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Abstract 

Background:  Barley is one of the most important cereal crops with considerable tolerance to various environmen‑
tal stresses, which can maintain its productivity well in marginal croplands. The selection of stable and high-yielding 
barley genotypes and ideal discriminative locations is an important strategy for the development of new cultivars in 
tropical climates. Different statistical methods have been developed to dissect the genotype-by-environment interac‑
tion effect and investigate the stability of genotypes and select discriminative environments. The main objective of 
the present study was to identify high-yielding and stable barley genotypes and testing environments located in the 
tropical regions of Iran using 23 parametric and nonparametric stability statistics. In the present study, the grain yield 
stability in nineteen barley genotypes was investigated across five different locations over two consecutive years 
(2018–2020).

Results:  The additive main effects multiplicative interaction (AMMI) analysis showed that environments (E), geno‑
types (G) and GE interaction effects were significant for grain yield. Using Spearman’s rank correlation analysis, a 
pattern map developed simultaneously for assessing relationships between grain yield and stability statistics and 
clustering of them, which allowed identifying two main groups based on their stability concepts. The biplot rendered 
using the weighted average of absolute scores (WAASB) and mean grain yield identified superior genotypes in terms 
of performance and stability. Among test environments, Darab, Gonbad and Zabol showed a high discriminating abil‑
ity and played the highest contribution in creating GEI. Hence, these regions are suggested as discriminative sites in 
Iran for the selection of high-yielding and stable barley genotypes.

Conclusion:  As a conclusion from this research, all stability statistics together identify G10 and G12 as the superior 
barley genotypes; these genotypes could be released as commercial cultivars in tropical regions of Iran.
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Background
Among cereal crops, barley (Hordeum vulgare L.) has 
been identified as one of the most adapted crops with 
production occurring in a wide range of areas from 

subarctics to subtropical (Vaezi et  al. 2019). Barley has 
considerable quantities of phosphorous, calcium, B 
vitamin and protein; hence, it is used for livestock feed, 
human food and malt production. Among the cereal 
crops, barley is adapted to unfavorite environments, and 
it can cope with various stresses (Vaezi et al. 2018). Iran 
is located in arid and semiarid regions and its average 
annual rainfall is ~ 250 mm (Ahakpaz et al. 2021). In most 
of its regions, crop plant production is often affected by 
various unpredictable environmental changes such as 
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heat stress, drought stress or low water availability across 
growing seasons. Hence, breeders are always testing 
large numbers of genotypes in different locations for the 
development of high-yielding varieties to be adapted to 
various environments (Khalili and Pour-Aboughadareh 
2016). Like other cereal crops, grain productivity in bar-
ley has a high economic value. This quantitative trait is 
governed by the additive main effects of environment 
(E) and genotype (G), as well as by nonadditive effect of 
G × E interactions (GEI) (Bocianowski et  al. 2021). The 
GEI effect has a key role in breeding programs because 
it reveals yield changeability of genotypes across different 
environments which unexplained by individual E and G 
effects (Yan and Hunt 2001).

Nevertheless, this effect is the biggest challenge for 
breeders, and it can reduce the heritability of grain yield, 
decline the correlation between phenotypic and geno-
typic values (Yan and Fregeau-Reid 2018) and finally 
complicate the selection of superior varieties in terms 
of yield performance and stability (Ebdon and Gauch 
2002). Therefore, considering the GEI effect in breeding 
programs increases the efficiency of selection processes 
and helps to identify high-yielding genotypes with both 
general and specific (Vaezi et al. 2018). In this regard, the 
multi-environment trials (METs) have an important role 
to interpret the GE effect and select superior genotypes 
at the end of the cultivar development pipeline (Ger-
rano et al. 2020). In this regard, various statistical mod-
els and approaches have been developed and numerous 
studies have used them to study grain yield stability and 
adaptability of different crops. The statistical methods 
can be categorized into two main classes. The univariate 
methods included several parametric and nonparamet-
ric stability statistics such as Huehn’s (1979) and Nassar 
and Huehn’s (1987) nonparametric measures (S(i)), Then-
narasu’s (1995) nonparametric measures (NP(i)), Kang’s 
(1988) rank-sum, Plaisted and Peterson’s (1959) mean 
variance component (θi), Plaisted’s (1960) GE variance 
component (θi’), Wricke’s (1962) ecovalence (Wi

