
Heidecker et al. AI Perspectives & Advances (2024) 6:1
https://doi.org/10.1186/s42467-023-00015-y

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Al Perspectives

Corner cases in machine learning processes
Florian Heidecker1*   , Maarten Bieshaar2    and Bernhard Sick1    

Abstract 

Applications using machine learning (ML), such as highly autonomous driving, depend highly on the performance
of the ML model. The data amount and quality used for model training and validation are crucial. If the model cannot
detect and interpret a new, rare, or perhaps dangerous situation, often referred to as a corner case, we will likely blame
the data for not being good enough or too small in number. However, the implemented ML model and its associ-
ated architecture also influence the behavior. Therefore, the occurrence of prediction errors resulting from the ML
model itself is not surprising. This work addresses a corner case definition from an ML model’s perspective to deter-
mine which aspects must be considered. To achieve this goal, we present an overview of properties for corner cases
that are beneficial for the description, explanation, reproduction, or synthetic generation of corner cases. To define
ML corner cases, we review different considerations in the literature and summarize them in a general description
and mathematical formulation, whereby the expected relevance-weighted loss is the key to distinguishing corner
cases from common data. Moreover, we show how to operationalize the corner case characteristics to determine
the value of a corner case. To conclude, we present the extended taxonomy for ML corner cases by adding the input,
model, and deployment levels, considering the influence of the corner case properties.

Keywords  Nature of corner case, Corner cases definition, Machine learning, Taxonomy

Introduction
With the spread of machine learning (ML) methods, the
number of critical systems, such as highly automated
driving, medicine, and aviation, relying on artificial intel-
ligence is increasing [1]. The influence of ML methods is
not surprising considering their impressive performance,
e.g., object detection in images [2, 3], speech recognition
[4], large language models [5], and other applications.
Nevertheless, all these tasks have something in com-
mon as they rely on data, which is often imbalanced or
incomplete, and the labels can be inaccurate or incon-
sistent [6, 7]. Interpreting and modeling the epistemic
and aleatoric uncertainty [8] of an ML model with tech-
niques such as MC-Dropout [9], Bayes by Backprop [10],

Prior Networks [11], and Deep Ensemble [12] to acquire
a trusted and valid decision is a key challenge in ML
applications.

If we want to develop an application using ML meth-
ods, data is always essential for model training, valida-
tion, and testing within the development cycle. Databases
such as [13–15] provide many different datasets for vari-
ous applications. For many smaller application areas and
less noticed niches, a dataset with an appropriate quan-
tity of labels is not available, and it is necessary to record
data or generate a synthetic dataset. Both approaches are
legitimate because there is no other way to obtain data
for developing ML models. However, no matter where
the data come from, they usually have the same problem.
The collected data only represents a part of reality and
has a particular view. The data variability in real-world
scenarios is enormous, and the collected dataset contains
some or many, but usually not all. In highly automated
driving scenarios, for example, location- and country-
specific factors such as regulations, local behavior, and
visual differences, e.g., signs and symbols, limit the com-
pleteness of a single dataset.

*Correspondence:
Florian Heidecker
florian.heidecker@uni-kassel.de
1 Intelligent Embedded Systems, University of Kassel, Wilhelmshöher Allee
71 ‑ 73, 34121 Kassel, Germany
2 Bosch Center for Artificial Intelligence, Robert Bosch GmbH,
Robert‑Bosch‑Straße 200, 31132 Hildesheim, Germany

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42467-023-00015-y&domain=pdf
http://orcid.org/0000-0003-2895-0254
http://orcid.org/0000-0002-6471-6062
http://orcid.org/0000-0001-9467-656X

Page 2 of 17Heidecker et al. AI Perspectives & Advances (2024) 6:1

Automotive datasets reveal this problem very well.
BDD100k [16], nuScenes [17], and Waymo Open [18],
for example, were recorded in the USA, KITTI [19] and
A2D2 [20] are from Germany, and ApolloScape [21] is
from China. Mapillary [22] has a slightly more global
footprint, with a small amount of footage from South
America, Asia, and Africa and a higher proportion
from the USA, Europe, and Japan. Data with rainy
weather, bright daylight, or darkness during night-
time vary widely, with more and more datasets cover-
ing these conditions. Other conditions, such as winter
scenes, are far less frequently represented in the data-
sets such as BDD100K [16]. The Canadian Adverse
Driving Conditions [23] dataset has, for example, a
strong focus on winter scenes but again has other
deficiencies. This problem can also be found in other
domains and ML applications, which may be more or
less dominant.

If the trained ML model is then deployed in an appli-
cation, an erroneous behavior may occur sooner or later,
resulting from corner cases that were not considered or
samples wrongly labeled [6, 7] during development and
testing for whatever reason. Due to the need to improve
the ML model’s performance, detecting corner cases
is becoming increasingly important for safety reasons.
Besides, safety-related aspects in critical systems, such as
highly automated driving, significantly influence how and
where ML models are used and whether the user accepts
them.

As we have a strong relationship with highly auto-
mated driving, many of the examples we have chosen
come from this area but are not limited to it. Conse-
quently, relationships, comparable examples, or the
transferability of content to other areas are possible.
However, what do we actually mean by a corner case? –
We have noticed that everyone has their interpreta-
tion and understanding [24–28]. This includes corner
case examples, associated properties, and definitions
regarding a corner case, some of which can be very dif-
ferent. In highly automated driving, we consider cases
as corner cases where the model exhibits erroneous
behavior. In Fig. 1, for example, a detection model for
vulnerable road users detects the image of a person
on the car’s advertising banner as a real person. Tech-
nically speaking, the ML model did nothing wrong by
detecting the person in the advertisement. Yet, the per-
son is not real. Figure 2 provides some more ML corner
case examples, which occur in the applied model itself
due to a lack of knowledge or because the model has
never encountered a comparable sample before, which
refers to epistemic uncertainty. Otherwise, adver-
sarial samples are also a type of ML corner case, as a

small change in the input can change the result even
if it is invisible to humans. These aspects are essential
and should be included in an ML corner case defini-
tion. How to define the term corner cases with respect
to ML is not yet conclusively clarified. In the litera-
ture, there are some starting points from software and
hardware testing [24, 25] and some definitions for ML
perspective [26–35].

In this article, we approach the topic differently and
first discuss the nature, i.e., peculiarities and properties,
of ML corner cases, whereby we have not yet seen the
bandwidth of properties in any other article. On the one
hand, we see the human view on corner cases. However,
in particular, we also look at each of the listed proper-
ties from the perspective of an ML model. Definitions of
corner cases are not new but usually have a strong con-
nection to an application [26–28]. Instead, we aim for a
more general corner case description, which is mainly
based on the particularities and properties of a corner
case. To support this verbal description, we present our
mathematical definition of a corner case and recap it on
a toy example to show the influence regarding training,
testing, deployment, and the importance of model cali-
bration. To get an overview of where corner cases can
occur, we provide an extended and, in our view, com-
prehensive taxonomy of corner cases, including hard-
ware, physics, data, methods, and much more.

To put it in a nutshell, the main contributions of this
article are:

•	 Peculiarities and properties to describe the nature of
ML corner cases.

•	 General corner case description and mathematical
corner case definition illustrated on a toy example.

•	 Providing various corner case examples during the
discussion of their nature, description, definition, and
taxonomy.

Fig. 1  Corner case example: The image shows an advertisement
with a person printed on a cab. The person in the advertisement
is wrongly classified and represents a corner case for the ML model
because the person is not real

Page 3 of 17Heidecker et al. AI Perspectives & Advances (2024) 6:1 	

The remainder of this article is structured as fol-
lows: Section “Nature of corner cases” provides an
overview of peculiarities or properties that represent
and characterize corner cases. In section “Corner case
definition”, we present our definition of corner cases
in an ML process together with a mathematical for-
mulation and suitable example. Section “Quantitative
assessment of corner cases” covers the quantitative
assessment of corner cases and presents an answer to
possible metrics to measure the significance. The tax-
onomy for corner cases follows in section “Taxonomy
of corner cases”. Finally, section “Conclusion” summa-
rizes the article’s key message.

Nature of corner cases
Corner cases are by nature not directly tangible, and
no one would consider them ordinary. However, any
developer of ML algorithms could give several exam-
ples representing a corner case related to their applica-
tion in no time. Describing a corner case is far more
challenging [38] as they are difficult to describe pre-
cisely, but based on their peculiarities and properties,

they can be described more efficiently. For this pur-
pose, we have started to collect peculiarities and prop-
erties of how corner cases are described and sorted
them as they refer to different characteristics of corner
cases. While collecting, we also noticed that in discus-
sions, a corner case was often described as a novelty
or unknown data sample, with frequent references to
uncertainty.

To get an overview of the different peculiarities and
properties of corner cases, we would like to take a
closer look at the nature of corner cases and discuss
their properties. In Fig. 3, we provide an overview
of all the properties we identified and discuss further
below. As we sorted and cataloged the various corner
case properties, it became apparent that some proper-
ties generally describe the corner case data sample, and
others require a related ML model or application. We
divide corner case properties into three groups:

•	 Yellow visualizes the first group and represents
corner case properties at the level of data samples,
where the properties refer to characteristics of the
corner case data.

