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Abstract

Background: Few studies have examined post-fire vegetation recovery in temperate forest ecosystems with
Landsat time series analysis. We analyzed time series of Normalized Burn Ratio (NBR) derived from LandTrendr
spectral-temporal segmentation fitting to examine post-fire NBR recovery for several wildfires that occurred in three
different coniferous forest types in western North America during the years 2000 to 2007. We summarized NBR
recovery trends, and investigated the influence of burn severity, post-fire climate, and topography on post-fire
vegetation recovery via random forest (RF) analysis.

Results: NBR recovery across forest types averaged 30 to 44% five years post fire, 47 to 72% ten years post fire, and
54 to 77% 13 years post fire, and varied by time since fire, severity, and forest type. Recovery rates were generally
greatest for several years following fire. Recovery in terms of percent NBR was often greater for higher-severity
patches. Recovery rates varied between forest types, with conifer—oak—chaparral showing the greatest NBR recovery
rates, mixed conifer showing intermediate rates, and ponderosa pine showing slowest rates. Between 1 and 28% of
patches had recovered to pre-fire NBR levels 9 to 16 years after fire, with greater percentages of low-severity patches
showing full NBR recovery.

Precipitation decreased and temperatures generally remained the same or increased post fire. Pre-fire NBR
and burn severity were important predictors of NBR recovery for all forest types, and explained 2 to 6% of
the variation in post-fire NBR recovery. Post-fire climate anomalies were also important predictors of NBR
recovery and explained an additional 30 to 41% of the variation in post-fire NBR recovery.

Conclusions: Landsat time series analysis was a useful means of describing and analyzing post-fire vegetation
recovery across mixed-severity wildfire extents. We demonstrated that a relationship exists between post-fire
vegetation recovery and climate in temperate ecosystems of western North America. Our methods could be
applied to other burned landscapes for which spatially explicit measurements of post-fire vegetation recovery
are needed.
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Resumen

Antecedentes: Pocos estudios han examinado la recuperaciéon post-fuego de la vegetacién en ecosistemas de
bosques templados mediante el andlisis de series temporales de imagenes Landsat. Analizamos series temporales
de la Relacion de Quemas Normalizadas (NBR) derivadas del ajuste de la segmentacién espectro-temporal de
LandTrendr para examinar la recuperacion post-fuego de la NBR para diferentes incendios ocurridos en tres tipos
de bosques de coniferas en el oeste de Norte América durante los afios 2000 a 2007. Resumimos las tendencias de
la NBR e investigamos la influencia de la severidad de los incendios, el clima post-fuego y la topografia en la
recuperacion post-fuego de la vegetacion a través del analisis de bosques al azar (RF).

Resultados: La recuperacion de la NBR entre los tipos forestales promedid del 30 al 44 % cinco afos post fuego,
de 47 a 72% diez afos post fuego, y de 54 al 77% 13 afhos post fuego vy variaron por el tiempo desde el incendio,
la severidad de cada fuego y el tipo forestal. La tasa de recuperacién fue generalmente mas grande después de
muchos afnos de ocurrido los incendios. La recuperaciéon en términos de porcentaje la NBR fue frecuentemente
mayor para los parches quemados con alta severidad. Las tasas de recuperacion variaron entre tipos forestales, en
las que el tipo conifera—roble—chaparral mostrd las tasas mas altas de recuperacion de la NBR, siendo intermedias
para el tipo de coniferas mixtas, y las mds lentas para el tipo pino ponderosa. Entre el 1y el 28% de los parches se
habian recuperado a niveles de NBR pre fuego entre 9 y 16 afios del post fuego, con los mayores porcentajes de
parches de baja severidad mostrando la mas alta recuperacién de la NBR. Las precipitaciones decrecieron vy las
temperaturas permanecieron iguales o aumentaron durante el post fuego. La NBR previa a los incendios v la
severidad del fuego fueron importantes predictores de la recuperacién de la NBR para todos los tipos forestales, y
explicaron del 2 al 6% de la variacién en la recuperacion de la NBR post fuego. Las anomalias climéaticas post fuego
fueron también importantes predictores de la recuperacién de la NBR y explicaron de un 30 a un 41% adicional en
la variacion de recuperaciéon post fuego de la NBR.

Conclusiones: El andlisis de las series temporales de Landsat resultd un método Util para describir y analizar la

recuperacion de la vegetacion post fuego a través de eventos de fuego de diferente severidad. Demostramos que
existe una relacién entre la recuperacion de la vegetacion post fuego vy el clima en bosques templados del oeste
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de Norte América. Nuestros métodos pueden ser aplicados a otros paisajes quemados para los cuales sean
necesarias mediciones explicitas de la recuperacion de la vegetacion.

