
Yang et al. Cybersecurity (2022) 5:11
https://doi.org/10.1186/s42400-022-00111-2

RESEARCH

A flexible approach for cyber threat hunting
based on kernel audit records
Fengyu Yang1,2, Yanni Han1*, Ying Ding1, Qian Tan1 and Zhen Xu1 

Abstract 

Hunting the advanced threats hidden in the enterprise networks has always been a complex and difficult task. Due
to the variety of attacking means, it is difficult for traditional security systems to detect threats. Most existing methods
analyze log records, but the amount of log records generated every day is very large. How to find the information
related to the attack events quickly and effectively from massive data streams is an important problem. Considering
that the knowledge graph can be used for automatic relation calculation and complex relation analysis, and can get
relatively fast feedback, our work proposes to construct the knowledge graph based on kernel audit records, which
fully considers the global correlation among entities observed in audit logs. We design the construction and applica-
tion process of knowledge graph, which can be applied to actual threat hunting activities. Then we explore different
ways to use the constructed knowledge graph for hunting actual threats in detail. Finally, we implement a LAN-wide
hunting system which is convenient and flexible for security analysts. Evaluations based on the adversarial engage-
ment designed by DARPA prove that our platform can effectively hunt sophisticated threats, quickly restore the attack
path or assess the impact of attack.

Keywords:  Advanced persistent threat, Cyber threat hunting, Kernel audit log, Knowledge graph

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Introduction
To cope with rampant cyber threats, modern enterprises
deploy various defense facilities, such as firewalls, IDS
and IPS, Endpoint Detection and Response (EDR), Secu-
rity Information and Event Management (SIEM) and
so on. However, the methods of attack are diverse, and
attackers will constantly change their attacking means
until the attack successes, making it difficult for auto-
mated security systems to defend. In addition, attackers
usually penetrate the system at low speed and imitate
normal system behavior to avoid being observed, which
increase the difficulty of automated threat detection.

Therefore, many enterprises employ professional secu-
rity teams to detect potential threats in their systems. The
main task of these teams is to explore the footprints of
attack based on their own experience and external threat

intelligence. Since the attack behavior is unknown, secu-
rity analysts need to make assumptions combined with
the internal network architecture of the enterprise and
verify the assumptions, then eliminate false positives or
restore the complete attack path. This process can be
called cyber threat hunting.

In cyber threat hunting activities, security analysts usu-
ally choose kernel audit logs as the data source for analy-
sis. The kernel audit logs record the interactions between
various processes, files, memory areas, and external hosts
at the bottom of the system. They are usually stored in
the system as events. By cascading the events in kernel
logs, security analysts can get contextual information
about an event and understand the causality of the event,
which is very useful for finding the sources of threats.

However, raw kernel audit logs have fatal flaws: huge
size, analytical difficulty and semantic isolation. So threat
hunting inevitably becomes a complicated and difficult
task. For efficient analysis of massive low-level audit
records, many existing methods convert the kernel audit

Open Access

Cybersecurity

*Correspondence: hanyanni@iie.ac.cn
1 Institute of Information Engineering, Chinese Academy of Sciences,
Beijing, China
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-022-00111-2&domain=pdf

Page 2 of 16Yang et al. Cybersecurity (2022) 5:11

logs into provenance graph (Milajerdi et al. 2019; Hossain
et al. 2017; Milajerdi et al. 2019; Han et al. 2020), which
is a labeled, typed and directed graph. In provenance
graphs, nodes represent system objects such as pro-
cesses, files, networks, and memory, while edges repre-
sent specific system calls. But the provenance graph does
not support interactive exploration and analysis. Threat
hunting based on provenance graph requires high tech-
nical complexity and large memory space. We need to
explore a more convenient and flexible method of graph
data representation and application. Shu et al. (2018)
designs a dedicated graph engine to achieve “threat intel-
ligence computing” but does not study how to design
agile hunting process.

To realize a practical and agile threat hunting system,
the following three challenges need to be solved:

(1)	 The original audit events are complex and hetero-
geneous, and limited by the kernel audit granularity,
automated information flow analysis will lead to a
large number of false positives. So during the hunt-
ing process, the manual threat validation is indis-
pensable. Therefore, an unified, well-defined graph
representation is needed which should be friendly
to both human and computer.

(2)	 When analyzing advanced threats, a practical threat
hunting system should support the alignment of
external IOCs(Indicators of Compromise) and
the quick integration of various prior knowledge.
Prior knowledge can be divided into log informa-
tion, open threat intelligence and expert experience
knowledge.

(3)	 In view of the massive characteristics of kernel audit
events, as well as the APT’s long-term latent and
decentralized operations, the practical hunting sys-
tem needs to consider a variety of factors, including
storage cost, query latency and dump time.

Developing concept of Knowledge Graph(KG) pro-
vides ideas for solving the above problems. KG is used
to describe various entities and concepts existing in the
real world, as well as their relationships, and is repre-
sented in the form of structured triples. KG provides an
ideal storage for the collected various types of graphic
data and supports fast alignment of different knowl-
edge. Interactive exploratory analysis based on knowl-
edge graph can simulate human’s thinking process to
verify and reason knowledge, thus reducing human’s
workload. Moreover, its presentation is friendly to both
human-reading and machine-processing. Compared
with the traditional storage method, the data retrieval
speed of the graph data storage method is faster, and it
can realize the real-time response of human-computer

interaction, so that security analysts can make real-
time decisions and promote hunting efficiency.

In this work, we consider constructing knowledge
graph based on kernel audit logs and realize agile threat
hunting by integrating threat intelligence and expert
knowledge. Based on knowledge graph, it is conveni-
ent for security analysts to perform pruning and limit
search in advance. Moreover, through the rapid sum-
mary of massive formatted data, statistics-based anom-
aly detection without pre-training can be achieved,
thereby promoting hunting against unknown threats.

Our contributions are summarized as follows:

•	 We propose to construct knowledge graph based
on kernel audit logs. According to the standard
life cycle of KG, we design the construction and
application process of KG, which can be applied to
actual threat hunting activities.

•	 We optimize the log dump process. By dumping
knowledge into graphs, massive data is efficiently
organized, which facilitates subsequent knowledge
search and reasoning.

•	 We promote threat hunting in two phases based
on constructed knowledge graph. First, hunters
can formulate hypotheses from different semantic
levels, including observable IOCs and contextual
behavior patterns. Then during the verification of
hypotheses, based on efficient graph query and vis-
ual output, the hunter can quickly complement the
attack paths and eliminate false positives.

