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Abstract 

Applications using machine learning (ML), such as highly autonomous driving, depend highly on the performance 
of the ML model. The data amount and quality used for model training and validation are crucial. If the model cannot 
detect and interpret a new, rare, or perhaps dangerous situation, often referred to as a corner case, we will likely blame 
the data for not being good enough or too small in number. However, the implemented ML model and its associ-
ated architecture also influence the behavior. Therefore, the occurrence of prediction errors resulting from the ML 
model itself is not surprising. This work addresses a corner case definition from an ML model’s perspective to deter-
mine which aspects must be considered. To achieve this goal, we present an overview of properties for corner cases 
that are beneficial for the description, explanation, reproduction, or synthetic generation of corner cases. To define 
ML corner cases, we review different considerations in the literature and summarize them in a general description 
and mathematical formulation, whereby the expected relevance-weighted loss is the key to distinguishing corner 
cases from common data. Moreover, we show how to operationalize the corner case characteristics to determine 
the value of a corner case. To conclude, we present the extended taxonomy for ML corner cases by adding the input, 
model, and deployment levels, considering the influence of the corner case properties.
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Introduction
With the spread of machine learning (ML) methods, the 
number of critical systems, such as highly automated 
driving, medicine, and aviation, relying on artificial intel-
ligence is increasing [1]. The influence of ML methods is 
not surprising considering their impressive performance, 
e.g., object detection in images [2, 3], speech recognition 
[4], large language models  [5], and other applications. 
Nevertheless, all these tasks have something in com-
mon as they rely on data, which is often imbalanced or 
incomplete, and the labels can be inaccurate or incon-
sistent  [6, 7]. Interpreting and modeling the epistemic 
and aleatoric uncertainty [8] of an ML model with tech-
niques such as MC-Dropout [9], Bayes by Backprop [10], 

Prior Networks [11], and Deep Ensemble [12] to acquire 
a trusted and valid decision is a key challenge in ML 
applications.

If we want to develop an application using ML meth-
ods, data is always essential for model training, valida-
tion, and testing within the development cycle. Databases 
such as [13–15] provide many different datasets for vari-
ous applications. For many smaller application areas and 
less noticed niches, a dataset with an appropriate quan-
tity of labels is not available, and it is necessary to record 
data or generate a synthetic dataset. Both approaches are 
legitimate because there is no other way to obtain data 
for developing ML models. However, no matter where 
the data come from, they usually have the same problem. 
The collected data only represents a part of reality and 
has a particular view. The data variability in real-world 
scenarios is enormous, and the collected dataset contains 
some or many, but usually not all. In highly automated 
driving scenarios, for example, location- and country-
specific factors such as regulations, local behavior, and 
visual differences, e.g., signs and symbols, limit the com-
pleteness of a single dataset.
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Automotive datasets reveal this problem very well. 
BDD100k  [16], nuScenes  [17], and Waymo Open  [18], 
for example, were recorded in the USA, KITTI [19] and 
A2D2  [20] are from Germany, and ApolloScape  [21] is 
from China. Mapillary  [22] has a slightly more global 
footprint, with a small amount of footage from South 
America, Asia, and Africa and a higher proportion 
from the USA, Europe, and Japan. Data with rainy 
weather, bright daylight, or darkness during night-
time vary widely, with more and more datasets cover-
ing these conditions. Other conditions, such as winter 
scenes, are far less frequently represented in the data-
sets such as BDD100K  [16]. The Canadian Adverse 
Driving Conditions  [23] dataset has, for example, a 
strong focus on winter scenes but again has other 
deficiencies. This problem can also be found in other 
domains and ML applications, which may be more or 
less dominant.

If the trained ML model is then deployed in an appli-
cation, an erroneous behavior may occur sooner or later, 
resulting from corner cases that were not considered or 
samples wrongly labeled  [6, 7] during development and 
testing for whatever reason. Due to the need to improve 
the ML model’s performance, detecting corner cases 
is becoming increasingly important for safety reasons. 
Besides, safety-related aspects in critical systems, such as 
highly automated driving, significantly influence how and 
where ML models are used and whether the user accepts 
them.

As we have a strong relationship with highly auto-
mated driving, many of the examples we have chosen 
come from this area but are not limited to it. Conse-
quently, relationships, comparable examples, or the 
transferability of content to other areas are possible. 
However, what do we actually mean by a corner case? – 
We have noticed that everyone has their interpreta-
tion and understanding [24–28]. This includes corner 
case examples, associated properties, and definitions 
regarding a corner case, some of which can be very dif-
ferent. In highly automated driving, we consider cases 
as corner cases where the model exhibits erroneous 
behavior. In Fig. 1, for example, a detection model for 
vulnerable road users detects the image of a person 
on the car’s advertising banner as a real person. Tech-
nically speaking, the ML model did nothing wrong by 
detecting the person in the advertisement. Yet, the per-
son is not real. Figure 2 provides some more ML corner 
case examples, which occur in the applied model itself 
due to a lack of knowledge or because the model has 
never encountered a comparable sample before, which 
refers to epistemic uncertainty. Otherwise, adver-
sarial samples are also a type of ML corner case, as a 

small change in the input can change the result even 
if it is invisible to humans. These aspects are essential 
and should be included in an ML corner case defini-
tion. How to define the term corner cases with respect 
to ML is not yet conclusively clarified. In the litera-
ture, there are some starting points from software and 
hardware testing [24, 25] and some definitions for ML 
perspective [26–35].

In this article, we approach the topic differently and 
first discuss the nature, i.e., peculiarities and properties, 
of ML corner cases, whereby we have not yet seen the 
bandwidth of properties in any other article. On the one 
hand, we see the human view on corner cases. However, 
in particular, we also look at each of the listed proper-
ties from the perspective of an ML model. Definitions of 
corner cases are not new but usually have a strong con-
nection to an application [26–28]. Instead, we aim for a 
more general corner case description, which is mainly 
based on the particularities and properties of a corner 
case. To support this verbal description, we present our 
mathematical definition of a corner case and recap it on 
a toy example to show the influence regarding training, 
testing, deployment, and the importance of model cali-
bration. To get an overview of where corner cases can 
occur, we provide an extended and, in our view, com-
prehensive taxonomy of corner cases, including hard-
ware, physics, data, methods, and much more.

To put it in a nutshell, the main contributions of this 
article are:

• Peculiarities and properties to describe the nature of 
ML corner cases.

• General corner case description and mathematical 
corner case definition illustrated on a toy example.