Abbreviations

%RMSE: Percent root mean square error

%VE: percent variance explained

CBIL: Composite Burn Index

CURV: McNab’s curvature

DIST: Distance to unburn

dNBR: differenced Normalized Burn Ratio

ELEV: Elevation above sea level

ETM+: Landsat Enhanced Thematic Mapper Plus

EVI: Enhanced Vegetation Index

GSP: Post-fire anomaly of growing season precipitation
LandTrendr Landsat-based detection of Trends in Dis-
turbance and Recovery

MAT: Post-fire anomaly of mean annual temperature
MIR: Model Improvement Ratio

MMAX: Post-fire anomaly of mean maximum temperature
in warmest month

MMIN: Post-fire anomaly of mean minimum temperature
in coldest month

MTBS: Monitoring Trends in Burn Severity

NBR: Normalized Burn Ratio

NDSWIR: Normalized Difference Shortwave Infrared
Index

NDVI: Normalized Difference Vegetation Index
OLI: Landsat Operational Land Imager

RF: Random Forest

SLOPE: Slope

SR: Simple Ratio

SRTM: Shuttle Radar Topographic Mission
TM: Landsat Thematic Mapper

TRASP: Transformed aspect

VRI: Vegetation Recovery Index

WINP: Post-fire anomaly of winter precipitation

Background

Wildfires have burned millions of hectares in western
North America in recent decades (Littell et al. 2009, Yang
et al. 2015, White et al. 2017). Increased wildfire activity is
expected to continue under warmer and drier conditions
(Westerling et al. 2006; Abatzoglou 2016), making ecosys-
tem resilience and post-fire vegetation recovery of concern
to researchers and land managers (Allen and Breshears
2015). Burn severity, the degree to which fire has affected
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vegetation and soil (Keeley 2009), can have a large influ-
ence on post-fire vegetation recovery (Chappell 1996;
Turner and Romme 1999; Crotteau and Varner III 2013;
Meng et al. 2015; Liu 2016; Yang et al. 2017; Meng et al.
2018). Other factors that can be important to post-fire
vegetation recovery include vegetation type (Yang et al.
2017; Diaz-Delgado et al. 2002; Epting 2005), climate
(Chappell 1996; Meng et al. 2015; Liu 2016), topography
(Diaz-Delgado et al. 2002; Wittenberg et al. 2007; Sever
and Leach 2012; Meng et al. 2015; Liu 2016), and distance
to unburned patches and seed sources (Donato et al. 2009;
Harvey and Donato 2016; Kemp and Higuera 2016).
Long-term measurements of post-fire vegetation recovery
for differing forest types and burn severities can provide
useful information to researchers and land managers who
seek to identify areas that could benefit from post-fire
management.

Burn severity has traditionally been estimated on the
ground based on post-fire tree crown status. Recently,
the Composite Burn Index (CBI) has been widely used
to estimate ground burn severity for relation to satellite
measurements (Key 2006). Good correlation has been
found between ground estimates of burn severity and
the differenced Normalized Burn Ratio (dNBR; van
Wagtendonk et al. 2004, Key 2006, Hudak et al. 2007,
Keeley 2009) NBR is defined as:

NIR-SWIR

NBR = NiR + SWIR W
where NIR and SWIR are near and shortwave infrared
Landsat bands, respectively, which are sensitive to healthy
vegetation and burned surfaces (White et al. 1996). NIR
and SWIR bands correspond to Landsat Thematic Map-
per (TM) and Enhanced Thematic Mapper Plus (ETM+)
bands 4 and 7, respectively, and Landsat Operational
Land Imager (OLI) bands 5 and 7, respectively. The
dNBR is defined as the difference of pre-fire NBR
and post-fire NBR:

ANBR = ((NBRrefire—NBR postfire) X 1000) (2)

The Monitoring Trends in Burn Severity (MTBS) pro-
gram aims to map burn severity using dNBR for fires
>404 ha (>1000 acres) in size (western United States)
from 1984 to present (Eidenshink et al. 2007). Maps of
dNBR classified into low-, moderate-, and high-severity
classes are commonly used to assess and describe burn
severity and associated ecological impacts. Although
classification into low-, moderate-, and high-severity
classes under the MTBS program can be somewhat sub-
jective (Eidenshink et al. 2007), generally, low-severity
burn corresponds to damage to and consumption of
ground herbaceous vegetation and some understory
shrubs; moderate-severity burn indicates total damage to
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and consumption of understory vegetation with some
canopy tree mortality; and high-severity burn indicates
high or complete canopy tree mortality (Keeley 2009).