2), a joint 
regression which in turn included three parameters of 
the regression coefficient (bi; Finlay and Wilkinson 1963), 
variance in regression deviation (Sdi

2; Eberhart and Rus-
sell 1966) and coefficient of determination (R2; Pinthus 
1973), Shukla’s (1972) stability variance (σi

2), Francis and 
Kanenberg’s (1978) coefficient of variability (CV). These 
statistics are common to analyze GEI effect and descrip-
tion of phenotypic adaptability and stability of genotypes. 
The multivariate methods are grouped into two empiri-
cal and biological models. Of these, the empirical mod-
els are important including the additive main effect and 
multiplicative interaction model (AMMI; Gauch 1988) 
and GGE biplot approach (Yan et al. 2001). These meth-
ods can efficiently interpret the GEI effects due to several 

concepts such as ‘which-one-where’ pattern in data sets, 
selection of ideal genotypes for use in a wide range of 
environments and discovering of mega-environments, 
and determine the discriminating power of test environ-
ments (Gauch et al. 2008).

Among both types of univariate and multivariate meth-
ods, the AMMI model is widely used to analyze of GEI 
effects in many plant species. This model combines both 
integration analysis of variance (ANOVA) and principal 
components analysis (PCA) in a unique model with fixed 
effects. Moreover, this model has a graphical tool which 
can evaluate yield performance and stability simultane-
ously, as well as the discovery of ideal testing environ-
ments (Gauch 1988). In addition to these advantages, 
several stability statistics––including absolute values 
of the first principal component axis (IPCA1), AMMI 
stability value (ASVi; Purchase et  al. 2000), sum of the 
absolute value of the IPCA scores (SIPCi; Purchase et al. 
2000), average of the squared eigenvector values (EVi; 
Sneller et al. 1997) and the absolute value of the relative 
contribution of IPCAs to the interaction (Zai; Zali et al. 
2012)—are calculated based on the AMMI model. Vaezi 
et  al. (2017) investigated the grain yield stability of bar-
ley genotypes using several stability models and finally 
reported that the AMMI model is more suitable to iden-
tify the superior genotypes in terms of yield performance 
and its stability. In a study conducted by Ahakpaz et al. 
(2021), it has been demonstrated that the AMMI model 
is more useful than other statistical methods for identi-
fication and selection of superior barley genotypes for 
the cold zone in Iran. Despite many advantages of AMMI 
model in explaining the GEI effect, disability of it in dis-
secting the structure of the linear mixed-effect model 
(LMM) is the main disadvantage. To circumvent this 
issue, Olivoto et  al. (2019) introduced a novel model––
the weighted average of absolute scores from the singu-
lar value decomposition of the matrix of BLUP for GEI 
effects generated by a LMM (WAASB)––to better char-
acterizing ideal genotypes. Indeed, this model combines 
the features of best linear unbiased prediction (BLUP) 
models and AMMI model in a unique index. In this 
regard, Ahakpaz et  al. (2021) and Pour-Aboughadareh 
et al. (2021) revealed that the WAASB index can be used 
as an efficient index in selecting the high-yield and stable 
barley genotypes across multi-environment experiments. 
Due to the fact that barley ranks second and fourth in the 
Iran and world, as well as the wide climate changes cause 
most parts of croplands to encounter high temperature 
and low water availability, hence the main objectives of 
the present research were to (i) investigate the grain per-
formance of new advanced barley genotypes, which from 
part of the national barley breeding program at the Iran, 
(ii) analysis of the GEI for grain yield using a complex of 
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parametric and nonparametric methods and (iii) identifi-
cation of high-yielding and stable genotypes across differ-
ent areas in Iran.