• Providing various corner case examples during the 
discussion of their nature, description, definition, and 
taxonomy.

Fig. 1 Corner case example: The image shows an advertisement 
with a person printed on a cab. The person in the advertisement 
is wrongly classified and represents a corner case for the ML model 
because the person is not real
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The remainder of this article is structured as fol-
lows: Section  “Nature of corner cases”  provides an 
overview of peculiarities or properties that represent 
and characterize corner cases. In section “Corner case 
definition”, we present our definition of corner cases 
in an ML process together with a mathematical for-
mulation and suitable example. Section  “Quantitative 
assessment of corner cases”  covers the quantitative 
assessment of corner cases and presents an answer to 
possible metrics to measure the significance. The tax-
onomy for corner cases follows in section “Taxonomy 
of corner cases”. Finally, section “Conclusion” summa-
rizes the article’s key message.

Nature of corner cases
Corner cases are by nature not directly tangible, and 
no one would consider them ordinary. However, any 
developer of ML algorithms could give several exam-
ples representing a corner case related to their applica-
tion in no time. Describing a corner case is far more 
challenging  [38] as they are difficult to describe pre-
cisely, but based on their peculiarities and properties, 

they can be described more efficiently. For this pur-
pose, we have started to collect peculiarities and prop-
erties of how corner cases are described and sorted 
them as they refer to different characteristics of corner 
cases. While collecting, we also noticed that in discus-
sions, a corner case was often described as a novelty 
or unknown data sample, with frequent references to 
uncertainty.

To get an overview of the different peculiarities and 
properties of corner cases, we would like to take a 
closer look at the nature of corner cases and discuss 
their properties. In Fig.  3, we provide an overview 
of all the properties we identified and discuss further 
below. As we sorted and cataloged the various corner 
case properties, it became apparent that some proper-
ties generally describe the corner case data sample, and 
others require a related ML model or application. We 
divide corner case properties into three groups:

• Yellow visualizes the first group and represents 
corner case properties at the level of data samples, 
where the properties refer to characteristics of the 
corner case data.

Fig. 2 Corner cases of an ML model that result from the model itself or the model architecture are currently not considered much. However, to use 
an ML model in a critical application, the corner cases that cause incorrect behavior are needed for training and validation. This graphic shows 
a classification problem with two classes (speed limit 30 and no passing sign) highlighted by a blue and yellow area and divided by a decision 
boundary (dashed line). Besides the abstract traffic sign symbol, we have added some real samples of German and Scandinavian traffic signs [36, 
37] to have a better impression. Some are common samples, and a few show different ML “corner cases” that could appear in the data. However, 
the question arises, which samples are a corner case from the point of view of the ML model and deserve the term corner case
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• Green is the second group of properties, which 
is more related to ML methods and indirectly 
describes the corner case character, i.e., a property 
of the model that results from the corner case.

• Blue represents the last group of properties. These 
properties only make sense if the corner case is 
considered together with an ML model and an 
application task.

Furthermore, the property under consideration can always 
be examined from two perspectives: (1) The human point 
of view and (2) the perspective of the ML model.

Even if the following examples come almost exclu-
sively from the automotive sector and represent mostly 
image-related corner cases for better comprehensibility, 
the peculiarities and properties are also generalizable 
to other domains. In highly autonomous driving, there 
is a wide range of sensor modalities such as LiDAR, 
RADAR, ultrasonic or motion data, e.g., GPS, besides 
the camera, which have different types of data and thus 
corner cases. From our point of view, the peculiarities 
and properties listed here can easily be transferred to 
other sensor modalities and applications.

Data corner case properties
Data corner case properties can be assigned to a single 
data sample and describe why the sample is a corner case 
and how it behaves or is characterized. The properties 
can be viewed from both the human and the ML model 
perspective.

Novelty
From a human point of view, novelty is a fascinating 
property because it is primarily associated with some-
thing new or innovative, but actually, it depends on the 
person’s knowledge, and even something unknown but 
ancient can be perceived as a novelty.

For ML, novelty is also essential, especially novelty 
detection is a crucial task [39, 40]. The novelty prop-
erty describes whether the data sample can be classi-
fied as, e.g., common, rare, exotic, or even unknown 
for a given ML model. Common data is already used 
many times during the model training and represents 
no longer any value for the model. Rare or exotic data 
samples are partly known to the model, as the amount 
in the training dataset is relatively low, leading to prob-
lems and errors when recognizing these or similar data 
samples. Some caution is needed with unknown data 
samples because the model has never processed this 
data sample, and it is impossible to determine what will 
happen. Therefore, novel data samples and the analysis 
of whether they are part of the already known data (in-
distribution) or not (out-of-distribution) [41, 42] are of 
great interest for model training and the validation of 
ML models.

From the human point of view, this corresponds to 
a person’s knowledge that is learning something new. 
However, the ML and human points of view can be 
contradictory, for example, in the case of an adversarial 
sample  [43], where the content is still evident for the 
human but not for the ML model.

Ambiguity
Another property that characterizes a corner case is 
ambiguity or indefinability. Ambiguities are omnipres-
ent from a human point of view, whether in language, 
jokes, symbolism, or even in things composed of two 
unique parts, e.g., trikes.

Nevertheless, from the point of view of ML mod-
els, e.g., classification, this can lead to major issues. 
While many data samples are unique and distinguish-
able, and recognized by the ML model, a clear assign-
ment or classification of an ambiguous data sample is 
nearly impossible for the ML model. For example, ML 
models trained to classify objects can easily distinguish 

Fig. 3 Peculiarities and properties of corner cases in the data, ML model, and application
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a four-wheeler from a motorbike but have difficulties 
assigning a trike or reverse trike to one of their known 
classes.

However, ambiguities can also be found in almost 
any data type, including time series and motion pat-
terns. The critical thing about this property is that 
the ML model prediction is based on a false assump-
tion that leads to a fateful decision in the worst case. 
From a human point of view, this problem is much 
more minor since we incorporate or transfer additional 
knowledge of the original components, and the deci-
sion is not alone based on the shape or same condition.

Natural and artificial
Corner cases can be assigned the property “natural" if the 
origin is due to a random event or progressive develop-
ment. Thus, objects with changed design, e.g., a historical 
car from the 20th century vs. a car today or products that 
did not exist at the time of the development of the ML 
model, all naturally emerged and existed in reality. This 
circumstance is also true for other data samples affected 
by constant change. In addition, all possible cases appear 
in highly automated driving and other areas. The ques-
tion is only when and how critical they are for the 
involved people.