Collectively, the Landsat TM, ETM+, and OLI satel-
lites have acquired 30 m resolution imagery of Earth at
least every 16 days since 1984. Methodologies such as
the Landsat-based detection of Trends in Disturbance
and Recovery (LandTrendr) algorithms that perform
time series analysis of this rich image archive have be-
come popular for vegetation trend analyses (Huang et
al. 2010, Kennedy and Yang 2010; Verbesselt et al.
2010; Banskota et al. 2014). Numerous studies have de-
scribed post-fire vegetation recovery with multispectral
time series analysis in Mediterranean ecosystems
(Viedma et al. 1997; Diaz-Delgado 2001; Diaz-Delgado
et al. 2002; Riafio et al. 2002; Diaz-Delgado and Lloret
2003; Malak 2006; Hope and Tague 2007; Wittenberg
et al. 2007; Roder et al. 2008; Minchella et al. 2009;
Gouveia and DaCamara 2010; Solans Vila 2010;
Vicente-Serrano and Pérez-Cabello 2011; Veraverbeke
et al. 2012; Fernandez-Manso and Quintano 2016;
Lanorte et al. 2014; Meng et al. 2014; Petropoulos et al.
2014; Yang et al. 2017) and boreal ecosystems (Hicke et
al. 2003; Epting 2005; Goetz and Fiske 2006;
Cuevas-Gonzdlez et al. 2009; Jin et al. 2012; Frazier and
Coops 2015; Bartels et al. 2016; Liu 2016; Pickell et al.
2016; White et al. 2017; Yang et al. 2017; Frazier et al.
2018); other forest types have been less studied (Idris
and Kuraji 2005; Lhermitte et al. 2011; Sever and Leach
2012; Chen et al. 2014; Chompuchan 2017; Yang et al.
2017; Hislop et al. 2018), with only a few studies
conducted in ponderosa pine and mixed conifer forests
of western North America (White et al. 1996; van
Leeuwen 2008; van Leeuwen et al. 2010; Chen et al.
2011; Meng et al. 2015). Among these studies, the Nor-
malized Difference Vegetation Index (NDVI) has most
frequently been applied to indicate vegetation green-
ness. However, recent studies have found NBR to be less
prone to saturation than NDVI when characterizing
post-fire vegetation recovery (Chen et al. 2011; Pickell et
al. 2016; White et al. 2017; Hislop et al. 2018), possibly be-
cause NBR is more sensitive than NDVI to vegetation
structure and soil background reflectance, which is in-
versely proportional to green vegetation cover (or
non-photosynthetic vegetation [NPV] cover; Key 2006,
Pickell et al. 2016). Therefore, we chose to calculate NBR
to capture not just the initial impact of the fire, but also to
monitor vegetation or greenness recovery. To our know-
ledge, only a few studies have investigated the relationship
between post-fire satellite-derived vegetation recovery and
climate (Meng et al. 2014; Meng et al. 2015; Liu 2016) and
few or no previous studies have demonstrated the use of
cloud-based computation with satellite data for investigat-
ing post-fire vegetation recovery.
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Fig. 1 Locations and names of the 12 wildfires in the western
United States that were analyzed. Wildfires burned during the years
2000 to 2007

Here we analyzed post-fire vegetation recovery of
12 wildfires that occurred across the western United
States during the years 2000 to 2007. Vegetation
greenness, our metric of vegetation recovery, was
inferred from LandTrendr-derived trajectories of
NBR, which were generated in Google Earth Engine
(Gorelick et al. 2017; Kennedy et al. 2018). Nonpara-
metric random forest (RF) modeling was used to de-
scribe relationships between vegetation greenness and
burn severity, climate, and topography. We sought to
answer several fundamental questions: 1) How do
rates of NBR recovery vary over time? 2) How quickly
do fire patches appear to return to pre-fire spectral
condition? 3) How do pre-fire condition, burn sever-
ity, and climate affect recovery?

Table 1 Study area wildfires and characteristics
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Methods

Study areas

We focused on 12 named wildfire events in western
North America that burned during the years 2000 to
2007 (Fig. 1, Table 1). Wildfires occurred in three differ-
ent forest types: ponderosa pine, mixed conifer, and
conifer—oak-chaparral. Mixed conifer forests consisted
of grand fir (Abies grandis [Douglas ex D. Don] Lindl.),
subalpine fir (Abies lasiocarpa [Hook.] Nutt.), western
larch (Larix occidentalis Nutt.), Engelmann spruce
(Picea engelmannii Parry ex Engelm.), lodgepole pine
(Pinus contorta Douglas ex Loudon), ponderosa pine
(Pinus ponderosa Lawson & C. Lawson), Douglas-fir
(Pseudotsuga menziesii [Mirb.] Franco), and quaking
aspen (Populus tremuloides Michx.). The Old and Grand
Prix fires (Table 1) occurred in forests dominated by
California black oak (Quercus kelloggii Newberry), can-
yon live oak (Quercus chrysolepis Liebm.), and Coulter
pine (Pinus coulteri D. Don). Mean annual temperature
and precipitation varied between 2.8 and 14.9 °C and
328 and 662 mm, respectively, across fire extents (1981
to 2010 climate normals; Table 1).