•	 We implement a LAN-wide hunting system called
THKG(Threat Hunting based on Knowledge
Graph). Evaluations based on the dataset of DARPA
TC program show the effectiveness of our hunting
system.

RoadMap: The rest of this paper is organized as follows.
In Related work section, we describe some works in this
field. In Threat model and system design section, we
explain the threat model of our work and introduce the
overall design of our hunting system. Then, we describe
the construction process of knowledge graph in detail
in Construction of knowledge graph section. Next in
Knowledge application to threat hunting section, based
on constructed knowledge graph, we present how to
apply generated knowledge graph to perform threat
hunting and demonstrate the effectiveness of our hunt-
ing system under the adversarial engagement designed
by DARPA. Performance evaluation section shows the
performance evaluating results of our hunting plat-
form, including time cost, disk usage and query delay.
Finally, we summary and discuss our work in Conclu-
sion section.

Page 3 of 16Yang et al. Cybersecurity (2022) 5:11 	

Related work
Cyber threat hunting and APT detection
In threat hunting, Shu et al. (2018) proposes “threat intel-
ligence computing” which models threat hunting as a
graph computation problem and designs a domain-spe-
cific graph language with interactive visualization sup-
port and a distributed graph database. Milajerdi et al.
(2019) models threat hunting as an inexact graph pattern
matching problem between the query graph constructed
out of threat intelligence and the provenance graph con-
structed out of kernel audit logs. Mavroeidis and Jøsang
(2018) presents an automated threat assessment system
based on Sysmon logs and a threat intelligence ontology,
and augment cyber defensive capabilities through situ-
ational awareness, prediction, and automated courses of
action. However, it is possible to miss unknown threats
by focusing on threat intelligence only. Our work com-
bines a variety of prior knowledge to achieve a more
complete threat hunting.

As for APT detection, SLEUTH (Hossain et al. 2017)
uses tag-based techniques to detect APT attacks and
reconstructs the attack steps using main-memory based
provenance graph. Further more, HOLMES (Milajerdi
et al. 2019) uses APT kill-chain as the pivotal reference to
produce a detection signal that indicates the presence of
an APT campaign. NODOZE (Hassan et al. 2019) tries to
combat threat alert fatigue by using contextual and his-
torical information of generated threat alert. It returns
the compressed minimum dependence graph related
to attacks by prioritizing the paths based on anomaly
score. Besides, UNICORN (Han et al. 2020) presents an
anomaly-based APT detector using graph sketching and
further improves detection capability by a novel mod-
eling approach to understand long-term behavior as the
system evolves.

However, Poirot, HOLMES and NODOZE all need
to set the appropriate threshold or learn the abnormal
behavior by training. In the actual application scenario,
the user’s behavior is complex and has lots of uncer-
tainty, and it is hard to distinguish between the unusual
behavior and threat behavior, so the threat validation is
indispensable. Our work combines threat detection and
threat verification, and does not make assumptions or set
thresholds for the machine reasoning process, but limits
the search through the preparation of accurate patterns,
and completes accurate and fast pruning through expert
interaction.

Attack forensics and Kernel audit
A lot of works focus on attack forensics based on ker-
nel audit logs. Backtracking King and Chen (2003) is
one of the first works to backtrack the root cause of

intrusions. PRIOTRACKER (Liu et al. 2018) proposes a
backward and forward causality tracker that automati-
cally prioritizes the investigation of abnormal causal
dependencies based on the rareness and topological
features of system events. In order to make forensics
analysis based on kernel audit more practical, many
works (Lee et al. 2013; Xu et al. 2016; Ma et al. 2016;
Kwon et al. 2018; Hossain et al. 2018) try to reduce
kernel audit logs by compression and other reduction
methods. Other works (Lee et al. 2013; Ma et al. 2016,
2017) try to achieve more refined forensics and infor-
mation flow tracking. In addition, there are some works
trying to achieve more precise provenance tracking
by record and replay (Ji et al. 2017, 2018). OmegaLog
(Hassan et al. 2020) proposes the notion of universal
provenance, which bridges the semantic gap between
system and application logging contexts. UISCOPE
(Yang et al. 2020) combines low-level causality analy-
sis with high-level UI elements and event analysis to
achieve an accurate and visible attack investigation sys-
tem for GUI applications.

As for the application of kernel audit in real-time sce-
nario, SAQL (Gao et al. 2018a) proposes a novel stream-
based query engine to identify abnormal behavior among
real-time event feed, including rule-based anomalies,
time-series anomalies, invariant-based anomalies, and
outlier-based anomalies. SAQL is built for stream-based
anomaly detection, thus orthogonal to our work. Simi-
larly, AIQL (Gao et al. 2018b) proposes a query system
built upon existing monitoring tools and databases,
which is optimized for timely attack investigation. But
they are based on relational database and ignore that
graph query language itself can express rich anomaly
detection logic. A graph query needs to be decomposed
into several SQL statements. Compared with traditional
relational database, graph query language highlights the
relationship between data, which is more suitable for
inference of context causality in attack traceability.

Security knowledge graph
There is a plethora of ontological approaches related to
cyber security focusing on specific sub-domains, such as
threat intelligence, malware detection, vulnerability anal-
ysis and more (Gao et al. 2018b; Obrst et al. 2012; Oltra-
mari et al. 2014; Grégio et al. 2014, 2016; Mavroeidis and
Bromander 2017; Huang et al. 2010). Above-mentioned
security knowledge graph takes threat intelligence and
external knowledge as the main body. Our work builds
the knowledge graph based on the audit data gener-
ated by the enterprise network itself, which can realize
agile threat hunting together with the above mentioned
knowledge graph.

Page 4 of 16Yang et al. Cybersecurity (2022) 5:11

Threat model and system design
Threat model
We follow the threat model of previous works (Hossain
et al. 2017; Liu et al. 2018; Hassan et al. 2019; Pasquier
et al. 2018), i.e, the underlying operation system and the
back-end graph database are in our trusted computing
base (TCB). Kernel-level attacks that deliberately com-
promise audit frameworks are beyond our scope. Secure
and efficient log storage is always ensured by a dedicated
and hardened log server.

We do not consider the attacks using side channels
that do not go through the syscall interface thus cannot
be captured by kernel audit frameworks. We also make
the assumption that the adversaries do not have physi-
cal access to the host, but need to gain remote access by
installing malware on the targeted system, exploiting a
running process or injecting a backdoor.