On the other hand, corner cases can be described as 
artificial, where the data is synthesized, e.g., synthetic 
data generation [44, 45], or deliberately manipulated 
by a human hand. The influence on the ML model and 
prediction can be positive or negative, whereby adverse 
effects are of considerably higher importance. In the 
literature, influencing the model by artificially alter-
ing the data examples is called an adversarial attack 
[43]. This attack can be done intentionally for testing 
purposes or maliciously to achieve a specific goal. Due 
to the targeted manipulation of the data and thus the 
influence on the model, an adversarial attack can also 
be understood in such a way that it does not count as a 
classic corner case.

From an ML point of view, there is no distinction 
between natural and artificial because the ML model 
receives data, and most detection models do not dis-
tinguish between real and synthetic data. However, 
from a human perspective, we always distinguish on 
the visual level. As tools become more advanced to 
generate synthetic data  [46], the distinction becomes 
more complicated for humans, comparable to the ML 
perspective, as we can not separate real and synthetic 
without help. Besides, specific artificial effects like 
adversarial samples are not directly evident to a human 
but, as mentioned before, could have a high impact on 
ML models.

Quality
Quality is a widely used property for all kinds of 
things from a human point of view and is often deci-
sive for how something can be further used. That can 
also be observed in ML models where the quality of 
the data and the available annotations are of essential 
importance for model training. In terms of the data 
quality  [47–49], these can be outliers that may have 
nothing to do with the actual dataset or external influ-
ences that permanently degrade the data, e.g., overlays 
by other signals, or overexposure and motion blur in 
case of cameras. Another source of corner cases in ML 
is incorrect, noisy, or erroneous labeled data, which 
can lead to devastating performance drops of the ML 
model [6, 7, 50]

Complexity
Complexity is seen as something that is multi-layered 
from a human perspective and includes many factors 
that cannot be captured unambiguously and clearly in 
their entirety as many interactions come together. The 
same view accounts for ML because the more factors 
influence the data, the more difficult it can be for an ML 
model to extract specific information from all the avail-
able information. Often we find more possible corner 
cases in highly complex situations as multiple influences 
come together. A similar connection can be found in sec-
tion  “Corner case definition”, where Houben et  al.  [24] 
defines corner cases as the result of a combination of sev-
eral influences, which increases complexity.

Rarity
Rarity describes something of low number, quantity, or 
frequency that is sought after and is usually reflected 
in many collectibles. The human and ML perspective 
is quite similar, where two points come together. First, 
the frequency with which an effect/situation occurs 
in reality, e.g., a corner case caused by a sun glare in 
the windshield during sunrise, is more frequent than 
a lightning strike, and second, the difficulty of record-
ing the required data to train and validate ML models. 
However, compared to the novelty property (cf. sec-
tion  “Novelty”) a rare data sample is not necessarily 
new or unknown but rather something well-known that 
is not easy or expensive to obtain.

ML model corner case properties
ML model corner case properties describe the behav-
ior of the ML model. Corner cases influence these 
properties and can be described using the ML model 
properties.
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Traceability
The traceability of a corner case is an essential property 
that contributes significantly to the human view of cor-
ner cases in ML models. The property indicates whether 
the cause of an occurred corner case is traceable. For 
example, if the ML model does not recognize a pedes-
trian with a green shirt in front of a green hedge, it is evi-
dent that the ML model has problems separating the two 
objects. Therefore, traceability is an essential property for 
humans to understand and describe the connection of 
data, specifically corner cases and ML models. In terms 
of reproducing, synthetically generating, or solving the 
corner case, it also indicates that the connection can be 
observed in some way by a human. At the same time, the 
explainability of the corner case may still be unresolved.

Explainability
Closely related to traceability is explainability. The 
explainability of a corner case is also an essential prop-
erty from the viewpoint of a human. It enables the 
developer to understand and explain how the corner 
case occurs and which side effects have caused it [38]. 
The earlier mentioned corner case example of a green 
hedge and a pedestrian with a green shirt in front (cf. 
section  “Traceability”) may be traceable, but it is not 
necessarily explainable how the ML model comes to 
this decision. Patterns and situations representing a 
corner case that cannot be explained or retraced are 
hard to solve because the ML model’s problem with the 
data is not apparent to a human.

Difficulty
Besides the complexity in the data, there is also the 
property difficulty for an ML model of learning cer-
tain things  [51], so recognizing something in complex 
sequences can be challenging (cf.  section  “Complex-
ity”). The property difficulty also applies to other data 
corner case properties, such as difficult because of poor 
quality (cf.  section  “Quality”) or ambiguity  (cf.  sec-
tion  “Ambiguity”). In all these cases, difficult refers to 
an ML model corner case, as the ML model has diffi-
culties with the data. The task to be learned can also 
be difficult because, e.g., an extreme imbalance of the 
classes in the data or extreme noise makes learning 
more challenging. Therefore, the difficulty property is 
closer to the ML Model than the data. Hence we are 
listing it as an ML corner case property.

Predictability
From human and ML perspectives, corner cases are 
equivalent in terms of predictability, with corner cases 

being characterized as predictable, challenging to pre-
dict, or completely unpredictable. The predictability 
is based on the forecast that the next state is predict-
able by the previous state. That means the lower the 
entropy, the higher the predictability of the ML model 
output [52]. An example is a pedestrian who suddenly 
runs onto the street, although the pedestrian was on 
the way into a building shortly before and has not 
shown any signs. Compared to another pedestrian 
who looks around to the right and left and then steps 
onto the street, which is considered easy in terms of 
predictability.

Besides, predictability also has limits, e.g., corner cases 
caused by hardware failure are mostly impossible to pre-
dict as the ML model is confronted suddenly, and only 
damage limitation can be done if possible. Comparable to 
a human.

Uncertainty
Insufficient or incomplete knowledge about a pro-
cess or procedure causes uncertainty and represents 
another characteristic of corner cases. For example, 
a pedestrian walking along the side of the road gets 
scared. For an ML model, estimating what will hap-
pen, whether a pedestrian stops, crouches, jumps onto 
the road, or where the pedestrian will walk, is impos-
sible. In this example, the ML model faces two types 
of uncertainty which could be part of corner cases: 
Aleatoric uncertainty [8], which describes the random-
ness in the data about which one of the mentioned 
activities will be performed by the pedestrian, and epis-
temic uncertainty  [8] in the ML model due to incom-
plete knowledge. However, if we had all-encompassing 
knowledge, i.e., if we could look into the pedestrian’s 
head, there should be theoretically no corner cases. 
Nevertheless, as this is not the case and we always look 
only at the visible behavior, there will always be corner 
cases. Therefore, knowing in which environment the 
ML model is deployed and which influences/knowl-
edge are included or excluded in the consideration is 
essential.