Fig. 2  Corner cases of an ML model that result from the model itself or the model architecture are currently not considered much. However, to use
an ML model in a critical application, the corner cases that cause incorrect behavior are needed for training and validation. This graphic shows
a classification problem with two classes (speed limit 30 and no passing sign) highlighted by a blue and yellow area and divided by a decision
boundary (dashed line). Besides the abstract traffic sign symbol, we have added some real samples of German and Scandinavian traffic signs [36,
37] to have a better impression. Some are common samples, and a few show different ML “corner cases” that could appear in the data. However,
the question arises, which samples are a corner case from the point of view of the ML model and deserve the term corner case

Page 4 of 17Heidecker et al. AI Perspectives & Advances (2024) 6:1

•	 Green is the second group of properties, which
is more related to ML methods and indirectly
describes the corner case character, i.e., a property
of the model that results from the corner case.

•	 Blue represents the last group of properties. These
properties only make sense if the corner case is
considered together with an ML model and an
application task.

Furthermore, the property under consideration can always
be examined from two perspectives: (1) The human point
of view and (2) the perspective of the ML model.

Even if the following examples come almost exclu-
sively from the automotive sector and represent mostly
image-related corner cases for better comprehensibility,
the peculiarities and properties are also generalizable
to other domains. In highly autonomous driving, there
is a wide range of sensor modalities such as LiDAR,
RADAR, ultrasonic or motion data, e.g., GPS, besides
the camera, which have different types of data and thus
corner cases. From our point of view, the peculiarities
and properties listed here can easily be transferred to
other sensor modalities and applications.

Data corner case properties
Data corner case properties can be assigned to a single
data sample and describe why the sample is a corner case
and how it behaves or is characterized. The properties
can be viewed from both the human and the ML model
perspective.

Novelty
From a human point of view, novelty is a fascinating
property because it is primarily associated with some-
thing new or innovative, but actually, it depends on the
person’s knowledge, and even something unknown but
ancient can be perceived as a novelty.

For ML, novelty is also essential, especially novelty
detection is a crucial task [39, 40]. The novelty prop-
erty describes whether the data sample can be classi-
fied as, e.g., common, rare, exotic, or even unknown
for a given ML model. Common data is already used
many times during the model training and represents
no longer any value for the model. Rare or exotic data
samples are partly known to the model, as the amount
in the training dataset is relatively low, leading to prob-
lems and errors when recognizing these or similar data
samples. Some caution is needed with unknown data
samples because the model has never processed this
data sample, and it is impossible to determine what will
happen. Therefore, novel data samples and the analysis
of whether they are part of the already known data (in-
distribution) or not (out-of-distribution) [41, 42] are of
great interest for model training and the validation of
ML models.

From the human point of view, this corresponds to
a person’s knowledge that is learning something new.
However, the ML and human points of view can be
contradictory, for example, in the case of an adversarial
sample [43], where the content is still evident for the
human but not for the ML model.

Ambiguity
Another property that characterizes a corner case is
ambiguity or indefinability. Ambiguities are omnipres-
ent from a human point of view, whether in language,
jokes, symbolism, or even in things composed of two
unique parts, e.g., trikes.

Nevertheless, from the point of view of ML mod-
els, e.g., classification, this can lead to major issues.
While many data samples are unique and distinguish-
able, and recognized by the ML model, a clear assign-
ment or classification of an ambiguous data sample is
nearly impossible for the ML model. For example, ML
models trained to classify objects can easily distinguish

Fig. 3  Peculiarities and properties of corner cases in the data, ML model, and application

Page 5 of 17Heidecker et al. AI Perspectives & Advances (2024) 6:1 	

a four-wheeler from a motorbike but have difficulties
assigning a trike or reverse trike to one of their known
classes.

However, ambiguities can also be found in almost
any data type, including time series and motion pat-
terns. The critical thing about this property is that
the ML model prediction is based on a false assump-
tion that leads to a fateful decision in the worst case.
From a human point of view, this problem is much
more minor since we incorporate or transfer additional
knowledge of the original components, and the deci-
sion is not alone based on the shape or same condition.

Natural and artificial
Corner cases can be assigned the property “natural" if the
origin is due to a random event or progressive develop-
ment. Thus, objects with changed design, e.g., a historical
car from the 20th century vs. a car today or products that
did not exist at the time of the development of the ML
model, all naturally emerged and existed in reality. This
circumstance is also true for other data samples affected
by constant change. In addition, all possible cases appear
in highly automated driving and other areas. The ques-
tion is only when and how critical they are for the
involved people.

On the other hand, corner cases can be described as
artificial, where the data is synthesized, e.g., synthetic
data generation [44, 45], or deliberately manipulated
by a human hand. The influence on the ML model and
prediction can be positive or negative, whereby adverse
effects are of considerably higher importance. In the
literature, influencing the model by artificially alter-
ing the data examples is called an adversarial attack
[43]. This attack can be done intentionally for testing
purposes or maliciously to achieve a specific goal. Due
to the targeted manipulation of the data and thus the
influence on the model, an adversarial attack can also
be understood in such a way that it does not count as a
classic corner case.

From an ML point of view, there is no distinction
between natural and artificial because the ML model
receives data, and most detection models do not dis-
tinguish between real and synthetic data. However,
from a human perspective, we always distinguish on
the visual level. As tools become more advanced to
generate synthetic data [46], the distinction becomes
more complicated for humans, comparable to the ML
perspective, as we can not separate real and synthetic
without help. Besides, specific artificial effects like
adversarial samples are not directly evident to a human
but, as mentioned before, could have a high impact on
ML models.

Quality
Quality is a widely used property for all kinds of
things from a human point of view and is often deci-
sive for how something can be further used. That can
also be observed in ML models where the quality of
the data and the available annotations are of essential
importance for model training. In terms of the data
quality [47–49], these can be outliers that may have
nothing to do with the actual dataset or external influ-
ences that permanently degrade the data, e.g., overlays
by other signals, or overexposure and motion blur in
case of cameras. Another source of corner cases in ML
is incorrect, noisy, or erroneous labeled data, which
can lead to devastating performance drops of the ML
model [6, 7, 50]

Complexity
Complexity is seen as something that is multi-layered
from a human perspective and includes many factors
that cannot be captured unambiguously and clearly in
their entirety as many interactions come together. The
same view accounts for ML because the more factors
influence the data, the more difficult it can be for an ML
model to extract specific information from all the avail-
able information. Often we find more possible corner
cases in highly complex situations as multiple influences
come together. A similar connection can be found in sec-
tion “Corner case definition”, where Houben et al. [24]
defines corner cases as the result of a combination of sev-
eral influences, which increases complexity.

Rarity
Rarity describes something of low number, quantity, or
frequency that is sought after and is usually reflected
in many collectibles. The human and ML perspective
is quite similar, where two points come together. First,
the frequency with which an effect/situation occurs
in reality, e.g., a corner case caused by a sun glare in
the windshield during sunrise, is more frequent than
a lightning strike, and second, the difficulty of record-
ing the required data to train and validate ML models.
However, compared to the novelty property (cf. sec-
tion “Novelty”) a rare data sample is not necessarily
new or unknown but rather something well-known that
is not easy or expensive to obtain.

ML model corner case properties
ML model corner case properties describe the behav-
ior of the ML model. Corner cases influence these
properties and can be described using the ML model
properties.

Page 6 of 17Heidecker et al. AI Perspectives & Advances (2024) 6:1

Traceability
The traceability of a corner case is an essential property
that contributes significantly to the human view of cor-
ner cases in ML models. The property indicates whether
the cause of an occurred corner case is traceable. For
example, if the ML model does not recognize a pedes-
trian with a green shirt in front of a green hedge, it is evi-
dent that the ML model has problems separating the two
objects. Therefore, traceability is an essential property for
humans to understand and describe the connection of
data, specifically corner cases and ML models. In terms
of reproducing, synthetically generating, or solving the
corner case, it also indicates that the connection can be
observed in some way by a human. At the same time, the
explainability of the corner case may still be unresolved.

Explainability
Closely related to traceability is explainability. The
explainability of a corner case is also an essential prop-
erty from the viewpoint of a human. It enables the
developer to understand and explain how the corner
case occurs and which side effects have caused it [38].
The earlier mentioned corner case example of a green
hedge and a pedestrian with a green shirt in front (cf.
section “Traceability”) may be traceable, but it is not
necessarily explainable how the ML model comes to
this decision. Patterns and situations representing a
corner case that cannot be explained or retraced are
hard to solve because the ML model’s problem with the
data is not apparent to a human.

Difficulty
Besides the complexity in the data, there is also the
property difficulty for an ML model of learning cer-
tain things [51], so recognizing something in complex
sequences can be challenging (cf. section “Complex-
ity”). The property difficulty also applies to other data
corner case properties, such as difficult because of poor
quality (cf. section “Quality”) or ambiguity (cf. sec-
tion “Ambiguity”). In all these cases, difficult refers to
an ML model corner case, as the ML model has diffi-
culties with the data. The task to be learned can also
be difficult because, e.g., an extreme imbalance of the
classes in the data or extreme noise makes learning
more challenging. Therefore, the difficulty property is
closer to the ML Model than the data. Hence we are
listing it as an ML corner case property.

Predictability
From human and ML perspectives, corner cases are
equivalent in terms of predictability, with corner cases

being characterized as predictable, challenging to pre-
dict, or completely unpredictable. The predictability
is based on the forecast that the next state is predict-
able by the previous state. That means the lower the
entropy, the higher the predictability of the ML model
output [52]. An example is a pedestrian who suddenly
runs onto the street, although the pedestrian was on
the way into a building shortly before and has not
shown any signs. Compared to another pedestrian
who looks around to the right and left and then steps
onto the street, which is considered easy in terms of
predictability.

Besides, predictability also has limits, e.g., corner cases
caused by hardware failure are mostly impossible to pre-
dict as the ML model is confronted suddenly, and only
damage limitation can be done if possible. Comparable to
a human.

