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Abstract 

Hunting the advanced threats hidden in the enterprise networks has always been a complex and difficult task. Due 
to the variety of attacking means, it is difficult for traditional security systems to detect threats. Most existing methods 
analyze log records, but the amount of log records generated every day is very large. How to find the information 
related to the attack events quickly and effectively from massive data streams is an important problem. Considering 
that the knowledge graph can be used for automatic relation calculation and complex relation analysis, and can get 
relatively fast feedback, our work proposes to construct the knowledge graph based on kernel audit records, which 
fully considers the global correlation among entities observed in audit logs. We design the construction and applica-
tion process of knowledge graph, which can be applied to actual threat hunting activities. Then we explore different 
ways to use the constructed knowledge graph for hunting actual threats in detail. Finally, we implement a LAN-wide 
hunting system which is convenient and flexible for security analysts. Evaluations based on the adversarial engage-
ment designed by DARPA prove that our platform can effectively hunt sophisticated threats, quickly restore the attack 
path or assess the impact of attack.
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Introduction
To cope with rampant cyber threats, modern enterprises 
deploy various defense facilities, such as firewalls, IDS 
and IPS, Endpoint Detection and Response (EDR), Secu-
rity Information and Event Management (SIEM) and 
so on. However, the methods of attack are diverse, and 
attackers will constantly change their attacking means 
until the attack successes, making it difficult for auto-
mated security systems to defend. In addition, attackers 
usually penetrate the system at low speed and imitate 
normal system behavior to avoid being observed, which 
increase the difficulty of automated threat detection.

Therefore, many enterprises employ professional secu-
rity teams to detect potential threats in their systems. The 
main task of these teams is to explore the footprints of 
attack based on their own experience and external threat 

intelligence. Since the attack behavior is unknown, secu-
rity analysts need to make assumptions combined with 
the internal network architecture of the enterprise and 
verify the assumptions, then eliminate false positives or 
restore the complete attack path. This process can be 
called cyber threat hunting.

In cyber threat hunting activities, security analysts usu-
ally choose kernel audit logs as the data source for analy-
sis. The kernel audit logs record the interactions between 
various processes, files, memory areas, and external hosts 
at the bottom of the system. They are usually stored in 
the system as events. By cascading the events in kernel 
logs, security analysts can get contextual information 
about an event and understand the causality of the event, 
which is very useful for finding the sources of threats.

However, raw kernel audit logs have fatal flaws: huge 
size, analytical difficulty and semantic isolation. So threat 
hunting inevitably becomes a complicated and difficult 
task. For efficient analysis of massive low-level audit 
records, many existing methods convert the kernel audit 
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logs into provenance graph (Milajerdi et al. 2019; Hossain 
et al. 2017; Milajerdi et al. 2019; Han et al. 2020), which 
is a labeled, typed and directed graph. In provenance 
graphs, nodes represent system objects such as pro-
cesses, files, networks, and memory, while edges repre-
sent specific system calls. But the provenance graph does 
not support interactive exploration and analysis. Threat 
hunting based on provenance graph requires high tech-
nical complexity and large memory space. We need to 
explore a more convenient and flexible method of graph 
data representation and application. Shu et  al. (2018) 
designs a dedicated graph engine to achieve “threat intel-
ligence computing” but does not study how to design 
agile hunting process.

To realize a practical and agile threat hunting system, 
the following three challenges need to be solved: 

(1)	 The original audit events are complex and hetero-
geneous, and limited by the kernel audit granularity, 
automated information flow analysis will lead to a 
large number of false positives. So during the hunt-
ing process, the manual threat validation is indis-
pensable. Therefore, an unified, well-defined graph 
representation is needed which should be friendly 
to both human and computer.

(2)	 When analyzing advanced threats, a practical threat 
hunting system should support the alignment of 
external IOCs(Indicators of Compromise) and 
the quick integration of various prior knowledge. 
Prior knowledge can be divided into log informa-
tion, open threat intelligence and expert experience 
knowledge.

(3)	 In view of the massive characteristics of kernel audit 
events, as well as the APT’s long-term latent and 
decentralized operations, the practical hunting sys-
tem needs to consider a variety of factors, including 
storage cost, query latency and dump time.

Developing concept of Knowledge Graph(KG) pro-
vides ideas for solving the above problems. KG is used 
to describe various entities and concepts existing in the 
real world, as well as their relationships, and is repre-
sented in the form of structured triples. KG provides an 
ideal storage for the collected various types of graphic 
data and supports fast alignment of different knowl-
edge. Interactive exploratory analysis based on knowl-
edge graph can simulate human’s thinking process to 
verify and reason knowledge, thus reducing human’s 
workload. Moreover, its presentation is friendly to both 
human-reading and machine-processing. Compared 
with the traditional storage method, the data retrieval 
speed of the graph data storage method is faster, and it 
can realize the real-time response of human-computer 

interaction, so that security analysts can make real-
time decisions and promote hunting efficiency.

