Roehr et al. Al Perspectives (2021) 3:1

https://doi.org/10.1186/542467-021-00008-9 Al P ers p € Ctlve S

RESEARCH ARTICLE Open Access
Check for
updates

A development cycle for automated
self-exploration of robot behaviors

Thomas M. Roehr!” @, Daniel Harnack', Hendrik Wohrle!2, Felix Wiebe!, Moritz Schilling!, Oscar Lima',
Malte Langosz', Shivesh Kumar', Sirko Straube' and Frank Kirchner'

Abstract

In this paper we introduce Q-Rock, a development cycle for the automated self-exploration and qualification of robot
behaviors. With Q-ROCK, we suggest a novel, integrative approach to automate robot development processes. Q-ROCK
combines several machine learning and reasoning techniques to deal with the increasing complexity in the design of
robotic systems. The Q-RocCk development cycle consists of three complementary processes: (1) automated
exploration of capabilities that a given robotic hardware provides, (2) classification and semantic annotation of these
capabilities to generate more complex behaviors, and (3) mapping between application requirements and available
behaviors. These processes are based on a graph-based representation of a robot’s structure, including hardware and

and a use case demonstration.

representation

software components. A central, scalable knowledge base enables collaboration of robot designers including
mechanical, electrical and systems engineers, software developers and machine learning experts. In this paper we
formalize Q-RocCk's integrative development cycle and highlight its benefits with a proof-of-concept implementation

Keywords: Robotics, Self-exploration, Robot behaviors, Semantic annotation, Development cycle, Knowledge

Introduction

Modern robotics has evolved into a collaborative
endeavor, where various scientific and engineering disci-
plines are combined to create impressive synergies. Due to
this increasingly interdisciplinary nature and the progress
in sensor and actuator technologies, as well as com-
puting hardware and AI methods, the capabilities and
possible behaviors of robotic systems improved signifi-
cantly in recent years. Along with the greatly enhanced
potential to strengthen established application fields for
robotics and unlock new ones, these developments pose
several challenges for developers and users interacting
with robotic systems. On the one hand, for hardware and
software engineers, these technological improvements led
to an increasing size of the design space and, hence,
development, integration and programming complexity.

*Correspondence: thomas.roehr@dfki.de
'DFKI GmbH Robotics Innovation Center, Bremen, Germany
Full list of author information is available at the end of the article

@ Springer Open

Engineers do not only have to deal with technical pecu-
liarities of a rich variety of different components when
constructing a robot. They also have to develop advanced
control strategies and integrate knowledge from a range of
disciplines in order to unlock the full potential regarding
a robot’s capabilities.

On the other hand, the field of end users of applications
for robotic systems widens, as more complex and versatile
robots open up a wealth of novel applications for which
robots were unsuited only years ago. In the last couple of
years, the usage of robots has increased substantially and
robots are used in more and more fields of application
[1, 2]. These users will not be interested in the detailed
construction of hardware or software, but will rather eval-
uate a robotic system by its possible behaviors and the
tasks it can accomplish. However, without the domain
knowledge of an experienced roboticist or Al researcher,
designing a robot and the algorithms that provide the
desired behaviors is next to impossible, and employing

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The

images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s42467-021-00008-9&domain=pdf
http://orcid.org/0000-0002-7715-7052
mailto: thomas.roehr@dfki.de
http://creativecommons.org/licenses/by/4.0/

Roehr et al. Al Perspectives (2021) 3:1

engineers for construction of a custom robot is likely to
be prohibitively expensive. Hence, especially small and
medium-sized companies face difficulties to adopt robotic
systems that suit their specific applications [3]. To over-
come this problem, new robot engineering methods are
required.

We claim that both collaborative teams of roboticists
and end users would greatly benefit from a unifying auto-
mated framework for robot development that spans sev-
eral abstraction levels to interact on. Our initial concep-
tual idea is outlined in [4], where we introduce Q-ROCK
as a development framework leveraging integrative Al,
which means that it applies and combines different Al
technologies in one system to address the development
change. With Q-ROCK we intend to simplify and automate
the whole process from robot design to behavior acquisi-
tion and its final deployment for experienced roboticists
from different disciplines and naive users alike. In the
following sections we detail the implementation of the
concept and explain essential elements.

The core hypothesis underlying this project is that the
set of all possible behaviors of a robotic system is inher-
ently defined by its constituting hard- and software, and,
furthermore, that this set can be found by self-exploration
of the robotic system. The major challenge is that the size
of the behavior space is subject of the curse of dimension-
ality. In order to make the behavior space more manage-
able, we restrict the automated exploration to the kine-
matic capabilities of the robot. The Q-ROCK development
cycle allows the usage of existing behavior components
from other methods, e.g., for the interpretation of sensor
input, thus permitting a complementary, semi-automated
exploration approach. For the kinematic exploration, we
make the assumption that the robot is explored in a min-
imal environment that allows to transfer explored capa-
bilities to more complex environments. Additionally, we
limit the capabilities to movements having a fixed length
and we consider only kinematic states that the robot can
reach through the movements itself. These simplifications
still cannot negate the curse of dimensionality. At the low-
est level, the robot, due to sensor resolutions and digital
input signals, is a discrete system. Treated as such, a robot
offers a number of possible states and transitions between
states, which is not tractable for higher degrees of freedom
in practical applications [5]. Therefore, in practice we are
not able to simulate and store every possible movement
individually. Instead, we construct a representative set
of movements generated from a parameter space, which
encodes all considered capabilities.

A distinct feature of our approach is that the self-
exploration of the hardware is as goal-agnostic as possi-
ble, such that novel behaviors can be synthesized from
already explored capabilities of the system without having
to re-perform exploration with a novel task in mind. This

Page 2 of 29

reusability is made possible by clustering capabilities and
describing resulting behaviors in a semantically annotated
latent feature space.

One important reuse of the capability clusters is the
exploration of systems of systems. Here, the explored
capabilities of the subsystems are used to efficiently
explore the capabilities of the assembled new systems.
Even though the exploration of simple subsystems can
be already expensive, the general idea is to consider-
ably increase sample efficiency for complex assembled
systems. This paper deals with the exploration of base sys-
tems, which are required for the capability exploration of
hierarchical systems. The latter, however, will be investi-
gated in our future work.

Using a growing common knowledge base that links
various description levels, from technical details of sin-
gle components to behavior classification of self-explored
robotic systems, we also provide a basis for behavior
transfer between systems and reasoning about a possible
robotic behavior given its composition. Hence, we pro-
pose a development cycle with multiple entry points that
simplifies and speeds up the overall design process of
robotic systems to benefit both developers and users.

Contributions

The main contribution of Q-ROCK is the integration
of several different subdisciplines of Al into a common
framework in order to explore and qualify robotic capa-
bilities and behaviors. To this end, we integrate state-of-
the-art methods and develop new approaches in four key
areas:

(i) Assembly of mechanical, electronic and software
components with well defined interfaces and
constraints

(ii) Exploration and clustering of capabilities aided by
machine learning

(iii) Ontology-based semantic annotation of behaviors
with user feedback

(iv) Reasoning about a possible behavior given a robot’s
hard- and software composition

In this paper we introduce the formal concepts behind
Q-ROCK and present a practical evaluation of our
approach to tackle robot design problems in a combina-
tion of bottom-up and top-down solving. The evaluation
is based on a reach behavior of a robotic manipulator,
a mobile base, and a combination of both. Developing a
simple behavior such as reach clearly does not justify a
complex development cycle as presented in this paper.
The implementation of this behavior, however, permits
us to (a) outline a novel, integrative approach to develop
robotic systems, which we refer to as the Q-Rock develop-
ment cycle and (b) to provide a qualitative analysis of each

Roehr et al. Al Perspectives (2021) 311

stage of this cycle. Hence, the analysis of the reach behav-
ior serves to illustrate the essentials of the concept, and
points to the potential of the Q-ROCK development cycle
to achieve the automated exploration and classification of
robot behavior.

The Q-ROCK development cycle supports and simplifies
the interaction between different crafts in multiple ways.
The traditional approach - with often strictly separated
and sequenced steps of either hardware- or software-
focused development - should be overcome. Firstly, by
simplifying the robot design by means to reuse once
designed components - where the link between hardware
and software components is already established. Secondly,
by an automated exploration of newly assembled sys-
tems, whose behaviors cannot always be inferred just from
its components. We outline an approach that acceler-
ates and simplifies robot design processes and permits
robot developers and users to focus on optimization and
fine-tuning.

Key elements of the Q-ROCK development cycle are:
(a) a centralized data and knowledge base, (b) a proce-
dure for automated system analysis by exploring a sys-
tem assembly’s possible behaviors (limited by some of
our assumption), and (c) semantic annotation of these
behaviors to enable their use in reasoning procedures. An
important point to note is that Q-ROCK relies on a well-
defined robot hardware design process, which is based on
a data and knowledge base that provides the information
to couple hardware and software components automati-
cally by specifying requirements and compatibilities. We
see this part as a crucial pre-requisite to implement the
Q-ROCK concept, for which some foundations were devel-
oped in the precursor project D-ROCK [6]. Details of
the robot hardware design process and its implemen-
tation are discussed in “Modelling robot composition”
section.

As already stated, Q-ROCK combines different fields of
research, where each area might have its own interpre-
tation and definition for the same term. Where needed,
in order to avoid confusion through conflicting conno-
tations of a term, we decided to introduce a new one
instead.

Paper outline

In the following “State of the art” section, we give a
short overview of the current state and limitations of
automatic robot behavior learning. “Q-ROCK develop-
ment cycle” section introduces the concept of Q-ROCK,
provides an overview of the methodology and formally
defines the procedures and abstractions to implement Q-
ROCK. “Results: a use case scenario” section describes
exemplary use case scenarios to illustrate the imple-
mented concepts presented in this paper. A discussion in
“Discussion” section concludes the paper.

Page 3 of 29

State of the art

Multiple disciplines, i.e., knowledge representation and
reasoning, task planning as well as machine learning, can
provide important methods to explore robotic capabilities
or combine capabilities to generate more complex ones.
However, to the best of our knowledge, there is little work
in automated robot design that is approached in a holis-
tic way as it is done in Q-ROCK. We will highlight relevant
holistic approaches here, whereas related work in subdis-
ciplines of the Q-ROCK development cycle are described
in the corresponding paragraphs.

Ha etal. [7] suggest an automated method for the design
of robotic devices using a database of robot components
and a set of motion primitives. They use a high level
motion specification in the form of end effector waypoints
in task space. Their system then takes this motion speci-
fication as input and generates the simplest robot design
that can execute this user-specified motion. However, Ha
et al. do not consider the inverse problem which is the
base concept of Q-ROCK: finding all motions a device can
perform - under given assumptions.

A similar development, tackling the problem of learning
motion behaviors via exploration is pursued in the project
MEMMO (Memory of Motion) [8], where a graph in state
space is generated during exploration, and where the links
between nodes refer to control strategies adhering to
the system dynamics. Both graph and control strategies
are refined during exploration, and the resulting trajec-
tories are then used during deployment to warm-start
an optimal control framework. The key difference to our
approach is that in the MEMMO framework, task objec-
tives need to be known and encoded in a loss function for
training, whereas our framework is mostly goal agnostic
during exploration.

A system providing access to robotics development via
a web based platform is included in the Amazon Web
Services (AWS) [9]. The services include a RobotMaker
which basically enables use of Robot Operating System
(ROS) based tools via browser windows. This way the user
doesn’t have to install any tools locally. However, as far as
it could be investigated, even though an account could be
created freely, most of the services are commercial. Addi-
tionally, even though the ROS community provides many
solutions for different applications, a tool that provides
an easy access to a non-expert user, as aimed at by the
Q-ROCK system, is lacking and is also not provided by
AWS.

Another holistic approach for constructing and simu-
lating robots is presented by the Neurorobotics Platform
[10], under development within the Human Brain Project
[11]. At the time of writing, this web-based framework
includes an experiment designer, robot construction for
simple toy robots (Tinkerbots [12]), a range of prede-
fined robots and brain models, and various plotting and

Roehr et al. Al Perspectives (2021) 3:1

visualization tools. The focus lies on fostering collabora-
tion between neuroscientists and roboticists and provid-
ing simulated embodiment for biologically inspired brain
models. In Q-ROCK we rather focus on exploration of
possible capabilities given a robot’s composition, and link-
ing these capabilities and corresponding behaviors to its
properties.

Q-Rock development cycle

To explore and annotate the inherent capabilities and pos-
sible behaviors of a robot and subsequently allow for rea-
soning about relations between composition and behav-
iors, Q-ROCK combines different kinds of Al techniques
in a development cycle (see Fig. 1). This cycle can be driven
by the high-level task specifications of a user, but is also
flexible enough to support experienced domain experts.
The cycle is divided into three major steps: (i) simulation-
based exploration of the capabilities of a given piece of
robot hardware, (ii) clustering and annotation of these
capabilities to generate behaviors and behavior models,
and (iii) model-based reasoning about the set of behav-
iors and related hard- and software that is required for a
specific task. The Q-ROCK database - implemented as a
combination of hand curated ontologies [13] and a graph
database! - provides the central knowledge base to con-
nect all steps. The database provides information about
known hard- and software components and their rela-
tions, e.g., compatibility of component interfaces, and the
structure of available robotic systems, As central storage
of the results of each stage, the database enables the imme-
diate use of data across all workflow steps, which leads
to a fully integrated development workflow. The develop-
ment cycle can be initiated from two entry points (E1 and
E2 illustrated in Fig. 1). The first entry point E1 allows to
enter a bottom-up development approach. Here, the goal
is to identify the capabilities of a given robotic system or
subsystem. E1 starts with hard- and software composition
and ends up with all capabilities of that system, organized
in semantically described cognitive cores.

The second entry point E2 represents a top-down
approach. A user triggers the development cycle by pro-
viding a task definition, i.e., a given user scenario con-
sisting of an environment and a specific problem that a
robot, which is not known to the user, shall solve. The
goal is to either find a robot in the database that is suit-
able to address the specified problem or to suggest a novel
composition that will likely solve the task.