Uncertainty
Insufficient or incomplete knowledge about a pro-
cess or procedure causes uncertainty and represents
another characteristic of corner cases. For example,
a pedestrian walking along the side of the road gets
scared. For an ML model, estimating what will hap-
pen, whether a pedestrian stops, crouches, jumps onto
the road, or where the pedestrian will walk, is impos-
sible. In this example, the ML model faces two types
of uncertainty which could be part of corner cases:
Aleatoric uncertainty [8], which describes the random-
ness in the data about which one of the mentioned
activities will be performed by the pedestrian, and epis-
temic uncertainty [8] in the ML model due to incom-
plete knowledge. However, if we had all-encompassing
knowledge, i.e., if we could look into the pedestrian’s
head, there should be theoretically no corner cases.
Nevertheless, as this is not the case and we always look
only at the visible behavior, there will always be corner
cases. Therefore, knowing in which environment the
ML model is deployed and which influences/knowl-
edge are included or excluded in the consideration is
essential.

Reliability
Reliability [53, 54] is another property that character-
izes an ML model and leads to a decrease in end-user
confidence if the ML model fails on a corner case sam-
ple. This is also the human perspective because corner
cases may occur, and the reliability of an ML model
may be reduced as a consequence. For example, an ML
model continuously detects, classifies, or predicts the
accurate result even on a slightly varying data sample.
Eventually, a new data sample variation occurs, leading
to the wrong prediction, i.e., the ML Model reliability

Page 7 of 17Heidecker et al. AI Perspectives & Advances (2024) 6:1 	

decreases as it can not handle all data variations. The
interesting thing is to know with which frequency this
happens in order to make a statement about the reli-
ability of the ML model.

Inconsistency
Inconsistency is a unique property requiring an ML
model to receive data pairs or sequences. The expec-
tation is that similar model inputs will follow similar
model outputs. For example, the model receives simi-
lar data from two points in time, e.g., two consecutive
images where a vehicle is displayed with a slight shift.
The response of the ML model should be consist-
ent and not give inconsistent prediction results. This
behavior can also be applied to the feature space, e.g.,
a variational autoencoder [41] that has learned a data
representation, where similar inputs should also be
mapped to similar representations.

Another inconsistency appears from multiple data
sources, such as several sensors observing the same
situation simultaneously. For example, a camera and
a LiDAR sensor observe the same situation. A pedes-
trian in the field of view of both sensors should also
be present in the data of both sensors. However, in
case of inconsistencies, the ML model receives use-
less data or inconsistent data pairs, where for example,
the pedestrian is only recognized in the image but not
in the LiDAR data. If the model detects these incon-
sistencies, the question arises regarding which sensor
we can trust and how reliable the model’s results are.
This problem occurs when multiple data sources pro-
vide contradictory information, and several models
produce different predictions for the same data. How-
ever, comparing or fusing and thereby detecting incon-
sistency is an excellent method to detect these corner
cases [33].

Application corner case properties
At last, we consider corner case characterization at the
application level, including an ML model and the data.

Relevance
Relevance represents the importance or significance of
something to achieve a specific goal. In terms of ML, it
indicates the importance or significance of a data sam-
ple, e.g., corner case, for an application task at hand
[28]. A cyclist, only a few meters in front of the car, is
more relevant for object detection from the safety point
of view than a cyclist far away. Besides describing the
relevance of a corner case for an application task, spe-
cific events or situations can also be classified as irrel-
evant to the current task.

Another term used in software validation and assur-
ance is criticality [55], where different rare and life-
threatening situations are used to test the ML model
concerning safety-critical aspects. However, in our opin-
ion, the term critical, e.g., critical situation, is covered by
property relevance already as they are relevant for the
application task.

Coverage
When running an ML model in an open-world sce-
nario, events or situations may occur that were only
partially or not considered while validating and testing
the ML model. The property coverage describes this
relationship and is usually specified by the Operational
Design Domain [56]. That formalizes the scenarios cov-
ered by the ML model, e.g., via systematic testing [57].
It also represents the perspective of a human as it refers
mainly to the semantics of the data. However, from an
ML perspective, we could also abstractly relate it to the
distribution in the input space, which comprises the
coverage of the input features by training and testing
the ML model.

In the software validation use case, predefined scenario
samples are used to test the ML model. These predefined
scenarios often contain critical events or situations the
ML model must pass successfully. The degree of cover-
age [57] within these test sets is relevant because the test
cases should cover a spectrum of critical cases as wide as
possible.

Misspecification
Some corner cases can already be derived from the
model specification or result from misspecification [34].
For example, a model trained and validated on a particu-
lar dataset can only be applied to other data to a limited
extent. There is a whole research area on domain adapta-
tion [58, 59], which tries to close this gap and make the
model transferable. However, it remains to be seen to
what extent this will lead to further corner cases. In addi-
tion, the transferability of the test results is impossible
and must be repeated each time based on the appropriate
specification. Therefore, it is crucial to know for which
application the ML model was developed and under
which conditions it will operate.

Besides the change from one dataset to another, a sig-
nificant change within a dataset can occur, e.g., when the
road is suddenly covered with snow, which is comparable
and called a concept shift [39]. The same applies for out-
of-distribution samples when an unknown object appears
in the data, e.g., a new class such as an e-scooter, which
is not considered by the previous specification and thus
represents a corner case for the ML model.

Page 8 of 17Heidecker et al. AI Perspectives & Advances (2024) 6:1

Corner case definition
In this section, we review the corner case definitions
found in the literature. Based on this, we present a new
and encompassing definition of corner cases in ML mod-
els. We also provide a mathematical description of our
definition together with an example.

Overview of corner case definitions
Edge cases, rarely also called extreme or boundary cases,
represent rare situations or parameters already consid-
ered during development [25, 33]. Therefore, they have
already lost their edge case status [25] in the running
system after they have been resolved. The term corner
case has a slightly different meaning depending on its
origin and application domain. Houben et al. [24] picks
up two essential meanings of corner cases: (1) corner
cases represent situations that result from a rare com-
bination of input parameters [25, 60], (2) corner cases
are situations caused by an erroneous, malfunction, or
incorrect behavior of the ML model [26, 29–32, 34, 35].
In addition, a list of systematic errors in ML is given in
[34], such as Monte Carlo approximation, data issues,
and sampling class-conditional, which may well repre-
sent corner cases. [35] goes even further and provides
a total of five error factors covering variability in real
situations, errors and noise in measurement systems,
errors in the model structure, errors in the training
procedure, and errors caused by unknown data, which
corresponds well with our taxonomy of corner cases (cf.
section “Taxonomy of corner cases”). Bolte et al. [27] is
more specific and states related to image-based corner
cases detection: “A corner case is given, if there is a non-
predictable relevant object/class in a relevant location.”
But corner cases do not result from a combination of
parameters or incorrect behavior alone, as mentioned in
[32, 33], whereby completely new data samples are also
considered as corner cases.

Ouyang et al. defines a corner case as a perturbation
of the input sample, which no longer corresponds to the
label [31]. The classification is specifically addressed, and
the decision boundary region, i.e., reject region [52], is
described as sensitive for corner cases.

A corner case definition is given in [28, 32] for trajec-
tory data. Their definitions are not restricted to a sin-
gle trajectory alone. They also include corner cases due
to interactions with other traffic participants, violations
of norms and rules, the (driving) environment, and the
model’s task. The consideration of further factors in
[28] is valuable since violations of traffic rules or driving
maneuvers can influence the counterpart and can cause
corner cases even without an accident.

However, to our knowledge, no commonly accepted def-
inition or one that unifies the various definitions of corner

cases exists in the literature, especially not for corner cases
in the context of ML. So far, we discovered four separa-
ble groups for corner case definition in ML: (1) erroneous
behavior, (2) relevance-centered definition, (3) anomaly
and novelty point of view, and (4) information gain.

1.	 It becomes apparent from the different interpreta-
tions of the term corner case that in the context of
ML, the ML model is considered as a unit with doz-
ens of parameters, which cause an erroneous behavior
[26, 29–32, 34, 35]. Individual input parameters and
rare combinations are far more important in software
and hardware testing to determine a corner case [25,
60] and do not fit in an ML corner case definition.
Bolte et al. [27] addresses the erroneous behavior of the
ML model and could be counted to the same group.

2.	 However, the definition of Bolte et al. [27] falls more
on the side of a task-related definition because of the
relevance aspect together with [28, 32] and behaves
differently depending on the application task and
goal. Rösch et al. [28] also expresses another point,
namely that a corner case depends strongly on the
importance or relevance with respect to the model
task. In the case of driving trajectories, a corner
case that happens in immediate proximity to the car
is more important than an event that happens very
far away. Even if it is the same corner case.

3.	 Another point is to consider terms such as outlier,
anomaly, and novelty, which are well-known in the
ML community. A distinction and definition of these
three terms are available in [39]. These terms are
highly related to corner cases [61] and have a con-
siderable overlap [33] from a methodological point
of view because methods such as outlier, anomaly,
and novelty detection are used in corner case detec-
tion. Corner cases that arise, for example, due to new,
novel, or unknown data [33] would be treated equally
as erroneous behavior as long as they contribute to
the improvement of the model.

4.	 Let’s think about corner cases from the perspective
of model training and retraining instead of errone-
ous or incorrect behavior, as in active learning [62].
A corner case is a data sample that helps (best) with
learning the task at hand. In such a case, a corner
case would not be particularly rare but would gener-
ally be a diverse, representative, or informative sam-
ple that reduces the overall expected error [63]. The
mathematical definition of a corner case for classifi-
cation from [31] fits well in this fraction and is easily
applicable to other domains in ML.