Study area stratification

Our study areas were part of a larger project
(JESP-14-1-02-27) that selected these wildfires for inves-
tigation and included field sampling of trees, understory
vegetation, and fuels. To ensure representative sampling,
pixels within each wildfire were stratified by burn sever-
ity, elevation, and transformed aspect (TRASP, Roberts
1989; Fig. 2). TRASP is defined as:

—( cos(aspect-30))

1
TRASP =
2

(3)

where aspect is in degrees. TRASP ranges from 0 to 1,
with values of 0 corresponding to cooler, wetter north-
northeastern aspects, and values of 1 corresponding to
hotter, dryer south-southwestern aspects. To create the
strata grid for each fire, a digital elevation model (DEM)

Fire event State Fire year Forest type Mean annual Mean annual
temperature (°C) precipitation (mm)
Egley Oregon 2007 Ponderosa pine 58 328
Hayman Colorado 2002 Ponderosa pine 50 435
Jasper South Dakota 2000 Ponderosa pine 55 548
School Washington 2005 Mixed conifer 6.6 554
Black Mountain 2 and Cooney Ridge Montana 2003 Mixed conifer 38 517
Cascade and East Zone Idaho 2007 Mixed conifer 20 555
Wedge Canyon and Robert Montana 2003 Mixed conifer 36 662
Old and Grand Prix California 2003 Conifer—oak—chaparral 15.0 425
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Fig. 2 Landscape stratification approach exemplified by the Hayman Fire, Colorado, USA, that burned in 2002. Elevation and transformed aspect
grids were classified as low or high using medians. The MTBS burn severity class grid was then intersected with elevation and TRASP strata grids
to create a stratification grid. For this analysis, we only considered areas burned at low, moderate, and high severity
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Fig. 3 Conceptual example of LandTrendr fitting normalized burn ratio (NBR) values to spectral-temporal segments for a pixel burned at high
severity in the Cooney Ridge Fire in 2003. Original NBR values for a pixel time series are displayed as solid gray circles, and the corresponding
fitted result from LandTrendr are open black circles. LandTrendr adjusts the original time series to fit to line segments between breakpoints in
spectral trends. It eliminates noise and places each value in the context of spectral trajectories that combine to reveal the dominant, underlying
spectral history of a pixel. Percent NBR recovery in 2016 was defined as distance 2 divided by distance 1 multiplied by 100
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grid and a TRASP grid were classified as low or high
using the median, and the classified DEM, TRASP, and
MTBS burn severity class grids were overlaid (Fig. 2).
We grouped adjoining pixels of identical strata into
patches, and used these patches as analysis units; no
spatial patterning methods were used in patch creation.
We chose to use patches rather than pixels as analysis
units to reduce the millions of pixels covering our study
areas to a more manageable size for analysis.

Landsat time series data

The NBR data used in this study were derived from the
LandTrendr spectral-temporal segmentation algorithm.
LandTrendr identifies breakpoints (referred to as verti-
ces) in an image pixel time series between periods of
relatively consistent spectral trajectory. From these
breakpoints, a new time series is constructed, for which
each annual observation is interpolated to fit on a line
segment between vertices (Fig. 3). The result is an ideal-
ized, trajectory-based time series free from noise, for
which each observation is placed in the context of a
spectral-temporal trend. We chose this fitted data for-
mat over unaltered surface reflectance to reduce the in-
fluence of low-level time series variability resulting from
variation in climate, atmosphere, phenology, sun angle,
and other ephemeral effects on the calculation of
post-fire percent NBR recovery, and to place the recov-
ery in terms of a point along a trajectory.

Fitted NBR data were produced using the Google
Earth Engine (Gorelick et al. 2017) implementation of
LandTrendr (Kennedy et al. 2018). For each region, we
assembled a collection of US Geological Survey surface
reflectance images (Masek et al. 2006; Vermote et al.
2016) from 1984 to 2016, for dates 1 June through 30
September. The collection included images from TM,

Table 2 Climate and topographic variable names and
descriptions

Variable Description

MAP Post-fire anomaly of mean annual precipitation (mm)

GSP Post-fire anomaly of growing season precipitation
(Apr to Sep; mm)

WINP Post-fire anomaly of winter precipitation
(Nov + Dec + Jan + Feb; mm)

MAT Post-fire anomaly of mean annual temperature (°C)

MMAX Post-fire anomaly of mean maximum temperature in
warmest month (°C)

MMIN Post-fire anomaly of mean minimum temperature in
coldest month (°C)

DIST Distance to unburn (m)

CURV McNab's curvature (McNab 1989)

SLOPE Slope (degrees)

TRASP Transformed aspect (Roberts and Cooper 1989)
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ETM+, and OLI sensors. Each image in the collection
was masked to exclude clouds and cloud shadows using
the CEFMASK algorithm (Zhu and Wang 2015), which is
provided with the surface reflectance product. Addition-
ally, OLI image bands 2, 3, 4, 5, 6, and 7 were trans-
formed to the spectral properties of ETM+ bands 1, 2, 3,
4, 5, and 7, respectively, using slopes and intercepts from
reduced major axis regressions reported in Table 2 of
Roy et al. (Roy et al. 2016).