Complementary to the Q-ROCK development cycle
overview in Fig. 1, we provide a standard Entity Relation-
ship diagram in Fig. 2 to illustrate involved entities and
their relationships. The following sections motivate and
outline the different steps of the Q-ROCK development

https://janusgraph.org

Page 4 of 29

cycle, and successively introduce these entities and their
definitions to formalize our approach.

Modelling robot composition

For all steps of the development cycle it is essential to have
a well-defined model of a robotic system. In Q-ROCK,
we represent a robotic system, i.e., the specific types and
compositions thereof - as well as relations between - robot
hard- and software components, using a graph-based
model.

Related work

The formal Architecture Analysis and Design Language
(AADL) is designed to describe both processing and com-
munication resources, as well as software components
and their dependencies. A system designer is supposed
to thoroughly model the system design, such that given
an application designed by the application designer, it can
be deployed on the system. Furthermore, it is possible
to use special tools to perform design analysis prior to
compilation and/or testing in order to find errors before
deployment. A detailed overview of AADL can be found
in [14].

TASTE is a framework developed by the European
Space Agency to design, test and deploy safety-critical
applications. Is uses AADL as the modelling layer to
design systems and applications. Based on these mod-
els the framework builds the glue code and enables the
deployment of the software to a variety of different pro-
cessing and communication infrastructures. Details can
be found in [15].

In contrast to the aforementioned approaches, the
domain-specific language NPC4 developed by Scioni et al.
[16] uses hypergraphs to model all aspects of structure in
system design, software design and other domains. Its four
main concepts are node (N), port (P), connector (C) and
container (C) combined with the two relations contains
(C) and connect (C); refinements of these concepts form
domain-specific sublanguages. A detailed description of
the concept and the language NPC4 is presented in [16].

Our approach aims at exploiting the flexibility and for-
malization of NPC4 for a structural reasoning approach
and combine it with the well-known and tested concepts
of TASTE/AADL. However, unlike NPC4 our approach is
based on standard graphs to make use of state-of-the-art
database technology.

Approach & formalization

Components Components represent the hard- and soft-
ware building blocks of robotic systems, which can be
combined to generate more complex components. Hence,
a hierarchy of components of different complexity is
created. At the lowest level of this hierarchy are atomic
components, which can not be divided into other compo-
nents in our model.

https://janusgraph.org

Roehr et al. Al Perspectives (2021) 3:1 Page 5 of 29

E 2 User Scenario/Problem

pnnotate
e

e &
Automated Identification & 0% \nterfac@

of Cognitive Cores (CCs) O

S oL

Model-based Reasoning

TBox #ABox, RBox Ontology | p
Q

Semantics | 1

(@]

S

C

&

[m

CC Perception

P

L[> [t)

CC Camera
CC Manipulation

ﬁgg‘/\a
N @y
: £ 8

= B
|

>

&l

Fig. 1 The Q-Rock development cycle consists of three complementary steps: “Exploration”, “Classification and Annotation”, and “Reasoning”. A
graph database serves as a central knowledge representation and data exchange hub. The process may be initiated from two entry points (E1 and
E2), depending on the intention of a user. The entry point specifies whether Q-Rock follows a bottom up (E1) or top down (E2) development approach

-F hi o
Component instance of: Robot —-has: has.
configuration Sp——nhas. URDF Centroid
End Effectors Model Parameter
Capability Function Generative Model instance of annotates
instance of Clustering Method
Interface N N
- TS pans: as as
Component Model E—— |
type direction applies to
domain multiplicity] Sialfe Sjeee exists in type fame
default configuration instance of actuator states
connected to sensor states ! TG
- u
part of composition internal states type
Interface Model
creation mode
type)
applies to
C— domain ﬁ
ubclass of-
\ "\ N\ ~ /
Y Exploration Y Reasoning
Robot Construction Classification and Annotation
Fig. 2 Full Entity Relationship (ER) diagram of the Q-RoCK database. Cardinality symbols conform to the Unified Modelling Language (UML)
standard. Entities mostly involved in and created during robot composition / exploration / classification / reasoning are colored blue / green / red /
orange respectively

Roehr et al. Al Perspectives (2021) 3:1

Components are grouped into a predefined, but extend-
able set of domains D = {S,P,M,E, A}. The domains
are described in Table 1. Each domain can only form new
components by combining other components of the same
domain (unless they are atomic components). The only
exception is the Assembly domain which allows the com-
position of components of different domains. Thus, the
Assembly domain is the one in which complete robotic
systems - including their mechanical, electrical, process-
ing and software structure - can be represented.

The main entities and their relationships are repre-
sented as labelled vertices and edges in a graph G =
(V,E, s, t, X, py, pe). Here, V is the vertex set, E the edge
set with s, ¢ identifying source and target vertices, ¥ is a
vocabulary, and K C X\{#} is a set of predefined keys
with 'label’ € K. Property functions for vertices and edges
are definedasp, : V - Kx Xandp, : E > K x %,
where p, (label’) # @ and p.(label’) # #. The main entity
sets are listed in Table 2, whereas relations are listed in
Table 3. Note that all entities are represented as vertices in
the graph, so that all entity sets listed in Table 2 are subsets
of the vertex set V, and likewise all relations are subsets of
the edge set E.

Relations have to be constrained to form a consistent
system. The relations I¢,Iz,P,S are many-to-one rela-
tions; that means, that no element of their domain can
be mapped to more than one element in their co-domain.
This constraint ensures, for instance, that parts of one
component model cannot be parts of another component
model. The relations H,H; are one-to-many relations,
thus preventing ambiguity of interfaces between different
entities. C, is a many-to-many relationship, allowing any
connection between interfaces, whereas the A relation is
a one-to-one relation between an external and an internal

Table 1 Predefined domains for components in a robotic system

Page 6 of 29

Table 2 Entities for modelling a robot’s structure

Name Symbol Description

component model Me All available component mod-
els in the respective domains

component C Instances of component mod-
els

interface model Mz All interface types a compo-
nent (model) could expose

interface T Instances of interface models -

possibly owned by some com-
ponent (model)

interface. Given the entities and their relations, the opera-
tors listed in Table 4 are defined on the graph. Algorithm 1
serves as example to illustrate the usage of these opera-
tors to construct the component model of a robotic leg.
It is assumed, that a component model for a robotic joint
J € M¢ with two (external) mechanical interfaces a,b € 7
exists. Furthermore, the existence of a component model
for a robotic limb L € M¢ with two (external) mechani-
cal interfaces x,y € T is assumed. Figure 3 visualizes the
graph structure resulting from running Algorithm 1. The
graph has three components g;, gears of different ratio, in
the mechanical domain g; € M. One of it has been instan-
tiated (I¢) and is part of (P) an actuator A € A N Mc.
Chaining the respective relations I 1 5 P (see Table 3)
resolves to:

{(gi,a)lElx eC:(g,x) e Igl A (x,a) € P} for some i.

The component (instance) actuator & with stator and gear
as its composing parts is combined with controller elec-
tronics and controller software to define the joint model.
This model defines the structure of joint instances in the
higher-level leg component.

Name Symbol Description
Software S Software components which Algorithm 1 Example application of graph operators to
are, individually or in combi- constructing a component model
nation, used to interface and - - - -
control a robotic system j1 < instantiatec(J, hip1)
Computational P Physical entities which repre-]‘2 < L’nsmntl‘atec J, h%pZ)
sent computational resources j3 < instantiatec(J, hip3)
and the communication infras- ja < instantiatec(J, knee)
tructure , ,
connect(j1.b, jo.a)
Mechanics M Comp_onents requ_lred to connect(ja.b, j3.a)
establish a mechanical struc- I . . I Limb
ture / kinematic design of a 1 < instantiatec (L, upperLimb)
robotic system ly < instantiatec (L, lowerLimb)
Electronics & Electronic devices including connect(j3.b, 1 x)
sensors, actuators, power connect(ly.y, ja.a)
supplies and supply lines connect(j4.b,)
Assembly A Composite components com- m = createc (A, Leg)

prised of any set of compo-
nents of the previously men-
tioned domains

compose(j1, m)
compose(ja, m)

Roehr et al. Al Perspectives (2021) 311

Page 7 of 29

Table 3 Available relation types to describe relationships between entities

Relation name Definition Cardinality Description

instance of (component model) le :C— Mc N:1 specify the model x € M¢ a component y € C has to comply
with

instance of (interface model) I7:T - Mg N:1 specify the model x € Mz an interface y € Z has to comply
with

subclass of S:Me — Mc N:1 establish a hierarchy among the component models

(model) has interface H:Me —T 1:N define the interfaces a component model exposes to the
exterior

(component) has interface He:C—>1T 1:N define the interfaces a component exposes to the
exterior, given the model of it as a template

part of composition P:C— Me N:1 partially define the inner composition of components of other
components

connected to Co:IT—>1T M:N connect components to form networks, thus refining the inner
composition

alias of A>T 1:1 link interfaces in the interior to the exterior of a component
model

Implementation exploration environment. The chosen exploration envi-

The robot hardware design process presented in this
section has been implemented using a state-of-the-art
graph database. The database directly supports the cre-
ation of a graph G with labelled vertices and edges and
- most notably - the direct specification of cardinality
constraints depicted in Table 3. The database is accessed
at low-level via the Gremlin query language [17] and a
higher-level through a Python layer that we implemented.
The higher-level Python layer translates (sub-)graphs of
the database into a network of interconnected Python
objects. It is also this layer in which the graph operators
of Table 4 are implemented as the basis for the whole
Q-ROCK toolchain.

Exploration

The exploration step in the Q-ROCK development cycle
aims at finding all capabilities a given piece of robotic
hard- and software can provide in a meaningfully defined

ronment has to allow a transfer to more complex appli-
cation environments. Capabilities in this context mean
the possible trajectories a robot can produce within a
robot state space and a world state space. The exploration
is based on simulating a robot that has been modelled
as formally described in “Modelling robot composition”
section - a practical example is given in “Results: a use case
scenario” section.

Related work
In distinction to other approaches in robotics, we try to
avoid directing the exploration towards any kind of goal,
and instead aim at generating a maximal variety of capa-
bilities to find a representative set that might include
novel, unanticipated ones.

Capability exploration methods usually aim to create a
library of diverse capabilities [18—21], so that the coverage
of the behavior space is maximized and the capabilities

Table 4 List of available operators, which allow to modify the graph structure

Name Definition Description

createc Dx%— M add a component model to the graph

creater DxX— Mg add an interface model to the graph

instantiatec Me x X — ¢ create a component ¢ from a model m s.t. (c,m) € Z¢

instantiater Mz x & — It create an interface i from an interface model ms.t. (i,m) € It

isA Me X Me — S make component model x € M¢ a subclass of component model y Mg, such that (x,y) € S
hasy MexZ — H associate an interface instance with a component model

has CxZ— He associate an interface instance with a component

compose CxMe—P make a component part of a component model

connect IxT— C define a connection between two interface instances

export IxI—>A define one interface to be an alias for another interface, e.g., to map a component model’s interface

to a composing component’s interface

Roehr et al. Al Perspectives (2021) 3:1

Page 8 of 29

Actuator

Fig. 3 Schematic overview of components of different domains composed to form a higher-level robotic component. Here, gears and rotor/stator
components form an actuator. The actuator, the controlling electronics and software components form a joint which can be used to define a

robotic leg

Robotic
Leg

g

can be utilized in different tasks and environments. For
the capabilities to be transferable between tasks, these
approaches avoid task specific reward functions. Instead
they use intrinsic motivations such as novelty, prediction
error and empowerment. An extensive overview of intrin-
sic motivations in reinforcement learning can be found
in [22].

Because of their inherent incentive to explore and
find niches, evolutionary algorithms are natural candi-
dates for behavior exploration. Lehman and Stanley [23]
propose to use novelty as the sole objective of likewise-
called novelty search. It was found to perform signifi-
cantly better than goal-oriented objectives in deceptive
maze worlds. Novelty search has already been applied to
robotics to find multiple diverse high quality solutions
for a single task [24, 25]. Cully [26] suggests combina-
tions of different methods, e.g., quality-diversity opti-
mization methods and unsupervised methods, which
allow to explore various capabilities of a system with-
out any prior knowledge about their morphology and
environment.

Formalization

The abstracted approach of the exploration is depicted
in Fig. 4. It serves as high level description of the pro-
cess where the formalization will be given in the coming
paragraphs. Exploration discovers a set of capabilities by
applying a search strategy, where the challenge lies in
handling a significantly large state space. We tackle the
large state space using a parameter-only based encoding

for capability functions: the encoding is compact and yet
arbitrarily precise. Creating a capability function from a
dedicated capability function model and applying it on the
actual robot in an execution loop results in a capability of
the system, where a capability is the executed trajectory in
the world state space. This structure allows to validate the
feasibility and cluster robot-specific execution character-
istics from capabilities on the basis of the input parameter
space.

States

Definition (Joint State). The joint stateq € Q is a vector
of all joint positions of the robot. For a robot with n joints:
Q C Q' xQ*x---xQ". Qisasubset of the Cartesian prod-
uct because not all combinations of joint positions may be
allowed due to the robot structure.

Definition (Actuator State). The actuator state s* of the
robot is a tuple of the configuration and the joint velocity, so
that s* = (q,q) € S$% where the actuator state space S* =
Q x Vq combines joint state space Q with joint velocity
space Vq. The robot actuator state completely describes the
positions and velocities of all parts of the robot at a given
time.

The complete (observable) state of the robot contains
not only the actuator state s* but also the states s =
(s51,--- ,s%) € §° of all m sensors and possibly internal
states s'.

Roehr et al. Al Perspectives (2021) 3:1 Page 9 of 29
e
[Exploration Strategy J< -------------------
Bt
] < l Parameter Set 6
C
[}
O o .
[Capablllty Function Model]
g
[

\

—>[Capabi|ity Function]

Robot State
S

Robot Specific
A

model is trained in parallel

Action a

[Capability Set]<—Capability -~ feedback (opt) -- -

\

trainp| Validation
Model

\
'
]
]
'
'
'
'
'
]
'
'
]
'
]
]
'
'
'
'
'
]
'
'
]
'
]
]
'
'
'
'
U

'
O

Fig. 4 Key elements of the exploration: an exploration strategy generates a parameter set which is combined with a capability function model to
generate a capability function. An execution loop uses the capability function to generate the actual capability from a simulation, while a validation

Definition (Robot State). The (full) robot state s™” is
a combination of actuator, sensor and internal states. An
internal robotic state s* = (s¥1,---,s) for k internal
properties ands' € S§' may encompass for example internal
time, battery status or a map of the robot’s surroundings.
§%,8% and §' are the sets of all possible actuator, sensor and
internal states, respectively. The full robot state reads:

s = (s7,5°,5') € 0 = 8§ x §° x §..