Based on these four definition groups, we describe ML
corner cases in general as follows:

Page 9 of 17Heidecker et al. AI Perspectives & Advances (2024) 6:1 	

Description (ML Corner Case): Corner cases in ML
are cases (characterized by the peculiarities and proper-
ties from section “Nature of corner cases”) relevant for
the task} with a high predictive uncertainty, for which we
would expect to improve the overall performance of an
ML model (e.g., in terms of loss) if they were more abun-
dant for training. Moreover, a corner case sample is a
corner case for the ML model and task only as long as the
constraints of the previous sentence hold. Otherwise, the
corner case becomes a common sample.

Mathematical corner case definition
With the corner case definitions and descriptions from
section “Overview of corner case definitions” in mind,
the question is how to implement them efficiently. For
this reason, we present a mathematical corner case defi-
nition based on the ML corner case description. We
base our definition on the mathematical description of a
supervised learner from [8, 52]. We define the (training)
data for a supervised learner as

with an instance space X and an associated output space
Y . A training sample consists of (xi, yi) . The hypothesis
space H provides mappings h : X → Y from an instance
x to an outcome y and a loss function l : Y × Y → R . The
risk, i.e., expected loss, associated with a given hypoth-
esis h is given by

where Ep denotes the expectation with respect to the
joint distribution p(x, y) of input x ∈ X and output varia-
bles y ∈ Y . The learning algorithm aims to find a hypoth-
esis (or model) h∗ ∈ H with minimal risk (expected loss)

However, the integral is not solvable in practice, so it is
approximated using the empirical risk

which is an estimation of the true risk R(h) that gets min-
imized by the empirical risk minimizer

The dependency between X and Y is usually non-deter-
ministic, which results in a conditional probability distri-
bution and is accompanied by aleatoric uncertainty [8].

(1)D =
{

(x1, y1), ..., (xN , yN)
}

⊂ X × Y ,

(2)R(h) = Ep[l(h(x), y)] =

∫ ∫

l(h(x), y) p(x, y) dxdy,

(3)h∗ = arg min
h∈H

R(h).

(4)Remp(h) =
1

N

N
∑

i=1

l(h(xi), yi),

(5)ĥ = arg min
h∈H

Remp(h).

Therefore, a pointwise Bayes predictor f ∗ is used. This
predictor outputs the prediction ŷ ∈ Y that minimizes
the expected loss (cf. [52]) and is given by

Considering ĥ is an approximation of h∗ (approximation
uncertainty) and the discrepancy between the Bayes predic-
tor h∗ and the pointwise Bayes predictor f ∗ of fitting the best
hypothesis (model uncertainty), in summary, it is referred to
as epistemic uncertainty [8] due to lack of knowledge.

The loss or task-specific evaluation metric (cf. [64])
provides information about the relevancy of detected
samples in the dataset in conjunction with the model
performance and the prediction quality of the respective
sample. However, the loss in its bare form l : Y × Y → R
does not say something about the relevancy of a sample
in general. For example, in highly automated driving,
detecting pedestrians directly in front of a car is far more
important for safety argumentation than detecting pedes-
trians far away. In the literature, a weighted loss function
is often used to increase the influence of specific features
[65, 66]. We propose to use a sample-specific weight to
model such sample relevance. The weight is highly task-
specific and may depend on features X  , the target Y , and
the task context ctask ∈ C (e.g., the distance to the object,
or object class). C is referred to as the context space. It
comprises everything besides the instance space X
and output space Y , which is necessary to describe the
importance of a sample for the task at hand. This may be
the task goal, e.g., object detection, semantic segmenta-
tion, and the operational design domain [24] via meta
attributes, e.g., weather and street conditions.

To model the sample-specific weight we use a weight
function w : X × Y × C → R

+ . Given the relevancy, i.e.,
a weight, the expected relevancy-weighted loss is

where w(x, y, ctask) represents the weight function. It
determines the weight of sample x in conjunction with
the present target y and task context ctask . The expected
relevancy-weighted loss thereby represents the basis of
our corner case definition for ML models.

Definition (ML Corner Case): A corner case is a rele-
vant sample x for which the expected relevancy-weighted
loss of the best pointwise Bayer predictor (i.e., the loss
minimizer) is higher than a predefined threshold τ ∈ R.

(6)f ∗(x) = arg min
ŷ∈Y

l(y, ŷ) p(y|x) dy.

(7)E
w
p [l(h(x), y)] =

∫ ∫

w(x, y, ctask) l(h(x), y) p(x, y) dxdy,

(8)arg min
ŷ∈Y

∫

w(x, y, ctask) l(y, ŷ) p(y|x) dy > τ .

Page 10 of 17Heidecker et al. AI Perspectives & Advances (2024) 6:1

Connection to Corner Case Description: In summary,
we would like to briefly discuss the connection between
the ML corner case definition and the earlier presented
corner case description. The crucial point in the corner
case description and definition is the goal to improve the
model with respect to the task at hand. In the definition,
the expected relevance-weighted loss and the introduced
parameter τ are used to make this decision and to sepa-
rate corner cases from the remaining samples. Hence, as
with the corner case description, whether a sample is a
corner case depends on the predictive uncertainty (i.e.,
the aleatory and epistemic uncertainty) and relevance
for the task at hand, with the aim of improving model
performance.

Implementation of our corner case definition
Next, we illustrate the definition we introduced earlier
with a toy example. For this purpose, we create a syn-
thetic two-class problem inspired by Fig. 2 with two fea-
tures and the classes blue and red. This toy example and
the resulting prediction probability obtained by Gaussian
process classifier [52] are depicted in Fig. 4a

The minimal expected loss for our toy example is
depicted in Fig. 4c. The minimal expected loss is high in
the area around the decision boundary and areas further
away from the class centers. Because of the underlying
classification problem, many samples close to the deci-
sion boundary show a high expected loss, but they are
not corner cases. In addition, potentially relevant corner
cases that lie further away from the decision boundary
and show a low expected loss value are suppressed, and it
is precisely these samples that are important.

Figure 4b shows our relevancy-weighting function,
where the samples in the darker areas are weighted
higher than those in the brighter areas. By combin-
ing the weight function with the minimum expected
loss, we get Fig. 4d. With the weighting, we indicate
the corner case samples essential for the task using the
threshold τ . The key is to create an appropriate weight
function that weights the needs of the task higher so
that the required samples can be identified. The quan-
titative assessment of the corner cases based on the
introduced expected relevancy-weighted loss in sec-
tion “Quantitative assessment of corner cases” provides
a more detailed overview.

Fig. 4  The four diagrams illustrate our definition of corner cases using a toy example with two classes (red and blue). (a) Prediction probability. (b)
Task-specifc weighting. (c) Minimal expected loss (no weighting). (d) Minimal expected relevancy-weighted loss (without threshold), see Eq. 8

Page 11 of 17Heidecker et al. AI Perspectives & Advances (2024) 6:1 	

Benefits of the corner case definition
According to our Corner Cases Definition (cf. sec-
tion “Mathematical corner case definition”), it is possi-
ble to divide data samples into common and corner cases
whereby the threshold of when a corner case is to be cat-
egorized as such is freely adjustable via the parameters τ
and a task-specific weighting function w. Next, we show
how the corner case definition behaves during model
training and testing, as well as after the deployment of
the model.

Training
During the learning process, the expected relevance-
weighted loss Ew

p [l(h(x), y)] and the threshold τ applied
to it show us whether a minimization of the empiri-
cal risk is given. From the learning perspective, we are
interested in those corner cases for which the relevance-
weighted risk can be reduced. Hence, these are cases
where the epistemic uncertainty (i.e., reducible uncer-
tainty) is high, and the task relevancy is still given. This
directly links our definition and active learning [62].

Testing
In the case of testing, we use the expected relevancy-
weighted loss. Regarding classification, the integral in
Eq. 8 becomes a summation, which can be easily solved.
However, for regression tasks, we might need to rely
on approximations of the expected loss, e.g., a Monte
Carlo approximation [52]. From a testing perspective, the
expected relevancy-weighted loss uncovers which sam-
ples are considered corner cases by the model, i.e., relevant
samples for which the model has a high loss.

Deployment
When the model is deployed, it is crucial to model the
distribution p(y|x) with no or only little (human) feed-
back. This is a difficult task, as presented in Hüller-
meier et al. [8], as it involves the potentially error-prone
approximation of the aleatory and epistemic uncertainty.
In addition, the distribution can also change at runtime
(e.g., due to data shift or drift). Hence, we must detect
this drift and update the ML model accordingly. In order
to detect corner cases at runtime, i.e., after deployment,
we can compute the expected relevance-weighted loss.
This can be done without ground truth data. Moreover,
the weighting function helps to determine the weighted
relevance of each sample, which reveals the value of the
sample and at the same time helps to acquire new data
specifically for further model training.

On the importance of calibration
Consideration of model calibration is essential because it
affects predicted probabilities. The prediction confidence

score in an uncalibrated ML model mostly does not
correspond to the actual quality of the predicted prob-
abilities. In an ideally calibrated ML model, on the other
hand, the confidence score matches the actual probabil-
ity of correctness of the predicted class, i.e., accuracy. To
close the ideal and predicted confidence value gap, the
model must be calibrated using, for example, Platt Scal-
ing or Temperature Scaling [67] whereby a single param-
eter T, called temperature, is optimized to the negative
log-likelihood on the validation set.

