). To better determine the 
promoter activity of C6 upstream sequence in the con-
text of the virus infection, N. benthamiana leaves were 
infiltrated with A. tumefaciens harboring pC6 (556)-GFP 
together with ToLCCNV/ToLCCNB infectious clones or 
empty vector (pBinplus). Confocal microscopy showed 
enhanced GFP fluorescence in N. benthamiana leaves 
co-infiltrated with pC6 (556)-GFP and ToLCCNV/
ToLCCNB (Fig.  1e). Consistent with this, Western blot 
analysis showed higher GFP protein accumulation in N. 
benthamiana leaves co-infiltrated with pC6 (556)-GFP 
and ToLCCNV/ToLCCNB compared with that in the 
control (co-infiltrated with pBinplus and pC6 (556)-GFP), 

Fig. 1  Detection and sequence analyses of a begomovirus-encoded C6 protein. a Detection of unique C6 peptides by mass spectrometry analysis 
in Nicotiana benthamiana plants infected with ToLCCNV/ToLCCNB. b MS spectrum identification of the unique-peptides 74MLDKLQVLNCEHTPKTK90 
and 1MGRLAHAFDFDMAGAIR17 in the ToLCCNV-C6 protein. c Schematic representation of the genome organization of ToLCCNV. d Western blot 
showing GFP protein accumulation at 2 days post-inoculation (dpi). Agrobacterium tumefaciens clones harboring pCambia-GFP or pC6 (556)-GFP 
at an OD600 = 1.0, or 35S-GFP at an OD600 = 0.05 were individually inoculated in N. benthamiana leaves. Actin serves as a loading control. e A. 
tumefaciens clone harboring pC6(556)-GFP was inoculated in N. benthamiana leaves in the presence of ToLCCNV/ToLCCNB or pBinplus. At 3 dpi, GFP 
fluorescence was measured and processed with the same settings. Scale bars: 25 μm. f Western blot showing GFP protein accumulation at 3 dpi. A. 
tumefaciens clone harboring pC6 (556)-GFP was co-infiltrated with ToLCCNV/ToLCCNB infectious clones or pBinplus vector in N. benthamiana leaves. 
Ponceau S staining of Rubisco shows protein loading. Numbers indicate the average GFP accumulation of three independent biological replicates
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indicating a strengthened C6 promoter activity in the 
presence of the virus (Fig. 1f ).

Phylogenetic analyses of the begomovirus‑encoded C6 
proteins
Based on the criteria that the predicted ORF locates at 
the complementary sense of the virus genome, overlaps 
with the CP and V2 ORFs, and encodes a polypeptide of 
over 40 amino acids, we identified 154 begomovirus spe-
cies, which possess an ORF at the same position as ToL-
CCNV C6, out of 424 begomovirus species (Additional 
file  1: Table  S1). Multiple amino acid sequence align-
ments of representative potential C6 proteins identified 
two hydrophobic regions and a positively charged region 
(Fig.  2a). Notably, the arginine-rich positively charged 
region of C6 proteins in the Old World begomoviruses 
is different from that in the New World begomoviruses, 
which is proline-rich and close to the N-terminus of the 
protein. Phylogenetic analyses of representative potential 
C6 proteins also unveiled that C6  proteins from the New 
World and the Old World begomoviruses were clustered 
into two separate branches (Fig. 2b). These results indi-
cate that the unexplored C6 gene is evolutionary con-
served in the begomovirus lineage.

The C6 protein is localized in mitochondria
To study the subcellular localization of ToLCCNV C6 
protein in plant cells, GFP was fused to either the N-ter-
minus (GFP-C6) or the C-terminus of C6 (C6-GFP), and 
the resulting fusion protein was transiently expressed in 
N. benthamiana leaves. The GFP fluorescence signal for 
C6, as detected by confocal microscopy, was co-localized 
with Mito Tracker Red (a mitochondrial fluorescent dye) 