Methods
Genetic materials and setup experiments
A set of 17 barley genotypes were derived from hybridi-
zation between Iranian local cultivars and International 
genetic materials received from ICARDA along with 
two check varieties (cv. Auxin (G1) and WB95-3 (G19)) 
were used in this study (Additional file 1: Table S1). The 
multi-environment trials (METs) were carried out at five 
tropical regions of Iran during the 2018–2020 cropping 
seasons. The test environments included Ahvaz, Zabol, 
Moghan, Gonbad and Darab. More information about 
test environments is shown in Fig.  1. Sowing and crop 
managements in all regions were done based on experts’ 
advice. In the planning stage, fertilizer treatments of 
32 kg N  ha−1 and 100 kg P2O5 ha−1 were applied to the 
soil at all research stations. In each experiment, bar-
ley genotypes were investigated in a randomized com-
plete block design (RCBD) with three replications. Each 
experimental plot consisted of six rows, 5  m in length, 
and spaced 20  cm apart. Plant density was determined 
as 400 seeds per square meter, and seed sowing was 
done using an experimental plot planter (Wintersteiger, 
Austria). At harvest time, an experimental combination 

(Wintersteiger, Austria) was used to harvest plants and 
finally grain yields were estimated by converting data to 
tons per hectare.

Statistical data analysis
The grain yield data were pooled across locations and 
years and subjected to the AMMI model (Gauch 1993). 
The AMMI analysis was performed in R software 4.0.3 
(R Core Team 2020) using package ‘metan’ (Olivoto and 
Lucio 2020). Twenty-three stability statistics were cal-
culated, and further genotypes were ranked based on 
each statistic. All AMMI-based stability statistics were 
calculated using ‘metan’ package in R. Moreover, several 
parametric and nonparametric stability statistics were 
calculated using a web-based STABILITYSOFT pro-
gram (Pour-Aboughadareh et  al. 2019). The list of the 
calculated stability statistics is found in Table 1. Principal 
component analysis (PCA) was computed to detect inter-
relationships among calculated stability statistics using 
‘factoextra’ package in R. For grouping investigated bar-
ley genotypes and measured traits a hierarchical cluster 
analysis (HCA) was computed based on the Euclidean 
distances using ‘ggdendro’ and ‘ggplot2’ packages in R.

Results
AMMI analysis
The results of AMMI analysis of variance indicated that 
grain yield was significantly affected by environments 
(E), genotypes (G) and their interaction (GEI) (P < 0.001) 
(Table 2). The environments explained 46.20% of the total 
variation in grain yield, while genotyping differences 
justified only 7.01%. The proportion of GEI in explain-
ing variation of yield performance was 14.94%, revealing 
the magnitude GEI in MET trials. This result confirmed 
by the fact that the mean yield across the investigated 
genotypes varied between 1.63 tons ha−1 (genotype G18 
in environment AHZ1) and 7.24 tons ha−1 (genotype G5 
in environment DAB2), whereas the mean grain yield of 
genotypes ranged from 3.76  tons  ha−1 (genotype G9) to 
5.15 tons ha−1 (genotype G5) (Fig. 2A). Moreover, Fig. 2A 
shows a high changeability in environment productivity 
so that it varied between 2.88 tons ha−1 (environment 
AHZ1 in 2018–19 cropping season) and 5.99 tons ha−1 
(DAB in 2019–20 cropping season). The interaction’s sum 
of squares of GEI is further divided into five significant 
interaction principal components (IPCA1–IPCA5). The 
IPCA1 (26.80%) and IPCA2 (22.305) together accounted 
for 49.10% of the total variation due to the GEI (Table 2).