Calibrating the ML model affects the probability as the
prediction confidence scores correspond to the input
data and thus produce more reliable probabilities. As the
probabilities are required for minimizing the expected
relevance-weighted loss, a good calibration boosts the
accuracy of the expected relevance-weighted loss to iden-
tify corner cases. However, the calibration is useless if the
data distribution between the validation set used for cali-
bration and the data that the ML model has to process
after deployment changes (cf. section “Misspecification”
and [8]). Therefore, ensuring that the data distribution is
equivalent is important.

Quantitative assessment of corner cases
The determination of sample importance is challenging,
i.e., to obtain a task-dependent weighting function. There-
fore, the chosen metric is essential to quantify corner
cases since the value of a corner case gains or loses signifi-
cance depending on the selected metric. Classical metrics
like accuracy, F1-score, mean squared error, intersection
over union, and mean average precision provide the per-
formance of the ML model in terms of dedicated error
measure (e.g., squared-loss) on entire datasets. However,
most metrics treat each sample equally and do not con-
sider the task-dependent relevance of corner cases.

Not only should the metric be considered for the
quantitative assessment of corner cases, but also task-
specific measures. These measures assess the relevance
of corner cases (cf. section “Relevance”). How these rel-
evance measures are interpreted for the individual task
depends mainly on the task. Lyssenko et al. [64] pre-
sents a task-oriented relevance metric for pedestrian
detection. Not all predictions or ground truth objects
are treated equally because the relevant objects for task
validation, e.g., highly automated driving, receive pref-
erential treatment. In [64], the distance to the object is,
for example, used as a proxy measure. Bolte et al. [27]
describes corner cases as objects of relevant class in the
relevant location, and both are also suitable relevance
measures. Also, a complexity measure as in [68, 69]
might be suitable to describe the relevance. In addition,
other contextual information can be included if it is
relevant to the task.

Page 12 of 17Heidecker et al. AI Perspectives & Advances (2024) 6:1

As we can see, many measures can be taken into
account depending on the application task. By quanti-
fying the corner case using various measures in a well-
chosen and task-depended weight function (cf. section
“Corner case definition”), a corner case scoring based on
the expected relevancy-weighted loss can be achieved
and individually adapted to the application’s require-
ments. In this regard, the corner case properties intro-
duced in section “Nature of corner cases” are reflected
in the relevance measures. Ultimately, the scoring deter-
mines the importance or value of a corner case for the
ML model and the associated application task.

Taxonomy of corner cases
In this section, we present our extension to an existing
corner cases systematization [33], where we incorporate
the corner case definition (cf. section “Corner case defi-
nition”). The extension is oriented on the development
stages of an ML system and uses the introduced method
layer from [33] as a starting point. Based on the existing
structure, we introduce new levels, such as input, model,
and deployment, to show the different types and areas
where corner cases could occur within the method layer.

Existing layer & level systematisation
The basis for systematizing corner cases introduced in
[61, 70] consists of five levels: pixels, domain, object,
scene, and scenario, which are ordered by complexity and
represent the core of the structure. This first systemati-
zation is vision-oriented and considers only images and
no other sensor technology used in highly automated
driving. In [33], the authors enhance the systematiza-
tion by adding missing elements and provide a compre-
hensive systematization of corner cases, including other
sensors such as camera, LiDAR, and RADAR sensors.
Table 1 illustrates an abbreviation of the corner cases
systematization.

The structure of the corner case systematization [33]
in Table 1 consists of three successive layers: (1) the sen-
sor layer, (2) the content layer, and (3) the temporal layer.
These layers are further split into other sub-levels and
can be differentiated into:

1.	 Sensor Layer: Comprises corner cases that result
from the used sensor.

(a)	 Hardware Level: Corner case due to damaged
or broken hardware.

(b)	 Physical Level: Corner cases caused by physical
or environmental influences.

2.	 Content Layer: Corner cases that result from the
data and have no temporal relation.

(a)	 Domain Level: Corner cases that arise due to
location or environmental changes.

(b)	 Object Level: Corner cases resulting from
unknown objects.

(c)	 Scene Level: Corner cases caused by known
objects appearing in unexpected quantities or
locations.

3.	 Temporal Layer: Covers cases that result from mul-
tiple data points in time and thus have a temporal
context.

(a)	 Scenario Level: Corner Cases that result from
an unexpected movement or behavior.

According to [33], the method layer comprises corner
cases resulting from the used ML method, model, and
architecture. For this purpose, the model uncertainty, also
known as epistemic uncertainty [8], and adversarial exam-
ples [71] as the cause of these corner cases is discussed.
In [33] is also mentioned that with the selection of the

Table 1  Corner case systematization from [33], with examples corner cases for camera and LiDAR. (reworked, original from [33])

Sensor Layer Content Layer Temporal Layer

Hardware Level Physical Level Domain Level Object Level Scene Level Scenario Level

Camera Pixel Error: Dead pixel Pixel-based: overex-
posure

Single Frame Anomaly Represented
by Multiple Frames
or Point Clouds: Car
drives snake lines

Domain Shift: Location
(Germany - U.S.A.)

Anomaly: Garbage on
street

Contextual
Anomaly: People
on billboards

LiDAR Laser Error: Broken
mirror

Beam-based: Surface
does not reflect the
beam

Single Point Cloud

Domain Shift: Shape of
road markings

Anomaly: Dust cloud Contextual
Anomaly:
Sweeper cleaning
the sidewalk

Page 13 of 17Heidecker et al. AI Perspectives & Advances (2024) 6:1 	

ML model and its architecture, the (inductive) bias influ-
ences which method layer corner cases are favored and
which are not. In addition to the three layers above, which
are readily observable by humans, the introduced method
layer describes corner cases from the model’s point of
view, which makes it harder for humans to comprehend.

However, a clear structure of the method layer into
different levels, e.g., compared to the content layer, was
not carried out before. This article closes this gap and
elaborates a clear structure for systematizing method
layer corner cases.

ML‑development stages
Before going into more detail about our extension of
the corner cases systematization for the method layer,
we briefly introduce the four basic stages of develop-
ment that each ML model typically undergoes. These
are the (1) data preprocessing and feature engineer-
ing, (2) model training, (3) model evaluation, and (4)
model deployment stages. The four stages are depicted
in Fig. 5. The process stages are relevant for our exten-
sion because each stage has a specific purpose within
the ML model development.

1.	 The first stage is about preprocessing, cleaning the
data, and generating features with high informa-
tional value to improve the subsequent algorithm’s
performance. Note that many deep learning algo-
rithms skip feature engineering and instead learn the
features themselves. Still, data preprocessing is gen-
erally inevitable and necessary in every ML model
development.

2.	 The model training stage is about choosing the suit-
able ML model architecture and training the ML
model.

3.	 The model evaluation stage is needed to measure
the model performance by testing and validating the
model if it behaves as expected. On top of the ML
model, performance is used to rate prediction quality,
accuracy, and speed to compare it with other existing
ML models.

4.	 The last stage is the model deployment stage, which
integrates the trained and validated model into a run-
ning system or application.

Be aware that multiple iterations may be required
between the different stages (e.g., continuous integration)
and slightly modified development processes [72]. How-
ever, the essential steps are similar or the same.

Method layer extensions
Based on the development process presented before, we
defined three new corner case levels for the method layer:
the input, model, and deployment level. The three levels
are illustrated in Table 2. The following discusses the rel-
evance and provides examples for each defined level.

Input level
The input level addresses corner cases caused by the data
itself and relates to data quality, complexity, novelty, and
ambiguity. This includes biased data [47, 73] as well as an
imbalanced class distribution [65], data distribution [74],
or label errors [6, 7] in the ground truth. There is a risk
that the model cannot compensate for biased data [47]
and labeling errors [6, 7], which can lead to corner cases.
However, methods such as focal loss [75] or data argu-
mentation [73] of the underrepresented classes can com-
pensate for the imbalance to a certain degree.

The uncertainty in the input data, also called aleatoric
uncertainty [8], is also part of the input level and can be
modeled with different methods [76], such as Prior net-
works [11], or Mixture Density Networks [77].

We also assigned data with noise, e.g., adversarial data
samples [71], to the input level. In the case of adversarial
samples, even slight changes in the input data, e.g., add-
ing a specific noise pattern, can dramatically change the
model output.

Fig. 5  ML development process

Table 2  Extention of the corner case systematization

Method Layer

Input Level Model Level Deployment Level

Sensor Independent Database Issue: bad labels or underrepre-
sented classes

Model Issue: bad calibration or high epis-
temic uncertainty

Environment Issue: concept shift due
to misspecification between train and
real data

Page 14 of 17Heidecker et al. AI Perspectives & Advances (2024) 6:1

Model level
The used design and architecture of the ML model sig-
nificantly influence the traceability and explainability of
the ML model and the appearing corner cases. Depend-
ing on the selected ML model, an inductive model bias
is introduced into the ML model, which can result in a
corner case.

Another source of corner cases is model uncertainty,
referred to in the literature as epistemic uncertainty [8,
78]. Among others, methods like Monte Carlo drop-
out [9, 79], deep ensemble [12, 80], Bayes-by-Back-
prop [10], or Prior networks [11] aim to approximate the
epistemic uncertainty. A high epistemic uncertainty of
detected objects, classes, or other predictions is consid-
ered as an indicator for corner cases [78, 81, 82] because
the ML model cannot reliably handle these data samples.
In this respect, we have to consider the approximation
quality of the predicted uncertainties [83].

In summary, the model level includes all those corner
cases that result from a model’s uncertainty, architecture,
and reliability.