In this work, we consider constructing knowledge 
graph based on kernel audit logs and realize agile threat 
hunting by integrating threat intelligence and expert 
knowledge. Based on knowledge graph, it is conveni-
ent for security analysts to perform pruning and limit 
search in advance. Moreover, through the rapid sum-
mary of massive formatted data, statistics-based anom-
aly detection without pre-training can be achieved, 
thereby promoting hunting against unknown threats.

Our contributions are summarized as follows:

•	 We propose to construct knowledge graph based 
on kernel audit logs. According to the standard 
life cycle of KG, we design the construction and 
application process of KG, which can be applied to 
actual threat hunting activities.

•	 We optimize the log dump process. By dumping 
knowledge into graphs, massive data is efficiently 
organized, which facilitates subsequent knowledge 
search and reasoning.

•	 We promote threat hunting in two phases based 
on constructed knowledge graph. First, hunters 
can formulate hypotheses from different semantic 
levels, including observable IOCs and contextual 
behavior patterns. Then during the verification of 
hypotheses, based on efficient graph query and vis-
ual output, the hunter can quickly complement the 
attack paths and eliminate false positives.

•	 We implement a LAN-wide hunting system called 
THKG(Threat Hunting based on Knowledge 
Graph). Evaluations based on the dataset of DARPA 
TC program show the effectiveness of our hunting 
system.

RoadMap: The rest of this paper is organized as follows. 
In Related work section, we describe some works in this 
field. In Threat model and system design section, we 
explain the threat model of our work and introduce the 
overall design of our hunting system. Then, we describe 
the construction process of knowledge graph in detail 
in Construction of knowledge graph section. Next in 
Knowledge application to threat hunting section, based 
on constructed knowledge graph, we present how to 
apply generated knowledge graph to perform threat 
hunting and demonstrate the effectiveness of our hunt-
ing system under the adversarial engagement designed 
by DARPA. Performance evaluation section shows the 
performance evaluating results of our hunting plat-
form, including time cost, disk usage and query delay. 
Finally, we summary and discuss our work in Conclu-
sion section.
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Related work
Cyber threat hunting and APT detection
In threat hunting, Shu et al. (2018) proposes “threat intel-
ligence computing” which models threat hunting as a 
graph computation problem and designs a domain-spe-
cific graph language with interactive visualization sup-
port and a distributed graph database. Milajerdi et  al. 
(2019) models threat hunting as an inexact graph pattern 
matching problem between the query graph constructed 
out of threat intelligence and the provenance graph con-
structed out of kernel audit logs. Mavroeidis and Jøsang 
(2018) presents an automated threat assessment system 
based on Sysmon logs and a threat intelligence ontology, 
and augment cyber defensive capabilities through situ-
ational awareness, prediction, and automated courses of 
action. However, it is possible to miss unknown threats 
by focusing on threat intelligence only. Our work com-
bines a variety of prior knowledge to achieve a more 
complete threat hunting.

As for APT detection, SLEUTH (Hossain et  al. 2017) 
uses tag-based techniques to detect APT attacks and 
reconstructs the attack steps using main-memory based 
provenance graph. Further more, HOLMES (Milajerdi 
et al. 2019) uses APT kill-chain as the pivotal reference to 
produce a detection signal that indicates the presence of 
an APT campaign. NODOZE (Hassan et al. 2019) tries to 
combat threat alert fatigue by using contextual and his-
torical information of generated threat alert. It returns 
the compressed minimum dependence graph related 
to attacks by prioritizing the paths based on anomaly 
score. Besides, UNICORN (Han et al. 2020) presents an 
anomaly-based APT detector using graph sketching and 
further improves detection capability by a novel mod-
eling approach to understand long-term behavior as the 
system evolves.

However, Poirot, HOLMES and NODOZE all need 
to set the appropriate threshold or learn the abnormal 
behavior by training. In the actual application scenario, 
the user’s behavior is complex and has lots of uncer-
tainty, and it is hard to distinguish between the unusual 
behavior and threat behavior, so the threat validation is 
indispensable. Our work combines threat detection and 
threat verification, and does not make assumptions or set 
thresholds for the machine reasoning process, but limits 
the search through the preparation of accurate patterns, 
and completes accurate and fast pruning through expert 
interaction.

Attack forensics and Kernel audit
A lot of works focus on attack forensics based on ker-
nel audit logs. Backtracking King and Chen (2003) is 
one of the first works to backtrack the root cause of 

intrusions. PRIOTRACKER (Liu et al. 2018) proposes a 
backward and forward causality tracker that automati-
cally prioritizes the investigation of abnormal causal 
dependencies based on the rareness and topological 
features of system events. In order to make forensics 
analysis based on kernel audit more practical, many 
works (Lee et  al. 2013; Xu et  al. 2016; Ma et  al. 2016; 
Kwon et  al. 2018; Hossain et  al. 2018) try to reduce 
kernel audit logs by compression and other reduction 
methods. Other works (Lee et al. 2013; Ma et al. 2016, 
2017) try to achieve more refined forensics and infor-
mation flow tracking. In addition, there are some works 
trying to achieve more precise provenance tracking 
by record and replay (Ji et  al. 2017, 2018). OmegaLog 
(Hassan et  al. 2020) proposes the notion of universal 
provenance, which bridges the semantic gap between 
system and application logging contexts. UISCOPE 
(Yang et  al. 2020) combines low-level causality analy-
sis with high-level UI elements and event analysis to 
achieve an accurate and visible attack investigation sys-
tem for GUI applications.