The robot state s does not contain the complete informa-
tion about the actual physical or internal state of the robot.
It does only contain information that is accessible by the
robot itself, i.e., that can be captured. Information about
sensorless unactuated joints for example is not part of the
robot state.

Actions To trigger changes of the robot state and thereby
generate trajectories of robot states, it is necessary to

define motor actions. A motor, which is part of a joint,
outputs a motor torque T € 7. The torques for all joints
canbe writtenasatupler € T =7 x T2... 7" Anidle
joint always outputs T = 0.

Definition (Action). A kinematic action a** is a tuple
of a torquet € T and a time interval At, such that a*"" =
(t,At) € AX" where AX" denotes the kinematic action
space. Applying a kinematic action to the robot maps the
current robot state to a new robot state:

akzn . Srob - Srob
Besides kinematic actions, there are also perceptive actions
al?" € AP which evaluate sensor data and store abstrac-

tions in the internal robot state:

a’’ . § - §

Roehr et al. Al Perspectives (2021) 3:1

Finally, there are internal actions a™ € A™ processing
internal information:

amt :Sz N SL

The full action space is the Cartesian product of the indi-
vidual action spaces:

A :Akin % AP XAint

Environments & world state Note that environments
with different properties, including, but not limited to,
gravitational force, pressure, and temperature will have an
influence on the outcome of a kinematic action. Hence,
environmental parameters as well as poses and properties
of objects in the robot’s workspace have to be considered
when evaluating the feasibility of kinematic actions.
Furthermore, the environment is an important com-
ponent to identify certain properties of capabilities. For
example a throwing capability relies on the temporal evo-
lution of states of the object to be thrown, which is
represented by environment states that can be external to
the robot (if it does not have the appropriate sensing capa-
bilities). This arises also for capabilities that can, at first
glance, be considered mostly environment independent:
The effect of actions on the trajectory of an end effec-
tor when pointing is still determined by gravity and the
viscosity of the medium in which the movement is per-
formed. Even more, there is no generic way to determine
the poses of all the robot’s limbs just from sensing the
actuator states s?: if a system is underactuated or does not
have sensors on some actuators, an analytical solution for
the feed forward kinematics may not exist. To compensate
for this, we introduce the world state space which may also
contain information unavailable to the robot itself:

Definition (World State Space). The world state
gworld ¢ gworld —grob . §obs yhere the observational
state space S contains states read from the environment,
e.g., the position and orientation of objects or robot limbs
and end effectors. These states are obtained during sim-
ulation or by monitoring a real world execution and will
be accessible to the robot if it has the appropriate sensing
capabilities.

Capability A particular capability will require the
sequential execution of a sequence of actions. Such an
action sequence can be represented by a capability func-
tion. The capability function selects an action for the robot
based on the current state and time, and thus defines how
the robot is supposed to (re-)act in a given situation.

Definition (Capability Function). A capability function
is a function cap that maps the robot state at a given time
to an action:

Page 10 of 29

cap: 8 x {0,...,T} > A

and cap € CF, where CF denotes the capability function
space. An important detail to note is that the capabil-
ity function operates on the robot state space and not the
world state space. A capability function is a robot inherent
function that considers only information that is available
to the robot itself.

A capability function can be created in various ways,
e.g., it could be a policy obtained from reinforcement
learning, a behavior from an evolutionary algorithm, or a
control law from optimal control theory.

In general the generation of capability functions can be
formulated with a capability function model:

Definition (Capability Function Model). A capability
function model is a mapping cfm from a parameter space
O to the capability function space

¢fm:0© — CF

The capability function model introduces a parame-
ter space ®, which allows the parametric generation of
capability functions and is the basis for the exploration.
In order to not constrain the exploration, the capability
function model should be able to represent all kinds of
capability functions of a system. In principle, however, it is
also possible to operate with multiple capability function
models at once.

By repeatedly calling a capability function and applying
the resulting actions to the robot, a capability is executed.

Definition (Capability). A capability IT € L, where T is
the finite time horizon and L the space of all trajectories, is
defined by a sequence of world states and time coordinates:

7= [(So’ t°)) (Sl,tl) s (sT, tT)]

where the transition between successive states s* and st is
effected by an action a® of the robot.

Capabilities are central entities in the Q-ROCK philos-
ophy, since we argue that a complete set of all possible
capabilities is the most fundamental representation of
what a system is able to do. In general the result of exe-
cuting a capability strongly depends not only on the robot
itself but also on the environment. With the intention to
isolate the capabilities of the robot itself, we assume the
environment to be minimalistic, deterministic, and static.

To refine the notion of completeness, we make two
crucial assumptions at this point:

Roehr et al. Al Perspectives (2021) 311

Assumption (Discretized Time). We assume a dis-
cretized time model by arguing that (most) robots are
controlled by digital hardware or controllers which have a
specific clock or controller frequency. The smallest time step
considered here is the denoted by 5t.

Assumption (Discretized State Space). We assume that
S is sensed by digital sensors and we consider only state
changes if we can distinguish them. As consequence we
have a discretized state space S.

While this discretization reduces the cardinality of L,
it is still countably infinite if ¢ is not bounded, so we
have to choose a maximal capability length T. Now, in
principle, a complete set of all possible capabilities up to
a maximal length can be generated. Not surprisingly, this
set would still have an intractable size considering typical
resolutions of modern hardware and degrees of freedom
[5]. A possible approach is to use a generic capability rep-
resentation instead of manually specifying a sequence of
actions. The parameters of such a representation define
the resulting capability. Possible tools are motion primi-
tives such as polynomials used by Kumar et al. [27], DMPs
used by Schaal [28] or Gaussian kernel functions used by
Langosz [29].

As a full set of capabilities is not tractable, the next
best thing is a representative set of capabilities with a uni-
form distribution in a given feature space. An evolutionary
algorithm such as novelty search [23] offers a suitable
approach. With novelty search it is possible to search
for novel capabilities with respect to a previously speci-
fied characteristic. A possible problem for goal-agnostic
exploration however is precisely this characteristic that is
used to define novelty, since it can bias the distribution of
capabilities in an undesirable way for subsequent cluster-
ing, and partially preempts the distinct feature generation
step. An alternative strategy is simple random sampling
on the parameter space ®, which also comes with its
own caveat: The final distribution of the capabilities in
later defined feature spaces will depend on the specific
parametrization. Despite this, we see both approaches as
viable alternatives , since they pose relatively low restric-
tions on the feature generation compared to more goal
directed exploration. A representative set of capabilities,
obtained with an exploration strategy like this, may serve
as a starting point for exploring the space in a finer resolu-
tion, for capturing the system dynamics in a model, or for
searching for a specific capability.

Because the capability function model itself is robot-
agnostic, it is a priori not clear, which parameters 6
correspond to feasible capabilities of the robot. For this
reason, a validation model is trained that predicts which
parameters 0 lead to capabilities that are actuable on the
robot in the current environment.

Page 11 of 29

After the exploration phase is finished, the obtained
library of capabilities, the capability function model with
the simulator to generate new capabilities, and the valida-
tion model are saved to the database and can be used by
the following step.

Classification and annotation

The goal of this workflow step is the creation of cog-
nitive cores. Cognitive cores are hubs that connect a
specific behavior model with the robot’s hard- and soft-
ware, semantic annotations of that behavior model, and
robot-specific capabilities that execute the behavior. Cog-
nitive cores allow the execution of the correspond-
ing behavior by using constraints and target values in
semantically annotated feature spaces, and rely on clus-
tering of capabilities in these spaces. Cognitive cores are
central entities in Q-ROCK since they constitute our solu-
tion to the symbol grounding problem, i.e., link semantic
descriptions to sub-symbolic representations, and serve
as a basis for reasoning about the relation of hard- and
software components, robotic structure, and resulting
behavior.

Related work

One important point of our approach is the clustering
of capabilities into feature spaces and the control of the
robot within these feature spaces. Several studies have
shown performance and robustness benefits from con-
trolling a simulated agent in a latent, compressed feature
space. Ha et al. [30] used a variational autoencoder on
visual input to control a car in a 2D game world. In the
context of hierarchical reinforcement learning, Haarnoja
et. al. [31] showed that control policies on latent features
outperform state-of-the-art reinforcement learning algo-
rithms on a range of benchmarks, and Florensa et. al.
[32] found high reusability of simple policies spanning a
latent space for complex tasks. In a similar vein, Lynch
et al. [33] investigate using a database of play motions,
i.e., teleoperation data of humans interacting in a simu-
lated environment from intrinsic motivation, combined
with projections into a latent planning space to gener-
ate versatile control strategies. While the latter study has
parallels to our segmentation into an exploration and a
clustering phase, no previous approach aims at a seman-
tically accessible feature representation, as we propose in
Q-ROCK.

A method for generation of a disentangled latent fea-
ture space from observations was developed by Higgins et
al. [34]. This variational autoencoder builds on the classi-
cal autoencoder architecture [35, 36] that compresses data
into a latent space. The authors note that disentangling
seems to produce features that are also meaningful in a
semantic sense, such that changes in feature space lead to
interpretable changes in state space.

Roehr et al. Al Perspectives (2021) 3:1

Close to our work, Chen et al. [37] use a combination of
variational autoencoders and Dynamic Movement Primi-
tives (DMPs) to learn and generate robotic motion. They
showcase that semantically meaningful representations of
motion can be obtained, and that switching between dif-
ferent motions can be performed smoothly. To a similar
end, Wang et al. [38] combine a variational autoencoder
with generative adversarial imitation learning and show
that a semantic embedding space can be learned for
reaching and locomotion behavior. Whereas both these
approaches highlight the construction of a semantically
interpretable latent space for motion behaviors, they rely
on human training data with a known semantical con-
text. In our framework we aim at extracting the semantics
after a motion library has been generated during the
exploration step, which has no notion of semantics per se.

A combination of unsupervised clustering and varia-
tional autoencoders is described by Dilokthanakul et al.
[39]. However, direct semantic annotation of these fea-
tures and a formalized combination into behavior models
has not been considered to date.

Formalization

To arrive at a formal definition of cognitive cores, we
first need to clarify what constitutes a behavior. Since the
term “behavior” has overloaded definitions in various dis-
ciplines, we specifically mean behavior in a broad, radical
behaviorist sense, while emphasizing the phenomenologi-
cal aspects: Everything an agent does is a behavior, and all
behaviors must be in principle completely observable [40].
The complete observation is provided by the capabilities
as defined in “Exploration” We further define a behavior
model as an abstraction of similar capabilities that have
the same semantic meaning: A behavior of “walking” is
not bound to the exact execution of a sequence of robot
and world states, but rather a large number of capabili-
ties that can differ in certain aspects. We thus propose
that different behavior models can be identified by finding
constraints to capabilities in appropriate feature spaces,
leading to the following definition:

Definition (Behavior Model). A robot-agnostic, seman-
tically labelled abstraction of a set of capabilities L that
adhere to constraints in feature spaces.

Feature spaces arise from transformations of the capa-
bilities via a feature function to capture specific aspects,
and allow to define distances between capabilities within
these aspects:

Definition (Feature Function). A feature function ff;
maps from capabilities | € L to a set of values in R}, so
that ffi, : L — Rj. This function is supplemented with a
semantic description.

Page 12 of 29

Definition (Feature Space). A metric space Fj with ele-
mentsfr = ffi (D). It is uniquely defined by the combination
of ffi and its metric my.

An important aspect of the feature functions is their
semantic descriptions, which constitute the language in
which the behavior models are defined.

The feature functions ff; can be obtained in two differ-
ent ways. Either they are defined manually and directly
annotated by a semantic description, e.g.,

T
1 .
il = 7y 24
t=0

with the description ’average actuator velocity. Alter-
natively, they can be found automatically in a purely
data-driven way, e.g., by using variational autoencoders
[34] adapted to trajectory data. The Q-ROCK framework
allows both approaches that can also be used in parallel
to provide maximal flexibility, whereas the latter is not
implemented to date. We thus enable the use of expert
knowledge to define the most relevant feature spaces for
a given problem. However, a non-expert user could also
solely resort to the automatic approach. In addition, inter-
esting feature functions that reflect the specifications of
the robot model might be discovered automatically that
are not obvious — even to an experienced observer, or hard
to formulate.

An example of a behavior model defined by constraints
in feature spaces is:

label :

constraints :

reach
F{:min:0.95 max:1.0
F, : variable

Fj3 : variable

Currently, only min/max and variable constraints are
implemented. A variable constraint means that a target
value f7* has to be provided when the associated behavior
should be executed by a robot. Since behavior models are
robot-agnostic, they can be grounded for different robotic
systems. The robot-agnostic nature of the behavior model
depends on feature functions’ semantic descriptions: fea-
ture functions having the same effect on a semantic level
may have varying definitions for different robots, espe-
cially if they are represented by encoder networks or
other function approximators. Thus it must be possible to
identify feature functions across robots by their semantic
description.

To achieve a robot-specific grounding of the behav-
ior model, the feature spaces Fy, . .., Fy are populated by
mapping robot-specific capabilities provided by the explo-
ration step via the associated feature functions ffy, . . ., ffy.

In principle, if all capabilities of a robot are contained
in the representative set provided by the exploration step,

Roehr et al. Al Perspectives (2021) 311

a simple lookup of capabilities that adhere to the beha-
vior model constraints is sufficient to execute the desired
behavior. However, as noted before, this usually implies a
capability set of intractable size.