Deployment level
When the ML model is installed in a production chain
or application in the commercial or end customer seg-
ment, corner cases on the deployment level can occur.
The most prominent cause that can lead to corner cases
is a misspecification issue (cf. section “Misspecification”)
or inaccuracy between the ML model specification and
the actual model-working environment [84]. Therefore,
calibrating the confidence level [67, 85] is an important
aspect. A wrong calibration based on a dataset with a
different distribution or a concept shift [39] between
training and runtime can lead to devastating model pre-
dictions [84]. Calibration can be considered part of the
model level, but we did not do it regarding the misspeci-
fication. In addition, the deployment level and domain
level of the content layer are similar in terms of concept
shift but have a decisive difference. At the domain level,
we see a change in the real world (before and after).
The deployment level results from the misspecification
between training and reality, as the training only covers a
portion of the reality and most likely contains a distribu-
tion difference. The effect is thus identical, but the origin
is not necessarily the same.

Another possible cause of corner cases relates to the
setup of the ML model and, thus, whether the ML model
is fully operational, e.g., receiving all required sensor sig-
nals and expected data quality. Related topics like diag-
nostics or model self-awareness [86, 87] may help to
explain possible model output or prediction errors.

Conclusion
In this article, we analyzed the nature of a corner case
and presented various properties and particularities of
corner cases. The associated diversity of properties that
can make up a corner case cannot be underestimated,
with some properties of a corner case only becoming
apparent when considering an ML model or application.
The particularities and properties introduced are use-
ful for describing corner case data or scenarios, e.g., in
highly automated driving, so that the corner cases can
be defined more clearly, generated virtually, or captured
specifically in the real world. The properties can be used
to extend existing ontologies [88, 89] to formalize cor-
ner cases better. This circumstance is innovative to our
knowledge when describing driving situations since the
data is described in an experimental setup, and the ML
model and application are included.

We also present a novel generalizing (verbal) descrip-
tion and mathematical definition of corner cases in this
article. Both are based on the listed properties and an
extensive literature study about corner cases in ML. Our
definition of a corner case is based on the expected rel-
evance-weighted loss and offers the possibility to make
corner cases tangible and thus measurable. Furthermore,
considering the expected relevance-weighted loss allows
us to understand how the model behaves, how it can learn
further with the corner case samples, and whether risk
reduction is reached. The definition of the expected rel-
evance-weighted loss can also be directly operationalized:
(1) The relevance of data samples is determined by means
of the weighting, and (2) by choosing an application-
specific threshold value, corner cases can be identified
directly at runtime. In the future, we aim to implement
and evaluate the approach described in this article in an
application use case such as object detection or semantic
instance segmentation. Initial work on creating a task-
specific weighting has already been carried out in [90].

As mentioned in the introduction, our corner case defi-
nition focuses on data and ML corner cases to improve
the model performance or the input space coverage
(Operational Design Domain [56]). Besides, there are
other views on highly automated driving, such as legal
(e.g., traffic rules, contract, liability), data privacy, eco-
nomic, ecological, ethnic/social perspective, or the hard-
ware-oriented view aiming to improve the sensor. The
different perspectives, of course, also introduce varying
corner case definitions that go beyond our ML-centric
definition’s scope. However, some of these perspectives
extend far into other (highly relevant) research areas but
should be considered in the future.

Subsequently, we present an extension of a pre-existing
corner case taxonomy, incorporating our novel corner

Page 15 of 17Heidecker et al. AI Perspectives & Advances (2024) 6:1 	

case definition and grouping different model-specific
corner cases. The taxonomy helps to get an overview
of which aspects are crucial for ML model testing and
validation.

Finally, we discuss the quantitative assessment of cor-
ner cases, focusing on the relevance of samples and how
initial work has attempted to measure relevance. How-
ever, investigating how well the quantitative assessment
of corner cases correlates with the introduced definition
of corner cases remains open for future work. Regard-
less, we think there is still much research to be done on
metrics that consider the value or importance of an cor-
ner case. From a human point of view, we need to enable
the ML model during training to focus on extracting the
task’s important factors and pay less attention to minor
details.

Abbreviation
ML	� Machine Learning

Acknowledgements
Thanks to our Intelligent Embedded Systems group colleagues for their help-
ful comments, suggestions, and participation in the corner case property poll.

Authors’ contributions
F. Heidecker wrote the majority of the manuscript and created the illustrations.
M. Bieshaar provided suggestions and concepts, which became the basis for
countless discussions, and was responsible for double-checking the article.
B. Sick provided suggestions and reviewed the manuscript. All authors read
and approved the final manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL. This work
results from the project KI Data Tooling (19A20001O), funded by the German
Federal Ministry for Economic Affairs and Climate Action (BMWK).

Availability of data and materials
Not applicable.

Declarations

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 26 June 2023 Accepted: 14 November 2023

References
	1.	 Laplante P, Milojicic D, Serebryakov S, Bennett D (2020) Artificial Intelli-

gence and Critical Systems: From Hype to Reality. Computer 53(11):45–52
	2.	 He K, Gkioxari G, Dollár P, Girshick R (2017) Mask R-CNN. In: Proc. of the

International Conference on Computer Vision, Venice, pp 2980–2988
	3.	 Wu Y, Kirillov A, Massa F, Lo WY, Girshick R (2019) Detectron2. https://​

github.​com/​faceb​ookre​search/​detec​tron2. Accessed 15 July 2022.
	4.	 Baevski A, Zhou Y, Mohamed A, Auli M (2020) wav2vec 2.0: A Framework

for Self-Supervised Learning of Speech Representations. In: Proc. of the

Advances in Neural Information Processing Systems, Vancouver, pp
12449–12460

	5.	 Zhao WX, Zhou K, Li J, Tang T, Wang X, Hou Y, Min Y, Zhang B, Zhang J,
Dong Z, Du Y, Yang C, Chen Y, Chen Z, Jiang J, Ren R, Li Y, Tang X, Liu Z,
Liu P, Nie JY, Wen JR (2023) A Survey of Large Language Models. arXiv
preprint arXiv:​2303.​18223

	6.	 Frenay B, Verleysen M (2014) Classification in the Presence of Label Noise:
A Survey. IEEE Trans Neural Netw Learn Syst 25(5):845–869

	7.	 Herde M, Huseljic D, Sick B, Calma A (2021) A Survey on Cost Types, Inter-
action Schemes, and Annotator Performance Models in Selection Algo-
rithms for Active Learning in Classification. IEEE Access 9:166970–166989

	8.	 Hüllermeier E, Waegeman W (2021) Aleatoric and Epistemic Uncertainty
in Machine Learning: An Introduction to Concepts and Methods. Mach
Learn 110(3):457–506

	9.	 Gal Y, Ghahramani Z (2016) Dropout as a Bayesian Approximation: Repre-
senting Model Uncertainty in Deep Learning. In: Proc. of the International
Conference on Machine Learning, New York, pp 1050–1059

	10.	 Blundell C, Cornebise J, Kavukcuoglu K, Wierstra D (2015) Weight Uncer-
tainty in Neural Network. In: Proc. of the International Conference on
Machine Learning, Lille, pp 1613–1622

	11.	 Malinin A, Gales M (2018) Predictive Uncertainty Estimation via Prior
Networks. In: Proc. of the Advances in Neural Information Processing
Systems, Montréal, Canada, pp 7047–7058

	12.	 Lakshminarayanan B, Pritzel A, Blundell C (2017) Simple and Scalable
Predictive Uncertainty Estimation Using Deep Ensembles. In: Proc. of
the Advances in Neural Information Processing Systems, Long Beach, pp
6402–6413

	13.	 Google LLC (2022) Dataset Search. https://​datas​etsea​rch.​resea​rch.​google.​
com/. Accessed 24 Oct 2022

	14.	 Kaggle Inc (2022) Kaggle Datasets. https://​www.​kaggle.​com/​datas​ets.
Accessed 24 Oct 2022

	15.	 VisualData (2022) VisualData Discovery. https://​www.​visua​ldata.​io/​disco​
very. Accessed 24 Oct 2022

	16.	 Yu F, Chen H, Wang X, Xian W, Chen Y, Liu F, Madhavan V, Darrell T (2020)
BDD100K: A Diverse Driving Dataset for Heterogeneous Multitask Learn-
ing. In: Proc. of the Conference on Computer Vision and Pattern Recogni-
tion, Seattle, pp 2636–2645

	17.	 Caesar H, Bankiti V, Lang AH, Vora S, Liong VE, Xu Q, Krishnan A, Pan Y,
Baldan G, Beijbom O (2020) nuScenes: A Multimodal Dataset for Autono-
mous Driving. In: Proc. of the Conference on Computer Vision and Pattern
Recognition, Seattle, pp 11618–11628

	18.	 Waymo (2019) Waymo Open Dataset: An Autonomous Driving Dataset.
https://​www.​waymo.​com/​open. Accessed 24 Oct 2022

	19.	 Geiger A, Lenz P, Stiller C, Urtasun R (2013) Vision Meets Robotics: The
KITTI Dataset. Int J Robot Res 32(11):1231–1237

	20.	 Geyer J, Kassahun Y, Mahmudi M, Ricou X, Durgesh R, Chung AS,
Hauswald L, Pham VH, Mühlegg M, Dorn S, Fernandez T, Jänicke M,
Mirashi S, Savani C, Sturm M, Vorobiov O, Oelker M, Garreis S, Schuberth
P (2020) A2D2: Audi Autonomous Driving Dataset. arXiv preprint arXiv:​
2004.​06320, https://​www.​a2d2.​audi

	21.	 Huang X, Cheng X, Geng Q, Cao B, Zhou D, Wang P, Lin Y, Yang R (2018)
The ApolloScape Dataset for Autonomous Driving. In: Proc. of the Confer-
ence on Computer Vision and Pattern Recognition, Workshop, Salt Lake
City, pp 1067–1073