Transforming OLI data to match ETM+ data permit-
ted inter-sensor compositing to reduce multiple observa-
tions per year to a single annual spectral value, which is
a requirement of the LandTrendr algorithm. To calcu-
late composites, we used a medoid approach: for a given
image pixel, the medoid is the value for a given band
that is numerically closest to the median of all corre-
sponding pixels among images considered. We selected
the medoid compositing method to reduce variability
that can be frequently introduced when using either
maximum or minimum, and also to retain actual pixel
values, as opposed to a summary statistic when using
mean or median.

Medoid compositing was performed for each year in the
collection and included images from any sensor contribut-
ing to the annual set of summer-season observations for
the year being processed. The result was a single
multi-band image, per year, free of clouds and cloud
shadows, and represented median summer-season surface
reflectance. From these annual medoid composites, NBR
was calculated and provided as the time series input to
the LandTrendr algorithm, whose parameters were set ac-
cording to Table 2 of Kennedy et al. (Kennedy et al. 2012).
The result from LandTrendr was an annual time series of
NBR fitted to vertices of spectral-temporal segmentation.

We calculated zonal means of fitted NBR for the years
1984 to 2016 for each patch to be used for analysis. Per-
cent NBR recovery, defined as the magnitude of NBR
recovery divided by the magnitude of fire-induced de-
crease in NBR multiplied by 100 (Fig. 3), was calculated
for each patch and year post fire. We tested whether
percent NBR recovery varied significantly by burn sever-
ity at four, eight, and twelve years post fire for all three
forest types with nonparametric Mann-Whitney tests.
Percent NBR recovery nine years post fire was used as a
response variable in RF models.

Climate and topographic data

We applied a spline model of climate developed for the
western United States (e.g,, Rehfeldt 2006; Rehfeldt et al.
2015) to produce the annual climatic predictor variables.
The original model was applied to 30-year averages at
~1 km resolution. These spatial and temporal scales
could not capture finer scale variations in microclimate.
To produce fine resolution annual climatic surfaces at
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30 m resolution, we applied the model to annual cli-
matic data for the years 1981 to 2010 using the digital
elevation model from the Shuttle Radar Topographic
Mission (SRTM). We used the ANUSPLIN program for
thin plate spline interpolation of climatic variables
(Hutchinson 2000). We then derived additional climatic
indices and interactive variables from the original sur-
face variables created by the model.

Climate variable indices were converted to post-fire
climate anomaly grids because we were interested in
how post-fire climate affected vegetation recovery, and
so that across-fire climate comparisons could be made
(Arnold et al. 2014; Meng et al. 2015; Liu 2016). Anom-
alies were calculated using the Z-statistic:

l"lpost ~HMnorm
7 — tpost” Tnorm 4
L @

where (1,05 is the post-fire mean (one year post fire to
2010), Hnorm is the climate normal (1984 to 2010) mean,
and o is the climate normal standard deviation; the re-
sult was one mean anomaly grid for each climate vari-
able. Post-fire means ended at 2010 because that was the
last year of available climate data.

Topographic variable grids were derived from DEMs
of each fire extent (Table 2). McNab’s curvature was cal-
culated using the spatialEco package in R (McNab 1989;
R Core Team 2017; Evans 2017), and is a measure of
slope shape, whether convex or concave. Curvature can
affect soil moisture, erosion, and deposition, and thus
vegetation growth. Distance to unburned was calculated
as the shortest distance to the fire perimeter or an un-
burned patch. We calculated zonal means of climate
anomalies and topographic variables for each patch to
be used for RF analysis. Raster processing was per-
formed in R using the raster package (Hijmans 2016; R
Core Team 2017).

Random forest analysis
We explored the relationship between climate, topog-
raphy, and post-fire NBR recovery by relating percent
NBR recovery nine years post fire to post-fire climate
anomaly and topographic variables (Table 2) via random
forest (RF) modeling, implemented in R (Breiman 2001;
Liaw 2002; R Core Team 2017). We chose to use a
nonparametric modeling method because most variable
distributions were non-normal and caused visibly non-
random trends in residuals of initial linear models. RF
modeling does not require variables to be normally
distributed, can handle tens of thousands of cases, and
provides variable importance scores.

We created RF models for each forest type using three
different sets of explanatory variables to investigate how
climate and topographic variables contributed to
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explaining variance in NBR recovery. Initial RF models
included only pre-fire NBR (indicator of pre-fire vegeta-
tion cover) and dNBR (burn severity) as explanatory var-
iables. Post-fire climate explanatory variables were then
added and additional RF models were created, and fi-
nally topography variables were added as explanatory
variables. We were computationally unable to create an
RF model with all 263 449 mixed conifer patches; there-
fore, we created 10 models using 10% samples of the
mixed conifer patches, and averaged model results. RF
models were evaluated with percent root mean square
error (%RMSE) and percent variance explained (%VE) in
percent NBR recovery, calculated as:

/MSE
otrmsE — YMSE 100 (5)
NBRyec
1-MSE
VE=—— 2% 100 6
% var(NBRwg) | ©)

where MSE is the mean square error, the sum of squared
residuals divided by », and NBR,.. is percent NBR recov-
ery. For RF models that included all explanatory variables,
we calculated the model improvement ratio (MIR), a
standardized measure of variable importance ranging
between 0 and 1, for each variable (Murphy and Ev-
ans 2010). MIR measures were advantageous to raw
importance scores because they were comparable be-
tween RF models. A MIR score of 1 indicated most
important, 0 least important.