We tackle this problem in two ways: Firstly, the capa-
bilities are clustered in F; Vk and the centroids of the
clusters are used to check constraints for all members of
the cluster. Whereas the result of this check is not exact
for all capabilities, computational performance is greatly
increased. Secondly, to avoid a lookup search when exe-
cuting a behavior and to not be restricted to capabilities
seen during exploration, we abstract generative models on
the parameter sets @ from the capability clusters. Thus,
clusters are represented by probabilistic generative mod-
els that, when sampled from, provide parameters 6 which,
via recurrent execution of the capability function model,
lead to capabilities that likely lie in the intended clusters.
Clusters are thus defined as:

Definition (Cluster). A cluster with label c]k is defined
within a feature space Fy, which is associated with sev-
eral clusters j €[1,ni], where ny denotes the number of
clusters found in Fy. Each cluster has a generative model
G]k(ﬁ) ~ p(O,CIk) =p (9|c;<)p (c’k>, that represents a

probability distribution over parameter space 0, and a

Page 13 of 29

centroidf?{ = fh (l (arg maxy G’,; (0))), where we use [(0)
as a shorthand for the combination of capability function

model and recursive application of the execution loop (see
Fig. 4).

Using generative models has the advantage that mod-
els from different clusters can be combined and jointly
optimized to find a parameter set 6 that generates a capa-
bility lying in several intended clusters. The clustering
procedure is visualized in Fig. 5.

After clustering, robot-specific cognitive cores can be
instantiated. Cognitive cores are defined as:

Definition (Cognitive Core). A cognitive core is an
executable grounding of a behavior model for a specific
robotic system, where constraints of the behavior model are

checked against cluster centroids f]k Clusters that satisfy
these constraints are linked to the cognitive core. A cogni-
tive core can only be generated when all behavior model
constraints can be met.

These cognitive cores are described by a semantic anno-
tation:

Definition (Semantic Annotation). A tuple SA =
(L, X), where L is a set of labels, |L| > 1 and X is the set of
constraints.

[Capability Set]

[Capability Function Model]
A 0

(Clusters)

4 Cluster Training Loop N
Capabilities

\ [Generatlve MOdeIS]<—train—[Labelled Clusters] /

map with Feature Functions

¥

[Feature Spaces}

apply
Clustering
Strategy

’

Fig. 5 Clustering overview. A representative capability set, along with the corresponding parameters 8 and capability function model is provided by
the exploration. Transformation functions ff are applied to map to feature spaces Fy. In these feature spaces, clustering is performed. The labelled
clusters are used to train probabilistic generative models on the parameter space ®, s.t. clusters can be stored in an efficient and expressive way.
When sampling from the generative cluster models, parameters @ are generated that lead to capabilities in the intended cluster. The mapping from
parameters to a capability is mediated by the capability function model and the execution loop (see Fig. 4). During training, sampling of parameters
and generation of new capabilities is used to verify model performance

Roehr et al. Al Perspectives (2021) 3:1

By default, the cognitive core inherits the labels and con-
straints from its behavior model, but the semantic annota-
tion can be augmented by robot-specific information. This
semantic annotation is the main interface between the
generation of cognitive cores and the reasoning processes
described in section “Reasoning” The relation between
feature spaces, clusters, behavior models, cognitive cores
and semantic annotations is illustrated in Fig. 6.

In this framework, the execution of a behavior on a
specific robot, ie., the execution of a cognitive core,
comes down to finding a parameter set 8,,,, that jointly
maximizes all generative cluster models adhering to the
constraints of the behavior model. If a behavior model
includes variable constraints, each target value f*" in
the corresponding feature space Fj needs to be assigned.
The cognitive core then finds the cluster models with
closest centroids to the variable inputs. The cognitive core

Page 14 of 29

effectively uses a constraint checking function cc(c';() to
determine the relevant clusters, where

1 iftypeis "min/max" and

min < f]i < max

cc(cjll() =11 if type is "variable" and
j _ o p
fi =arg ming, (fli’ kt‘”)
0 else.

with function my as the metric of the feature space Fy.
Note that this implies that several cluster models in the
same feature space can fulfill a min/max constraint. The
product of all currently relevant cluster models, i.e., the
models G]k for which cc(c?() = 1, results in a new prob-
ability distribution. The maximum of this distribution
corresponds to a parameter set 6,,,, that has the high-
est likelihood of generating a capability that lies within

(T

Label]<—ha5~[Behavior Model

A
J

| S

»
>

T
has

c

1])

=

= [Constraint] [Constraint] Constraint
[}

() L min=0.8 max=1.0 J variable J variable
©

5 applies to applies to applies to
-

5
T

P]

(exists in (-exists in r—exists in
8 [Cfluster] (Z}uster] [C_Iuster]
S| [fi-oa C - J| Ui
5 [Cluster] [Cluster] [Cluster]
21 Uiz Z i R
2 t ‘ j
[v
(9p] has
]
\ inherits [Cognitive Core]—instance of ————~
has

q

v ¥
T) [) ()

Fig. 6 Relation between features, clusters, behavior models, cognitive cores and semantic annotations. The behavior model is defined by
constraints in feature spaces. This behavior can be grounded as a cognitive core for a specific system when clusters for this system exist that fulfill
these constraints. Constraint fulfilling clusters are linked to the cognitive core. The cognitive core inherits the generic label of the behavior model,
but can have more that describe specifics for this robot. The constituents of the semantic annotation are colored orange

Roehr et al. Al Perspectives (2021) 311

all relevant clusters when used as input to the capability
function model and the execution loop (see Fig. 4). The
maximization step is then formally written as:

J
0 10y = arg m@axl;[G, 0),

where (k,j) € M if cc (cjk) = 1. Since this approach
is based on probabilistic modeling, it is possible that the
capability associated with 8,4, violates a constraint. How-
ever, assuming a smooth mapping ® — Fy via the feature
functions ffy, the violation is likely mild. If not violat-
ing a particular constraint is important, e.g., to avoid
collisions, different weights can be assigned to different
constraints, which control the relative influence of the
corresponding cluster models. Note that it is also possi-
ble that cluster models are combined that have close to
or completely disjunct distributions. Thus, in practice a
probability boundary has to be set under which the maxi-
mization result 6,4 is rejected and it is assumed that no
capability exists that fulfills all constraints.

One important challenge of the approach is how behav-
iors are cast into the constraint-based, phenomenologi-
cal behavior model we use. Since we aim at semantics
which is intuitively understandable, we rely on human
interaction. Thus, the first option Q-ROCK provides is
hand-crafting behavior models. Although it requires some
domain knowledge, this approach scales well in the sense
that once defined, the behavior model can be grounded for
many different robotic systems. In addition, we also envi-
sion semi-automated approaches: (1) Behavior modelling
from observation of human examples, and (2) Modelling
human evaluation functions with respect to a specific
behavior. Approach (1) is based on research on end effec-
tor velocity characteristics for deliberate human move-
ment [41, 42]. These movement characteristics can be
formulated as feature space constraints and thus used to
define behavior models. For approach (2), it was shown
that implicit bio-signals of the human brain and explicit
evaluation of a human observing simulated robot behavior
can be used to effectively train a model of the underlying
evaluation function [43], and to guide a robotic learn-
ing agent [44]. Also here, feature space constraints can be
derived from the trained evaluation function approxima-
tor and used to define the behavior model.

At this point, we want to stress again that human inter-
action is absolutely necessary in the Q-ROCK philosophy
to define meaningful behavior. Throughout this workflow
step, human labelling is required for feature spaces, cog-
nitive cores and behavior models. The robot itself, after
exploration, has no notion of causality, i.e., reaction to
the environment, or purpose in what it is doing. Thus it
is not behaving in the actual sense. Only through human
semantic descriptions, i.e., what it would look like if the

Page 15 of 29

robot would behave in a certain way, are the capabilities
of the robot in the environment ascribed to a meaning-
ful behavior. Once the Q-ROCK database grows, we will
explore automatically generated labelling of feature spaces
based on similarity to already labelled ones, which could
speed up the labelling process by providing reasonable
first guesses.

To summarize, cognitive cores derived from behavior
models are central entities in the Q-ROCK workflow, since
they cast explored capabilities in a semantically meaning-
ful form and provide a way to generate new capabilities
that adhere to characteristics found by clustering. In addi-
tion, their semantic annotation provides the basis for
reasoning about the connection of possible robot behav-
ior to the underlying hard- and software, which will be
elaborated in the following section.

Reasoning

Structural reasoning serves two purposes in Q-ROCK: (1)
to suggest suitable hardware to solve a user-defined prob-
lem, and (2) to map an assembly of hardware and software
to its function. The former does not involve any type of
active usage of the hardware and software assembly, but
exploits knowledge about the physical structure, interface
types and known limitations / constraints when com-
bining components, as well as their relation to labelled
cognitive cores.

Essentially, structural reasoning establishes a bi-di-
rectional mapping between assemblies of hardware and
software components and its function. Note, that we
explicitly do not use the term robot here, since the result of
the mapping from capabilities might not be a single robot,
but a list of hardware and software components.

Related work

Knowledge Representation and Reasoning (KR&R) is con-
sidered a mature field of research, but there is still a gap
between available encyclopedic knowledge and robotics.
KNOWROB [45], as knowledge processing framework,
intends to close this gap and provides robots with the
required information to perform their tasks. It builds on
top of knowledge representation research, making the
necessary adaptations to fit the robotics domain where
typically much more detailed action models are needed.
The core idea behind KNOWROB is to automatically adjust
the execution of a robotic system to a particular situation
from generic meta action models. The platform is vali-
dated with real robots acting in a kitchen environment
with a strong focus on manipulation and perception. Beetz
et al. combine KNOWROB with the usage of CRAM [46],
which serves as a flexible description language for manip-
ulation activities. CRAM in turn is used with the Semantic
Description Language (SDL) which links capabilities with
abstract hardware and software requirements through an

Roehr et al. Al Perspectives (2021) 3:1

ontological model. As a result, symbolic expressions in
CRAM can be grounded depending on the available hard-
ware. CRAM is, however, not a planning system that can
be used to solve arbitrary problems. Instead it can for-
mulate a plan template for an already solved planning
problem.

Meanwhile, reasoning in Q-ROCK aims at using plan-
ning, in particular Hierarchical Task Networks (HTNs), to
generically formalize a problem in the robotic domain and
to generate an action recipe as solution. HTN planning is
an established technology with a number of available plan-
ners such as CHIMP [47], PANDA [48] or SHOP2 [49],
but there is still no de-facto standard language compara-
ble to the Planning Domain Definition Language (PDDL)
[50] in the classical planning domain. Holler et al. [51]
suggest an extension to PDDL hierarchical planning prob-
lems named Hierarchical Domain Definition Language
(HDDL) to address this issue. Nevertheless formulating
an integrated planning problem which includes semantic
information remains an open challenge.

Approach & formalization
Top-Down: Identification of capable systems We start
by describing the process of structural reasoning from
entry point E2 into the Q-ROCK development cycle (see
Fig. 1). The workflow for the top-down reasoning is
depicted in Fig. 7.

To enter the cycle at E2 a user has to provide a descrip-
tion of an application problem to solve, i.e., defining tasks

Page 16 of 29

that should performed and the application environment
including the initial state. The problem is described with
a general language and is firstly hardware agnostic. This
means, neither does the application description explic-
itly state the use of a particular robot nor a robot type.
While an input using natural language would be desir-
able for users to describe their application, Q-ROCK uses a
planning language like PDDL or as directly machine read-
able format. Formulating the application problem firstly
generically and secondly as hierarchical planning prob-
lem allows the decomposition into a sequence of atomic
/ primitive tasks, where p € P denotes a primitive plan-
ning task and P denotes the set of all primitive tasks.
Q-ROCK extends state-of-the-art planning approaches by
(a) introducing a semantic annotation for each prim-
itive task, and (b) representing the domain descrip-
tion, i.e., all tasks and decomposition methods, with an
ontology.

The semantic annotation of a primitive task comprises
a constrained-based description of what a task does in
the classical sense of planning effects, i.e., what it requires
to start the execution as preconditions and the condition
that have to prevail during an execution. All conditions
including pre/prevail and post can be tested upon using
a predefined set of predicate symbols, which describe
the partial world state including environment state s>
and robot state s. Hence, the semantic annotation of a
primitive task also includes pre and prevail conditions that
link to the state of hardware and software components.

Generic

HTN Problem > Action Recipe —>©

HTN Planner

y

Find potentially

NO—p»| useful

Start assembling
new robot (E1)

components

suitable
robot exists?

~
ad Select Domain
Generic - —
Plan Define Initial
Generation State
Define Tasks
I\ Ontology
Components
QRock DB
Ve Semantic Annotation 4‘
Robot
Specific Generic Match to Identify
Plan Action Recipe suitable CCs suitable robots
Instantiation
.
to design a capable robot

®

generate robot
Yes—p| -
specific plan

Fig. 7 Outline of the top-down reasoning, which firstly involves the definition of a (planning) problem and the subsequent generation of a generic
solution. Secondly, capable robots are identified to provide a robot specific plan, or alternatively only to suggest components that might be relevant

Roehr et al. Al Perspectives (2021) 311

Definition (Semantically Annotated Primitive Task). A
semantically annotated primitive task p* € PT is a tuple
of a primitive planning task p and a semantic annota-
tion SA, so that p™ = (p,SA). PT denotes the set of all
semantically annotated primitive tasks.

The top-down reasoning is based on a predefined plan-
ning vocabulary V, = (P,C, d,sa) to specify problems,
here representing a particular planning domain descrip-
tion, where the vocabulary consists of primitive (P) and
compound tasks (C), decomposition methods d for com-
pound tasks, and a mapping function sa : P — SA,
S A denoting the set of all semantic annotations. The top-
down reasoning process is initially limited with respect
to the expressiveness of this application specification
language.

Transforming the user’s problem into a planning prob-
lem and solving it results in a collection of plans, where
each plan in this collection represents a robot type agnos-
tic solution. This does not imply, however, that the
requested task is solvable with current available hardware.
Each semantically annotated primitive task that is part of a
solution has requirements for its execution including, but
not limited to environmental, temporal, and hardware and
software constraints. Therefore, an additional validation
of these constraints has to be performed.