	22.	 Neuhold G, Ollmann T, Bulò SR, Kontschieder P (2017) The Mapillary Vistas
Dataset for Semantic Understanding of Street Scenes. In: Proc. of the
International Conference on Computer Vision, Venice, pp 5000–5009

	23.	 Pitropov M, Garcia DE, Rebello J, Smart M, Wang C, Czarnecki K, Waslander
S (2020) Canadian Adverse Driving Conditions Dataset. Int J Robot Res
40(4-5):681–90

	24.	 Houben S, Abrecht S, Akila M, Bär A, Brockherde F, Feifel P, Fingscheidt T,
Gannamaneni SS, Ghobadi SE, Hammam A, Haselhoff A, Hauser F, Heinze-
mann C, Hoffmann M, Kapoor N, Kappel F, Klingner M, Kronenberger
J, Küppers F, Löhdefink J, Mlynarski M, Mock M, Mualla F, Pavlitskaya S,
Poretschkin M, Pohl A, Ravi-Kumar V, Rosenzweig J, Rottmann M, Rüping
S, Sämann T, Schneider JD, Schulz E, Schwalbe G, Sicking J, Srivastava
T, Varghese S, Weber M, Wirkert S, Wirtz T, Woehrle M (2021) Inspect,
Understand, Overcome: A Survey of Practical Methods for AI Safety. arXiv
preprint arXiv:​2104.​14235

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
http://arxiv.org/abs/2303.18223
https://datasetsearch.research.google.com/
https://datasetsearch.research.google.com/
https://www.kaggle.com/datasets
https://www.visualdata.io/discovery
https://www.visualdata.io/discovery
https://www.waymo.com/open
http://arxiv.org/abs/2004.06320
http://arxiv.org/abs/2004.06320
https://www.a2d2.audi
http://arxiv.org/abs/2104.14235

Page 16 of 17Heidecker et al. AI Perspectives & Advances (2024) 6:1

	25.	 Koopman P, Kane A, Black J (2019) Credible Autonomy Safety Argumenta-
tion. Proc of the Safety-Critical Systems Symposium, (preprint). Bristol;
pp 1–27

	26.	 Pei K, Cao Y, Yang J, Jana S (2017) DeepXplore: Automated Whitebox Test-
ing of Deep Learning Systems. In: Proc. of the Symposium on Operating
Systems Principles, Shanghai, pp 1–18

	27.	 Bolte JA, Bär A, Lipinski D, Fingscheidt T (2019) Towards Corner Case
Detection for Autonomous Driving. In: Proc. of the Intelligent Vehicles
Symposium, Paris, pp 438–445

	28.	 Rösch K, Heidecker F, Truetsch J, Kowol K, Schicktanz C, Bieshaar M, Sick B,
Stiller C (2022) Space, Time, and Interaction: A Taxonomy of Corner Cases
in Trajectory Datasets for Automated Driving. In: Proc. of the Symposium
Series on Computational Intelligence, IEEE CIVTS, Singapore, pp 1–8

	29.	 Tian Y, Pei K, Jana S, Ray B (2018) DeepTest: Automated Testing of Deep-
Neural-Network-Driven Autonomous Cars. In: Proc. of the International
Conference on Software Engineering, New York, pp 303–314

	30.	 Zhang JM, Harman M, Ma L, Liu Y (2022) Machine Learning Testing:
Survey, Landscapes and Horizons. IEEE Trans Softw Eng 48(1):1–36

	31.	 Ouyang T, Marco VS, Isobe Y, Asoh H, Oiwa Y, Seo Y (2021) Corner Case
Data Description and Detection. In: Proc. of the International Conference
on Software Engineering Workshop, Madrid, pp 19–26

	32.	 Pfeil J, Wieland J, Michalke T, Theissler A (2022) On Why the System Makes
the Corner Case: AI-based HolisticAnomaly Detection for Autonomous
Driving. In: Proc. of the Intelligent Vehicles Symposium, Achen, pp 337–344

	33.	 Heidecker F, Breitenstein J, Rösch K, Löhdefink J, Bieshaar M, Stiller C,
Fingscheidt T, Sick B (2021) An Application-Driven Conceptualization of
Corner Cases for Perception in Highly Automated Driving. In: Proc. of the
the Intelligent Vehicles Symposium, Nagoya, pp 1–8

	34.	 Metzen JH, Hutmacher R, Hua NG, Boreiko V, Zhang D (2023) Identifica-
tion of Systematic Errors of Image Classifiers on Rare Subgroups. In: Proc.
of the International Conference on Computer Vision, Paris, pp 5064–5073

	35.	 Gawlikowski J, Tassi CRN, Ali M, Lee J, Humt M, Feng J, Kruspe A, Triebel R,
Jung P, Roscher R, Shahzad M, Yang W, Bamler R, Zhu XX (2022) A Survey
of Uncertainty in Deep Neural Networks. arXiv preprint arXiv:​2107.​03342

	36.	 Stallkamp J, Schlipsing M, Salmen J, Igel C (2011) The German Traffic Sign
Recognition Benchmark: A multi-class classification competition. In: Proc.
of the International Joint Conference on Neural Networks, San Jose, pp
1453–1460

	37.	 Larsson F, Felsberg M (2011) Using Fourier Descriptors and Spatial Models
for Traffic Sign Recognition. In: Proc. of the Scandinavian Conference on
Image Analysis, Ystad Saltsjöbad, pp 238–249

	38.	 Bogdoll D, Breitenstein J, Heidecker F, Bieshaar M, Sick B, Fingscheidt T,
Zöllner JM (2021) Description of Corner Cases in Automated Driving:
Goals and Challenges. In: Proc. of the International Conference on Com-
puter Vision, ERCVAD Workshop, Virtual, Montreal; pp 1023–1028

	39.	 Gruhl C, Sick B, Tomforde S (2021) Novelty Detection in Continuously
Changing Environments. Futur Gener Comput Syst 114:138–154

	40.	 Pimentel MAF, Clifton DA, Clifton L, Tarassenko L (2014) A Review of
Novelty Detection. Signal Process 99:215–249

	41.	 Möller F, Botache D, Huseljic D, Heidecker F, Bieshaar M, Sick B (2021) Out-of-
distribution Detection and Generation using Soft Brownian Offset Sampling
and Autoencoders. In: Proc. of the International Conference on Computer
Vision and Pattern Recognition, SAIAD Workshop, virtual, Nashville; pp
46–55

	42.	 Cen J, Yun P, Cai J, Wang MY, Liu M (2021) Deep Metric Learning for Open
World Semantic Segmentation. In: Proc. of the International Conference
on Computer Vision, virtual, Montreal; pp 15,333–15,342

	43.	 Goodfellow I, Bengio Y, Courville A (2016) Deep Learning. MIT Press,
Cambridge

	44.	 Richter SR, Vineet V, Roth S, Koltun V (2016) Playing for Data: Ground Truth
from Computer Games. In: Proc. of the European Conference Computer
Vision, vol 9906, Amsterdam, pp 102–118

	45.	 Dosovitskiy A, Ros G, Codevilla F, Lopez A, Koltun V (2017) CARLA: An
Open Urban Driving Simulator. In: Proc. of the Conference on Robot
Learning, Mountain View, pp 1–16

	46.	 Corvi R, Cozzolino D, Poggi G, Nagano K, Verdoliva L (2023) Intriguing
Properties of Synthetic Images: From Generative Adversarial Networks
to Diffusion Models. In: Proc. of the Conference on Computer Vision and
Pattern Recognition Workshops, Vancouver, pp 973–982

	47.	 Gudivada VN, Apon AW, Ding J (2017) Data Quality Considerations for Big
Data and Machine Learning: Going Beyond Data Cleaning and Transfor-
mations. Int J Adv Softw 10(1 &2):1–20

	48.	 Pradhan SK, Heyn HM, Knauss E (2023) Identifying and Managing Data
Quality Requirements: a Design Science Study in the Field of Automated
Driving. Softw Qual J

	49.	 Challa H, Niu N, Johnson R (2020) Faulty Requirements Made Valuable: On
the Role of Data Quality in Deep Learning. In: In Proc. of the International
Workshop on Artificial Intelligence for Requirements Engineering, Zurich,
pp 61–69

	50.	 Algan G, Ulusoy I (2021) Image classification with deep learning in the
presence of noisy labels: A survey. Knowl-Based Syst 215:106771

	51.	 Zhou X, Wu O (2022) Which Samples Should be Learned First: Easy or
Hard? arXiv preprint arXiv:​2110.​05481

	52.	 Bishop CM (2006) Pattern Recognitionand Machine Learning (Informa-
tion Science and Statistics). Springer-Verlag, New York

	53.	 Xu H, Mannor S (2012) Robustness and Generalization. Mach Learn
86(3):391–423

	54.	 Rauber J, Brendel W, Bethge M (2018) Foolbox: A Python Toolbox to
Benchmark the Robustness of Machine Learning Models. arXiv preprint
arXiv:​1707.​04131

	55.	 Abrecht S, Gauerhof L, Gladisch C, Groh K, Heinzemann C, Woehrle M
(2021) Testing Deep Learning-Based Visual Perception for Automated
Driving. ACM Trans Cyber-Phys Syst 5(4):28

	56.	 Fingscheidt T, Gottschalk H, Houben S (eds) (2022) Deep Neural Networks
and Data for AutomatedDriving: Robustness, Uncertainty Quantification,
and In-sights Towards Safety. Springer International Publishing, Cham.
https://​link.​sprin​ger.​com/​book/​10.​1007/​978-3-​031-​01233-4