System design
The framework of THKG is shown in Fig. 1. First, THKG
collects real-time log streams from different data sources
based on kernel audit frameworks. Common kernel audit
frameworks include System Audit Framework under
Linux, Event Tracing Framework under Windows and
Dtrace of FreeBSD. Then according to the standard life
cycle of knowledge graph, we design ontology modeling,
knowledge extraction, knowledge storage and query,
knowledge integration and knowledge reasoning to con-
struct knowledge graph based on kernel audit records.
THKG runs an independent instance of Neo4j for each
host (from 1 to X) in the LAN, opens the bolt port to
receive the query instructions from security analysts and

returns the results. Next section introduces the realiza-
tion of the construction in detail.

Then, the constructed knowledge graph will be applied
in actual threat hunting in two stages. In the stage of for-
mulating hypotheses, we can design hypotheses from
three different aspects including external threat intel-
ligence, malicious behavior patterns and statistical
inference. In the hypotheses verification stage, through
Cypher’s query interface and Neo4j’s graphical output, an
agile and interactive hunting process can be achieved.

Construction of knowledge graph
The standard life cycle of knowledge graph includes
ontology modeling, knowledge extraction, knowledge
storage and query, knowledge integration, knowledge
reasoning and knowledge application. We refer to the
above procedure to build knowledge graph based on ker-
nel audit records then apply them to subsequent threat
hunting.

Ontology modeling
The process of ontology modeling is to construct an
ontology to describe the target knowledge according
to the applicable domain. Specifically, it is to explic-
itly express the domain entity category, entity attrib-
utes, domain semantic relationships, and relationships
between semantic relationships.

We focus on threat hunting based on kernel audit logs.
Therefore, the final ontology we select is shown in Fig. 2,
in which root nodes represents entity, and leaf nodes rep-
resent it’s attributes (only entities are listed). This ontol-
ogy is compatible with the Common Data Model (CDM)
of the DARPA TC program. More datailed information

Fig. 1  System architecture of the hunting platform

Page 5 of 16Yang et al. Cybersecurity (2022) 5:11 	

can be refered in the CDMF documentation (Torrey
2020). In addition, another more well-known ontology on
provenance data is W3C’s PROV-DM (Belhajjame 2013),
which is used to form assessments about the quality, reli-
ability or trustworthiness of data. Therefore, it is signifi-
cantly different from the ontology we build here, which is
specifically used for attack investigation based on kernel
audit logs.

For the relationship between entities, we specify it as
the unified system call name. The attributes include the
thread number, startTime and endTime, and the direc-
tion is consistent with the actual information flow. For
example, the event 〈 proc [pid, cmdLine], read [0, Ts, Te],
file [fileName] 〉 is equivalently converted to the following
path in KG:

path=(proc:PROCESS) 〈-[EVENT_READ{tid=0, start
Time=Ts, endTime=Te}]- (file:FILE)

Knowledge extraction
Knowledge extraction is completed by a real-time parsing
program (forwarding agent) running in user space. After
the operational system throws out audit records in real
time, the parser program extracts entities, entity rela-
tionships and necessary attributes, and forwards them to
remote log server as shown in Fig. 1.

In actual observation, the operational system often
invokes a large number of repeated system calls within a
short period of time, such as reading a large file or con-
tinuous network communication, which result in a large
number of repeated events. These events have exactly
the same 〈sub, op, obj 〉 except timestamps, and they have
the same effect on system dependency diffusion. If the
original audit logs are forwarded directly, it will cause a
heavy network load. To reduce the network load, we set
up a buffer queue of 5 min to complete the compression
before forwarding to the server.

The specific implementation is to create a Map table 〈
Key key, Event event〉 from key = 〈src, op, obj〉 to event.
For the newly occurring event e, if there is a correspond-
ing Map item matching it, the endTime of the event
in the map table will be changed to the timestamp of e,
then e will be discarded; if there is no match, a new map
entry will be created. Every 5 minutes, platform forwards
the buffer to the log sever and clears the buffer and Map
table.

Under this compression scheme, according to the
results in Performance evaluation section, about 75% of
duplicate records can be removed, and eventually each
host generates approximately 300–1000M of storage
per day. At the same time, the setting of the buffer also
bridges the speed gap between the raw audit logs and
subsequent processing.

Knowledge storage and knowledge query
Knowledge storage
The emergence of graph databases brings a new option
for storing kernel audit logs. Graph database is a database
constructed based on graph structure, which uses nodes,
edges and attributes to represent and store data. At the
same time, graph databases allow the use of semantic
queries to find specific paths. Compared with traditional
relational database, graph database highlights the rela-
tionship between data. In this way, it is very convenient
for any data node to retrieve the data node associated
with it.

Among them, Neo4j (Platform 2021) graph database
is one of the most popular graph databases, which sup-
ports rich graph language query syntax to complete
complex data retrieval functions. To reduce technical
complexity and deployment difficulty, we choose the
open-source Neo4j as underlying storage and analysis
engine. Each day, log is individually archived for each

Fig. 2  Ontology of kernel audit for threat hunting

Page 6 of 16Yang et al. Cybersecurity (2022) 5:11

host and forwarded to the log sever as shown in Fig. 3,
which makes full use of the temporal and spatial local-
ity of the kernel audit logs and improves storage and
query efficiency.

When the host load is heavy, we can also use Neo4j’s
index optimization to speed up storage, which can sig-
nificantly improve the real-time performance of log
dump. For related discussion, see Performance evalua-
tion section.

Knowledge query
Cypher is a query language designed specifically for
Neo4j, just as SQL for relational databases. So our knowl-
edge query is done by Cypher language, which allows for
expressive and efficient query of a property graph. The
basic query syntax can be summarized as follows:

Among them, variable represents goal entities or rela-
tionships that meet the conditions; LABEL corresponds
to the entity category in above ontology; the clause {prop-
erty_1 : value_1 } indicates the restriction on attributes,
which can also be written as property_1 = value_1, and it
can appear in braces after LABEL, or in the where clause;
the return clause is used to return the result set; in addi-
tion, there are some built-in aggregation functions such
as distinct, count, mean, etc.

Next, we will briefly introduce how to write scripts to
query entities, relationships or paths.

(1) Query entities

(2) Query relationships
Query the list of processes that send information

to external addresses, and sort by the number of IP
addresses.

(3) Query path
Returns the path that the process interacts with the

network address. The asterisk in square brackets indi-
cates unlimited length.