Requirements to execute a plan can be extracted from
the semantic annotations belonging to all of its seman-
tically annotated primitive tasks, in the simplest case by
the use of labels whichclogy. Semantic annotations also
describe cognitive cores as explained in “Classification
and annotation” section. Such a description might be
incomplete in the sense that it does not catch every detail
of the behavior of a cognitive core, but it serves to outline
the semantics in an abstract and also machine processable
way. Furthermore, it allows to match semantic annota-
tions of tasks against semantic annotations of known
cognitive cores. Thereby identifying cognitive cores that
can be used to tackle the stated problem (see Fig. 8). Each
cognitive core maps to a single robotic system, but prim-
itive tasks can map to different cognitive cores. Finally, a
solution is only valid if a single suitable system which is
capable to perform all tasks can be identified. While this
concept of matching tasks and cognitive cores can also be
used to map to multiple systems that cooperate to solve
the stated problem, Q-ROCK focuses on single robots for
now.

As outlined before, Q-ROCK aims at a planning
approach which does not focus on a particular robotic
systems, but provides abstract solutions. Although no spe-
cific robot types are considered, solutions still can com-
prise hardware requirements to solve a particular task.
For instance, a requirement could be the emptiness of a
gripper before starting a gripping activity. This particu-

Page 17 of 29

R

Cognitive h
[move] [rotate] [reach] [grasp] lift]

Cores

—

[lift mass] [lift r:1ass]

¢

matching min=0.0 min=0.0
max=0.7 max=5.0
A
[grasp] [lift]
L S
Tasks

takeCup

Fig. 8 Matching of semantic annotations in order to map from a task
to a cognitive core that can perform this task

lar precondition, however, implies also the availability of a
gripper and thus restricts the applicable robot types that
can be used to perform for this task to those that have a
gripper. A selected target object might induce additional
constraints for lifting mass or handling soft objects, so that
only a particular type of gripper can be used.

Effectively, the following structural requirements exist
for hardware and software components: 1. existence of
hardware and software components in the system, and
2. particular (sub)structures formed by hardware and/or
software components. Additionally, functional require-
ments exist which might imply structural requirements,
so that functional requirements can be considered as
higher-order predicates for tasks. These could be imple-
mented similar to using semantic attachments for plan-
ning actions as suggested by [52]. Workspace dimensions
and required maximum reach are examples of an extended
task description, which limits the range of systems appli-
cable for this task.

To create semantic annotations, Q-ROCK uses a corre-
sponding language £. Meanwhile, Q-ROCK uses an ontol-
ogy to represent the vocabulary V O V), U Vsa of this
language, which combines the planning vocabulary V, and
the semantic annotation vocabulary Vs4 which permits
to specify components, labels (corresponding to behavior
types) and constraints. While labels allow to classify and
categorize behaviors, constraints allow to detail or rather
narrow these behaviors further, e.g., manipulation with a
constraint to manipulate a minimum of 100 kg mass poses
a significant hardware constraint.

Semantic annotations characterize primitive tasks as
well as behavior models and cognitive cores and are
therefore essential to link Q-ROCK’s clustering step with
top-down reasoning.

Roehr et al. Al Perspectives (2021) 3:1

Bottom-Up: From Structure to Function While the
top-down reasoning process tries to find suitable hard-
ware for a given task, the bottom-up approach aims at
finding the functionality or rather tasks that a compo-
nent composition can perform. The bottom-up identifi-
cation of a robot’s function is based on a formalization
introduced by Roehr [53] who establishes a so-called orga-
nization model to map between a composite system’s
functionality and the structure of components. Function-
alities can be decomposed into their requirements on
structural system elements. As a result, the known struc-
tural requirements for a functionality can be matched
against (partial) structures of a composite system to test
whether this functionality is supported. Figure 9 depicts
the bottom-up reasoning workflow, where an essential
element of the bottom-up reasoning is the identification
of feasible composite systems or rather assemblies. The
combination of components requires knowledge about
the interfaces of the components and permits a connec-
tion between any two components only if their interfaces
are compatible. Multiple interfaces might be available for
connection and physical as well as virtual (software) inter-
faces can be considered. Roehr [53] limits the bottom-up
reasoning to a graph-theoretic approach while excluding
restrictions arising from the actual physical properties of
the overall component, e.g., shape or mass. Q-ROCK will

N

\ SW Composition
R — Puzzler
us) — i
A | HW Composition build assembly
< verify connectivity
8 check feasibility
04
o 1
Behavior
Models) feasible assembly

N

| (New) Cognitive Core

\

automated annotation

+ Match with BMs

suggest
assembly/robot

DL Reasoning
to user

®

Fig. 9 The bottom-up reasoning is based on a combinatorial,
constraint-based and heuristic search approach in order to identify
feasible assemblies, which will be subsequently characterized in an
automated way

Page 18 of 29

remove that restriction and analyse the actual physical
combinations of components as part of the so-called puz-
zler component. The puzzler component composes new
assemblies from a known set of atomic components by
creating links between compatible interfaces of atomic
components. By using the existing D-Rock tooling, and
extending the component model specification with onto-
logical knowledge from Knowledge-based Open Robot
voCabulary as Utility Toolkit (Korcut) [13], the newly
defined assembly is loaded into blender and exported
to Universal Robot Description Format (URDF) along
with additional other material and sensor information.
Subsequently, the new assembly can be physically vali-
dated and explored in simulation. Based on the URDF
representation we will use Hybrid Robot Dynamics
(HyRoDyn) [54] for characterizing the robot, e.g., by
computing basic properties of the robot in zero con-
figuration, and analysing configuration space, workspace
and forces. Furthermore, the assemblies will be semanti-
cally annotated by (a) matching the structure to existing
behavior models and (b) reasoning on the ontological
description. An initial manual and later automated anal-
ysis of component structures in existing robotic systems
can serve as a basis to identify generic design patterns
in robotics systems. This can be used as heuristic to
boost the bottom-up reasoning process. The bottom-
up reasoning process is triggered from new additions of
software and hardware to the database. Thereby, aug-
menting the Q-ROCK database by adding new cognitive
cores helps to increase the options for solving user prob-
lems.

Results: a use case scenario

The Q-ROCK development cycle combines existing Al
technologies in order to (a) simplify the robot develop-
ment process and (b) exploit the full capabilities of robotic
hardware. In this section we provide a qualitative analy-
sis of the Q-ROCK development cycle on the basis of three
complementary use cases which allow us to illustrate the
concept and locate conceptual as well as practical issues.
The use cases are: (1) system assembly, and then using the
assembly for (b) solving a task and (c) solving a mission.
For the system assembly the workflow starts at entry point
E1 (see Fig. 1), namely constructing a robot model, explor-
ing its movement capabilities, clustering these capabili-
ties and generating a cognitive core. The framework is
designed to handle all kinds of capabilities that can be
described as trajectories in the combined robot and world
state. For this example and initial evaluation we focus,
however, on movement capabilities. We use three test
systems - a 3-DOF robotic arm, a wheeled mobile base,
and a combination of both - and create a cognitive core
reach, which moves the end effector from a given start
configuration to a chosen target position in task space.

Roehr et al. Al Perspectives (2021) 311

The schematic workflow is visualized in Fig. 10, while
Fig. 11 highlights steps of this workflow which are trig-
gered through our implemented website. Several prepara-
tory steps are, however, assumed and required for the
workflow to run including the definition of (a) feature
spaces and (b) behavior models. We validate the creation
of the cognitive core and integration of the system, by
retrieving the cognitive cores again via its labels from the
database.

Preparation

We predefine feature spaces which are used in the clus-
tering step and for defining a behavior model. Note, that
this is a simplification which we will address in future
implementation, e.g., by the development of automated
feature learning approaches.

Defining Feature Spaces To characterize a reach move-
ment the feature spaces firstly permit to extract the start-
ing state and the end state of trajectories. Further qualities
of a trajectory such as its directness are also included to
penalize deviations of a trajectory from the direct route.
As feature spaces we use:

1. Fg, with label ‘start state’ and the transformation
function fyrars : L — S which maps a given trajectory
IT € Ltoits start state s” € S,

2. F,,q with label ’end effector end state’ and the
transformation function f;,,; : E — S, which maps a
given end effector state trajectory to its final state e’

Page 19 of 29

3. F_;, with label 'end effector directness’ and the
transformation function fy; : L — R and

T
|58 — S, |

T—1, i+l _ 4
Zl':o |Sé+ - ng|
Note that the features F,,; and F ;, use the end effector
position, which we assume is part of the world state §°%,

whereas Fg,+ operates on the internal state S™ %0 of the
robot.

fdir = S (0, 1]

Defining Behavior Models A behavior model provides
the high level abstraction for a behavior, thereby collect-
ing the essential characteristics. In the case of the reach
behavior the key characteristic is the directness, which we
expect to be high so that it is bound to a minimum and
maximum degree. Meanwhile the start and the end state
are variable, since the reach behavior needs to be appli-
cable in a range of situations with different target poses.
Hence, start and end state can be viewed as general input
parameters to the behavior model.

label :

constraints :

reach

F,, :min:0.8 max:1.0

Fg, : variable

F,,; : variable

All defined feature spaces, the behavior model and the
semantic annotation of the behavior model, which con-

tains labels and constraints, are stored in the database to
be accessible for all development steps.

Clustering

System ——p-| Exploration
Assembly

generates

generates generates

‘(Cognitive Core Cognitive Core @
(__ Creation Annotation

A

provides

g
A Manual Feature @
Generation

generates.

Manual
Behavior Model
Generation

B ®

provides .
S Robot Cluster generates
- Cognitive Core |—
State Space Feature
)

eneratesj

Behavior Model |-

-—

Semantic Annotation 7

-—

Fig. 10 Workflow for our exemplary use case. Steps with required user interaction are shaded blue. Relations between entities are avoided for
clarity. The full entity relation diagram is visualized in Fig. 2. We start with entry point A to manually define features. Then proceed with entry point B
and manually define a behavior model. Then the actual work flow starts at . A system is assembled using components from the database,
generating a new component. This new component is passed to the exploration step, which generates a robot and a state space entity in the

database. Part of the robot entity is the capability function, which is used in the clustering step, along with information about the state space of the
robot and the features in which to cluster. The clusters that are generated are used in cognitive core creation, which grounds the previously defined
behavior model for this robot. In the cognitive core annotation step, the semantic annotation inherited from the behavior model is reviewed and
possibly extended with robot-specific information by a human observer

Roehr et al. Al Perspectives (2021) 3:1 Page 20 of 29

(a)

Home Solve My Mission Solve My Task Robot Configurator ~ Robot Overview AboutUs & &

Select domains Choose components
Clickto add it
@ ASSEMBLY
SOFTWARE
COMPUTATION
MECHANICS

Chosen components

Click to remove it

Submit

(d)

Home Solve My Mission Solve My Task Robot Configurator Robot Overview

Capability Exploration Setup

Start Exploration

GmbH Contact Legal Notice Data P

5] Ve sact A ooc (w17 0 B il M * L e o et 5.1

(®)

Home Solve My Mission Solve My Task Robot Configurator ~Robot Overview

Clustering Setup

Maximum number o raining terations:
Perform evaluation every Heraton(s)

Select features for clustering « start_state

« end_state
Start Clustering

2020DFKIGmbH Contact Legal Notice Data Protection i

(2 (h)

Home Solve My Mission Solve My Task Robot Configurator Robot Overview AboutUs & W

Annotation of Cognitive Cores 1/1

Closing
Edge-Grasp
Fail

Flip
Reach
_ sice

File Edit Control View Data Tools Plugins Options D

FERE-E=E 2 N KA R LW J Bl B

Fig. 11 The Robot Configurator workflow takes advantage of exploration and clustering and allows to construct a robot first, which will then
automatically be explored and annotated. a) Choosing the components b) Assembling components with the help of Blender and Phobos ¢) Saving
the final assembly into the database d) Parametrize the exploration e) Explore the capability of the new assembly f) Clustering is applied and
cognitive cores identified from the existing behavior model labelled reach g) A video of the identified cluster performance is auto- matically
rendered h) A user can watch videos of a cognitive core and an- notate

Roehr et al. Al Perspectives (2021) 311

Note that defining the behavior model is an essen-
tial, but currently also a limiting requirement, since the
exploration of behaviors can only cover these predefined
models.

System assembly

To start the Q-ROCK development cycle at entry point E1
a robotic system is required. Predefined robots or rather
existing assemblies can be used to start the exploration.
One of the major motivations of the Q-ROCK develop-
ment cycle is, however, the capability to explore any kind
of hardware designs / assemblies and thereby support an
open robot design process.

The so-called Robot Configurator workflow permits a
user to create a robotic system in a simplified way, by
combining a set of components that are defined in the
database. Figure 11 illustrates the steps. Firstly, a user
selects the desired items which are needed to build the
robot and puts them in a shopping basket (see Fig. 11a).
For the reach example an assembly is built from the fol-
lowing items: 1. pan tilt unit, 2. lower pole, 3. joint motor,
4. upper pole, and an 5. end effector. After the selec-
tion has been completed, a CAD editor is started with
the selected items being already loaded (see Fig. 11b).
We use the open source editor Blender? in combina-
tion with the extended functionality of the Phobos plu-
gin [55] and another custom plugin to interface with
the database. The user can build the desired system by
selecting interfaces in the GUI and request to connect
components through theses interfaces, which is only pos-
sible if the selected interfaces are compatible. Component
interfaces and their compatibility are defined in hand
curated ontologies. The overall procedure requires only
very limited editing competencies of a user, thus signif-
icantly lowering the entry barrier for physically design-
ing a robot. Once the final system has been assem-
bled, the user can save the new design to the database
(see Fig. 11¢).

Exploration For the exploration of movement capabil-
ities we chose a capability function model where the
parameters @ correspond to polynomial parameters. The
parameters define an intended joint trajectory for all joints
of the robot. For a single joint the trajectory is defined by:
Np—1
q@) =—6@—D+06+) 6 (¢ —1)¢
i=2
where ¢ = % is a phase and T the length of the trajectory.
The first parameter 6y corresponds to the start position
and 6; to the final position. The number of parameters per
joint was set to Ny = 5.

Zhttp://www.blender.org

Page 21 of 29

The Q-ROCK development cycle is also compatible with
other motion representations such as splines and dynamic
movement primitives. Meanwhile, this polynomial repre-
sentation has the advantage that higher order parameters
only contribute if their value is different from zero. This
potentially eases the clustering process on this parame-
ter space and it makes combining parameter sets with
different Ny straightforward.