Results

Patch statistics

We examined a total of 435 367 patches of variable size
(Table 3). Patch size averaged 0.67 ha and ranged from
0.09 to 683.73 ha. Minimum and median patch sizes
were one and two pixels, respectively. The Cascade and
East Zone fires were the largest fires analyzed; the Black
Mountain 2, Cooney Ridge, and School fires were the
smallest fires analyzed.

Vegetation recovery

NBR recovery rates varied non-linearly by time since fire
(Fig. 4, Additional file 1). The rate of NBR recovery was
greatest several years following fire, after which it de-
creased. Patches that burned at high severity generally
showed the greatest recovery, especially for the mixed
conifer forest type. For ponderosa pine, patches that
burned at moderate and high severity began to show less
recovery than patches that burned at low severity, begin-
ning 13 years post fire. Percent NBR recovery differed
significantly by burn severity at four, eight, and twelve
years post fire (considered representative of the recovery
trends) for all three forest types (Mann-Whitney tests, P
<0.001); large sample sizes (Table 3) gave statistical tests
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Table 3 Patch number and size statistics for each fire event

Page 8 of 14

Patch size (ha)

Fire event Total (n) Minimum Median Mean Maximum SD

Egley 42 674 0.09 0.18 053 59733 4.28
Hayman 62 533 0.09 0.18 0.63 502.29 522
Jasper 29 092 0.09 0.18 0.78 229.77 331
School 18214 0.09 0.18 058 8829 215
Black Mountain 2 and Cooney Ridge 6 853 0.09 0.18 1.05 186.66 549
Cascade and East Zone 203013 0.09 0.18 0.60 35001 357
Wedge Canyon and Robert 35 369 0.09 0.18 1.00 566.73 6.53
Old and Grand Prix 37 619 0.09 0.18 0.93 683.73 6.74
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Fig. 4 Time series of percent recovery of mean percent Normalized Burn Ratio (NBR) for 12 wildfires in western North America that burned
during the years 2000 to 2007. Bars show +1 standard deviation. NBR recovery rates varied by severity, time since fire, and forest type
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Table 4 Average percent NBR recovery of patches by forest
type and time since fire

Forest type Average NBR recovery (%)

5yr 10 yr 13 yr
Ponderosa pine 32 47 54
Mixed conifer 30 56 68
Conifer—oak—chaparral 44 72 77

considerable power so that even small differences were
significant (Fig. 4).

The rate of NBR recovery was smallest in the ponder-
osa pine forest type, intermediate in the mixed conifer
forest type, and greatest in the conifer-oak—chaparral
forest type (Fig. 4, Table 4). Recovery patterns for each
fire event reflected this pattern, although individual fires
showed some unique patterns as well (Additional file 1).

Most patches had not completely recovered to pre-fire
NBR levels 9 tol6 years after fire (Fig. 5). Among fires, 6
to 28, 4 to 26, and 1 to 22% of low-, moderate-, and
high-severity patches, respectively, had recovered to
pre-fire NBR levels. Greater percentages of patches that
burned 13 to 16 years previously had recovered than
patches that burned 9 to 11 years previously, with the
exception of the Jasper and Hayman fires, which showed
percent recovery values similar to the more recent fires.

Post-fire climate anomalies
Precipitation decreased post fire and temperatures gen-
erally remained the same or increased post fire, relative

—~ 35—
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Fig. 5 Percent of patches recovered to pre-fire Normalize Burn Ratio
(NBR) in 2016, by burn severity. The number of years since each fire
are shown above column groups. Greater percentages of low- and
moderate-severity patches had recovered to pre-fire levels 9
to16 years after fire. BMCR = Black Mountain 2 and Cooney Ridge
fires, CEZ = Cascade and East Zone fires, WCR =Wedge Canyon
and Robert fires, OGP =0Id and Grand Prix fires
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to climate normals, although exceptions existed (Fig. 6).
Growing season precipitation decreased more than win-
ter precipitation in most fire extents; post-fire precipita-
tion decreases were greatest for the Cascade and East
Zone fires. Mean annual temperatures decreased in the
Cascade, East Zone, Wedge Canyon, and Robert fire ex-
tents; increased slightly in the School, Egley, Black
Mountain 2, Cooney Ridge, and Jasper fire extents; and
increased greatly in the Old, Grand Prix, and Hayman
fire extents. Mean maximum temperatures in the warm-
est month were higher than long-term means in all fire
extents except Cascade and East Zone, for which they
stayed the same. Mean minimum temperatures in the
coldest month decreased in the Egley, Cascade, East
Zone, and Jasper fire extents; and increased in the
School, Old, Grand Prix, Wedge Canyon, Robert, Black
Mountain 2, Cooney Ridge, and Hayman fire extents.