Host

insert

Log Server

GraphDB

qu
er

y

Neo4j
[Index optimization]

Forward

ETW(Windows)
Auditd(Linux)

Dtrace(FreeBSD)

User space

Kernel space

Real-time parser
[5min-buffer]

Fig. 3  Real-time kernel audit log forwarding

Page 7 of 16Yang et al. Cybersecurity (2022) 5:11 	

Knowledge integration
Knowledge integration includes two aspects. On the one
hand, it is the fusion of different KG instances on various
hosts in the enterprise to detect possible lateral penetra-
tion. On the other hand, it refers to the fusion with third-
party threat intelligence or knowledge graphs of other
security sub-domain for rapid detection of IOCs.

The fusion between different KGs in the LAN is mainly
based on the IP address1. For example, the monitor-
ing record on host A shows that it has accessed NETIP:
“localAddress”: “10. *. *. 73: 16006”, “remoteAddress”: “10.
*. *. 130: 3389”, recorded as host B. In order to correlate
this event with host B, we need to perform the following
Cypher query in the KG of host B:

Integrating third-party threat intelligence, in short,
is to filter the IPs accessed by the host, registry, file
name, command line and other information, and match
them with threat intelligence libraries such as virusTo-
tal (Virustotal 2020), ThreatMiner, ThreatBook, etc., to
quickly find traces of attacks.

Knowledge reasoning
Knowledge reasoning means deriving new knowledge
from reasoning based on existing knowledge. The tradi-
tional rule-based reasoning method mainly uses simple
rules or statistical features to reason on knowledge graph.
Fast and customized query of Cypher allows us to get
multiple statistical features.

For example, the security analysts can choose to com-
pare with the overall behavior of all process instances on
the host, such as TOP-N portscan and TOP-N user docu-
ments accessing. Or compare with different instances of
the same program, for example, by comparing the sys-
call distribution of different instances of Firefox to filter
potentially compromised processes:

In addition, security analysts can compare the behavior
of the same long-term process (services) in different time
periods to identify attacks. It is worth noting that our
anomaly filtering does not need to explicitly set thresh-
olds, but performs filtering by direct comparison with
most situations on the host.

Although TOP-N also needs to specify a threshold, this
threshold is a weak one, which has nothing to do with
the specific attack scenario, but is related to the hunter’s
Receiver Operating Characteristic (ROC) and free time.
Generally, the range of TOP5-10 works well (Next sec-
tion gives the hunting case). Based on detailed records of
all user behaviors and the efficient summary of massively
formatted data, we can establish a baseline of normal
behaviors at the same time as the query, avoiding the pre-
training phase of traditional anomaly detection methods.
And by further combining expert knowledge, security
analysts can quickly remove false positives.

Knowledge application to threat hunting
The constructed KGs can be applied in actual threat
hunting. We consider three aspects to design hypoth-
eses: designing hypotheses based on IOCs by integrating
threat intelligence; implementing rule-based detection
by embedding expert knowledge into the Cypher pat-
tern; and filtering suspicious objects based on statistical
reasoning to trigger follow-up investigations. Then with
the help of the visual output of Neo4j and the friendly
human-to-machine interface provided by Cypher, we can
quickly perform hypothesis verification.1  The native Linux Audit cannot accurately extract the 5-tuples of the network

connection and needs auxiliary information from other sources such as lsof
(Gehani and Tariq 2012).

Page 8 of 16Yang et al. Cybersecurity (2022) 5:11

To evaluate the effectiveness of our hunting platform,
we use a dataset of DARPA TC program red-team vs.
blue-team adversarial engagement (Torrey 2020) which
contains different OS platforms(Windows, BSD, and
Linux) with kernel-audit enabled. During the engage-
ment, benign background traffic was run continuously
with the attacks from the red team. This dataset covers
APT cases of nation state and several common threats,
and contains a ground truth file detailing the attack pro-
cess for verification. Table 1 lists all the APT cases con-
tained in the dataset. For ease of expression, we have
relabeled the files in the original dataset. The original file
numbers are shown in the right parenthesis.

Next, we will explicitly introduce three different ways
of formulating and validating hypotheses to hunt threats.

Formulating hypotheses based on threat intelligence
With the help of external threat intelligence, or shared
hunting scripts from the open source community, we
can quickly design our hunting process based on IOCs,
such as file name, hash, IP address, command line, etc.
For example, Milajerdi et al. (2019) designs hunting
processes for known APT cases based on public APT

reports. Other resources available include hunting
scripts shared in the MITRE Cyber Analytics Reposi-
tory (CAR) (MITRE 2020), Threat Hunting Project
(DavidJBianco 2019), and Sigam Project (Patzke 2017),
all of which are ready-to-use threat intelligence.

Next, based on the knowledge graphs generated from
the DARPA dataset, we launch our hunting campaign
by translating the common shared hunting scripts into
Cypher language. Common shared hunting script for-
mats include Pseudocode, EQL for elasticsearch and
Splunk native query language.

Converting Pseudocode script into Cypher
CAR-2013-08-001 (Execution with schtasks (MITRE
2013)) describes a hunting script written in Pseudocode
to detect the execution of schtasks commands. We first
convert it to Cypher format, then perform the corre-
sponding hunting based on the DARPA dataset.

Hunting on the dataset hits the following results in
Win_2 as shown in Table 2.

Among them, the results in bold are very suspicious.
Further investigation confirms that they are part of the
APT case of Phishing E-mail.

Converting EQL script into cypher
CAR-2014-05-002 (Services launching Cmd (MITRE
2014)) is used to detect cmd commands executed by the

Table 1  APT cases of dataset

Log file APT cases included

Win_1(five) None

Win_2(five-2) Attack_1: Firefox Backdoor

Attack_2: Browser Extension

Attack_3: Phishing E-mail

Linux_1(trace-1) Attack_4: Phishing E-mail

Attack_11: Pine Backdoor

Linux_2(theia-6r) Attack_5: Firefox Backdoor

Attack_6: Browser Extension

Attack_7: Phishing E-mail

Attack_8: Phishing E-mail

BSD_1(cadets) Attack_9: Nginx Backdoor

BSD_2(cadets-1) None

BSD_3(cadets-2) Attack_10: Nginx Backdoor

Table 2  Hunting results in win_2

proc.cmdLine

1 “schtasks.exe”

2 “schtasks.exe/change/tn ‘Microsoft/Office/Office Automatic Updates’/enable”

3 “schtasks.exe/change/tn ‘Microsoft/Office/Office ClickToRun Service Monitor’/enable”

4 “schtasks/create/tn WindowsUpdate/tr ‘powershell -nop -ep bypass -encoded-
Command KABOAGUAdwAtAE8AYqYwB0A···YAIAAt”’

5 “schtasks/create/tn WindowsUpdate-tr ‘powershell.exe -nop -ep Bypass
-encodedCommand KABOAGUAdwAtAEYUAYwB0A···AuADY”’

Page 9 of 16Yang et al. Cybersecurity (2022) 5:11 	

service program. Similarly, we translate it into Cypher
and perform the hunting on the dataset.