	57.	 Gladisch C, Heinzemann C, Herrmann M, Woehrle M (2020) Leveraging
Combinatorial Testing for Safety-Critical Computer Vision Datasets. In:
Proc. of the International Conference on Computer Vision and Pattern
Recognition, virtual, Seattle; pp 324–325

	58.	 Glorot X, Bordes A, Bengio Y (2011) Domain Adaptation for Large-
Scale Sentiment Classification: A Deep Learning Approach. In: Proc.
of the International Conference on Machine Learning, Bellevue, pp
513–520

	59.	 Tobin J, Fong R, Ray A, Schneider J, Zaremba W, Abbeel P (2017) Domain
Randomization for Transferring Deep Neural Networks from Simulation
to the Real World. In: Proc. of the International Conference on Intelligent
Robots and Systems, Vancouver, pp 23–30

	60.	 Hanhirova J, Debner A, Hyyppä M, Hirvisalo V (2020) A Machine Learning
Environment for Evaluating Autonomous Driving Software. arXiv preprint
arXiv:​2003.​03576

	61.	 Breitenstein J, Termöhlen JA, Lipinski D, Fingscheidt T (2020) Systematiza-
tion of Corner Cases for Visual Perception in Automated Driving. In: Proc.
of the Intelligent Vehicles Symposium, Las Vegas, pp 1257–1264

	62.	 Kottke D, Herde M, Sandrock C, Huseljic D, Krempl G, Sick B (2021) Toward
Optimal Probabilistic Active Learning Using a Bayesian Approach. Mach
Learn 110(6):1199–1231

	63.	 Wu D (2018) Pool-Based Sequential Active Learning for Regression. Trans
Neural Netw Learn Syst 30:1348–1359

	64.	 Lyssenko M, Gladisch C, Heinzemann C, Woehrle M, Triebel R (2021)
From Evaluation to Verification: Towards Task-Oriented Relevance Metrics
for Pedestrian Detection in Safety-Critical Domains. In: Proc. of the
International Conference on Computer Vision and Pattern Recognition,
Workshops, virtual, Nashville; pp 38–45

	65.	 Johnson JM, Khoshgoftaar TM (2019) Survey on Deep Learning with Class
Imbalance. J Big Data 6(1):1–27

	66.	 Philion J, Kar A, Fidler S (2020) Learning to Evaluate Perception Models
using Planner-Centric Metrics. In: Proc. of Conference on Computer Vision
and Pattern Recognition, Seattle, pp 14052–14061

	67.	 Guo C, Pleiss G, Sun Y, Weinberger KQ (2017) On Calibration of Modern
Neural Networks. In: Proc. of the International Conference on Machine
Learning, Sydney, pp 1321–1330

	68.	 Sadat A, Segal S, Casas S, Tu J, Yang B, Urtasun R, Yumer E (2021) Diverse
Complexity Measures for Dataset Curation in Self-driving. arXiv preprint
arXiv:​2101.​06554

	69.	 Rahane AA, Subramanian A (2020) Measures of Complexity for Large Scale
Image Datasets. In: Proc. of the International Conference on Artificial Intel-
ligence in Information and Communication, Fukuoka, pp 282–287

http://arxiv.org/abs/2107.03342
http://arxiv.org/abs/2110.05481
http://arxiv.org/abs/1707.04131
https://springerlink.bibliotecabuap.elogim.com/book/10.1007/978-3-031-01233-4
http://arxiv.org/abs/2003.03576
http://arxiv.org/abs/2101.06554

Page 17 of 17Heidecker et al. AI Perspectives & Advances (2024) 6:1 	

	70.	 Breitenstein J, Termöhlen JA, Lipinski D, Fingscheidt T (2021) Corner Cases
for Visual Perception in Automated Driving: Some Guidance on Detection
Approaches. arXiv preprint arXiv:​2102.​05897

	71.	 Goodfellow I, Shlens J, Szegedy C (2015) Explaining and Harnessing
Adversarial Examples. In: Proc. of the International Conference on Learn-
ing Representations, San Diego, pp 1–10

	72.	 Zhang R, Albrecht A, Kausch J, Putzer HJ, Geipel T, Halady P (2021) Dde
process: A requirements engineering approach for machine learning in
automated driving. International Requirements Engineering Conference.
Notre Dame, pp 269–279

	73.	 Shorten C, Khoshgoftaar TM (2019) A survey on Image Data Augmenta-
tion for Deep Learning. J Big Data 6(60):1–48

	74.	 Kaur H, Pannu HS, Malhi AK (2019) A Systematic Review on Imbalanced
Data Challenges in Machine Learning: Applications and Solutions. ACM
Comput Surv 52(4):1–36

	75.	 Lin TY, Goyal P, Girshick R, He K, Dollar P (2017) Focal Loss for Dense
Object Detection. In: Proc. of the International Conference on Computer
Vision, Venice, pp 2980–2988

	76.	 Feng D, Harakeh A, Waslander S, Dietmayer K (2021) A Review and Com-
parative Study on Probabilistic Object Detection in Autonomous Driving.
IEEE Trans Intell Transp Syst 23(8):9961–80

	77.	 Choi S, Lee K, Lim S, Oh S (2018) Uncertainty-Aware Learning from
Demonstration Using Mixture Density Networks with Sampling-Free Vari-
ance Modeling. In: Proc. of the International Conference on Robotics and
Automation, Brisbane, pp 6915–6922

	78.	 Kendall A, Gal Y (2017) What Uncertainties Do We Need in Bayesian
Deep Learning for Computer Vision? In: Proc. of the Advances in Neural
Information Processing Systems, Long Beach, pp 5574–5584

	79.	 Gal Y (2016) Uncertainty in Deep Learning. PhD thesis, University of
Cambridge

	80.	 Liu J, Paisley J, Kioumourtzoglou MA, Coull B (2019) Accurate Uncertainty Esti-
mation and Decomposition in Ensemble Learning. In: Proc. of the Advances
in Neural Information Processing Systems, Vancouver, pp 8952–8963

	81.	 Heidecker F, Hannan A, Bieshaar M, Sick B (2021) Towards Corner Case
Detection by Modeling the Uncertainty of Instance Segmentation Net-
works. In: Proc. of the International Conference on Pattern Recognition,
IADS Workshop, Milan, pp 361–374

	82.	 Mukhoti J, Gal Y (2018) Evaluating Bayesian Deep Learning Methods for
Semantic Segmentation. arXiv preprint arXiv:​1811.​12709. pp 1–13

	83.	 Ovadia Y, Fertig E, Ren J, Nado Z, Sculley D, Nowozin S, Dillon JV, Laksh-
minarayanan B, Snoek J (2019) Can You Trust Your Model’s Uncertainty?
Evaluating Predictive Uncertainty Under Dataset Shift. arXiv preprint
arXiv:​1906.​02530. pp 1–25

	84.	 Kato Y, Tax DMJ, Loog M (2022) A view on model misspecification in
uncertainty quantification. arXiv preprint arXiv:​2210.​16938

	85.	 Nixon J, Dusenberry M, Jerfel G, Nguyen T, Liu J, Zhang L, Tran D (2019)
Measuring Calibration in Deep Learning. arXiv preprint arXiv:​1904.​01685

	86.	 Müller-Schloer C, Schmeck H, Ungerer T (2011) Organic Computing - A
Paradigm Shift for Complex Systems. Autonomic Systems. Birkhäuser
Verlag, Basel, p 627

	87.	 Müller-Schloer C, Tomforde S, (2017) Organic Computing - Technical Sys-
tems for Survival in the Real World. Autonomic Systems, Birkhauser, Cham

	88.	 Bogdoll D, Guneshka S, Zöllner JM (2022) One Ontology to Rule Them All:
Corner Case Scenarios for Autonomous Driving. In: Proc. of the European
Conference Computer Vision Workshops, Tel Aviv, pp 409–425

	89.	 Bagschik G, Menzel T, Maurer M (2018) Ontology based Scene Creation
for the Development of Automated Vehicles. In: Proc. of the Intelligent
Vehicles Symposium, Changshu, pp 1813–1820

	90.	 Breitenstein J, Heidecker F, Lyssenko M, Bogdoll D, Bieshaar M, Zöllner
JM, Sick B, Fingscheidt T (2023) What Does Really Count? Estimating Rel-
evance of Corner Cases for Semantic Segmentation in Automated Driv-
ing. In: Proc. of International Conference on Computer Vision, Workshops,
Paris, pp 3991–4000

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

http://arxiv.org/abs/2102.05897
http://arxiv.org/abs/1811.12709
http://arxiv.org/abs/1906.02530
http://arxiv.org/abs/2210.16938
http://arxiv.org/abs/1904.01685

	Corner cases in machine learning processes
	Abstract
	Introduction
	Nature of corner cases
	Data corner case properties
	Novelty
	Ambiguity
	Natural and artificial
	Quality
	Complexity
	Rarity

	ML model corner case properties
	Traceability
	Explainability
	Difficulty
	Predictability
	Uncertainty
	Reliability
	Inconsistency

	Application corner case properties
	Relevance
	Coverage
	Misspecification

	Corner case definition
	Overview of corner case definitions
	Mathematical corner case definition
	Implementation of our corner case definition
	Benefits of the corner case definition
	Training
	Testing
	Deployment

	On the importance of calibration

	Quantitative assessment of corner cases
	Taxonomy of corner cases
	Existing layer & level systematisation
	ML-development stages
	Method layer extensions
	Input level
	Model level
	Deployment level

	Conclusion
	Acknowledgements
	References