As for the application of kernel audit in real-time sce-
nario, SAQL (Gao et al. 2018a) proposes a novel stream-
based query engine to identify abnormal behavior among 
real-time event feed, including rule-based anomalies, 
time-series anomalies, invariant-based anomalies, and 
outlier-based anomalies. SAQL is built for stream-based 
anomaly detection, thus orthogonal to our work. Simi-
larly, AIQL (Gao et  al. 2018b) proposes a query system 
built upon existing monitoring tools and databases, 
which is optimized for timely attack investigation. But 
they are based on relational database and ignore that 
graph query language itself can express rich anomaly 
detection logic. A graph query needs to be decomposed 
into several SQL statements. Compared with traditional 
relational database, graph query language highlights the 
relationship between data, which is more suitable for 
inference of context causality in attack traceability.

Security knowledge graph
There is a plethora of ontological approaches related to 
cyber security focusing on specific sub-domains, such as 
threat intelligence, malware detection, vulnerability anal-
ysis and more (Gao et al. 2018b; Obrst et al. 2012; Oltra-
mari et al. 2014; Grégio et al. 2014, 2016; Mavroeidis and 
Bromander 2017; Huang et  al. 2010). Above-mentioned 
security knowledge graph takes threat intelligence and 
external knowledge as the main body. Our work builds 
the knowledge graph based on the audit data gener-
ated by the enterprise network itself, which can realize 
agile threat hunting together with the above mentioned 
knowledge graph.
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Threat model and system design
Threat model
We follow the threat model of previous works (Hossain 
et  al. 2017; Liu et  al. 2018; Hassan et  al. 2019; Pasquier 
et al. 2018), i.e, the underlying operation system and the 
back-end graph database are in our trusted computing 
base (TCB). Kernel-level attacks that deliberately com-
promise audit frameworks are beyond our scope. Secure 
and efficient log storage is always ensured by a dedicated 
and hardened log server.

We do not consider the attacks using side channels 
that do not go through the syscall interface thus cannot 
be captured by kernel audit frameworks. We also make 
the assumption that the adversaries do not have physi-
cal access to the host, but need to gain remote access by 
installing malware on the targeted system, exploiting a 
running process or injecting a backdoor.

System design
The framework of THKG is shown in Fig. 1. First, THKG 
collects real-time log streams from different data sources 
based on kernel audit frameworks. Common kernel audit 
frameworks include System Audit Framework under 
Linux, Event Tracing Framework under Windows and 
Dtrace of FreeBSD. Then according to the standard life 
cycle of knowledge graph, we design ontology modeling, 
knowledge extraction, knowledge storage and query, 
knowledge integration and knowledge reasoning to con-
struct knowledge graph based on kernel audit records. 
THKG runs an independent instance of Neo4j for each 
host (from 1 to X) in the LAN, opens the bolt port to 
receive the query instructions from security analysts and 

returns the results. Next section introduces the realiza-
tion of the construction in detail.

Then, the constructed knowledge graph will be applied 
in actual threat hunting in two stages. In the stage of for-
mulating hypotheses, we can design hypotheses from 
three different aspects including external threat intel-
ligence, malicious behavior patterns and statistical 
inference. In the hypotheses verification stage, through 
Cypher’s query interface and Neo4j’s graphical output, an 
agile and interactive hunting process can be achieved.

Construction of knowledge graph
The standard life cycle of knowledge graph includes 
ontology modeling, knowledge extraction, knowledge 
storage and query, knowledge integration, knowledge 
reasoning and knowledge application. We refer to the 
above procedure to build knowledge graph based on ker-
nel audit records then apply them to subsequent threat 
hunting.

Ontology modeling
The process of ontology modeling is to construct an 
ontology to describe the target knowledge according 
to the applicable domain. Specifically, it is to explic-
itly express the domain entity category, entity attrib-
utes, domain semantic relationships, and relationships 
between semantic relationships.

We focus on threat hunting based on kernel audit logs. 
Therefore, the final ontology we select is shown in Fig. 2, 
in which root nodes represents entity, and leaf nodes rep-
resent it’s attributes (only entities are listed). This ontol-
ogy is compatible with the Common Data Model (CDM) 
of the DARPA TC program. More datailed information 

Fig. 1  System architecture of the hunting platform
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can be refered in the CDMF documentation (Torrey 
2020). In addition, another more well-known ontology on 
provenance data is W3C’s PROV-DM (Belhajjame 2013), 
which is used to form assessments about the quality, reli-
ability or trustworthiness of data. Therefore, it is signifi-
cantly different from the ontology we build here, which is 
specifically used for attack investigation based on kernel 
audit logs.