and AtICP55(N100)-mCherry (a mitochondrial marker) 
to mitochondria (Carrie et al. 2015) (Fig. 3a, b and Addi-
tional file  2: Figure S1a). To further confirm the mito-
chondrial localization of the C6 protein, immunogold 
staining of N. benthamiana leaf tissues was performed. 
Gold label was detected in the mitochondria of N. 
benthamiana cells transiently expressing Flag-C6-GFP, 
while no background labeling was observed with the sec-
ondary antibody alone (Fig.  3c). In addition, co-infiltra-
tion with ToLCCNV/ToLCCNB had no obvious effect on 
the mitochondrial localization or protein accumulation 
of C6 protein at 3 days post-inoculation (dpi) (Additional 
file 2: Figure S1b). A C6 homologue in another begomo-
virus, tomato yellow leaf curl China virus (TYLCCNV, 
GenBank: AJ319675), was detected to be localized in 
mitochondria as well (Additional file  2: Figure S1c, d). 
These results collectively provide persuasive evidence 
that the begomovirus-encoded C6 protein is primarily 
localized in mitochondria.

Mapping the regions responsible for mitochondrial 
localization of ToLCCNV C6
Two types of signal peptides, the N-terminal cleavable 
pre-sequence and the internal non-cleavable sorting sig-
nals, which direct proteins from the cytosol into mito-
chondria have been identified (Chacinska et  al. 2009; 
Schmidt et al. 2010). In silico analysis of ToLCCNV C6 
with several prediction tools could not identify any clear 
N-terminal mitochondrial targeting signals. Consist-
ent with this, N-terminal GFP fusion did not interfere 
with the mitochondrial localization of C6. To evaluate 
the contribution of different regions to mitochondrial 
localization, a series of deletion mutants were generated 

Fig. 2  Sequence analyses of begomovirus-encoded C6 proteins. a Multiple amino acid sequence alignment of C6 proteins in representative 
begomoviruses. Asterisks indicate positively charged regions; triangles indicate hydrophobic regions. b Phylogenetic trees constructed based on 
the amino acid sequences of begomoviruses C6 proteins in a. Bootstrap values (%) for 1000 replicates are indicated. Virus names are shown in 
Additional file 1: Table S3
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for transient expression in N. benthamiana. Confocal 
microscopy showed that neither the N-terminus (GFP-
C6-1-36, GFP-C6-1-49) nor the C-terminus (GFP-
C6-50-97, GFP-C6-37-97) of the C6 protein exhibited 
mitochondrial localization pattern, suggesting an inter-
nal sorting signal responsible for targeting mitochondria 
(Fig. 4). The C6 truncation GFP-C6-30-97 but not GFP-
C6-37-97 was localized in mitochondria, indicating the 
importance of the residues 30–36, which contains a con-
served positively charged region, in mitochondrial tar-
geting. However, these residues are not enough to enable 
the mitochondrial targeting since the C6 truncation that 
consists of the N-terminal 49 amino acid (GFP-C6-1-49) 
showed only cytosolic distribution (Fig. 4). These results 
indicate that an internal conserved positively charged 
region and a targeting sequence located at the C-termi-
nal region of C6 function synergistically in mediating the 
mitochondrial localization of the protein.

C6 does not contribute to ToLCCNV virulence towards N. 
benthamiana
In order to test whether C6 is involved in symptom 
development, the C6 protein was ectopically expressed 
in N. benthamiana plants using a potato virus X (PVX)-
based vector. A C6 mutant with two substitutions 
(GT382CA) that introduce a non-sense mutation at the 
amino acid position 18 was generated as the negative 
control (PVX-mC6). At 8 dpi, leaf puckering and chlo-
rosis were observed in both PVX-C6 and PVX-mC6 
infected plants (Fig. 5a). Western blot analysis with an 
antibody against PVX-CP indicated that the accumula-
tion of PVX was comparable between plants infected 
with PVX-C6 and PVX-mC6 (Fig.  5b, c), suggesting 
that ToLCCNV C6 could not directly interfere with 
plant development.

To investigate whether C6 plays a role in ToLCCNV 
infection, the infectious clone of ToLCCNV with 

Fig. 3  ToLCCNV C6 protein is localized in the mitochondria of Nicotiana benthamiana cells. a Co-localization of GFP-C6 with the mitochondrial 
marker AtICP55(N100)-mCherry in mesophyll cells of N. benthamiana leaves. Scale bars: 25 μm. b Co-localization of GFP-C6 with the mitochondrial 
stain Mito Tracker Red. Scale bars: 25 μm. c Immunogold staining of Flag-C6-GFP protein in N. benthamiana mesophyll cells with (left panel) or 
without (right panel) GFP antibody. Arrows indicate gold label in the mitochondrion. Scale bars: 0.2 μm. Mt: mitochondrion. Chl: chloroplast