The distribution of test environments and barley 
genotypes based on mean grain yield and IPC1 scores 
is found in Fig. 2B. In this biplot, the mean total grain 
yield (4.56 tons ha−1) is shown using a line perpendic-
ular to the horizontal. Half of the genotypes showed a 

Fig. 1  The geographical distribution and additional information of 
each test environment
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higher mean grain yield than the total, and among them 
genotype G5 and followed by G19, G1, G2 and G4 with 
5.15, 5.11, 4.88, 4.81 and 4.81 tons ha−1 had the high-
est mean grain yield, respectively. Genotypes G6 (3.77 
tons ha−1), G9 (3.76 tons ha−1) and G18 (4.01 tons ha−1) 
showed the lowest mean grain yield compared with 
other genotypes. The environments showed a distri-
bution pattern like genotypes. There was a big differ-
ence between AHZ1 and DAB2 environments. The 
IPC1 scores genotypes for genotypes G12, G6, G13 and 
G16 were close to zero; hence, these genotypes can rep-
resent have high yield stability (Fig.  2B). The position 
of test environments and genotypes is shown using 

AMMI2 biplot (Fig.  2C). Based on this biplot, envi-
ronments and genotypes close to origin of the biplot 
show the lowest effects on GEI, whereas environments 
and genotypes with a large distance from origin of the 
biplot showed the most influential in creating GEI. 
Genotypes G1, G2, G3, G4, G14, G17 and G19 have narrow 
adaptation, whereas G6, G11, G12, G13, G16 and G18 
genotypes showed broad stability to all environments. 
Among test environments, DAB1, GON1 and ZAB2 
with the longest vectors compared with other environ-
ments showed the high discriminating ability and hence 
played the highest contribution in creating GEI.

Table 1  List of calculated stability statistics in this study

No Statistic Symbol References

1 Mean variance component θi Plaisted and Peterson (1959)

2 GE variance component θ(i) Plaisted (1960)

3 Wricke’s ecovalence Wi
2 Wricke (1962)

4 Regression coefficient bi Finlay and Wilkinson (1963)

5 Deviation from regression S2
di Eberhart and Russell (1966)

6 Shukla’s stability variance σ2
i Shukla (1972)

7 Coefficient of variance CVi Francis and Kannenberg (1978)

8–11 Huehn’s and Nassar and Huehn’s nonparametric statistics S(i) Huehn (1990), Nassar and Huehn 
(1987)

12–15 Thennarasu’s nonparametric statistics NP(i) Thennarasu (1995)

16 Kang’s rank-sum KR Kang (1988)

17 Coefficient of determination R2 Pinthus (1973)

18 Lin and Binns’s superiority index Pi Lin and Binns (1988)

19 AMMI stability value ASV Purchase et al. (2000)

20 Sum of the absolute value of the IPCA scores SIPC Purchase et al. (2000)

21 Average of the squared eigenvector values EV Sneller et al. (1997)

22 Absolute value of the relative contribution of IPCAs to the interaction Za Zali et al. (2012)

23 Weighted average of absolute scores from the singular value decomposition 
of the matrix of BLUP for GEI effects generated by a LMM

WAASB Olivoto et al. (2019)

Table 2  AMMI analysis of variance for grain yield (tons ha–1) at five locations in Iran, during 2018–2020 cropping seasons

Source of variation df SS MS F-value Pr (> F) GE expl. (%) Cum. (%)

Environment (E) 9 525.60 58.40 37.53 0.00 46.20

Replication / E 20 31.08 1.55 3.47 0.00

Genotype (G) 18 79.81 4.43 9.89 0.00 7.01

GE interaction 162 169.94 1.05 2.34 0.00 14.94

PC1 26 45.56 1.75 3.91 0.00 26.80 26.80

PC2 24 37.82 1.58 3.52 0.00 22.30 49.10

PC3 22 23.85 1.08 2.42 0.00 14.00 63.10

PC4 20 20.79 1.04 2.32 0.00 12.20 75.30

PC5 18 13.54 0.75 1.68 0.04 8.00 83.30

Residuals 52 28.37 0.55

Error 360 161.39 0.45
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Selection of superior genotypes using mean yield 
and stability parameters
The results of various stability statistics are found in 
Table  3. Based on mean grain yield (GY) as the first 
parameter for genotype investigation, the G1, G4, G5 and 
G19 genotypes expressed the highest mean grain yield 
across environments. Using both S(1) and S(2) statistics, 
G1, G6, G9 and G10 genotypes with lower values were 