For the relationship between entities, we specify it as 
the unified system call name. The attributes include the 
thread number, startTime and endTime, and the direc-
tion is consistent with the actual information flow. For 
example, the event 〈 proc [pid, cmdLine], read [0, Ts, Te], 
file [fileName] 〉 is equivalently converted to the following 
path in KG:

path=(proc:PROCESS) 〈-[EVENT_READ{tid=0, start 
Time=Ts, endTime=Te}]- (file:FILE)

Knowledge extraction
Knowledge extraction is completed by a real-time parsing 
program (forwarding agent) running in user space. After 
the operational system throws out audit records in real 
time, the parser program extracts entities, entity rela-
tionships and necessary attributes, and forwards them to 
remote log server as shown in Fig. 1.

In actual observation, the operational system often 
invokes a large number of repeated system calls within a 
short period of time, such as reading a large file or con-
tinuous network communication, which result in a large 
number of repeated events. These events have exactly 
the same 〈sub, op, obj 〉 except timestamps, and they have 
the same effect on system dependency diffusion. If the 
original audit logs are forwarded directly, it will cause a 
heavy network load. To reduce the network load, we set 
up a buffer queue of 5 min to complete the compression 
before forwarding to the server.

The specific implementation is to create a Map table 〈
Key key, Event event〉 from key = 〈src, op, obj〉 to event. 
For the newly occurring event e, if there is a correspond-
ing Map item matching it, the endTime of the event 
in the map table will be changed to the timestamp of e, 
then e will be discarded; if there is no match, a new map 
entry will be created. Every 5 minutes, platform forwards 
the buffer to the log sever and clears the buffer and Map 
table.

Under this compression scheme, according to the 
results in Performance evaluation section, about 75% of 
duplicate records can be removed, and eventually each 
host generates approximately 300–1000M of storage 
per day. At the same time, the setting of the buffer also 
bridges the speed gap between the raw audit logs and 
subsequent processing.

Knowledge storage and knowledge query
Knowledge storage
The emergence of graph databases brings a new option 
for storing kernel audit logs. Graph database is a database 
constructed based on graph structure, which uses nodes, 
edges and attributes to represent and store data. At the 
same time, graph databases allow the use of semantic 
queries to find specific paths. Compared with traditional 
relational database, graph database highlights the rela-
tionship between data. In this way, it is very convenient 
for any data node to retrieve the data node associated 
with it.

Among them, Neo4j (Platform 2021) graph database 
is one of the most popular graph databases, which sup-
ports rich graph language query syntax to complete 
complex data retrieval functions. To reduce technical 
complexity and deployment difficulty, we choose the 
open-source Neo4j as underlying storage and analysis 
engine. Each day, log is individually archived for each 

Fig. 2  Ontology of kernel audit for threat hunting



Page 6 of 16Yang et al. Cybersecurity            (2022) 5:11 

host and forwarded to the log sever as shown in Fig. 3, 
which makes full use of the temporal and spatial local-
ity of the kernel audit logs and improves storage and 
query efficiency.

When the host load is heavy, we can also use Neo4j’s 
index optimization to speed up storage, which can sig-
nificantly improve the real-time performance of log 
dump. For related discussion, see Performance evalua-
tion section.

Knowledge query
Cypher is a query language designed specifically for 
Neo4j, just as SQL for relational databases. So our knowl-
edge query is done by Cypher language, which allows for 
expressive and efficient query of a property graph. The 
basic query syntax can be summarized as follows: 

Among them, variable represents goal entities or rela-
tionships that meet the conditions; LABEL corresponds 
to the entity category in above ontology; the clause {prop-
erty_1 : value_1 } indicates the restriction on attributes, 
which can also be written as property_1 = value_1, and it 
can appear in braces after LABEL, or in the where clause; 
the return clause is used to return the result set; in addi-
tion, there are some built-in aggregation functions such 
as distinct, count, mean, etc.

Next, we will briefly introduce how to write scripts to 
query entities, relationships or paths.

(1) Query entities

(2) Query relationships
Query the list of processes that send information 

to external addresses, and sort by the number of IP 
addresses. 

(3) Query path
Returns the path that the process interacts with the 

network address. The asterisk in square brackets indi-
cates unlimited length. 

Host

insert

Log Server

GraphDB

qu
er

y

Neo4j
[Index optimization]

Forward

ETW(Windows)
Auditd(Linux)

Dtrace(FreeBSD)

User space

Kernel space

Real-time parser
[5min-buffer]

Fig. 3  Real-time kernel audit log forwarding
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Knowledge integration
Knowledge integration includes two aspects. On the one 
hand, it is the fusion of different KG instances on various 
hosts in the enterprise to detect possible lateral penetra-
tion. On the other hand, it refers to the fusion with third-
party threat intelligence or knowledge graphs of other 
security sub-domain for rapid detection of IOCs.