Page 5 of 9Wang et al. Phytopathology Research            (2022) 4:46 	

mutations that render it unable to produce C6 was con-
structed. Due to the overlapping of C6 ORF with CP and 
V2 ORFs, we were unable to generate a C6-null mutation 
without affecting neither CP nor V2 proteins. Therefore, 
a non-sense mutation in C6 at the amino acid position 18 
also resulted in an S86C mutation in CP and a V33H muta-
tion in V2 (ToLCCNV-mC6, Additional file 2: Figure S2a). 
The resulting ToLCCNV-mC6 was agro-inoculated into 
N. benthamiana together with the infectious ToLCCNB 
clone. Eight days after inoculation, both wild-type ToL-
CCNV/ToLCCNB-infected and ToLCCNV-mC6/ToL-
CCNB-infected plants exhibited strong curling of leaves 
(Fig.  5d). No statistically differences in the accumulation 
of virus coat protein and viral load were detected between 
the wild-type virus-infected and C6 mutant virus-infected 
N. benthamiana plants (Fig.  5e–g). Similar results were 
observed at 16 dpi (Additional file 2: Figure S2b–e). These 
data indicate that C6 does not affect ToLCCNV infection 
in N. benthamiana, at least in the conditions tested.

Discussion
An increasing number of studies have identified multi-
ple previously neglected virus-encoded proteins that are 
produced to facilitate begomovirus infection (Gong et al. 
2021). Here, a novel C6 protein was identified through 
mass spectrometry analysis of ToLCCNV-infected 

samples. The C6 ORF was identified in 36% begomovi-
rus species with highly conserved amino acid sequences. 
Phylogenetic analyses further indicate the sequence 
divergence of C6 proteins between the New World and 
the Old World begomoviruses. These data strongly sug-
gest that expression of C6 is a widespread feature of 
begomoviruses.

Due to the limited coding capability of mitochondrial 
DNA, the vast majority of mitochondrial proteins are 
encoded by nuclear genes and are synthesized in the 
cytosol. A large number of mitochondrial proteins are 
synthesized as preproteins with cleavable signal pre-
sequences while others contain targeting information 
in their mature sequences. The internal mitochon-
drial targeting sequences that lack consistent patterns 
are still not well characterized (Schmidt et  al. 2010). 
In this study, confocal microscopy, together with in 
silico analysis, showed that the mitochondrial target-
ing in C6 protein was not mediated by an N-terminal 
signal sequence. Instead, the C6 truncations GFP-C6-
21-97 and GFP-C6-30-97, which contain a conserved 
positively charged residues 31RRR​33 and a target-
ing sequence at the C-terminal region of the protein, 
showed mitochondrial localization. Further mutation 
analysis will help to evaluate and refine the internal 
regions responsible for targeting of C6 to mitochondria.

Fig. 4  Subcellular localization patterns of C6-deletion derivatives. Amino acid residues of C6 retained in mutants are indicated. Columns from 
left to right represent GFP fluorescence, Mito Tracker Red fluorescence and overlay. Scale bars: 25 μm. Rectangle indicates C6 truncations with 
mitochondrial localization
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Mitochondria are dynamic organelles involved in a 
wide range of cellular processes, such as energy metabo-
lism, calcium homeostasis, cell death, and innate immune 
signaling. Induced mitochondrial alternative oxidase 
(AOX) pathway promotes a systemic basal defense against 
tobacco mosaic virus (TMV) infection (Liao et al. 2012). 
However, how mitochondria react upon begomovirus 

infection and whether viruses affect mitochondrial func-
tions remain elusive. Although in our hand, the C6-null 
mutant version of ToLCCNV and the wild-type ToL-
CCNV induced identical symptom, it is still possible that 
the C6 protein could modify host mitochondrial functions 
during viral infection. Further examination of the location 
of C6 in separated mitochondrial fractions and screening 