Reliability
Reliability  [53, 54] is another property that character-
izes an ML model and leads to a decrease in end-user 
confidence if the ML model fails on a corner case sam-
ple. This is also the human perspective because corner 
cases may occur, and the reliability of an ML model 
may be reduced as a consequence. For example, an ML 
model continuously detects, classifies, or predicts the 
accurate result even on a slightly varying data sample. 
Eventually, a new data sample variation occurs, leading 
to the wrong prediction, i.e., the ML Model reliability 
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decreases as it can not handle all data variations. The 
interesting thing is to know with which frequency this 
happens in order to make a statement about the reli-
ability of the ML model.

Inconsistency
Inconsistency is a unique property requiring an ML 
model to receive data pairs or sequences. The expec-
tation is that similar model inputs will follow similar 
model outputs. For example, the model receives simi-
lar data from two points in time, e.g., two consecutive 
images where a vehicle is displayed with a slight shift. 
The response of the ML model should be consist-
ent and not give inconsistent prediction results. This 
behavior can also be applied to the feature space, e.g., 
a variational autoencoder  [41] that has learned a data 
representation, where similar inputs should also be 
mapped to similar representations.

Another inconsistency appears from multiple data 
sources, such as several sensors observing the same 
situation simultaneously. For example, a camera and 
a LiDAR sensor observe the same situation. A pedes-
trian in the field of view of both sensors should also 
be present in the data of both sensors. However, in 
case of inconsistencies, the ML model receives use-
less data or inconsistent data pairs, where for example, 
the pedestrian is only recognized in the image but not 
in the LiDAR data. If the model detects these incon-
sistencies, the question arises regarding which sensor 
we can trust and how reliable the model’s results are. 
This problem occurs when multiple data sources pro-
vide contradictory information, and several models 
produce different predictions for the same data. How-
ever, comparing or fusing and thereby detecting incon-
sistency is an excellent method to detect these corner 
cases [33].

Application corner case properties
At last, we consider corner case characterization at the 
application level, including an ML model and the data.

Relevance
Relevance represents the importance or significance of 
something to achieve a specific goal. In terms of ML, it 
indicates the importance or significance of a data sam-
ple, e.g., corner case, for an application task at hand 
[28]. A cyclist, only a few meters in front of the car, is 
more relevant for object detection from the safety point 
of view than a cyclist far away. Besides describing the 
relevance of a corner case for an application task, spe-
cific events or situations can also be classified as irrel-
evant to the current task.

Another term used in software validation and assur-
ance is criticality  [55], where different rare and life-
threatening situations are used to test the ML model 
concerning safety-critical aspects. However, in our opin-
ion, the term critical, e.g., critical situation, is covered by 
property relevance already as they are relevant for the 
application task.

Coverage
When running an ML model in an open-world sce-
nario, events or situations may occur that were only 
partially or not considered while validating and testing 
the ML model. The property coverage describes this 
relationship and is usually specified by the Operational 
Design Domain [56]. That formalizes the scenarios cov-
ered by the ML model, e.g., via systematic testing [57]. 
It also represents the perspective of a human as it refers 
mainly to the semantics of the data. However, from an 
ML perspective, we could also abstractly relate it to the 
distribution in the input space, which comprises the 
coverage of the input features by training and testing 
the ML model.

In the software validation use case, predefined scenario 
samples are used to test the ML model. These predefined 
scenarios often contain critical events or situations the 
ML model must pass successfully. The degree of cover-
age [57] within these test sets is relevant because the test 
cases should cover a spectrum of critical cases as wide as 
possible.

Misspecification
Some corner cases can already be derived from the 
model specification or result from misspecification [34]. 
For example, a model trained and validated on a particu-
lar dataset can only be applied to other data to a limited 
extent. There is a whole research area on domain adapta-
tion [58, 59], which tries to close this gap and make the 
model transferable. However, it remains to be seen to 
what extent this will lead to further corner cases. In addi-
tion, the transferability of the test results is impossible 
and must be repeated each time based on the appropriate 
specification. Therefore, it is crucial to know for which 
application the ML model was developed and under 
which conditions it will operate.

Besides the change from one dataset to another, a sig-
nificant change within a dataset can occur, e.g., when the 
road is suddenly covered with snow, which is comparable 
and called a concept shift [39]. The same applies for out-
of-distribution samples when an unknown object appears 
in the data, e.g., a new class such as an e-scooter, which 
is not considered by the previous specification and thus 
represents a corner case for the ML model.
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Corner case definition
In this section, we review the corner case definitions 
found in the literature. Based on this, we present a new 
and encompassing definition of corner cases in ML mod-
els. We also provide a mathematical description of our 
definition together with an example.

Overview of corner case definitions
Edge cases, rarely also called extreme or boundary cases, 
represent rare situations or parameters already consid-
ered during development [25, 33]. Therefore, they have 
already lost their edge case status  [25] in the running 
system after they have been resolved. The term corner 
case has a slightly different meaning depending on its 
origin and application domain. Houben et al. [24] picks 
up two essential meanings of corner cases: (1) corner 
cases represent situations that result from a rare com-
bination of input parameters [25, 60], (2) corner cases 
are situations caused by an erroneous, malfunction, or 
incorrect behavior of the ML model [26, 29–32, 34, 35]. 
In addition, a list of systematic errors in ML is given in 
[34], such as Monte Carlo approximation, data issues, 
and sampling class-conditional, which may well repre-
sent corner cases. [35] goes even further and provides 
a total of five error factors covering variability in real 
situations, errors and noise in measurement systems, 
errors in the model structure, errors in the training 
procedure, and errors caused by unknown data, which 
corresponds well with our taxonomy of corner cases (cf. 
section “Taxonomy of corner cases”). Bolte et al. [27] is 
more specific and states related to image-based corner 
cases detection: “A corner case is given, if there is a non-
predictable relevant object/class in a relevant location.” 
But corner cases do not result from a combination of 
parameters or incorrect behavior alone, as mentioned in 
[32, 33], whereby completely new data samples are also 
considered as corner cases.

Ouyang et  al. defines a corner case as a perturbation 
of the input sample, which no longer corresponds to the 
label [31]. The classification is specifically addressed, and 
the decision boundary region, i.e., reject region  [52], is 
described as sensitive for corner cases.