The fusion between different KGs in the LAN is mainly 
based on the IP address1. For example, the monitor-
ing record on host A shows that it has accessed NETIP: 
“localAddress”: “10. *. *. 73: 16006”, “remoteAddress”: “10. 
*. *. 130: 3389”, recorded as host B. In order to correlate 
this event with host B, we need to perform the following 
Cypher query in the KG of host B: 

Integrating third-party threat intelligence, in short, 
is to filter the IPs accessed by the host, registry, file 
name, command line and other information, and match 
them with threat intelligence libraries such as virusTo-
tal (Virustotal 2020), ThreatMiner, ThreatBook, etc., to 
quickly find traces of attacks.

Knowledge reasoning
Knowledge reasoning means deriving new knowledge 
from reasoning based on existing knowledge. The tradi-
tional rule-based reasoning method mainly uses simple 
rules or statistical features to reason on knowledge graph. 
Fast and customized query of Cypher allows us to get 
multiple statistical features.

For example, the security analysts can choose to com-
pare with the overall behavior of all process instances on 
the host, such as TOP-N portscan and TOP-N user docu-
ments accessing. Or compare with different instances of 
the same program, for example, by comparing the sys-
call distribution of different instances of Firefox to filter 
potentially compromised processes: 

In addition, security analysts can compare the behavior 
of the same long-term process (services) in different time 
periods to identify attacks. It is worth noting that our 
anomaly filtering does not need to explicitly set thresh-
olds, but performs filtering by direct comparison with 
most situations on the host.

Although TOP-N also needs to specify a threshold, this 
threshold is a weak one, which has nothing to do with 
the specific attack scenario, but is related to the hunter’s 
Receiver Operating Characteristic (ROC) and free time. 
Generally, the range of TOP5-10 works well (Next sec-
tion gives the hunting case). Based on detailed records of 
all user behaviors and the efficient summary of massively 
formatted data, we can establish a baseline of normal 
behaviors at the same time as the query, avoiding the pre-
training phase of traditional anomaly detection methods. 
And by further combining expert knowledge, security 
analysts can quickly remove false positives.

Knowledge application to threat hunting
The constructed KGs can be applied in actual threat 
hunting. We consider three aspects to design hypoth-
eses: designing hypotheses based on IOCs by integrating 
threat intelligence; implementing rule-based detection 
by embedding expert knowledge into the Cypher pat-
tern; and filtering suspicious objects based on statistical 
reasoning to trigger follow-up investigations. Then with 
the help of the visual output of Neo4j and the friendly 
human-to-machine interface provided by Cypher, we can 
quickly perform hypothesis verification.1  The native Linux Audit cannot accurately extract the 5-tuples of the network 

connection and needs auxiliary information from other sources such as lsof 
(Gehani and Tariq 2012).
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To evaluate the effectiveness of our hunting platform, 
we use a dataset of DARPA TC program red-team vs. 
blue-team adversarial engagement (Torrey 2020) which 
contains different OS platforms(Windows, BSD, and 
Linux) with kernel-audit enabled. During the engage-
ment, benign background traffic was run continuously 
with the attacks from the red team. This dataset covers 
APT cases of nation state and several common threats, 
and contains a ground truth file detailing the attack pro-
cess for verification. Table 1 lists all the APT cases con-
tained in the dataset. For ease of expression, we have 
relabeled the files in the original dataset. The original file 
numbers are shown in the right parenthesis.

Next, we will explicitly introduce three different ways 
of formulating and validating hypotheses to hunt threats.

Formulating hypotheses based on threat intelligence
With the help of external threat intelligence, or shared 
hunting scripts from the open source community, we 
can quickly design our hunting process based on IOCs, 
such as file name, hash, IP address, command line, etc. 
For example, Milajerdi et  al. (2019) designs hunting 
processes for known APT cases based on public APT 

reports. Other resources available include hunting 
scripts shared in the MITRE Cyber Analytics Reposi-
tory (CAR) (MITRE 2020), Threat Hunting Project 
(DavidJBianco 2019), and Sigam Project (Patzke 2017), 
all of which are ready-to-use threat intelligence.

Next, based on the knowledge graphs generated from 
the DARPA dataset, we launch our hunting campaign 
by translating the common shared hunting scripts into 
Cypher language. Common shared hunting script for-
mats include Pseudocode, EQL for elasticsearch and 
Splunk native query language.

Converting Pseudocode script into Cypher
CAR-2013-08-001 (Execution with schtasks (MITRE 
2013)) describes a hunting script written in Pseudocode 
to detect the execution of schtasks commands. We first 
convert it to Cypher format, then perform the corre-
sponding hunting based on the DARPA dataset. 

Hunting on the dataset hits the following results in 
Win_2 as shown in Table 2.

Among them, the results in bold are very suspicious. 
Further investigation confirms that they are part of the 
APT case of Phishing E-mail.