Fig. 5  ToLCCNV C6 protein is dispensable for virulence. a Symptoms in Nicotiana benthamiana plants at 8 days post-inoculation (dpi) with PVX-C6 
or PVX-mC6. b Western blot analysis of PVX coat protein (PVX-CP) accumulation in plants infected with PVX-C6 or PVX-mC6. Ponceau S staining of 
Rubisco shows protein loading. c Quantification of PVX-CP accumulation in plants infected with PVX-C6 or PVX-mC6, analyzed from the Western 
blot images using Image J. Data are the mean of seven independent biological replicates. d Symptoms of N. benthamiana plants infected with 
ToLCCNV/ToLCCNB, ToLCCNV-mC6/ToLCCNB, or control (pBinplus) at 8 dpi. e Western blot analysis of ToLCCNV coat protein (CP) accumulation in 
systemic leaves shown in d. Ponceau S staining of Rubisco shows protein loading. f Quantification of CP accumulation in N. benthamiana plants 
infected with ToLCCNV/ToLCCNB or ToLCCNV-mC6/ToLCCNB, analyzed from the Western blot images using Image J. Data are the mean of six 
independent biological replicates. g Viral DNA accumulation in ToLCCNV/ToLCCNB, ToLCCNV-mC6/ToLCCNB infected or control (pBinplus) plants 
in d, measured by qPCR. Data are the mean of six independent biological replicates. Error bars represent standard deviation (SD). ns, no significant 
difference (Student′s t-test; P ≥ 0.05). NbActin was used as an internal reference
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of mitochondrial components that interact with C6 will 
help in understanding the function of C6.

Conclusions
We identified a novel begomovirus-encoded protein, C6, 
which is evolutionarily conserved and localized in mito-
chondria. The identification and subcellular localization 
of C6 will provide a basis for further structure-function 
studies.

Methods
Plasmids and constructs
The coding sequences of the ToLCCNV-C6, TYL-
CCNV-C6, and AtICP55 genes were subcloned into 
the pClone007 vector (TsingKe, Beijing, CN). Plant 
expression constructs (pCambia-GFP-MCS, pCambia-
MCS-GFP, pCambia-Flag-MCS, pGR106, and pBin-
plus) were digested, and C6 or its deletion mutants were 
inserted into the vector by T4 DNA ligase (Thermofisher, 
Waltham, the USA) or ClonExpress II One Step Clon-
ing Kit (Vazyme, Nanjing, CN). To generate site-directed 
mutagenesis of virus infectious clones, the sequence of 
ToLCCNV was cloned into pClone007 vector and the 
construct was amplified with the primer pair (pBin-mC6-
F/pBin-mC6-R) to introduce the ToLCCNV-mC6 point 
mutation, generating pClon007-ToLCCNV-mC6. The 
sequence of ToLCCNV-mC6 was digested with two dif-
ferent sets of endonucleases and cloned into pBinplus to 
generate ToLCCNV-mC6 infectious clone. Primers used 
in this study are listed in Additional file 1: Table S2.

Virus genome sequence analysis
Sequences of begomovirus species were obtained from 
the International Committee on Taxonomy of Viruses 
(https://​ictv.​global/​report/​chapt​er/​gemin​iviri​dae/​gemin​
iviri​dae/​begom​ovirus) and GenBank database (https://​
www.​ncbi.​nlm.​nih.​gov/​genba​nk). ORFs were predicted 
and analyzed using SnapGene. Multiple amino acid 
sequence alignments were performed using MUSCLE in 
MEGA X (https://​www.​megas​oftwa​re.​net/). Phylogenetic 
analyses were performed using the maximum likelihood 
method in MEGA X and Jones–Taylor–Thornton (JTT) 
model with 1000 bootstrap replicates. The GenBank 
accession numbers of sequences analyzed in the study are 
listed in Additional file 1: Table S3.

Agroinfiltration and virus inoculation
Plant expression constructs were transformed into 
Agrobacterium tumefaciens strains EHA105 (for transit 
expression and virus infection) and GV3101 (for PVX-
vector expression). For virus inoculation, A. tumefaciens 
cultures carrying infectious clones of ToLCCNV, ToL-
CCNB, ToLCCNV-mC6, or pBinplus empty vector at an 

OD600 = 1.0 were infiltrated into the leaves of N. bentha-
miana plants at the eight-leaf stage. For recombinant 
PVX vectors expressing C6 or C6 non-sense mutant, 
each A. tumefaciens culture was infiltrated into the leaves 
of N. benthamiana plants at the eight-leaf stage. Plants 
were then maintained in a growth chamber at 25  °C 
under a 14-h light/10-h dark photoperiod.