A corner case definition is given in [28, 32] for trajec-
tory data. Their definitions are not restricted to a sin-
gle trajectory alone. They also include corner cases due 
to interactions with other traffic participants, violations 
of norms and rules, the (driving) environment, and the 
model’s task. The consideration of further factors in 
[28] is valuable since violations of traffic rules or driving 
maneuvers can influence the counterpart and can cause 
corner cases even without an accident.

However, to our knowledge, no commonly accepted def-
inition or one that unifies the various definitions of corner 

cases exists in the literature, especially not for corner cases 
in the context of ML. So far, we discovered four separa-
ble groups for corner case definition in ML: (1) erroneous 
behavior, (2) relevance-centered definition, (3) anomaly 
and novelty point of view, and (4) information gain. 

1. It becomes apparent from the different interpreta-
tions of the term corner case that in the context of 
ML, the ML model is considered as a unit with doz-
ens of parameters, which cause an erroneous behavior 
[26, 29–32, 34, 35]. Individual input parameters and 
rare combinations are far more important in software 
and hardware testing to determine a corner case [25, 
60] and do not fit in an ML corner case definition. 
Bolte et al. [27] addresses the erroneous behavior of the 
ML model and could be counted to the same group.

2. However, the definition of Bolte et al. [27] falls more 
on the side of a task-related definition because of the 
relevance aspect together with [28, 32] and behaves 
differently depending on the application task and 
goal. Rösch et al. [28] also expresses another point, 
namely that a corner case depends strongly on the 
importance or relevance with respect to the model 
task. In the case of driving trajectories, a corner 
case that happens in immediate proximity to the car 
is more important than an event that happens very 
far away. Even if it is the same corner case.

3. Another point is to consider terms such as outlier, 
anomaly, and novelty, which are well-known in the 
ML community. A distinction and definition of these 
three terms are available in [39]. These terms are 
highly related to corner cases [61] and have a con-
siderable overlap [33] from a methodological point 
of view because methods such as outlier, anomaly, 
and novelty detection are used in corner case detec-
tion. Corner cases that arise, for example, due to new, 
novel, or unknown data [33] would be treated equally 
as erroneous behavior as long as they contribute to 
the improvement of the model.

4. Let’s think about corner cases from the perspective 
of model training and retraining instead of errone-
ous or incorrect behavior, as in active learning  [62]. 
A corner case is a data sample that helps (best) with 
learning the task at hand. In such a case, a corner 
case would not be particularly rare but would gener-
ally be a diverse, representative, or informative sam-
ple that reduces the overall expected error [63]. The 
mathematical definition of a corner case for classifi-
cation from [31] fits well in this fraction and is easily 
applicable to other domains in ML.

Based on these four definition groups, we describe ML 
corner cases in general as follows:
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Description (ML Corner Case): Corner cases in ML 
are cases (characterized by the peculiarities and proper-
ties from section “Nature of corner cases”) relevant for 
the task} with a high predictive uncertainty, for which we 
would expect to improve the overall performance of an 
ML model (e.g., in terms of loss) if they were more abun-
dant for training. Moreover, a corner case sample is a 
corner case for the ML model and task only as long as the 
constraints of the previous sentence hold. Otherwise, the 
corner case becomes a common sample.

Mathematical corner case definition
With the corner case definitions and descriptions from 
section  “Overview of corner case definitions” in mind, 
the question is how to implement them efficiently. For 
this reason, we present a mathematical corner case defi-
nition based on the ML corner case description. We 
base our definition on the mathematical description of a 
supervised learner from [8, 52]. We define the (training) 
data for a supervised learner as

with an instance space X  and an associated output space 
Y . A training sample consists of (xi, yi) . The hypothesis 
space H provides mappings h : X → Y from an instance 
x to an outcome y and a loss function l : Y × Y → R . The 
risk, i.e., expected loss, associated with a given hypoth-
esis h is given by

where Ep denotes the expectation with respect to the 
joint distribution p(x, y) of input x ∈ X  and output varia-
bles y ∈ Y . The learning algorithm aims to find a hypoth-
esis (or model) h∗ ∈ H with minimal risk (expected loss)

However, the integral is not solvable in practice, so it is 
approximated using the empirical risk

which is an estimation of the true risk R(h) that gets min-
imized by the empirical risk minimizer

The dependency between X  and Y is usually non-deter-
ministic, which results in a conditional probability distri-
bution and is accompanied by aleatoric uncertainty  [8]. 

(1)D =
{

(x1, y1), ..., (xN , yN )
}

⊂ X × Y ,

(2)R(h) = Ep[l(h(x), y)] =

∫ ∫

l(h(x), y) p(x, y) dxdy,

(3)h∗ = arg min
h∈H

R(h).

(4)Remp(h) =
1

N

N
∑

i=1

l(h(xi), yi),

(5)ĥ = arg min
h∈H

Remp(h).

Therefore, a pointwise Bayes predictor f ∗ is used. This 
predictor outputs the prediction ŷ ∈ Y that minimizes 
the expected loss (cf. [52]) and is given by

Considering ĥ is an approximation of h∗ (approximation 
uncertainty) and the discrepancy between the Bayes predic-
tor h∗ and the pointwise Bayes predictor f ∗ of fitting the best 
hypothesis (model uncertainty), in summary, it is referred to 
as epistemic uncertainty [8] due to lack of knowledge.

The loss or task-specific evaluation metric (cf.  [64]) 
provides information about the relevancy of detected 
samples in the dataset in conjunction with the model 
performance and the prediction quality of the respective 
sample. However, the loss in its bare form l : Y × Y → R 
does not say something about the relevancy of a sample 
in general. For example, in highly automated driving, 
detecting pedestrians directly in front of a car is far more 
important for safety argumentation than detecting pedes-
trians far away. In the literature, a weighted loss function 
is often used to increase the influence of specific features 
[65, 66]. We propose to use a sample-specific weight to 
model such sample relevance. The weight is highly task-
specific and may depend on features X  , the target Y , and 
the task context ctask ∈ C (e.g., the distance to the object, 
or object class). C is referred to as the context space. It 
comprises everything besides the instance space X  
and output space Y , which is necessary to describe the 
importance of a sample for the task at hand. This may be 
the task goal, e.g., object detection, semantic segmenta-
tion, and the operational design domain  [24] via meta 
attributes, e.g., weather and street conditions.

To model the sample-specific weight we use a weight 
function w : X × Y × C → R

+ . Given the relevancy, i.e., 
a weight, the expected relevancy-weighted loss is

where w(x, y, ctask) represents the weight function. It 
determines the weight of sample x in conjunction with 
the present target y and task context ctask . The expected 
relevancy-weighted loss thereby represents the basis of 
our corner case definition for ML models.