The intended joint trajectories are passed to a controller
which returns the robot specific actions that are necessary
to follow the desired trajectory as closely as possible. The
controller, where the desired states are specified by a tra-
jectory, takes the role of the capability function cap in this
context. The actions applied to the real system will finally
result in a capability.

This capability function model ensures that the map-
ping from O to the capabilities is locally smooth, i.e., small
changes of the parameters will lead to small changes in the
corresponding trajectory. This is an important property
for modelling clusters of trajectories in the Classification
and Annotation process (“Classification and annotation”
section).

To test the exploration approach, as described in
“Exploration” section, 10° trajectories were generated for
a robotic 3-DOF arm. Each trajectory has a length of 7' =
4 s. Five parameters specify the motion for every degree of
freedom, i.e., each parameter lies within [—r, 7], result-
ing in 15 parameters for the whole 3-DOF robot. The
parameter space has been sampled uniformly. The same
procedure was applied to a mobile base (see Fig. 12 right)
and a combined system of mobile base and 3-DOF arm
(see Fig. 13 right). For the mobile base, the polynomial tra-
jectories were applied to the velocity of the four wheels
with a parameter range of [—2m,27]. Three parame-
ters were used to parametrize the motion, leading to 12
parameters in total. The trajectory length was set to 7' =
20s. The combined system thus has a total of 27 param-
eters. The validation model has been implemented as a
fully connected neural network with four hidden layers
and 22,102 parameters in total. Training for the 3-DOF
arm was performed for 20 training steps with a batch size
of 100. After training, the validation model had an accu-
racy of 96.6 £0.4% on unseen data of 10* trajectories for
predicting whether a parameter set corresponds to a valid
motion.

Clustering For clustering, the same capability set as for
training the validation model was used. Without loss of
generality, we implemented standard k-means clustering
as the clustering strategy [56], choosing 50 clusters in
Fgyu and F,,; and 5 clusters in F ;. The cluster num-
bers were chosen manually to assure a large enough size
of each cluster for generative model training, while also
providing a sufficient resolution in the respective feature

http://www.blender.org

Roehr et al. Al Perspectives (2021) 3:1

Page 22 of 29

Fig. 12 Reach cognitive core for two robotic systems. Left: End effector trajectories generated by sampling from the reach core of a 3-DOF arm (red
lines) are shown with the requested target area of the behavior (red ball) at (x,y,z) = (0.1,0.3,0.2) m. For comparison, samples from the
unconstrained reach cognitive core - without the constraint on directness - are plotted in green. Right: Same as left, but for a wheeled mobile base,

with a target location at (x,y,2) = (—1,1,0) m

Fig. 13 Reach cognitive core samples for a combined system of
3-DOF arm and mobile base. The red lines visualize the end effector
motion of the arm of the combined system, thus including the
motion of the mobile base. The target location is marked by the red
ball at (x,y,2) = (1.3,—0.1,0.5) m, which is out of range of the arm
alone, would the mobile base not move as well. The arm has a length
of & 0.4 m. Note that the directness constraint only applies to the end
effector motion, which is the end effector of the arm for this
combined system, and not the task space motion of the base. For
comparison, samples from an unconstrained reach cognitive core are
plotted in green. As expected, samples from this unconstrained core
reach the target location more indirectly

space. As generative models, we implemented neural ordi-
nary differential equation (ODE) based normalizing flows
[57, 58]. We made this choice over alternative, more clas-
sical methods for density estimation, such as Gaussian
Mixture Models or variational autoencoders, since we
found that the parameter distributions can be too complex
to be reasonably captured by GMMs, and that the nor-
malizing flow models were very robust over a big range
of hyperparameters. We used a batch size of 128, 1000
training iterations, and a network layout of two fully con-
nected hidden layers with 64 neurons each. After training,
the model accuracies are 91 & 2.1% for Fg,, 87 + 3.3%
for Fu,, and 59 + 4.1% for F,,; for the 3 DOF arm,
89 + 3.2% for Fyyyt, 73 + 4.3% for Fy;,, and 47 £+ 3.6%
for F,,,; for the mobile base, and 82 + 4.2% for Fg ¢,
55£3.9% for F 4, and 32+ 5.1% for F,,,; for the combined
system. The model accuracies were determined by sam-
pling parameters from the generative models, simulating
the corresponding trajectories, and calculating the feature
values. The accuracy is the percentage of samples that are
assigned to the cluster the model was trained on. Errors
were calculated from 10 training runs per model with ran-
domized initial weights. Cluster entities for the robot in
this example are generated and stored in the database for
the identification of cognitive cores.

Cognitive Core Creation Based on the defined behav-
ior models, the cognitive core is instantiated for all three
robots after exploration and clustering, and inherits the

Roehr et al. Al Perspectives (2021) 311

label reach (see also Fig. 6). For all systems, one cluster in
the constrained feature space F;, was found with a cen-
troid value of ~ 0.9. Since the cluster fulfils the behavior
model’s minimum and maximum value constraints for this
feature space, the cluster is linked to the cognitive core.

Cognitive Core Sampling One important aspect of the
cognitive core is the ability to sample trajectories that
conform to the underlying behavior model. In the current
example, particle swarm optimization algorithms are used
for the global optimization of the three feature models
that are combined in the reach cognitive core, while con-
straints and feature inputs are weighted equally. Due to
the stochastic nature of this process, several sub-optimal
solutions are generated during sampling that represent the
corresponding behavior.

To evaluate the specificity of the clustering procedure,
we also define an alternative reach cognitive core without
the directness constraint. This cognitive core will gener-
ate behavior that reaches an end effector end position in
any way possible. Figure 12 shows samples from the con-
strained and the unconstrained reach cognitive core for
both the 3-DOF arm and the mobile base. The trajecto-
ries were obtained by simulating the parameters sampled
from the cognitive cores. All simulations and visualiza-
tions were performed in the MARS simulator [59], which
is integrated in the Q-ROCK workflow. As expected, the
constrained reach cognitive core generates direct motion
to the desired goal, whereas samples from the uncon-
strained one are more indirect. Note, however, that these
indirect trajectories can be useful in different settings, e.g.,
when parts of the task space are obstructed. This example
also illustrates that samples from the cognitive cores do
not exactly match the desired start and end position,
and also show variability along the trajectory. Whereas
this might seem counter-intuitive from a pure controlling
standpoint, cognitive core sampling is deliberately prob-
abilistic to allow generation of all possible behaviors that
match the corresponding behavior model description, and
not one single optimal trajectory.

To demonstrate the applicability of our approach to
more complex systems, we show samples from the reach
cognitive core of a combined system of 3-DOF arm and
mobile base in Fig. 13. Here, combinations of motion of
the mobile base and the attached arm are required to
reach the target location of the end effector. As in the
previous examples, the reach cognitive core successfully
generates direct motion towards the target location.

Another way of generating more complex behavior for
a system of already explored components is to use the
previously generated cognitive cores for each subsystem.
Figure 14 shows the parallel execution of both reach
cognitive cores on each subsystem. The cognitive cores of
the arm and the mobile base are sampled individually to

Page 23 of 29

reach a target with the end effector of the arm that would
lie outside of a fixed arm’s task space. As expected, the
assumption that the task space trajectory of the combined
system can be simply composed from the trajectories of
the subsystems does not generally hold. However, the
sampled motion can be a good first approximation of the
actual behavior when the dynamical coupling between
subsystems is not too strong.

Cognitive Core Annotation For the annotation step, the
cognitive core is executed several times with different
variable inputs to Fg,s and F,,,. Videos of the perfor-
mance of the cognitive cores are generated and shown to a
user, who can confirm the selected labels for the cognitive
cores or (re)assign labels. For this demonstration the user
approves and sticks to the label reach for the cognitive
core, which has been inherited from its behavior model.

Solving a task

Cognitive cores are semantically annotated in order to
provide a high-level description or rather specification of
their performance. A user is not necessarily interested in
designing new systems, but will typically first search for
available robots which can solve the task at hand, or show
similar performances. For this use case, we designed the
workflow named Solve My Task (see Fig. 15), where a user
selects a combination of semantic labels from the exist-
ing ontology and matches them against existing cognitive
cores in the database. Before the user has to make a final
choice, the performance of each identified cognitive core
can be inspected through the previously rendered videos.
Here, the explored reach cognitive core can successfully
be retrieved and visualized to the user.

Solving a mission

The final use case, illustrated in Fig. 16, deals with solving
a user’s application scenario, in the following referred to
as mission. A mission can range from a single robot action
to a complex plan involving multiple actions that need to
be sequenced. A mission with sequential actions can be
composed through our web interface, based on a set of
predefined - yet generic - actions: grasp, navigate, per-
ceive, pick, reach, release. For this evaluation we select
the reach action, which maps to a requirement for cogni-
tive cores with a semantic annotation including the label
“reach”, so that as an intermediate result the previously
identified core can be picked. The cognitive core is linked
to the design of the 'NewShoppingCart; which can now
be considered a suitable robot system to perform the mis-
sion. Therefore, this custom design is the final suggestion
of the Q-ROCK development cycle to solving this mission.

Summary
The complementary use cases show the working of key
elements of the Q-ROCK development cycle. Assemblies

Roehr et al. Al Perspectives (2021) 3:1

Page 24 of 29

Fig. 14 Parallel execution of reach cognitive cores of subsystems. The cognitive cores were trained on each system individually and are samples of
the same cognitive cores shown in Fig. 12. Left: The red lines show the end effector motion of each system in isolation, the magenta line the
expected motion of the arm end effector of the combined system under the assumption that each subsystem behaves as in isolation. The red ball
marks the requested target for the combined motion at (x,y,z) = (1,2,0.5) m, outside of the task space of the arm alone, which has a length of &~
0.4 m. The actual motion of the base and the arm of the combined system is shown by the blue lines. Right: Same as left, but for a different target
position (x,y,z) = (1.2,1.7,0.5) m and different samples from the cognitive cores for each subsystem, in which the dynamics of the subsystems lead
to a non-negligible interaction

can be composed in a simple manner by reusing pre-
defined components from the Q-ROCK database. The
assemblies are explored in simulation to identify behavior
and subsequent clustering of trajectories allows to extract
cognitive cores. Semantic annotations bridge the gap
between cognitive cores and planning tasks, so that the
loop between the bottom-up system analysis and top-
down requirement-based robot design is closed. Overall,
although the use case for the reach behavior is simple, this
evaluation shows a fully integrated workflow implementa-
tion. It validates the feasibility and working of the concept
as a first step towards automatically developing complex
robot behavior.

Discussion

In this paper, we introduced the formal concepts behind
Q-ROCK’ and presented use cases to demonstrate our
approach to solving problems in a combination of bottom-
up and top-down solving. The use cases show that
the integrative workflow has been established, although
several challenges remain. In the following, we will discuss
key aspects of the workflow in more detail.

Exploration
The exploration framework has been successfully
implemented and allows the automated data generation

for assemblies built with the robot configurator. The
implementation is designed in a modular way, so that
minimal effort is needed to switch between capability
function models.

In the current state the exploration is done in the con-
figuration space of an assembled system. This approach
is not scaling well if the system complexity is increas-
ing, such as for systems of systems. Whereas for the
combined system illustrated in Fig. 14, the full explo-
ration approach is still feasible, it will break down at
some complexity level. To allow an application of the
exploration approach to these complex cases we have
to make use of the knowledge already generated for the
subsystems. For the simplest concept to reuse the sub-
system capabilities, one would sample capabilities out of
the subsystems clusters to generate capabilities for the
combined system and thus form an exploration dataset.
The concept development and evaluation is an ongoing
process.

After the training process, an implemented validation
model can be queried for the information whether a capa-
bility can be executed by the robot. However, selecting
a capability and then checking it is inconvenient for the
clustering process. For this reason, in the next step we
are looking into inverting this validity information, i.e.,
mapping all valid (and only the valid) capabilities into a

Roehr et al. Al Perspectives (2021) 311

Page 25 of 29

Choose your task

(you can select more)

Emphesis_Grasp
Geometry_Of_Grasp
Grasp_Example
Grasp_Primitives

Closing

Edge-Grasp

Fail

Flip

Reach

Slide
Grasp_Strategy
Object_Grasp
Opposition_Grasp
Thumb_Position_Grasp

Search

Choose your component or system
@ MyShoppingCart
Submit

Task solved correctly?
Reach

No Yes

Fig. 15 Query the database by matching against semantic
annotations of cognitive cores. @) Selecting labels of the desired

cognitive core b) Validate the performance of the task

continuous parameter space, on which the clustering can
operate.

The most challenging problem for the exploration is to
make these approaches scale with increasingly complex
systems. In order to deal with this challenge we plan to
apply more sophisticated search strategies. As the explo-
ration is supposed to be task independent we intend to use
intrinsic motivations [22] to explore the search space in a
structured manner.

Another challenge is the exploration of perception capa-
bilities which is considered in the theoretical frame-
work, but requires non-trivial environments to per-
form the exploration. Designing test environments to
allow a mostly task independent exploration is one
main challenge, besides the fact that for perception the
capability space dimensionality is even higher compared
to kinematic and dynamic exploration.

(a)

Solve My Mission

Solve My Task Robot Configurator ~Robot Overview
Current domain: space

Environment: sample_environment
Mission editor : Select a task with appropiate arguments and click Queue task.

(You can add multiple tasks)

Queue task

reach v | object_screwdriver v

Save Load Clear

Your mission was decomposed as follows :
1 reach

object_screwdriver

Environment constraints: Robot constraints:

Use the following robot (s) :

MyShoppingCart

Fig. 16 Solve a custom mission with robotic systems that are already
in the database. a) Design a mission with a web-editor b) Suggest a
robot, that can solve the mission, after matching the actions to
suitable cognitive core - actions and cognitive cores are linked via
semantic annotations

In parallel to the exploration approach, an introspection
into failure cases is envisaged via a hierarchical capabil-
ity checking framework which can (a) detect whether a
given action is feasible on the robot and (b) pin-point the
reasons of infeasibility. This problem is especially interest-
ing for mechanisms with closed loops, e.g., parallel robots
or serial-parallel hybrid robots [60]. We plan to exploit
knowledge about the kinematic structure of the robot,
its various physical properties, and analytical mappings
between different spaces (actuator coordinates, general-
ized coordinates and full configuration space coordinates)
by using HyRoDyn which is under active development in
Q-ROCK.