stable, while S(3) statistic identified G1, G5, G10 and G12 
as the best stable genotypes. The genotype G10 followed 
by G5, G19 and G2 shown was selected as the best mate-
rials due to their lowest S(6) values. According to NP(1) 
stability statistic, the G2, G10, G12 and G15 genotypes 
were selected as the best stable barley genotypes. The 
NP(2) recognized genotypes G2, G4, G5 and G10 as sta-
ble, while using NP(4) the G1, G5, G10 and G19 genotypes 

Fig. 2  The grain yield variation of investigated 19 barley genotypes across ten environments during the 2018–2020 cropping seasons (A). The 
AMMI1 and AMMI2 biplots indicating GE interaction for 19 barley genotypes across ten test environments in the tropical climate of Iran (B and 
C,respectively). See Fig. 1 for environments’ legends. The biplot rendered based on grain yield × WAASB statistic for selection of high-yielding and 
stable barley genotypes (D). See Additional file 1: Fig. S1 for environments’ legends
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were stable. Using both NP(3) and KR stability param-
eters, G1, G10, G11 and G12 with the smallest ranks were 
stable (Table 3).

Genotypes G10, G11, G13 and G15 had the lowest values 
of Wrick’s ecovalance (W2) and Shukla’s stability variance 

(σ2) parameters. In the case of the Francis and Kannen-
berg’s (1978) coefficient of variability (CV) statistic, gen-
otypes G1, G9, G11 and G13 were identified as the four 
best-ranked genotypes. Using the mean variance com-
ponent (θi) parameter, genotypes G10, G11, G13 and G15 

Table 3  The mean yield (GY) and stability statistics values for 19 barley genotypes across ten tested environments

GY grain yield, S(i) Huehn’s (1979) and Nassar and Huehn’s (1987) nonparametric stability statistics, NP(i) Thennarasu’s (1995) nonparametric stability statistics, LR Kang’s 
(1988) rank-sum, Wi

2 Wricke’s (1962) ecovalance, σi
2 Shukla’s (1972) stability variance

Numbers in parentheses indicate the ranking pattern of genotypes based on each stability statistic

Genotype code GY S(1) S(2) S(3) S(6) NP(1) NP(2) NP(3) NP(4) KR Wi
2 σi

2

G1 4.88 (3) 4.84 (4) 16.71 (4) 12.13 (2) 2.81 (5) 4.20 (7) 0.35 (7) 0.37 (2) 0.39 (3) 10 (2) 2.26 (7) 0.26 (7)

G2 4.81 (5) 5.33 (8) 22.62 (11) 17.25 (8) 2.78 (4) 3.70 (3) 0.31 (4) 0.42 (5) 0.45 (6) 14 (5) 2.68 (9) 0.31 (9)

G3 4.45 (13) 6.24 (15) 28.23 (14) 29.21 (15) 5.10 (14) 4.70 (12) 0.57 (14) 0.67 (13) 0.72 (13) 23 (12) 2.83 (10) 0.33 (10)

G4 4.81 (4) 6.51 (17) 34.46 (17) 25.21 (13) 4.10 (11) 5.00 (15) 0.30 (3) 0.49 (11) 0.53 (10) 18 (10) 3.10 (14) 0.36 (14)

G5 5.15 (1) 5.18 (7) 20.99 (8) 12.68 (3) 2.63 (2) 5.90 (18) 0.28 (2) 0.44 (6) 0.35 (2) 14 (5) 3.05 (13) 0.36 (13)