Converting EQL script into cypher
CAR-2014-05-002 (Services launching Cmd (MITRE 
2014)) is used to detect cmd commands executed by the 

Table 1  APT cases of dataset

Log file APT cases included

Win_1(five) None

Win_2(five-2) Attack_1: Firefox Backdoor

Attack_2: Browser Extension

Attack_3: Phishing E-mail

Linux_1(trace-1) Attack_4: Phishing E-mail

Attack_11: Pine Backdoor

Linux_2(theia-6r) Attack_5: Firefox Backdoor

Attack_6: Browser Extension

Attack_7: Phishing E-mail

Attack_8: Phishing E-mail

BSD_1(cadets) Attack_9: Nginx Backdoor

BSD_2(cadets-1) None

BSD_3(cadets-2) Attack_10: Nginx Backdoor

Table 2  Hunting results in win_2

proc.cmdLine

1 “schtasks.exe”

2 “schtasks.exe/change/tn ‘Microsoft/Office/Office Automatic Updates’/enable”

3 “schtasks.exe/change/tn ‘Microsoft/Office/Office ClickToRun Service Monitor’/enable”

4 “schtasks/create/tn WindowsUpdate/tr ‘powershell -nop -ep bypass -encoded-
Command KABOAGUAdwAtAE8AYqYwB0A···YAIAAt”’

5 “schtasks/create/tn WindowsUpdate-tr ‘powershell.exe -nop -ep Bypass 
-encodedCommand KABOAGUAdwAtAEYUAYwB0A···AuADY”’
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service program. Similarly, we translate it into Cypher 
and perform the hunting on the dataset. 

Hunting on the dataset hits no targets.

Converting Splunk script into Cypher
This Splunk script is used to detect malicious PowerShell 
based on Sysmon, which is an ETW-like auditing tool 
developed by Microsoft.

Hunting hits no targets. However, our comparison with 
Ground Truth during the verification of the previous 
hunt found that the attacker actually ran an encrypted 
powershell command {(New-ObjectNet.WebClient) 
.downloadfile (‘http: //*.*.*. * / update.ps1 ’} (see the 
obfuscated string in Table 2). It shows that threat hunt-
ing based on single IOC indicator will cause false nega-
tives when the attackers hide themselves, which requires 
human experts to perform pruning. 

Defining malicious behavior pattern by embedding expert 
knowledge
In this section, we try to formulate malicious behavior pat-
tern based on a series of operations that attackers must 

complete in order to implement specific goals. We call this 
series of operations as “Behavior”, and the semantic level 
is between the observable system object and the “Tech-
niques” of MITRE ATT & CK (Corporation 2015). For 
example, in order to implement the technique of “Spear-
phishing Attachment” indexed as T1193, the host must 
download the attachment and trigger the program to exe-
cute after accessing the receiving port of the mail server. 
According to this assumption, we start our hunting for 
fishing e-mail. The following shows the hunting process of 
Attack_4 as an example.

Formulating hypothesis

(1)	 Collect common receiving ports of mail server 
through search engines, such as 109 for POP2, 
110/995 for POP3 and 143/993 for IMAP.

(2)	 Filter processes that access the mail server’s receiv-
ing port.

	 The returned results are as follows:/usr/lib/thun-
derbird/thunderbird, /tmp/ztmp, pine and tcexec. 
According to the search engine, thunderbird and 
pine are common email clients, so the remaining 
programs are actually suspicious. But this time we 
hunt by patterns thus we just ignore them.

(3)	 Further filter mail clients that write files to disk.

	 The filtered results are shown in Table 3. Combined 
with expert knowledge, only the results in bold 
need to be investigated.

Validating hypothesis

(1)	Investigate the execution caused by above suspicious 
files.
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Table  4. shows all the executions caused by the suspi-
cious files. Based on expert knowledge and further 

pruning, we only need to investigate the process in 
bold. 

(2)	Investigate file operations, process fork and execu-
tion, and network access about above suspicious 
process. In the returned results in Fig. 4, the ’sh’ com-
mand is usually used to open a remote control chan-
nel on the victim’s computer, and the ’uname’ com-
mand is used to probe information about the victim’s 
computer, which prove that it is a phishing attach-
ment.

Besides, we find that in addition to performing ports-
can, suspicious attachments continue communicat-
ing with the IP of “162.66.239.75:80” during the above 
operations (Fig. 5), so it can be confirmed as the IP of 
Command and Control (C&C) server. At this point, the 
complete hunting campaign is over.

Table 3  Mail clients writing to disk

exe.fileName mail.cmdLine

/home/admin/.pine-debug1 pine

/dev/null bash

/home/admin/.pine-debug1 bash

/home/admin/.bash_history bash

/home/admin/.pine-debug1 ./pine

/tmp/tcexfil ./pine
/tmp/tcexec ./pine

Table 4  Suspicious execution

cmdLine exe

bash cmdLine:chmod +x tcexec,uuid:7890EEEB-B6FA-AFBD-D5BA-A2422F30BF99,cid:26541

bash cmdLine:python3 command-not-found – tcexec,uuid:63901CB6-67CD-9C7D-2476-
D0F75FEB22C5,cid:26543

./pine ./cmdLine:tcexec,uuid:0BF26B23-2DE5-B70A-45F7-64BE377293F3,cid:27201

tcexec

./pine

./pine

tcexec tcexec

tcexec

/bin/sh
uname 

-a

uname 
-a

Fig. 4  Proof_1 of fishing email
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Filtering anomaly by statistical reasoning
We introduce three examples to show how to find 
abnormal behaviors by statistical reasoning.