Definition (ML Corner Case): A corner case is a rele-
vant sample x for which the expected relevancy-weighted 
loss of the best pointwise Bayer predictor (i.e., the loss 
minimizer) is higher than a predefined threshold τ ∈ R. 

(6)f ∗(x) = arg min
ŷ∈Y

l(y, ŷ) p(y|x) dy.

(7)E
w
p [l(h(x), y)] =

∫ ∫

w(x, y, ctask ) l(h(x), y) p(x, y) dxdy,

(8)arg min
ŷ∈Y

∫

w(x, y, ctask) l(y, ŷ) p(y|x) dy > τ .
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Connection to Corner Case Description: In summary, 
we would like to briefly discuss the connection between 
the ML corner case definition and the earlier presented 
corner case description. The crucial point in the corner 
case description and definition is the goal to improve the 
model with respect to the task at hand. In the definition, 
the expected relevance-weighted loss and the introduced 
parameter τ are used to make this decision and to sepa-
rate corner cases from the remaining samples. Hence, as 
with the corner case description, whether a sample is a 
corner case depends on the predictive uncertainty (i.e., 
the aleatory and epistemic uncertainty) and relevance 
for the task at hand, with the aim of improving model 
performance.

Implementation of our corner case definition
Next, we illustrate the definition we introduced earlier 
with a toy example. For this purpose, we create a syn-
thetic two-class problem inspired by Fig. 2 with two fea-
tures and the classes blue and red. This toy example and 
the resulting prediction probability obtained by Gaussian 
process classifier [52] are depicted in Fig. 4a

The minimal expected loss for our toy example is 
depicted in Fig. 4c. The minimal expected loss is high in 
the area around the decision boundary and areas further 
away from the class centers. Because of the underlying 
classification problem, many samples close to the deci-
sion boundary show a high expected loss, but they are 
not corner cases. In addition, potentially relevant corner 
cases that lie further away from the decision boundary 
and show a low expected loss value are suppressed, and it 
is precisely these samples that are important.

Figure  4b shows our relevancy-weighting function, 
where the samples in the darker areas are weighted 
higher than those in the brighter areas. By combin-
ing the weight function with the minimum expected 
loss, we get Fig.  4d. With the weighting, we indicate 
the corner case samples essential for the task using the 
threshold τ . The key is to create an appropriate weight 
function that weights the needs of the task higher so 
that the required samples can be identified. The quan-
titative assessment of the corner cases based on the 
introduced expected relevancy-weighted loss in sec-
tion “Quantitative assessment of corner cases” provides 
a more detailed overview.

Fig. 4 The four diagrams illustrate our definition of corner cases using a toy example with two classes (red and blue). (a) Prediction probability. (b) 
Task-specifc weighting. (c) Minimal expected loss (no weighting). (d) Minimal expected relevancy-weighted loss (without threshold), see Eq. 8
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Benefits of the corner case definition
According to our Corner Cases Definition (cf. sec-
tion  “Mathematical corner case definition”), it is possi-
ble to divide data samples into common and corner cases 
whereby the threshold of when a corner case is to be cat-
egorized as such is freely adjustable via the parameters τ 
and a task-specific weighting function w. Next, we show 
how the corner case definition behaves during model 
training and testing, as well as after the deployment of 
the model.

Training
During the learning process, the expected relevance-
weighted loss Ew

p [l(h(x), y)] and the threshold τ applied 
to it show us whether a minimization of the empiri-
cal risk is given. From the learning perspective, we are 
interested in those corner cases for which the relevance-
weighted risk can be reduced. Hence, these are cases 
where the epistemic uncertainty (i.e., reducible uncer-
tainty) is high, and the task relevancy is still given. This 
directly links our definition and active learning [62].

Testing
In the case of testing, we use the expected relevancy-
weighted loss. Regarding classification, the integral in 
Eq.  8 becomes a summation, which can be easily solved. 
However, for regression tasks, we might need to rely 
on approximations of the expected loss, e.g., a Monte 
Carlo approximation  [52]. From a testing perspective, the 
expected relevancy-weighted loss uncovers which sam-
ples are considered corner cases by the model, i.e., relevant 
samples for which the model has a high loss.

Deployment
When the model is deployed, it is crucial to model the 
distribution p(y|x) with no or only little (human) feed-
back. This is a difficult task, as presented in Hüller-
meier et al. [8], as it involves the potentially error-prone 
approximation of the aleatory and epistemic uncertainty. 
In addition, the distribution can also change at runtime 
(e.g., due to data shift or drift). Hence, we must detect 
this drift and update the ML model accordingly. In order 
to detect corner cases at runtime, i.e., after deployment, 
we can compute the expected relevance-weighted loss. 
This can be done without ground truth data. Moreover, 
the weighting function helps to determine the weighted 
relevance of each sample, which reveals the value of the 
sample and at the same time helps to acquire new data 
specifically for further model training.

On the importance of calibration
Consideration of model calibration is essential because it 
affects predicted probabilities. The prediction confidence 

score in an uncalibrated ML model mostly does not 
correspond to the actual quality of the predicted prob-
abilities. In an ideally calibrated ML model, on the other 
hand, the confidence score matches the actual probabil-
ity of correctness of the predicted class, i.e., accuracy. To 
close the ideal and predicted confidence value gap, the 
model must be calibrated using, for example, Platt Scal-
ing or Temperature Scaling [67] whereby a single param-
eter T, called temperature, is optimized to the negative 
log-likelihood on the validation set.

Calibrating the ML model affects the probability as the 
prediction confidence scores correspond to the input 
data and thus produce more reliable probabilities. As the 
probabilities are required for minimizing the expected 
relevance-weighted loss, a good calibration boosts the 
accuracy of the expected relevance-weighted loss to iden-
tify corner cases. However, the calibration is useless if the 
data distribution between the validation set used for cali-
bration and the data that the ML model has to process 
after deployment changes (cf. section  “Misspecification” 
and [8]). Therefore, ensuring that the data distribution is 
equivalent is important.

Quantitative assessment of corner cases
The determination of sample importance is challenging, 
i.e., to obtain a task-dependent weighting function. There-
fore, the chosen metric is essential to quantify corner 
cases since the value of a corner case gains or loses signifi-
cance depending on the selected metric. Classical metrics 
like accuracy, F1-score, mean squared error, intersection 
over union, and mean average precision provide the per-
formance of the ML model in terms of dedicated error 
measure (e.g., squared-loss) on entire datasets. However, 
most metrics treat each sample equally and do not con-
sider the task-dependent relevance of corner cases.