Hunting on the dataset hits no targets.

Converting Splunk script into Cypher
This Splunk script is used to detect malicious PowerShell
based on Sysmon, which is an ETW-like auditing tool
developed by Microsoft.

Hunting hits no targets. However, our comparison with
Ground Truth during the verification of the previous
hunt found that the attacker actually ran an encrypted
powershell command {(New-ObjectNet.WebClient)
.downloadfile (‘http: //*.*.*. * / update.ps1 ’} (see the
obfuscated string in Table 2). It shows that threat hunt-
ing based on single IOC indicator will cause false nega-
tives when the attackers hide themselves, which requires
human experts to perform pruning.

Defining malicious behavior pattern by embedding expert
knowledge
In this section, we try to formulate malicious behavior pat-
tern based on a series of operations that attackers must

complete in order to implement specific goals. We call this
series of operations as “Behavior”, and the semantic level
is between the observable system object and the “Tech-
niques” of MITRE ATT & CK (Corporation 2015). For
example, in order to implement the technique of “Spear-
phishing Attachment” indexed as T1193, the host must
download the attachment and trigger the program to exe-
cute after accessing the receiving port of the mail server.
According to this assumption, we start our hunting for
fishing e-mail. The following shows the hunting process of
Attack_4 as an example.

Formulating hypothesis

(1)	 Collect common receiving ports of mail server
through search engines, such as 109 for POP2,
110/995 for POP3 and 143/993 for IMAP.

(2)	 Filter processes that access the mail server’s receiv-
ing port.

	 The returned results are as follows:/usr/lib/thun-
derbird/thunderbird, /tmp/ztmp, pine and tcexec.
According to the search engine, thunderbird and
pine are common email clients, so the remaining
programs are actually suspicious. But this time we
hunt by patterns thus we just ignore them.

(3)	 Further filter mail clients that write files to disk.

	 The filtered results are shown in Table 3. Combined
with expert knowledge, only the results in bold
need to be investigated.

Validating hypothesis

(1)	Investigate the execution caused by above suspicious
files.

Page 10 of 16Yang et al. Cybersecurity (2022) 5:11

Table 4. shows all the executions caused by the suspi-
cious files. Based on expert knowledge and further

pruning, we only need to investigate the process in
bold.

(2)	Investigate file operations, process fork and execu-
tion, and network access about above suspicious
process. In the returned results in Fig. 4, the ’sh’ com-
mand is usually used to open a remote control chan-
nel on the victim’s computer, and the ’uname’ com-
mand is used to probe information about the victim’s
computer, which prove that it is a phishing attach-
ment.

Besides, we find that in addition to performing ports-
can, suspicious attachments continue communicat-
ing with the IP of “162.66.239.75:80” during the above
operations (Fig. 5), so it can be confirmed as the IP of
Command and Control (C&C) server. At this point, the
complete hunting campaign is over.

Table 3  Mail clients writing to disk

exe.fileName mail.cmdLine

/home/admin/.pine-debug1 pine

/dev/null bash

/home/admin/.pine-debug1 bash

/home/admin/.bash_history bash

/home/admin/.pine-debug1 ./pine

/tmp/tcexfil ./pine
/tmp/tcexec ./pine

Table 4  Suspicious execution

cmdLine exe

bash cmdLine:chmod +x tcexec,uuid:7890EEEB-B6FA-AFBD-D5BA-A2422F30BF99,cid:26541

bash cmdLine:python3 command-not-found – tcexec,uuid:63901CB6-67CD-9C7D-2476-
D0F75FEB22C5,cid:26543

./pine ./cmdLine:tcexec,uuid:0BF26B23-2DE5-B70A-45F7-64BE377293F3,cid:27201

tcexec

./pine

./pine

tcexec tcexec

tcexec

/bin/sh
uname

-a

uname
-a

Fig. 4  Proof_1 of fishing email

Page 11 of 16Yang et al. Cybersecurity (2022) 5:11 	

Filtering anomaly by statistical reasoning
We introduce three examples to show how to find
abnormal behaviors by statistical reasoning.

Filtering suspicious Portscan
First, we run following script to query the Top-5 pro-
cesses of portscan on the Linux_1 dataset.

The returned results are shown in Table 5.
The first two processes are very suspicious, and sub-

sequent investigation proves that they are part of the
Attack_4 and Attack_11.

Reading user documents
Running the hunting script on the Win_2 dataset
returns the following results in Table 6.

tcexec

162.66.239.75:…

128.55.12.55:2…

128.55.12.1:17…

128.55.12.110:…

128.55.12.55:6…

128.55.12.1:939

128.55.12.1:47…

128.55.12.55:2…

128.55.12.1:709

128.55.12.1:12…

128.55.12.1:37…

128.55.12.110:…

128.55.12.1:50…

128.55.12.110:…

128.55.12.110:…

128.55.12.1:38…

128.55.12.110:…

128.55.12.110:…

Fig. 5  Proof_2 of fishing email

Table 5  Suspicious portscan

C_IP num proc

128.55.12 47824 {cmdLine:tcexec,cid:27201}
128.55.12 721 {cmdLine:/tmp/ztmp,cid:19482}
128.55.12 108 {cmdLine:sshd,cid:1810}

128.55.12 15 {cmdLine:avahi-daemon,cid:1170}

216.66.26 5 {cmdLine:firefox,cid:31814}

Page 12 of 16Yang et al. Cybersecurity (2022) 5:11

Except for the firefox process marked in bold, the other
programs open user files under normal circumstances, so
we investigate the firefox process, and subsequent hunt-
ing proves that it belongs to Attack_1.