Filtering suspicious Portscan
First, we run following script to query the Top-5 pro-
cesses of portscan on the Linux_1 dataset. 

The returned results are shown in Table 5.
The first two processes are very suspicious, and sub-

sequent investigation proves that they are part of the 
Attack_4 and Attack_11.

Reading user documents
Running the hunting script on the Win_2 dataset 
returns the following results in Table 6. 

tcexec

162.66.239.75:…

128.55.12.55:2…

128.55.12.1:17…

128.55.12.110:…

128.55.12.55:6…

128.55.12.1:939

128.55.12.1:47…

128.55.12.55:2…

128.55.12.1:709

128.55.12.1:12…

128.55.12.1:37…

128.55.12.110:…

128.55.12.1:50…

128.55.12.110:…

128.55.12.110:…

128.55.12.1:38…

128.55.12.110:…

128.55.12.110:…

Fig. 5  Proof_2 of fishing email

Table 5  Suspicious portscan

C_IP num proc

128.55.12 47824 {cmdLine:tcexec,cid:27201}
128.55.12 721 {cmdLine:/tmp/ztmp,cid:19482}
128.55.12 108 {cmdLine:sshd,cid:1810}

128.55.12 15 {cmdLine:avahi-daemon,cid:1170}

216.66.26 5 {cmdLine:firefox,cid:31814}
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Except for the firefox process marked in bold, the other 
programs open user files under normal circumstances, so 
we investigate the firefox process, and subsequent hunt-
ing proves that it belongs to Attack_1.

Filtering suspicious programs that access regular ports (such 
as port 80)

Running the hunting script on the dataset BSD_1 returns 
the following results: wget, nginx, links and vUgefal. 
The result of “vUgefal” is very suspicious. After follow-
up investigation, it hit Attack_9. The same situation 
also exists in Attack_3 in the Win_2 dataset, which can 
directly hit the malicious powershell program. Both 
Attack_5 and Attack_6 of the Linux_2 dataset hit suspi-
cious programs accessing port 80.

Performance evaluation
We evaluate the performance of THKG from three 
aspects: time cost, space occupation and query delay.

Time‑cost
Real-time requirements refer to whether our hunting 
platform can dump the continuously generated kernel 
audit logs to the graph database in time under different 
host loads. Since we set a 5-min buffer before forward-
ing, it refers to whether the hunting platform can insert 
the received event buffer into the graph database within 
5 minutes. We select a Windows PC and a Linux Server 
for evaluation, and count the total number of compressed 
events and the time spent inserting into graph database 
every 5 minutes.

The hardware configuration of the two monitored 
hosts is shown in Table 7. Among them, Window PC is 
for normal user office. In order to conduct stress tests, 
we open many video websites and open local videos 
as well between 15:30  pm and 17:00  pm for injecting 

load on Windows PC. Linux Server is used to provide 
computational support for team research, which often 
keeps multiple people online and continuously runs 
heavy scientific tasks, such as training neural networks 
and parsing massive logs.

First we test the real-time performance of the two 
platforms without any storage optimization. The final 
statistical results are shown in the Figs. 6 and 7.

It can be seen that without any optimization, Win-
dows PC can still meet the real-time requirements 
even under a heavy load. Even though the insertion 
time will gradually increase with the accumulation of 
events. However, the real-time performance of Linux 
Server deteriorates sharply when the load rises, making 
it impractical. Therefore, we accelerated the log dump 
of Linux Server based on Neo4j’s index optimization. 
Results after optimization are shown in Fig. 8.

After optimization, the insertion time is drastically 
reduced from tens of minutes to seconds, and the time 
consumption is only related to the number of inserted 
events, regardless of the size of the database. However, 
Neo4j’s index optimization will cause extra storage 
space. Therefore, in actual deployment, one can choose 
only to optimize for servers with high load. Regardless, 
the above evaluation shows that our hunting platform 
can meet the real-time requirements under any load 
condition.

Table 6  Counting of reading user documents

num proc

49 {cmdLine:C:/WINDOWS/Explorer.EXE,cid:5172}

17 {cmdLine:“C:/Program Files/Mozilla Firefox/firefox.exe”, cid:9968}
14 {cmdLine:“C:/WINDOWS/system32/SearchProtocol-Host.exe”, cid:2560}

9 {cmdLine:“C:/ProgramData/Microsoft/Windows Defender/plat-
form/4.12.17007.18022-0/MsMpEng.exe”,cid:3160}

8 {cmdLine:“C:/Program Files (x86)/Microsoft Office/Office15/EXCEL.EXE”/dde,cid:4328}

Table 7  Hardware configuration of monitored hosts

Platform Hardware configuration

Windows PC CPU Intel(R) Core(TM) i7-6700 @ 3.40GHz

Memory 12.0GB

OS 64 bit Windows7 ultimate SP1

Purpose Personal office

Linux Server CPU Intel(R) Xeon(R) E5-2620 v2 @ 2.10GHz

Memory 64.0GB

OS 64 bit Ubuntu 16.04.6 LTS

Purpose Team research platform
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Space occupation
The space occupation includes statistics of the total com-
pression rate of the events and the disk space occupied 
by the graph database. The compression rate refers to the 
total number of events after compression divided by the 
number of original events. The smaller compression rate 
represents the better compression effect. The statistics in 

Table 8 are mainly based on the offline DARPA dataset, 
and also include the results of the 1-day online Windows 
PC and Linux Server.