Not only should the metric be considered for the 
quantitative assessment of corner cases, but also task-
specific measures. These measures assess the relevance 
of corner cases (cf. section “Relevance”). How these rel-
evance measures are interpreted for the individual task 
depends mainly on the task. Lyssenko  et  al.  [64] pre-
sents a task-oriented relevance metric for pedestrian 
detection. Not all predictions or ground truth objects 
are treated equally because the relevant objects for task 
validation, e.g., highly automated driving, receive pref-
erential treatment. In [64], the distance to the object is, 
for example, used as a proxy measure. Bolte  et  al.  [27] 
describes corner cases as objects of relevant class in the 
relevant location, and both are also suitable relevance 
measures. Also, a complexity measure as in [68, 69] 
might be suitable to describe the relevance. In addition, 
other contextual information can be included if it is 
relevant to the task.
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As we can see, many measures can be taken into 
account depending on the application task. By quanti-
fying the corner case using various measures in a well-
chosen and task-depended weight function (cf.  section 
“Corner case definition”), a corner case scoring based on 
the expected relevancy-weighted loss can be achieved 
and individually adapted to the application’s require-
ments. In this regard, the corner case properties intro-
duced in section “Nature of corner cases” are reflected 
in the relevance measures. Ultimately, the scoring deter-
mines the importance or value of a corner case for the 
ML model and the associated application task.

Taxonomy of corner cases
In this section, we present our extension to an existing 
corner cases systematization [33], where we incorporate 
the corner case definition (cf. section “Corner case defi-
nition”). The extension is oriented on the development 
stages of an ML system and uses the introduced method 
layer from [33] as a starting point. Based on the existing 
structure, we introduce new levels, such as input, model, 
and deployment, to show the different types and areas 
where corner cases could occur within the method layer.

Existing layer & level systematisation
The basis for systematizing corner cases introduced in 
[61, 70] consists of five levels: pixels, domain, object, 
scene, and scenario, which are ordered by complexity and 
represent the core of the structure. This first systemati-
zation is vision-oriented and considers only images and 
no other sensor technology used in highly automated 
driving. In [33], the authors enhance the systematiza-
tion by adding missing elements and provide a compre-
hensive systematization of corner cases, including other 
sensors such as camera, LiDAR, and RADAR sensors. 
Table  1 illustrates an abbreviation of the corner cases 
systematization.

The structure of the corner case systematization [33] 
in Table 1 consists of three successive layers: (1) the sen-
sor layer, (2) the content layer, and (3) the temporal layer. 
These layers are further split into other sub-levels and 
can be differentiated into: 

1. Sensor Layer: Comprises corner cases that result 
from the used sensor. 

(a) Hardware Level: Corner case due to damaged 
or broken hardware.

(b) Physical Level: Corner cases caused by physical 
or environmental influences.

2. Content Layer: Corner cases that result from the 
data and have no temporal relation. 

(a) Domain Level: Corner cases that arise due to 
location or environmental changes.

(b) Object Level: Corner cases resulting from 
unknown objects.

(c) Scene Level: Corner cases caused by known 
objects appearing in unexpected quantities or 
locations.

3. Temporal Layer: Covers cases that result from mul-
tiple data points in time and thus have a temporal 
context. 

(a) Scenario Level: Corner Cases that result from 
an unexpected movement or behavior.

According to [33], the method layer comprises corner 
cases resulting from the used ML method, model, and 
architecture. For this purpose, the model uncertainty, also 
known as epistemic uncertainty [8], and adversarial exam-
ples [71] as the cause of these corner cases is discussed. 
In [33] is also mentioned that with the selection of the 

Table 1 Corner case systematization from [33], with examples corner cases for camera and LiDAR. (reworked, original from [33])

Sensor Layer Content Layer Temporal Layer

Hardware Level Physical Level Domain Level Object Level Scene Level Scenario Level

Camera Pixel Error: Dead pixel Pixel-based: overex-
posure

Single Frame Anomaly Represented 
by Multiple Frames 
or Point Clouds: Car 
drives snake lines

Domain Shift: Location 
(Germany - U.S.A.)

Anomaly: Garbage on 
street

Contextual 
Anomaly: People 
on billboards

LiDAR Laser Error: Broken 
mirror

Beam-based: Surface 
does not reflect the 
beam

Single Point Cloud

Domain Shift: Shape of 
road markings

Anomaly: Dust cloud Contextual 
Anomaly: 
Sweeper cleaning 
the sidewalk
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ML model and its architecture, the (inductive) bias influ-
ences which method layer corner cases are favored and 
which are not. In addition to the three layers above, which 
are readily observable by humans, the introduced method 
layer describes corner cases from the model’s point of 
view, which makes it harder for humans to comprehend.

However, a clear structure of the method layer into 
different levels, e.g., compared to the content layer, was 
not carried out before. This article closes this gap and 
elaborates a clear structure for systematizing method 
layer corner cases.

ML‑development stages
Before going into more detail about our extension of 
the corner cases systematization for the method layer, 
we briefly introduce the four basic stages of develop-
ment that each ML model typically undergoes. These 
are the (1) data preprocessing and feature engineer-
ing, (2) model training, (3) model evaluation, and (4) 
model deployment stages. The four stages are depicted 
in Fig. 5. The process stages are relevant for our exten-
sion because each stage has a specific purpose within 
the ML model development.

1. The first stage is about preprocessing, cleaning the 
data, and generating features with high informa-
tional value to improve the subsequent algorithm’s 
performance. Note that many deep learning algo-
rithms skip feature engineering and instead learn the 
features themselves. Still, data preprocessing is gen-
erally inevitable and necessary in every ML model 
development.

2. The model training stage is about choosing the suit-
able ML model architecture and training the ML 
model.

3. The model evaluation stage is needed to measure 
the model performance by testing and validating the 
model if it behaves as expected. On top of the ML 
model, performance is used to rate prediction quality, 
accuracy, and speed to compare it with other existing 
ML models.

4. The last stage is the model deployment stage, which 
integrates the trained and validated model into a run-
ning system or application.

Be aware that multiple iterations may be required 
between the different stages (e.g., continuous integration) 
and slightly modified development processes [72]. How-
ever, the essential steps are similar or the same.