Filtering suspicious programs that access regular ports (such
as port 80)

Running the hunting script on the dataset BSD_1 returns
the following results: wget, nginx, links and vUgefal.
The result of “vUgefal” is very suspicious. After follow-
up investigation, it hit Attack_9. The same situation
also exists in Attack_3 in the Win_2 dataset, which can
directly hit the malicious powershell program. Both
Attack_5 and Attack_6 of the Linux_2 dataset hit suspi-
cious programs accessing port 80.

Performance evaluation
We evaluate the performance of THKG from three
aspects: time cost, space occupation and query delay.

Time‑cost
Real-time requirements refer to whether our hunting
platform can dump the continuously generated kernel
audit logs to the graph database in time under different
host loads. Since we set a 5-min buffer before forward-
ing, it refers to whether the hunting platform can insert
the received event buffer into the graph database within
5 minutes. We select a Windows PC and a Linux Server
for evaluation, and count the total number of compressed
events and the time spent inserting into graph database
every 5 minutes.

The hardware configuration of the two monitored
hosts is shown in Table 7. Among them, Window PC is
for normal user office. In order to conduct stress tests,
we open many video websites and open local videos
as well between 15:30 pm and 17:00 pm for injecting

load on Windows PC. Linux Server is used to provide
computational support for team research, which often
keeps multiple people online and continuously runs
heavy scientific tasks, such as training neural networks
and parsing massive logs.

First we test the real-time performance of the two
platforms without any storage optimization. The final
statistical results are shown in the Figs. 6 and 7.

It can be seen that without any optimization, Win-
dows PC can still meet the real-time requirements
even under a heavy load. Even though the insertion
time will gradually increase with the accumulation of
events. However, the real-time performance of Linux
Server deteriorates sharply when the load rises, making
it impractical. Therefore, we accelerated the log dump
of Linux Server based on Neo4j’s index optimization.
Results after optimization are shown in Fig. 8.

After optimization, the insertion time is drastically
reduced from tens of minutes to seconds, and the time
consumption is only related to the number of inserted
events, regardless of the size of the database. However,
Neo4j’s index optimization will cause extra storage
space. Therefore, in actual deployment, one can choose
only to optimize for servers with high load. Regardless,
the above evaluation shows that our hunting platform
can meet the real-time requirements under any load
condition.

Table 6  Counting of reading user documents

num proc

49 {cmdLine:C:/WINDOWS/Explorer.EXE,cid:5172}

17 {cmdLine:“C:/Program Files/Mozilla Firefox/firefox.exe”, cid:9968}
14 {cmdLine:“C:/WINDOWS/system32/SearchProtocol-Host.exe”, cid:2560}

9 {cmdLine:“C:/ProgramData/Microsoft/Windows Defender/plat-
form/4.12.17007.18022-0/MsMpEng.exe”,cid:3160}

8 {cmdLine:“C:/Program Files (x86)/Microsoft Office/Office15/EXCEL.EXE”/dde,cid:4328}

Table 7  Hardware configuration of monitored hosts

Platform Hardware configuration

Windows PC CPU Intel(R) Core(TM) i7-6700 @ 3.40GHz

Memory 12.0GB

OS 64 bit Windows7 ultimate SP1

Purpose Personal office

Linux Server CPU Intel(R) Xeon(R) E5-2620 v2 @ 2.10GHz

Memory 64.0GB

OS 64 bit Ubuntu 16.04.6 LTS

Purpose Team research platform

Page 13 of 16Yang et al. Cybersecurity (2022) 5:11 	

Space occupation
The space occupation includes statistics of the total com-
pression rate of the events and the disk space occupied
by the graph database. The compression rate refers to the
total number of events after compression divided by the
number of original events. The smaller compression rate
represents the better compression effect. The statistics in

Table 8 are mainly based on the offline DARPA dataset,
and also include the results of the 1-day online Windows
PC and Linux Server.

In addition, we tested the compression rate and time
cost under different buffer time. The results are shown in
Fig. 9. According to the statistical results, the compres-
sion rate declines as the buffer time increases because

Fig. 6  Time cost (min) for Windows PC without optimization

Fig. 7  Time cost (min) for Linux server without optimization

Page 14 of 16Yang et al. Cybersecurity (2022) 5:11

more and more events are merged. But when the buffer
time exceeds a certain threshold, the rate of decline
becomes slow, which is because that the total number
of original events is very large. And if the time is set too
short, the log compression rate is not enough and the
goal of reducing the system load cannot be achieved. For
the dump time, with the increase of buffer time, event
number grows, and the time cost of log dump continues
to increase. Further more, when the buffer time is set too
long, it will cause the speed gap between the log storage
and the real-time query. Considering real-time perfor-
mance and compression efficiency comprehensively, the
5-min setting of buffer time is a better choice.

Fig. 8  Time cost (s) for Linux server after optimization

Table 8  Space occupation of different dataset

Platform Size of log file (MB) Original event number Compressed
event number

Size of
graphDB
(MB)

Compression
ratio of size (%)

Compression ratio
of event number
(%)

Win_1 15,114 21,049,902 2,979,782 1798 11.90 13.66

Win_2 203,582 256,621,363 40,246,958 24,610 12.09 15.25

Linux_1 19,688 21,891,709 10,098,882 11,433 58.07 31.43

Linux_2 45,773 59,590,393 9,633,259 6435 14.06 15.09

BSD_1 11,451 12,904,605 5,421,830 2500 21.83 38.97

BSD_2 18,176 20,551,276 8,250,615 3799 20.90 37.40

BSD_3 6936 7,796,898 3,188,001 1477 21.29 37.80

Win_online_1day – 3,024,428 553,552 284 – 18.30

Linux_online_1day – 12,462,348 3,353,144 1332 – 26.91

Average – – – – 22.88 26.09

Fig. 9  Compression rate and time cost under different buffer time

Page 15 of 16Yang et al. Cybersecurity (2022) 5:11 	

Query delay
Query delay refers to the latency from the submission
of Cypher instructions to the return of results. We
select Win_2, Linux_2, and BSD_2 in the DARPA data-
set to test simple node queries, complex path queries,
and statistical summary of the entire data. In order
to verify the query efficiency of our system, we try to
compare with the existing attack investigation systems.
However, most of the work is not publicly available, so
we choose the open source tool OSQuery (Osquery-
for-security 2021) as the baseline for our evaluation.
OSQuery exposes the operating system as a high-
performance relational database that can be queried
based on SQL query language. We compare the query
efficiency of the two different platforms. The experi-
mental results are shown in Table 9. When we perform
simple queries, the query delay does not differ much,
but when performing complex queries, the query delay
of graph database is more advantageous, which proves
the efficiency of graph database for complex associa-
tion analysis. In fact, it is difficult for traditional rela-
tional database to do multi-layer association analysis
when the data scale is huge, because the multi-layer
aggregation operation of massive data is very complex.
In contrast, Cypher query can be more flexible for
deep aggregation of data.