Random forest analysis

RF models that included only pre-fire NBR and dNBR as
explanatory variables explained 2 to 6% of the variation
in NBR recovery nine years post fire (Table 5). Pre-fire
NBR was important in predicting recovery across forest
types (Table 6). Burn severity was less important in pre-
dicting recovery nine years post fire, especially for the
ponderosa pine forest type. Post-fire climate explained
an additional 30 to 41% of the variation in post-fire NBR
recovery, and climate variables were important or very
important predictors of recovery (Tables 5 and 6). Topo-
graphic variables were the least important predictors,
and only explained an additional 2 to 6% of the variation
in post-fire NBR recovery.

Discussion

We described post-fire vegetation recovery using NBR
time series, and related post-fire climate and topographic
variables to NBR recovery for 12 fires that occurred in
temperate ecosystems of western North America. We
documented average NBR recovery levels of 54 to 77%
13 years post fire, and that, in addition to pre-fire NBR
and burn severity, post-fire climate was an important de-
terminant of the degree that vegetation greenness had
recovered post fire.

We found that most patches were still recovering to
pre-fire NBR levels 9 to 16 years post fire. Longer time
series of areas that burned earlier in the Landsat TM sat-
ellite record (beginning in 1984) would document more
complete recovery to pre-fire NBR levels. Field observa-
tions of percent vegetation cover taken across our study
areas 9 to 15 years post-fire confirmed that herbaceous
and shrub species growth were responsible for the ob-
served increase in NBR. Others who have also described
vegetation recovery with satellite indices have generally
reported faster or similar recovery rates for various
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vegetation types (Table 7). Like Epting and Verbyla (Ept-
ing 2005), Jin et al. (Jin et al. 2012), and Meng et al.
(Meng et al. 2018), we found that areas burned at higher
severities recovered at faster rates than areas burned at
lower severities, even after normalization by burn sever-
ity (Fig. 3), possibly because these are fire-adapted forest
types in which fire creates favorable conditions for vege-
tation germination and regeneration (Zasada et al. 1983;
Agee 1993; Meng et al. 2018).

Post-fire climate explained substantial variation in
post-fire vegetation recovery. Although this finding is
not surprising, as temperate forests of western North
America are limited by summer precipitation and cold
temperatures (Churkina 1998; Nemani et al. 2003), to
our knowledge, few studies have documented the im-
portance of climate to post-fire vegetation recovery.
Meng et al. (2015) found that post-fire wet season pre-
cipitation and January minimum temperature helped

Table 5 Percent variance explained and percent root mean square error (%RMSE) of random forest (RF) models predicting percent
recovery of the Normalized Burn Ratio (NBR) nine years post fire from NBR variables alone; NBR and post-fire climate variables; and

NBR, post-fire climate, and topographic variables

Percent variance explained (%RMSE)

Ponderosa pine

Mixed conifer Conifer—oak—chaparral

Explanatory variables

Pre-fire NBR, dNBR 6 (57) 6 (64) 2(36)
Pre-fire NBR, dNBR, post-fire climate 47 (43) 38 (51) 32 (29)
Pre-fire NBR, dNBR, post-fire climate, topographic 50 (41) 40 (51) 38 (29)
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Table 6 Model improvement ratio (MIR) scores of explanatory
variables in random forest (RF) models predicting percent recovery
of the Normalized Burn Ratio (NBR) nine years post fire. Variable
importance scores range between 0 and 1, with 1 indicating most
important and 0 indicating least important. dNBR = diffrenced
Normalzed Burn Ratio. See Table 2 for definitions of variables

Variable

Model improvement ratio scores

Ponderosa pine  Mixed conifer ~ Conifer—oak—chaparral

Pre-fire NBR 09 1.0 1.0
dNBR 03 0.5 0.6
MAP 09 038 0.7
GSP 0.7 0.7 0.6
WINP 0.8 0.8 0.8
MAT 1.0 0.6 0.7
MMAX 0.7 0.9 0.8
MMIN 0.8 0.7 08
DIST 0.1 0.1 03
CURV 0.1 0.2 0.2
SLOPE 0.2 0.2 04
TRASP 0.1 0.1 0.2

explain variation in NDVI five years post fire in mixed
conifer and red fir forests in the Sierra Nevada Moun-
tains of California, USA. They suggested that January
minimum temperature might be a proxy for drought ef-
fects or indicate solar radiation and temperature
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limitations on vegetation growth in their forest types.
Liu (2016) reported that post-fire summer precipitation
was important to vegetation recovery five years post fire
in boreal larch (Larix gmelinii [Rupr.] Rupr.) forests in
China. Additional studies that use modeling approaches
different from ours, like those of Meng et al. (2015) and
Liu (2016), could describe relationships between burn
severity, post-fire climate, topography, and post-fire
vegetation recovery more specifically for the temper-
ate coniferous forests that we studied. Although we
found topographic variables to be unimportant pre-
dictors of NBR recovery, variations in fine-scale
climate data were caused by local variability in eleva-
tion, so climate and elevation were convolved, and
topography was possibly more influential than our
modeling results suggested.