Method layer extensions
Based on the development process presented before, we 
defined three new corner case levels for the method layer: 
the input, model, and deployment level. The three levels 
are illustrated in Table 2. The following discusses the rel-
evance and provides examples for each defined level.

Input level
The input level addresses corner cases caused by the data 
itself and relates to data quality, complexity, novelty, and 
ambiguity. This includes biased data [47, 73] as well as an 
imbalanced class distribution [65], data distribution [74], 
or label errors [6, 7] in the ground truth. There is a risk 
that the model cannot compensate for biased data  [47] 
and labeling errors [6, 7], which can lead to corner cases. 
However, methods such as focal loss [75] or data argu-
mentation [73] of the underrepresented classes can com-
pensate for the imbalance to a certain degree.

The uncertainty in the input data, also called aleatoric 
uncertainty [8], is also part of the input level and can be 
modeled with different methods [76], such as Prior net-
works [11], or Mixture Density Networks [77].

We also assigned data with noise, e.g., adversarial data 
samples [71], to the input level. In the case of adversarial 
samples, even slight changes in the input data, e.g., add-
ing a specific noise pattern, can dramatically change the 
model output.

Fig. 5 ML development process

Table 2 Extention of the corner case systematization

Method Layer

Input Level Model Level Deployment Level

Sensor Independent Database Issue: bad labels or underrepre-
sented classes

Model Issue: bad calibration or high epis-
temic uncertainty

Environment Issue: concept shift due 
to misspecification between train and 
real data
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Model level
The used design and architecture of the ML model sig-
nificantly influence the traceability and explainability of 
the ML model and the appearing corner cases. Depend-
ing on the selected ML model, an inductive model bias 
is introduced into the ML model, which can result in a 
corner case.

Another source of corner cases is model uncertainty, 
referred to in the literature as epistemic uncertainty [8, 
78]. Among others, methods like Monte Carlo drop-
out  [9, 79], deep ensemble  [12, 80], Bayes-by-Back-
prop [10], or Prior networks [11] aim to approximate the 
epistemic uncertainty. A high epistemic uncertainty of 
detected objects, classes, or other predictions is consid-
ered as an indicator for corner cases [78, 81, 82] because 
the ML model cannot reliably handle these data samples. 
In this respect, we have to consider the approximation 
quality of the predicted uncertainties [83].

In summary, the model level includes all those corner 
cases that result from a model’s uncertainty, architecture, 
and reliability.

Deployment level
When the ML model is installed in a production chain 
or application in the commercial or end customer seg-
ment, corner cases on the deployment level can occur. 
The most prominent cause that can lead to corner cases 
is a misspecification issue (cf. section “Misspecification”) 
or inaccuracy between the ML model specification and 
the actual model-working environment  [84]. Therefore, 
calibrating the confidence level [67, 85] is an important 
aspect. A wrong calibration based on a dataset with a 
different distribution or a concept shift  [39] between 
training and runtime can lead to devastating model pre-
dictions  [84]. Calibration can be considered part of the 
model level, but we did not do it regarding the misspeci-
fication. In addition, the deployment level and domain 
level of the content layer are similar in terms of concept 
shift but have a decisive difference. At the domain level, 
we see a change in the real world (before and after). 
The deployment level results from the misspecification 
between training and reality, as the training only covers a 
portion of the reality and most likely contains a distribu-
tion difference. The effect is thus identical, but the origin 
is not necessarily the same.

Another possible cause of corner cases relates to the 
setup of the ML model and, thus, whether the ML model 
is fully operational, e.g., receiving all required sensor sig-
nals and expected data quality. Related topics like diag-
nostics or model self-awareness [86, 87] may help to 
explain possible model output or prediction errors.

Conclusion
In this article, we analyzed the nature of a corner case 
and presented various properties and particularities of 
corner cases. The associated diversity of properties that 
can make up a corner case cannot be underestimated, 
with some properties of a corner case only becoming 
apparent when considering an ML model or application. 
The particularities and properties introduced are use-
ful for describing corner case data or scenarios, e.g., in 
highly automated driving, so that the corner cases can 
be defined more clearly, generated virtually, or captured 
specifically in the real world. The properties can be used 
to extend existing ontologies  [88, 89] to formalize cor-
ner cases better. This circumstance is innovative to our 
knowledge when describing driving situations since the 
data is described in an experimental setup, and the ML 
model and application are included.

We also present a novel generalizing (verbal) descrip-
tion and mathematical definition of corner cases in this 
article. Both are based on the listed properties and an 
extensive literature study about corner cases in ML. Our 
definition of a corner case is based on the expected rel-
evance-weighted loss and offers the possibility to make 
corner cases tangible and thus measurable. Furthermore, 
considering the expected relevance-weighted loss allows 
us to understand how the model behaves, how it can learn 
further with the corner case samples, and whether risk 
reduction is reached. The definition of the expected rel-
evance-weighted loss can also be directly operationalized: 
(1) The relevance of data samples is determined by means 
of the weighting, and (2) by choosing an application-
specific threshold value, corner cases can be identified 
directly at runtime. In the future, we aim to implement 
and evaluate the approach described in this article in an 
application use case such as object detection or semantic 
instance segmentation. Initial work on creating a task-
specific weighting has already been carried out in [90].

As mentioned in the introduction, our corner case defi-
nition focuses on data and ML corner cases to improve 
the model performance or the input space coverage 
(Operational Design Domain  [56]). Besides, there are 
other views on highly automated driving, such as legal 
(e.g., traffic rules, contract, liability), data privacy, eco-
nomic, ecological, ethnic/social perspective, or the hard-
ware-oriented view aiming to improve the sensor. The 
different perspectives, of course, also introduce varying 
corner case definitions that go beyond our ML-centric 
definition’s scope. However, some of these perspectives 
extend far into other (highly relevant) research areas but 
should be considered in the future.

Subsequently, we present an extension of a pre-existing 
corner case taxonomy, incorporating our novel corner 
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case definition and grouping different model-specific 
corner cases. The taxonomy helps to get an overview 
of which aspects are crucial for ML model testing and 
validation.

Finally, we discuss the quantitative assessment of cor-
ner cases, focusing on the relevance of samples and how 
initial work has attempted to measure relevance. How-
ever, investigating how well the quantitative assessment 
of corner cases correlates with the introduced definition 
of corner cases remains open for future work. Regard-
less, we think there is still much research to be done on 
metrics that consider the value or importance of an cor-
ner case. From a human point of view, we need to enable 
the ML model during training to focus on extracting the 
task’s important factors and pay less attention to minor 
details.

Abbreviation
ML  Machine Learning
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