Summary
According to the above evaluations, our system meets
the real-time requirements under different loads.
Based on efficient graph storage, long-term and
large-scale KG storage becomes possible. Moreover,
the process of real-time log dump organizes massive
knowledge in time. With the unified knowledge repre-
sentation of KGs and the optimization of Neo4j, even
hard disk-based graph retrieval can achieve compara-
ble efficiency to memory-based graph retrieval, which
lays the foundation for agile threat hunting.

Conclusion
Our work considers the kernel audit records as the
knowledge advantage possessed by the defender, and
achieves agile threat hunting based on the knowledge
graph constructed from kernel audit logs. With the
concept alignment of knowledge graph, we successfully
integrate all types of knowledge required for hunting,
including kernel audit records, expert knowledge and
threat intelligence into a single system. The hunting
system we designed supports two working modes: real-
time monitoring abnormality and historical backtrack-
ing causality. It also supports association analysis with
different KG instances of LAN hosts and threat intel-
ligence for fast IOCs search. In addition, the security
analysts can edit custom query scripts to assist their
hunting process or automate routine hunting.

Acknowledgements
We would like to thank the anonymous reviewers for detailed comments and
useful feedback.

Author’s contributions
All authors contributed to conducting this work and writing this manuscript.
All the authors read and approved the final manuscript.

Funding
This work is supported in part by the Industrial Internet Innovation and
Development Project “Industrial robot external safety enhancement device”
(TC200H030) and the Cooperation project between Chongqing Municipal
undergraduate universities and institutes affiliated to CAS (HZ2021015).

Availibility of data and materials
Not applicable.

Declarations

Competing interests
The authors declare that they have no competing interests.

Author details
1 Institute of Information Engineering, Chinese Academy of Sciences, Beijing,
China. 2 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China.

Received: 27 September 2021 Accepted: 17 January 2022

Table 9  Query delay of different complexity by OSQuery and THKG

Platform Data size (MB) Simple node query (ms) Complex path query (ms) Statistical
summary
(ms)

OSQuery Win_2 24,610 13 12,459 400,993

Linux_2 6435 237 6257 78,347

BSD_2 3799 156 2708 39,238

THKG Win_2 24,610 15 11,031 361,092

Linux_2 6435 279 6000 73,413

BSD_2 3799 170 2551 36,378

Page 16 of 16Yang et al. Cybersecurity (2022) 5:11

References
Belhajjame K (2013) PROV-DM: the PROV data model. https://​www.​w3.​org/​TR/​

prov-​dm/
Corporation TM (2015) APT&CK. https://​attack.​mitre.​org
DavidJBianco: the threathuting project (2019). https://​www.​threa​thunt​ing.​net
Gao P, Xiao X, Li D, Li Z, Jee K, Wu Z, Kim CH, Kulkarni SR, Mittal P (2018) {SAQL}:

a stream-based query system for real-time abnormal system behavior
detection. In: 27th {USENIX} security symposium ({USENIX} security 18),
pp 639–656

Gao P, Xiao X, Li Z, Xu F, Kulkarni SR, Mittal P (2018) {AIQL}: enabling efficient
attack investigation from system monitoring data. In: {USENIX} annual
technical conference ({USENIX}{ATC} 18), pp 113–126

Gehani A, Tariq D (2012) SPADE: support for provenance auditing in distributed
environments. In: ACM/IFIP/USENIX international conference on distrib-
uted systems platforms and open distributed processing. Springer, pp
101–120

Grégio A, Bonacin R, de Marchi AC, Nabuco OF, de Geus PL (2016) An ontology
of suspicious software behavior. Appl Ontol 11(1):29–49

Grégio A, Bonacin R, Nabuco O, Afonso VM, De Geus PL, Jino M (2014) Ontol-
ogy for malware behavior: a core model proposal. In: IEEE 23rd interna-
tional WETICE conference. IEEE, pp 453–458

Han X, Pasquier T, Bates A, Mickens J, Seltzer M (2020) Unicorn: runtime
provenance-based detector for advanced persistent threats. arXiv pre-
print. arXiv:​2001.​01525

Hassan WU, Guo S, Li D, Chen Z, Jee K, Li Z, Bates A (2019) NODOZE: combat-
ting threat alert fatigue with automated provenance triage. In: network
and distributed systems security symposium

Hassan WU, Noureddine MA, Datta P, Bates A (2020) OmegaLog: high-fidelity
attack investigation via transparent multi-layer log analysis. In: Network
and distributed system security symposium

Hossain MN, Milajerdi SM, Wang J, Eshete B, Gjomemo R, Sekar R, Stoller S, Ven-
katakrishnan V (2017) {SLEUTH}: real-time attack scenario reconstruction
from {COTS} audit data. In: 26th {USENIX} security symposium ({USENIX}
security 17), pp 487–504

Hossain MN, Wang J, Weisse O, Sekar R, Genkin D, He B, Stoller SD, Fang G,
Piessens F, Downing E et al (2018) Dependence-preserving data compac-
tion for scalable forensic analysis. In: 27th {USENIX} security symposium
({USENIX} security 18), pp 1723–1740

Huang H-D, Chuang T-Y, Tsai Y-L, Lee C-S (2010) Ontology-based intelligent
system for malware behavioral analysis. In: International conference on
fuzzy systems. IEEE, pp 1–6

Ji Y, Lee S, Downing E, Wang W, Fazzini M, Kim T, Orso A, Lee W (2017) RAIN:
refinable attack investigation with on-demand inter-process information
flow tracking. In: Proceedings of the 2017 ACM SIGSAC conference on
computer and communications security, pp 377–390

Ji Y, Lee S, Fazzini M, Allen J, Downing E, Kim T, Orso A, Lee W (2018) Enabling
refinable cross-host attack investigation with efficient data flow tagging
and tracking. In: 27th {USENIX} security symposium ({USENIX} security 18),
pp 1705–1722

King ST, Chen PM (2003) Backtracking intrusions. In: Proceedings of the nine-
teenth ACM symposium on operating systems principles, pp 223–236