Post-fire NBR recovery was fastest and greatest for the
conifer—oak-chaparral forest type (Fig. 4); this is pos-
sibly because vegetation was less limited by cold temper-
atures relative to other forest types (Table 1). Mixed
conifer forests showed a greater post-fire recovery rate
than ponderosa pine forests (Fig. 4), possibly because of
richer species diversity and because mixed conifer for-
ests tend to receive more precipitation (Table 1); the
relative rapid recovery of the Wedge Canyon and Robert
fires, which averaged the most precipitation of all our
study areas, also supports this idea (Additional file 1:
Figure S1). Likewise, the slower recovery of the Cascade
and East Zone fires relative to the other mixed conifer

Table 7 Average recovery times reported in previous studies that used satellite indices to describe post-fire vegetation recovery.
NDVI = Normalized Difference Vegetation Index, NDSWIR = Normalized Difference Shortwave Infrared Index, EVI = Enhanced
Vegetation Index, VRI = Vegetation Recovery Index, BRR = Burn Recovery Ratio, NPP = Net Primary Productivity (derived from NDVI

and Simple Ratio [SR])

Authors Year Vegetation type Location Index Reported mean recovery time (yr)
Viedma et al. 1997 Mediterranean Spain NDVI 1to 18
Hicke et al. 2003 Boreal Canada NPP 9
Epting and Verbyla 2005 Boreal Alaska, USA NDVI, NBR 8to 14
|dris et al. 2005 Tropical, temperate forest Borneo, China NDVI 1to4
Hope et al. 2007 Chaparral California, USA NDVI 10
Wittenberg et al. 2007 Mediterranean Israel EVI 3
Cuevas-Gonzalez et al. 2009 Boreal Siberia, Russia NDVI, NDSWIR 13
Gouveia et al. 2010 Pinus L., Eucalyptus L'Hér Portugal NDVI 3t05
Jinetal. 2012 Boreal Canada EVI 5t08
Fernandez-Manso et al. 2016 Pinus Spain VRI 7 to 20
Pickell et al. 2016 Boreal Canada NBR 56
Chompuchan and Lin 2017 Pinus Taiwan BRR 20 to 30
White et al. 2017 Boreal Canada NBR Variable
Yang et al. 2017 Boreal Norht America NDVI >10
Frazier et al. 2018 Boreal Canada NBR Variable
Hislop et al. 2018 Sclerophyll SE Australia NBR 8to 10
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areas might have been due to greater relative decreases
in post-fire precipitation (Additional file 1, Fig. 6).

We used recovery of NBR, a satellite index, as an indica-
tor of vegetation recovery. Although satellite observations
contain valuable information about vegetation conditions,
they are simply measurements of reflected light and are
therefore limited in their interpretability. NBR is an indi-
cation of the ratio of vegetation to soil cover, but tells us
little about vegetation type and structure. Relating ground
and satellite observations can increase interpretability of
satellite observations (Hudak et al. 2007), as well as pro-
vide a means for applying spatially limited ground obser-
vations across landscapes. We chose to limit this analysis
to NBR observations because we wished to describe
landscape-wide vegetation recovery in general. Future
studies that predict ground-measured vegetation charac-
teristics from time series of multispectral imagery could
describe post-fire recovery trajectories of more specific
vegetation characteristics.

Conclusions

Landsat time series analysis can provide landscape-wide
information on post-fire vegetation recovery. Our
analysis revealed that complete post-fire recovery of
NBR in the temperate forest ecosystems of western
North America takes longer than 9 to 16 years for most
areas. We found burn severity, pre-fire NBR, and post-fire
climate to be important to vegetation recovery for the fires
that we studied. Methods similar to ours could be applied
to other burned areas for which landscape-wide informa-
tion on post-disturbance vegetation recovery is needed,
and could be used to inform management decisions; for
instance, individual patches showing little or no recovery
could be identified for post-fire management. Our finding
that post-fire climate influences vegetation recovery sug-
gests that climate change will affect post-fire vegetation
recovery in western North America.

Additional file

Additional file 1: Time series of percent recovery of mean percent
Normalized Burn Ratio (NBR) by burn severity for each fire. Bars show +1
standard deviation. NBR recovery rates varied by fire, severity, time since
fire, and forest type. Forest type, year of fire, mean average temperature
(°C), and mean annual precipitation (mm) are given in the upper
left-hand corner of each panel. (TIF 457 kb)
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