In addition, we tested the compression rate and time 
cost under different buffer time. The results are shown in 
Fig.  9. According to the statistical results, the compres-
sion rate declines as the buffer time increases because 

Fig. 6  Time cost (min) for Windows PC without optimization

Fig. 7  Time cost (min) for Linux server without optimization
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more and more events are merged. But when the buffer 
time exceeds a certain threshold, the rate of decline 
becomes slow, which is because that the total number 
of original events is very large. And if the time is set too 
short, the log compression rate is not enough and the 
goal of reducing the system load cannot be achieved. For 
the dump time, with the increase of buffer time, event 
number grows, and the time cost of log dump continues 
to increase. Further more, when the buffer time is set too 
long, it will cause the speed gap between the log storage 
and the real-time query. Considering real-time perfor-
mance and compression efficiency comprehensively, the 
5-min setting of buffer time is a better choice.

Fig. 8  Time cost (s) for Linux server after optimization

Table 8  Space occupation of different dataset

Platform Size of log file (MB) Original event number Compressed 
event number

Size of 
graphDB 
(MB)

Compression 
ratio of size (%)

Compression ratio 
of event number 
(%)

Win_1 15,114 21,049,902 2,979,782 1798 11.90 13.66

Win_2 203,582 256,621,363 40,246,958 24,610 12.09 15.25

Linux_1 19,688 21,891,709 10,098,882 11,433 58.07 31.43

Linux_2 45,773 59,590,393 9,633,259 6435 14.06 15.09

BSD_1 11,451 12,904,605 5,421,830 2500 21.83 38.97

BSD_2 18,176 20,551,276 8,250,615 3799 20.90 37.40

BSD_3 6936 7,796,898 3,188,001 1477 21.29 37.80

Win_online_1day – 3,024,428 553,552 284 – 18.30

Linux_online_1day – 12,462,348 3,353,144 1332 – 26.91

Average – – – – 22.88 26.09

Fig. 9  Compression rate and time cost under different buffer time
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Query delay
Query delay refers to the latency from the submission 
of Cypher instructions to the return of results. We 
select Win_2, Linux_2, and BSD_2 in the DARPA data-
set to test simple node queries, complex path queries, 
and statistical summary of the entire data. In order 
to verify the query efficiency of our system, we try to 
compare with the existing attack investigation systems. 
However, most of the work is not publicly available, so 
we choose the open source tool OSQuery (Osquery-
for-security 2021) as the baseline for our evaluation. 
OSQuery exposes the operating system as a high-
performance relational database that can be queried 
based on SQL query language. We compare the query 
efficiency of the two different platforms. The experi-
mental results are shown in Table 9. When we perform 
simple queries, the query delay does not differ much, 
but when performing complex queries, the query delay 
of graph database is more advantageous, which proves 
the efficiency of graph database for complex associa-
tion analysis. In fact, it is difficult for traditional rela-
tional database to do multi-layer association analysis 
when the data scale is huge, because the multi-layer 
aggregation operation of massive data is very complex. 
In contrast, Cypher query can be more flexible for 
deep aggregation of data.

Summary
According to the above evaluations, our system meets 
the real-time requirements under different loads. 
Based on efficient graph storage, long-term and 
large-scale KG storage becomes possible. Moreover, 
the process of real-time log dump organizes massive 
knowledge in time. With the unified knowledge repre-
sentation of KGs and the optimization of Neo4j, even 
hard disk-based graph retrieval can achieve compara-
ble efficiency to memory-based graph retrieval, which 
lays the foundation for agile threat hunting.

Conclusion
Our work considers the kernel audit records as the 
knowledge advantage possessed by the defender, and 
achieves agile threat hunting based on the knowledge 
graph constructed from kernel audit logs. With the 
concept alignment of knowledge graph, we successfully 
integrate all types of knowledge required for hunting, 
including kernel audit records, expert knowledge and 
threat intelligence into a single system. The hunting 
system we designed supports two working modes: real-
time monitoring abnormality and historical backtrack-
ing causality. It also supports association analysis with 
different KG instances of LAN hosts and threat intel-
ligence for fast IOCs search. In addition, the security 
analysts can edit custom query scripts to assist their 
hunting process or automate routine hunting.
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Table 9  Query delay of different complexity by OSQuery and THKG

Platform Data size (MB) Simple node query (ms) Complex path query (ms) Statistical 
summary 
(ms)

OSQuery Win_2 24,610 13 12,459 400,993

Linux_2 6435 237 6257 78,347

BSD_2 3799 156 2708 39,238

THKG Win_2 24,610 15 11,031 361,092

Linux_2 6435 279 6000 73,413

BSD_2 3799 170 2551 36,378
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