Kwon Y, Wang F, Wang W, Lee KH, Lee W-C, Ma S, Zhang X, Xu D, Jha S, Ciocarlie
GF et al (2018) MCI: modeling-based causality inference in audit logging
for attack investigation. In: NDSS

Lee KH, Zhang X, Xu D (2013) High accuracy attack provenance via binary-
based execution partition. In: NDSS, p 16

Lee KH, Zhang X, Xu D (2013) LogGC: garbage collecting audit log. In:
Proceedings of the 2013 ACM SIGSAC conference on computer and com-
munications security, pp 1005–1016

Liu Y, Zhang M, Li D, Jee K, Li Z, Wu Z, Rhee J, Mittal P (2018) Towards a timely
causality analysis for enterprise security. In: NDSS

Mavroeidis V, Bromander S (2017) Cyber threat intelligence model: an evalua-
tion of taxonomies, sharing standards, and ontologies within cyber threat
intelligence. In: European intelligence and security informatics confer-
ence (EISIC). IEEE, pp 91–98

Mavroeidis V, Jøsang A (2018) Data-driven threat hunting using sysmon. In:
Proceedings of the 2nd international conference on cryptography, secu-
rity and privacy, pp 82–88

Ma S, Zhai J, Wang F, Lee KH, Zhang X, Xu D (2017) {MPI}: multiple perspective
attack investigation with semantic aware execution partitioning. In: 26th
{USENIX} security symposium ({USENIX} security 17), pp 1111–1128

Ma S, Zhang X, Xu D (2016) ProTracer: towards practical provenance tracing by
alternating between logging and tainting. In: NDSS

Milajerdi SM, Eshete B, Gjomemo R, Venkatakrishnan V (2019) Poirot: aligning
attack behavior with kernel audit records for cyber threat hunting. In:
Proceedings of the 2019 ACM SIGSAC conference on computer and com-
munications security, pp 1795–1812

Milajerdi SM, Gjomemo R, Eshete B, Sekar R, Venkatakrishnan V (2019) Holmes:
real-time apt detection through correlation of suspicious informa-
tion flows. In: IEEE symposium on security and privacy (SP). IEEE, pp
1137–1152

MITRE: CAR-2013-08-001: execution with schtasks (2013). https://​car.​mitre.​org/​
analy​tics/​CAR-​2013-​08-​001/

MITRE: CAR-2014-05-002: services launching Cmd (2014). https://​car.​mitre.​org/​
analy​tics/​CAR-​2014-​05-​002/

MITRE: MITRE cyber analytics repository (2020). https://​car.​mitre.​org
Obrst L, Chase P, Markeloff R (2012) Developing an ontology of the cyber

security domain. In: STIDS, pp 49–56. Citeseer
Oltramari A, Cranor LF, Walls RJ, McDaniel PD (2014) Building an ontology of

cyber security. In: STIDS, pp 54–61. Citeseer
Osquery-for-security (2021). https://​medium.​com/@​clong/​osque​ry-​for-​secur​

ity-​b66ff​fdf2d​af
Pasquier T, Han X, Moyer T, Bates A, Hermant O, Eyers D, Bacon J, Seltzer M

(2018) Runtime analysis of whole-system provenance. In: Proceedings of
the 2018 ACM SIGSAC conference on computer and communications
security, pp 1601–1616

Patzke T (2017) SigmaHQ. https://​github.​com/​Sigma​HQ/​sigma
Platform NGD (2021) Neo4j graph platform—the leader in graph databases.

https://​neo4j.​com/
Shu X, Araujo F, Schales DL, Stoecklin MP, Jang J, Huang H, Rao JR (2018) Threat

intelligence computing. In: Proceedings of the 2018 ACM SIGSAC confer-
ence on computer and communications security, pp 1883–1898

Threatbook. https://x.​threa​tbook.​cn/
ThreatMiner. https://​www.​threa​tminer.​org/
Torrey J (2020) Transparent-computing. https://​github.​com/​darpa-​i2o/​Trans​

parent-​Compu​ting
Virustotal (2020). https://​www.​virus​total.​com/​gui/
Xu Z, Wu Z, Li Z, Jee K, Rhee J, Xiao X, Xu F, Wang H, Jiang G (2016) High fidelity

data reduction for big data security dependency analyses. In: Proceed-
ings of the 2016 ACM SIGSAC conference on computer and communica-
tions security, pp 504–516

Yang R, Ma S, Xu H, Zhang X, Chen Y (2020) UIScope: accurate, instrumenta-
tion-free, and visible attack investigation for GUI applications. In: NDSS

https://www.w3.org/TR/prov-dm/
https://www.w3.org/TR/prov-dm/
https://attack.mitre.org
https://www.threathunting.net
http://arxiv.org/abs/2001.01525
https://car.mitre.org/analytics/CAR-2013-08-001/
https://car.mitre.org/analytics/CAR-2013-08-001/
https://car.mitre.org/analytics/CAR-2014-05-002/
https://car.mitre.org/analytics/CAR-2014-05-002/
https://car.mitre.org
https://medium.com/%40clong/osquery-for-security-b66fffdf2daf
https://medium.com/%40clong/osquery-for-security-b66fffdf2daf
https://github.com/SigmaHQ/sigma
https://neo4j.com/
https://x.threatbook.cn/
https://www.threatminer.org/
https://github.com/darpa-i2o/Transparent-Computing
https://github.com/darpa-i2o/Transparent-Computing
https://www.virustotal.com/gui/

	A flexible approach for cyber threat hunting based on kernel audit records
	Abstract
	Introduction
	Related work
	Cyber threat hunting and APT detection
	Attack forensics and Kernel audit
	Security knowledge graph

	Threat model and system design
	Threat model
	System design

	Construction of knowledge graph
	Ontology modeling
	Knowledge extraction
	Knowledge storage and knowledge query
	Knowledge storage
	Knowledge query

	Knowledge integration
	Knowledge reasoning

	Knowledge application to threat hunting
	Formulating hypotheses based on threat intelligence
	Converting Pseudocode script into Cypher
	Converting EQL script into cypher
	Converting Splunk script into Cypher

	Defining malicious behavior pattern by embedding expert knowledge
	Formulating hypothesis
	Validating hypothesis

	Filtering anomaly by statistical reasoning
	Filtering suspicious Portscan
	Reading user documents
	Filtering suspicious programs that access regular ports (such as port 80)

	Performance evaluation
	Time-cost
	Space occupation
	Query delay
	Summary

	Conclusion
	Acknowledgements
	References