Mass spectrometry analysis
At 15 dpi, total protein of N. benthamina plants infected 
with ToLCCNV/ToLCCNB was extracted with protein 
extraction buffer (40 mM Tris-HCl, pH 7.5, 150 mM 
NaCl, 5 mM MgCl2, 2 mM EDTA, 5 mM DTT, 0.1% 
Triton X-100, 2% glycerol, 2mM PMSF, and protease 
inhibitor mixture), centrifuged for 10 min at 8000 g, and 
the soluble proteins were subjected for mass spectrom-
etry analysis. Polypeptides encoded by potential virus 
ORFs with length over 20 amino acids were collected 
to establish a protein database for the peptide-mapping 
searching.

DNA isolation and real‑time quantitative PCR (qPCR)
Young leaf tissues from inoculated N. benthamiana 
plants were harvested at indicated days post-inoculation. 
Total DNA was extracted using hexadecyltrimethylam-
monium bromide (CTAB) method. qPCR was conducted 
using LightCycler 480 (Roche, Rotkreuz, Switzerland) 
with SYBR Premix EX Taq (TaKaRa, Kyoto, Japan). 
Primer sequences are listed in Additional file 1: Table S2.

Western blot analysis
Total proteins were separated in SDS-PAGE gel and 
transferred to nitrocellulose membranes (GE Healthcare, 
Chicago, IL, USA). Membranes were incubated with spe-
cific primary antibodies against GFP or Actin (ABclonal, 
Wuhan, China). Monoclonal antibodies against PVX CP 
or ToLCCNV CP were generated in our lab. Horseradish 
peroxidase-conjugated goat anti-mouse IgG (Invitrogen, 
Carlsbad, CA, US) was used as the secondary antibody. 
ECL prime Western blot detection reagent (4A Biotech, 
Beijing, China) was added to the membranes for chemi-
luminescence detection using ImageQuant LAS 4000 
mini (GE Healthcare, Chicago, IL, USA).

Confocal microscopy
For subcellular localization assays, A. tumefaciens 
clones harboring designated constructs were infiltrated 
separately into the leaves of N. benthamiana plants at 
the eight-leaf stage. Subcellular localization was deter-
mined at 2 dpi under a laser scanning confocal micro-
scope FV3000 (Olympus). The excitation wavelengths 

https://ictv.global/report/chapter/geminiviridae/geminiviridae/begomovirus
https://ictv.global/report/chapter/geminiviridae/geminiviridae/begomovirus
https://www.ncbi.nlm.nih.gov/genbank
https://www.ncbi.nlm.nih.gov/genbank
https://www.megasoftware.net/
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of GFP, mCherry, and Mito Tracker Red signals were 
set to 488, 532, and 579 nm, respectively. Mito Tracker 
Red was infiltrated into N. benthamiana leaves at 2  h 
before observation. Samples were imaged using a con-
focal microscope with laser excitation at 488  nm and 
emission at 512–527 nm.

Immunogold labeling and transmission electron 
microscopy (TEM) imaging
Leaf tissues of N. benthamiana plants transiently 
expressed with Flag-C6-GFP were fixed in 100 mM 
phosphate buffered saline (PBS; pH 7.2) containing 
0.1% (vol/vol) glutaraldehyde and 3% (vol/vol) formal-
dehyde for 2 h. The samples were rinsed with 100 mM 
PBS and dehydrated in a graded ethanol series (50, 70, 
90, 100, 100, and 100%), and then embedded in Lowic-
ryl K4M resin (Electron Microscopy Sciences, Fort 
Washington, PA, USA). After cut into ultrathin sec-
tions, the samples were mounted onto nickel grids. For 
immunogold labeling and TEM imaging, the grids were 
incubated in blocking solution (BL) (50 mM PBS (pH 
7.2) containing 1.0% bovine serum albumin and 0.02% 
polyethylene glycol 2000) for 30 min at room tempera-
ture, and then incubated for 1 h in GFP polyclonal anti-
body diluted in BL for 1  h at room temperature. The 
grids were washed with PBS and then incubated with 
Protein A-gold (Sigma, St. Louis, MO, USA) diluted 
in BL for 1 h. After incubation, the grids were washed 
with PBS and sterile ddH2O, stained with uranyl acetate 
and lead citrate, and examined using an electron micro-
scope (JEM-1200EX; JEOL, Japan). The control experi-
ment was processed without the presence of primary 
antibody.
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