Classification and annotation
Following exploration, capability clustering and the
application of cognitive core and behavior model
formalizations have also been successfully implemented,
while revealing interesting challenges.

Clustering is an important step in the Classification and
Annotation workflow, since it increases the granularity

Roehr et al. Al Perspectives (2021) 3:1

of the latent space on which the generative models are
trained. Whereas the current implementation, using k-
means clustering, has the advantage of being robust and
well developed, a shortcoming is that if more finely spaced
clusters are necessary for a specific behavior model, corre-
sponding regions of the feature space have to be clustered
again and cluster models trained anew. We are thus pur-
suing the integration of more sophisticated generative
model learning approaches into the workflow that retain
more accessible information about the underlying data
distributions, such as arbitrary conditional flows [61].

Behavior models are also an important aspect in this
part of Q-ROCK. Whereas only hand-crafted behav-
ior models and feature spaces have been tested to
date, we aim at a more automated approach in the
future. We actively research the application of variational
autoencoders to world state trajectory data, and how well
features found in this way can be semantically interpreted.
Furthermore, we are working on automated extraction
of behavior model definitions, both from human demon-
stration data and from modelling human evaluation
functions.

Although our goal is to increase the level of automa-
tion in the future, we still see human labelling as a crucial
backstop in the cycle to give meaning to the explored data
and to introduce steps for revision as part of the bottom-
up path. Recent work has also shown that pure automation
based Al approaches can be inferior to an interactive
human in the loop in complex reasoning tasks [62]. We
thus see leveraging human semantic knowledge rather to
be a feature of our approach than a shortcoming.

An interesting theoretical problem is defining where
the domain of cognitive cores ends, and the domain of
planning begins, i.e., up to which behavioral complex-
ity level cognitive cores can be reasonably defined. The
cognitive core formalism is purposefully flexible enough
such that planning algorithms can be expressed, thus
there is no clear limitation imposed on the formal side. A
related challenge is parallel execution of cognitive cores
of subsystems, such as demonstrated in Fig. 14. Whether
learning based techniques that are warm-started with ini-
tial guesses from individual cognitive core samples, higher
level policy training on the established latent space of sim-
ple policies similar to [32], or more reasoning oriented
approaches will prove more effective in our workflow is
not finally resolved. An alternative solution is only using
cognitive cores of a full system and using its subsystems’
clusters for the exploration of the full system, as discussed
in section “Exploration”.

Reasoning

To effectively exploit explored cognitive cores and behav-
iors, we suggest a high-level planning based approach in
this paper. Since the existing decomposition of problems

Page 26 of 29

is currently depending on the planner’s domain definition,
we also provide an interface to create new missions. The
current use case does not challenge this interface, since
only very simple tasks decompositions are required. For
increasingly complex problem descriptions, this mission
description interface needs to remain not only intuitive,
but also sufficiently expressive. Furthermore, this inter-
face needs to be extensible through a growing vocabulary.
Another challenge remains for the application of a found
solution and exploitation of existing behaviors to address a
user’s high-level problem. The framework provides first a
mostly generic and robot-agnostic solution. This solution
has then to be mapped to the finally selected robot, i.e.,
this robot needs to execute the solution. To achieve the
latter, we have to run our cognitive core in robot-specific
contexts, e.g., exploiting existing robotic frameworks such
as ROS. Thus, a grounding of generic solutions to selected
environments and newly designed robots has to be per-
formed. Semantic annotations are key elements for this
mapping since they provide the essential glue between
reasoning and cognitive cores, where the vocabulary is
defined by our ontology. We still need to enrich and
revise the structure of this ontology based on human
feedback processes of annotating cognitive cores. Hence,
developing a sufficiently expressive semantic annotation
language remains a further challenge for the reasoning
part.

The size of the database or rather number of compo-
nents and options to combine components in new systems
leads to another, combinatorial challenge. Here, we need
to find effective heuristics in the context of the puzzler
development.

Outlook

From the view point of Q-ROCK as a whole, we see two
major challenges arising for future work. On the one hand,
the system requires a rich database of annotated compo-
nents, i.e., single parts or already simple robots, together
with a design flow to create new assemblies, in order
to generate a significant added value for users. A pro-
posal for modelling components in such a design flow has
been developed in the predecessor project D-ROCK and is
described in section “Modelling robot composition” With
this, Q-ROCK has to be thoroughly tested, such that new
robotic devices are created and many cognitive cores are
built, which in turn fosters an enriched ontology to also
interact with the user. During this process, it is important
to evaluate the results of Q-ROCK in terms of complete-
ness of found behaviors, as well as stability and robustness
of the underlying representations.

A related challenge is the introduction of Q-ROCK
to a considerable number of users to start forming a
community. As a first step towards this goal, we intend
to publish the parts of Q-ROCK open source, and a

Roehr et al. Al Perspectives (2021) 311

strategy for addressing the robotics community is cur-
rently being formulated. The more users interact with
Q-ROCK, and thereby also enrich the database, the more
individual users will benefit and the more versatile it will
become.

Taking a further step back, the Q-ROCK system is part
of a greater development cycle in the X-ROCK project
series. In D-Rock, the groundwork was laid for sim-
plified modelling of robot parts and construction of
robots based on well defined interfaces. In Q-ROCK,
robots are enabled to explore possible behaviors. In
future projects, beyond the scope of currently ongoing
research, we plan to tackle questions regarding combi-
nations of systems and their respective cognitive cores,
behavioral interactions between humans and robots or
groups of robots, and fine-tuning of behaviors for specific
contexts.

Conclusions

The fundamental idea behind the Q-ROCK approach is to
integrate and extend existing methods in Al both on the
symbolic and the sub-symbolic level, and to implement a
framework that assists users to solve their intended task
with an existing or novel robot. To achieve this, a central
challenge is a unifying concept and theoretical founda-
tion to (a) integrate all components in order to realize the
Q-RocK development cycle (given in Fig. 1), and
(b), to have a clear definition of interfaces to extend
the existing cycle or even replace single components
with new approaches. Q-ROCK focuses on this inte-
gration to set up a new way of designing complex
robots with the help of AI and with the knowledge
that previous designers contributed to the knowledge
base.

In this paper, we made an essential step by introduc-
ing the conceptual framework as a basis and integration
platform for all subsequent work. Modularity is a key fea-
ture of our approach and allows embedding of alternative
solutions for each stage. In the future, we expect compet-
ing or continuously improving implementations for each
of the stages of the development cycle. With the use cases
presented in this paper, we already demonstrated the func-
tional coupling of all steps in Q-ROCK. In particular, the
example shows that a model of annotated hardware can
be used to successfully generate simple robotic capabili-
ties (starting at E1 in the cycle in Fig. 1), which can be
successfully clustered and annotated to generate a cogni-
tive core. Hereby, a link is established from an exploration
on the sub-symbolic level to a representation containing
a semantic label, such that semantic input from a user
can be made on which reasoning is performed. Q-ROCK
is unique in this way: goal-agnostic capabilities are cast
into a broader semantic framework, and sub-symbolic and
symbolic levels in Al are integrated.

Page 27 of 29

Abbreviations

AADL: Architecture analysis and design language; AWS: Amazon web services;
BM: Behavior model; CAP: Capability; CC: Cognitive core; CF: Capability
function; CFM: Capability function model; ER: Entity relationship; FF: Feature
function; FS: Feature space; HDDL: Hierarchical domain definition language;
HTN: Hierarchical task network; HyRoDyn: Hybrid robot dynamics; KR&R:
Knowledge representation and reasoning; ODE: Ordinary differential equation;
PDDL: Planning domain definition language; ROS: Robot operating system; SA:
Semantic annotation; SDL: Semantic description language; UML: Unified
modelling language; URDF: Universal robot description format

Acknowledgements
We thank all members of the Q-Rock development team and the internal
reviewers for their valuable feedback on preliminary versions of this paper.

Authors’ contributions

T.R. wrote the manuscript, developed software and theory. D.H. wrote the
manuscript, developed software and theory. H.W. supervised the project,
provided text for “Introduction” and “Discussion” sections. F.W. developed
software, theory and provided text for “Exploration” and “Discussion” sections.
M.S. developed software, theory and provided text for “Modelling robot
composition” section, developed theory for 3. O.L. developed software, theory
and provided text for “Reasoning” section. M.L. developed software and theory
and provided text for “State of the art”, “Exploration” and “Discussion” sections.
SK. provided text for “Discussion” section. S.S. supervised the project, provided
text for “Introduction” and “Discussion” sections. F.K. conceived of the original
idea, supervised the project, provided text for “Introduction” and “Discussion”
sections. The author(s) read and approved the final manuscript.

Authors’ information
(Optional - no information provided)

Funding

This research and development project is funded by the German Federal
Ministry of Education and Research under grant agreement (FKZ 01I1W18003).
Open Access funding enabled and organized by Projekt DEAL.

Availability of data and materials
The datasets generated and analysed for the presented use case scenario are
not publicly available.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
All authors gave their consent to publish this version of the manuscript.

Competing interests
The authors declare that they have no competing interests.

Author details

'DFKI GmbH Robotics Innovation Center, Bremen, Germany. 2Institute for
Communication Technology, Department of Information Technology,
Dortmund University of Applied Sciences and Arts, Dortmund, Germany. >AG
Robotics, Department of Mathematics and Computer Science, University of
Bremen, Bremen, Germany.

Received: 20 August 2020 Accepted: 30 April 2021
Published online: 05 July 2021

References

1. Stone P, Brooks R, Brynjolfsson E, Calo R, Etzioni O, Hager G, Hirschberg
J, Kalyanakrishnan' S, Kamar E, Kraus S, et al. Artificial intelligence and life
in 2030: the one hundred year study on artificial intelligence. Technical
report, Stanford University. 2016. https://ai100.stanford.edu/sites/g/files/
sbiybjo861/f/ai100report10032016fnl_singles.pdf. Accessed 31 May 2021.

2. Siciliano B, Khatib O. Springer Handbook of Robotics. Berlin: Springer;
2016. https://doi.org/10.1007/978-3-540-30301-5.

https://ai100.stanford.edu/sites/g/files/sbiybj9861/f/ai100report10032016fnl_singles.pdf
https://ai100.stanford.edu/sites/g/files/sbiybj9861/f/ai100report10032016fnl_singles.pdf
https://doi.org/10.1007/978-3-540-30301-5

Roehr et al. Al Perspectives

10.
11.

12.
13.

20.

21.

22.

23.

24.

(2021) 3:1

Christensen HI. A roadmap for us robotics — from internet to robotics.
2020 Edition. Technical report, University of California San Diego,
Computing Community Consortium, University of Massachusetts Lowell,
University of Illinois, Urbana Champaign, University of Southern California.
2020. https.//www.therobotreport.com/wp-content/uploads/2020/09/
roadmap-2020.pdf. Accessed 31 May 2021.

Roehr TM, Harnack D, Lima O, Hendrik W, Kirchner F. Introducing
Q-Rock : Towards the Automated Self-Exploration and Qualification of
Robot Behaviors. In: ICRA Workshop on Robot Design and Customization.
Montreal; 2019. Available at https://www.dfki.de/fileadmin/user_upload/
import/10350_20190501_roehr_introducing_grock.pdf.

Wiebe F, Kumar S, Harnack D, Langosz M, Wéhrle H, Kirchner F.
Combinatorics of a discrete trajectory space for robot motion planning.
In: 2nd IMA Conference on Mathematics of Robotics. Springer; 2021.
accepted.

D-Rock. 2018. https://robotik.dfki-bremen.de/en/research/projects/d-
rock.html. Accessed 31 May 2021.

Ha'S, Coros S, Alspach A, Bern JM, Kim J, Yamane K. Computational
design of robotic devices from high-level motion specifications. IEEE
Trans Robot. 2018;34(5):1240-51.

Mansard N, DelPrete A, Geisert M, Tonneau S, Stasse O. Using a Memory
of Motion to Efficiently Warm-Start a Nonlinear Predictive Controller. In:
2018 IEEE International Conference on Robotics and Automation (ICRA);
2018. p. 2986-2993. https://doi.org/10.1109/ICRA.2018.8463154.
Amazon Web Services (AWS). 2020. https.//aws.amazon.com. Accessed
31 May 2021.

Neurorobotics. 2020. https://neurorobotics.net/. Accessed 31 May 2021.
Human Brain Project. 2020. https://www.humanbrainproject.eu/.
Accessed 31 May 2021.

Tinkerbots. 2020. https://www.tinkerbots.de/. Accessed 31 May 2021.
Yiksel M, Korcut Ontology Family. https://doi.org/10.5281/zenodo.
4457562. Accessed 31 May 2021.

Feiler PH, Lewis B, Vestal S, Colbert E. An Overview of the SAE
Architecture Analysis & Design Language (AADL) Standard: A Basis for
Model-Based Architecture-Driven Embedded Systems Engineering. In:
Dissaux P, Filali-Amine M, Michel P, Vernadat F, editors. Architecture
Description Languages. IFIP WCC TC2 2004. IFIP The International
Federation for Information Processing, vol 176. Boston: Springer; 2005.
https://doi.org/10.1007/0-387-24590-1_1.

Perrotin M, Conquet E, Delange J, Tsiodras T. Taste: An open-source
tool-chain for embedded system and software development. Embed Real
Time Syst. 2012. Available at https://hal.archives-ouvertes.fr/hal-
02191871/document.

Scioni E, Huebel N, Blumenthal S, Shakhimardanov A, Klotzbuecher M,
Garcia H, Bruyninckx H. Hierarchical hypergraphs for knowledge-centric
robot systems: a composable structural metamodel and its domain
specific language npc4. J Softw Eng Robot. 2016. https://doi.org/10.6092/
JOSER_2016_07_01_P55.

The Apache Software Foundation. Apache Tinkerpop. 2021. http://
tinkerpop.apache.org/gremlin.html; Accessed: 22 Feb 2021.

Gregor K, Rezende DJ, Wierstra D. Variational intrinsic control. ArXiv.
2016.abs/1611.07507.1611.07507.

Eysenbach B, Gupta A, IbarzJ, Levine S. Diversity is all you need: Learning
skills without a reward function. arXiv. 2018. abs/1802.06070. 1802.06070.
Achiam J, Edwards HA, Amodei D, Abbeel P. Variational option
discovery algorithms. arXiv. 2018. abs/1807.10299..

Pathak D, Gandhi D, Gupta A. Self-supervised exploration via
disagreement. Proceedings of the 36th International Conference on
Machine Learning, in Proceedings of Machine Learning Research
97:5062-5071. Available from http://proceedings.mlir.press/v97/
pathak19a.html.

Aubret A, Matignon L, Hassas S. A survey on intrinsic motivation in
reinforcement learning. arXiv. 2019. abs/1908.06976. 1908.06976.
Lehman J, Stanley KO. Abandoning objectives: Evolution through the
search for novelty alone. Evol Comput. 2011;19(2):189-223. https://doi.
org/10.1162/EVCO_a_00025.

Cully A, Demiris Y. Quality and diversity optimization: A unifying modular
framework. IEEE Trans Evol Comput. 2018;22(2):245-59. https://doi.org/
10.1109/TEVC.2017.2704781.

25.

26.

27.

28.

29.

30.
31

33

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

Page 28 of 29

Kim S, Coninx A, Doncieux S. From exploration to control: learning
object manipulation skills through novelty search and local adaptation.
arxXiv. 2019. abs/1901.00811.1901.00811.

Cully A. Autonomous skill discovery with quality-diversity and
unsupervised descriptors. In: Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO '19. New York: ACM; 2019. p. 81-89.
https://doi.org/10.1145/3321707.3321804.

Kumar S, RenaudinV, AoustinY, Le-Carpentier E, Combettes C.
Model-based and experimental analysis of the symmetry in human
walking in different device carrying modes. In: 2016 6th IEEE International
Conference on Biomedical Robotics and Biomechatronics (BioRob); 2016.
p. 1172-9. https://doi.org/10.1109/biorob.2016.7523790.

Schaal S. In: Kimura H, Tsuchiya K, Ishiguro A, Witte H, editors. Dynamic
Movement Primitives -A Framework for Motor Control in Humans and
Humanoid Robotics. Tokyo: Springer; 2006, pp. 261-80.

Langosz M. Evolutionary Legged Robotics. Germany: Doctoral
dissertation, University of Bremen; 2018.

Ha D, Schmidhuber J. World models. arXiv. 2018. abs/1803.10122.
Haarnoja T, Hartikainen K, Abbeel P, Levine S. Latent space policies for
hierarchical reinforcement learning. arXiv. 2018. abs/1804.02808.
Florensa C, Duan Y, Abbeel P. Stochastic neural networks for hierarchical
reinforcement learning. arXiv. 2017. abs/1704.03012.

Lynch C, Khansari M, Xiao T, KumarV, Tompson J, Levine S, Sermanet P.
Learning latent plans from play. In: Conference on Robot Learning; 2020.
p. 1113-32.

Higgins I, Matthey L, Glorot X, Pal A, Uria B, Blundell C, Mohamed S,
Lerchner A. Early visual concept learning with unsupervised deep
learning. arXiv. 2016. abs/1606.05579.

Plaut DC, Hinton GE. Learning sets of filters using back-propagation.
Comput Speech Language. 1987;2(1):35-61.

Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with
neural networks. Science. 2006;313(5786):504-7.

Chen N, Karl M, Van Der Smagt P. Dynamic movement primitives in latent
space of time-dependent variational autoencoders. In: 2016 |EEE-RAS
16th International Conference on Humanoid Robots (Humanoids). IEEE;
2016. p. 629-36. https://doi.org/10.1109/humanoids.2016.7803340.
Wang Z, Merel J, Reed S, Wayne G, de Freitas N, Heess N. Robust
imitation of diverse behaviors. 2017. arXiv preprint arXiv:1707.02747.
Dilokthanakul N, Mediano PA, Garnelo M, Lee MC, Salimbeni H,
Arulkumaran K, Shanahan M. Deep unsupervised clustering with
gaussian mixture variational autoencoders. arXiv. 2016. abs/1611.02648.
Chiesa M. Radical Behaviorism: The Philosophy and the Science. Authors
Cooperative, Inc; 1994.

Gutzeit L, Kirchner EA. Automatic detection and recognition of human
movement patterns in manipulation tasks. In: PhyCS; 2016. p. 54-63.
Gutzeit L, Fabisch A, Petzoldt C, Wiese H, Kirchner F. Automated Robot
Skill Learning from Demonstration for Various Robot Systems. In:
Benzmuller C, Stuckenschmidt H, editors. KI 2019: Advances in Artificial
Intelligence. KI 2019. Lecture Notes in Computer Science, vol 11793.
Cham: Springer; 2019. https://doi.org/10.1007/978-3-030-30179-8_14.
Leohold S. Active Reward Learning Fuer Master Thesis; University Bremen;
2019 Gesten.

Kim SK, Kirchner EA, Stefes A, Kirchner F. Intrinsic interactive
reinforcement learning - Using error-related potentials for real world
human-robot interaction. Sci Rep. 2017,7:17562. https://doi.org/10.1038/
$41598-017-17682-7.

Tenorth M, Beetz M. Knowrob — knowledge processing for autonomous
personal robots. In: 2009 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE; 2009. p. 4261-6.

Beetz M, Mosenlechner L, Tenorth M. CRAM: A Cognitive Robot Abstract
Machine for everyday manipulation in human environments. In: 2010
IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE; 2010. p. 1012-7. https://doi.org/10.1109/IR0S.2010.5650146. http://
ieeexplore.ieee.org/document/5650146/.

Stock S, Mansouri M, Pecora F, Hertzberg J. Online task merging with a
hierarchical hybrid task planner for mobile service robots. In: 2015 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). IEEE;
2015. p. 6459-64. https://doi.org/10.1109/IROS.2015.7354300.

Bercher P, Keen'S, Biundo S. Hybrid planning heuristics based on task
decomposition graphs. In: Proceedings of the 7th Annual Symposium on
Combinatorial Search, SoCS 2014, vol. 2014-Janua; 2014. p. 35-43.

https://www.therobotreport.com/wp-content/uploads/2020/09/roadmap-2020.pdf
https://www.therobotreport.com/wp-content/uploads/2020/09/roadmap-2020.pdf
https://www.dfki.de/fileadmin/user_upload/import/10350_20190501_roehr_introducing_qrock.pdf
https://www.dfki.de/fileadmin/user_upload/import/10350_20190501_roehr_introducing_qrock.pdf
https://robotik.dfki-bremen.de/en/research/projects/d-rock.html
https://robotik.dfki-bremen.de/en/research/projects/d-rock.html
https://doi.org/10.1109/ICRA.2018.8463154
https://aws.amazon.com
https://neurorobotics.net/
https://www.humanbrainproject.eu/
https://www.tinkerbots.de/
https://doi.org/10.5281/zenodo.4457562
https://doi.org/10.5281/zenodo.4457562
https://doi.org/10.1007/0-387-24590-1_1
https://hal.archives-ouvertes.fr/hal-02191871/document
https://hal.archives-ouvertes.fr/hal-02191871/document
https://doi.org/10.6092/JOSER_2016_07_01_P55
https://doi.org/10.6092/JOSER_2016_07_01_P55
http://tinkerpop.apache.org/gremlin.html
http://tinkerpop.apache.org/gremlin.html
http://arxiv.org/abs/1611.07507
http://arxiv.org/abs/1802.06070
http://proceedings.mlr.press/v97/pathak19a.html
http://proceedings.mlr.press/v97/pathak19a.html
http://arxiv.org/abs/1908.06976
https://doi.org/10.1162/EVCO_a_00025
https://doi.org/10.1162/EVCO_a_00025
https://doi.org/10.1109/TEVC.2017.2704781
https://doi.org/10.1109/TEVC.2017.2704781
http://arxiv.org/abs/1901.00811
https://doi.org/10.1145/3321707.3321804
https://doi.org/10.1109/biorob.2016.7523790
https://doi.org/10.1109/humanoids.2016.7803340
https://doi.org/10.1007/978-3-030-30179-8_14
https://doi.org/10.1038/s41598-017-17682-7
https://doi.org/10.1038/s41598-017-17682-7
https://doi.org/10.1109/IROS.2010.5650146
http://ieeexplore.ieee.org/document/5650146/
http://ieeexplore.ieee.org/document/5650146/
https://doi.org/10.1109/IROS.2015.7354300

Roehr et al. Al Perspectives

49.

50.

51

52.

53.

54.

55.

56.
57.

58.

59.

60.

62.

(2021) 3:1

Nau D, AuT-c, lighami O, Kuter U, Murdock JW, Wu D, Yaman F.
SHOP2: An HTN Planning System. Syst Res. 2003;20:379-404.

Fox M, Long D. PDDL2. 1: An Extension to PDDL for Expressing Temporal
Planning Domains. J Artif Intell Res (JAIR). 2003. https://doi.org/10.1613/
jair.1129.

Holler D, Behnke G, Bercher P, Biundo S, Fiorino H, Pellier D, Alford R.
HDDL : An Extension to PDDL for Expressing Hierarchical Planning
Problems. In: Proceedings of the 34th AAAI Conference on Artificial
Intelligence (AAAI 2020). AAAI Press; 2020. https://www.uni-ulm.de/
fileadmin/website_uni_ulm/iui.inst.090/Publikationen/2020/
Hoeller2020HDDL.pdf.

Dornhege C, Eyerich P, Keller T, Triig S, Brenner M, Nebel B. Semantic
Attachments for Domain-Independent Planning Systems. In: Prassler E,
editor. Towards Service Robots for Everyday Environments. Springer
Tracts in Advanced Robotics, 2012, vol 76. Berlin: Springer. https://doi.
0rg/10.1007/978-3-642-25116-0_9.

Roehr TM. Automated Operation of a Reconfigurable Multi-Robot System
for Planetary Space Missions. PhD thesis, University Bremen. 2019.

Kumar S, Szadkowski K. A.v., Mueller A, Kirchner F. An Analytical and
Modular Software Workbench for Solving Kinematics and Dynamics of
Series-Parallel Hybrid Robots. J Mech Robot. 2020;12(2):. https://doi.org/
10.1115/1.4045941.021114. https://asmedigitalcollection.asme.org/
mechanismsrobotics/article-pdf/12/2/021114/6481776/jmr_12_2_
021114.pdf.

von Szadkowski K, Reichel S. Phobos: A tool for creating complex robot
models. J Open Source Softw. 2020;5(45):1326. https://doi.org/10.21105/
j0ss.01326.

Lloyd S. Least squares quantization in pcm. IEEE Trans Inform Theory.
1982;28(2):129-37.

Dinh L, Sohl-Dickstein J, Bengio S. Density estimation using real nvp.
2016. arXiv preprint arXiv:1605.08803.

Chen TQ, Rubanova Y, Bettencourt J, Duvenaud DK. Neural ordinary
differential equations. In: Advances in Neural Information Processing
Systems; 2018. p. 6571-83.

Langosz M. MARS (Machina Arte Robotum Simulans). GitHub. 2021.
https://github.com/rock-simulation/mars.

Kumar S, Wohrle H, de Gea Ferndndez J, Miller A, Kirchner F. A survey on
modularity and distributivity in series-parallel hybrid robots. Mechatronics.
2020;68:102367. https://doi.org/10.1016/j.mechatronics.2020.102367.
LiY, Akbar S, Oliva J. ACFlow: Flow Models for Arbitrary Conditional
Likelihoods. Proceedings of the 37th International Conference on Machine
Learning. In: Proceedings of Machine Learning Research 119:5831-5841.
Available from http://proceedings.mir.press/v119/1i20a.html.

Holzinger A, Plass M, Kickmeier-Rust M, Holzinger K, Crisan GC, Pintea
C-M, Palade V. Interactive machine learning: experimental evidence for
the human in the algorithmic loop. Appl Intell. 2019;49(7):2401-14.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Page 29 of 29

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

https://doi.org/10.1613/jair.1129
https://doi.org/10.1613/jair.1129
https://www.uni-ulm.de/fileadmin/website_uni_ulm/iui.inst.090/Publikationen/2020/Hoeller2020HDDL.pdf
https://www.uni-ulm.de/fileadmin/website_uni_ulm/iui.inst.090/Publikationen/2020/Hoeller2020HDDL.pdf
https://www.uni-ulm.de/fileadmin/website_uni_ulm/iui.inst.090/Publikationen/2020/Hoeller2020HDDL.pdf
https://doi.org/10.1007/978-3-642-25116-0_9
https://doi.org/10.1007/978-3-642-25116-0_9
https://doi.org/10.1115/1.4045941.021114
https://doi.org/10.1115/1.4045941.021114
https://asmedigitalcollection.asme.org/mechanismsrobotics/article-pdf/12/2/021114/6481776/jmr_12_2_021114.pdf
https://asmedigitalcollection.asme.org/mechanismsrobotics/article-pdf/12/2/021114/6481776/jmr_12_2_021114.pdf
https://asmedigitalcollection.asme.org/mechanismsrobotics/article-pdf/12/2/021114/6481776/jmr_12_2_021114.pdf
https://doi.org/10.21105/joss.01326
https://doi.org/10.21105/joss.01326
https://github.com/rock-simulation/mars
https://doi.org/10.1016/j.mechatronics.2020.102367
http://proceedings.mlr.press/v119/li20a.html

	Abstract
	Keywords

	Introduction
	Contributions
	Paper outline

	State of the art
	Q-Rock development cycle
	Modelling robot composition
	Related work
	Approach & formalization
	Components

	Implementation

	Exploration
	Related work
	Formalization
	States
	Actions
	Environments & world state
	Capability

	Classification and annotation
	Related work
	Formalization

	Reasoning
	Related work
	Approach & formalization
	Top-Down: Identification of capable systems
	Bottom-Up: From Structure to Function

	Results: a use case scenario
	Preparation
	Defining Feature Spaces
	Defining Behavior Models

	System assembly
	Exploration
	Clustering
	Cognitive Core Creation
	Cognitive Core Sampling
	Cognitive Core Annotation

	Solving a task
	Solving a mission
	Summary

	Discussion
	Exploration
	Classification and annotation
	Reasoning
	Outlook

	Conclusions
	Abbreviations
	Acknowledgements
	Authors' contributions
	Authors' information
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher's Note