G6 3.77 (18) 3.36(2) 9.34 (2) 22.73 (12) 6.43 (17) 5.30 (17) 2.27 (18) 1.52 (19) 0.91 (18) 26 (13) 2.45 (8) 0.28 (8)

G7 4.68 (9) 7.07 (18) 34.84 (18) 29.04 (14) 4.48 (12) 5.20 (16) 0.46 (11) 0.55 (12) 0.65 (12) 26 (13) 4.16 (17) 0.50 (17)

G8 4.42 (14) 6.07 (13) 27.43 (13) 30.48 (16) 4.81 (13) 4.40 (10) 0.55 (13) 0.68 (14) 0.75 (14) 26 (13) 3.02 (12) 0.35 (12)

G9 3.76 (19) 3.27 (1) 9.34 (1) 22.73 (11) 6.05 (16) 4.30 (9) 3.12 (19) 1.47 (18) 0.88 (16) 30 (16) 2.98 (11) 0.35 (11)

G10 4.73 (7) 4.02 (3) 11.43 (3) 8.65 (1) 2.27 (1) 3.00 (1) 0.24 (1) 0.32 (1) 0.34 (1) 8 (1) 1.36 (1) 0.15 (1)

G11 4.65 (10) 5.64 (12) 22.84 (12) 18.36 (9) 3.75 (9) 4.10 (5) 0.38 (8) 0.39 (3) 0.50 (9) 12 (4) 1.44 (2) 0.16 (2)

G12 4.75 (6) 5.38 (9) 20.18 (7) 14.89 (4) 2.95 (6) 3.90 (4) 0.32 (5) 0.41 (4) 0.44 (5) 11 (3) 2.14 (5) 0.25 (5)

G13 4.59 (11) 5.51 (10) 21.38 (90 18.50 (10) 3.85 (10) 4.20 (7) 0.40 (10) 0.46 (10) 0.53 (11) 15 (8) 1.66 (4) 0.19 (4)

G14 4.38 (15) 8.20 (19) 50.32 (19) 49.77 (19) 7.14 (18) 7.10 (19) 0.81 (15) 0.80 (16) 0.90 (17) 34 (19) 7.48 (19) 0.91 (19)

G15 4.53 (12) 5.09 (5) 18.10 (5) 16.13 (7) 3.49 (8) 3.60 (2) 0.39 (9) 0.45 (8) 0.50 (8) 15 (8) 1.61 (3) 0.18 (3)

G16 4.72 (8) 5.13 (6) 18.90 (6) 15.05 (5) 3.10 (7) 4.10 (5) 0.32 (6) 0.45(7) 0.45 (7) 14 (5) 2.20 (6) 0.25 (6)

G17 4.37 (16) 6.33 (16) 32.77 (16) 36.41 (17) 5.85 (15) 4.50 (11) 0.85 (16) 0.69 (15) 0.78 (15) 31 (17) 3.15 (15) 0.37 (15)

G18 4.01 (17) 6.22 (14) 28.84 (15) 41.87 (18) 7.16 (19) 4.90 (13) 1.20 (17) 0.92 (17) 1.00 (19) 33 (18) 3.42 (16) 0.40 (16)

G19 5.11 (2) 5.51 (10) 22.44 (10) 15.54 (6) 2.77 (3) 4.90 (13) 0.53 (12) 0.46 (9) 0.42 (4) 20 (11) 5.63 (18) 0.68 (18)

Genotype code Sdi
2 bi CV θi θi’ Pi R2 ASV SIPC EV Za WAASB

G1 0.32 (11) 0.94 (9) 21.91 (3) 0.35 (7) 0.32 (13) 0.47 (3) 0.78 (12) 0.79 (11) 1.19 (4) 0.03 (5) 0.14 (8) 0.30 (9)

G2 0.38 (13) 1.05 (12) 24.83 (9) 0.35 (9) 0.34 (11) 0.74 (7) 0.79 (11) 0.83 (14) 1.40 (7) 0.04 (9) 0.15 (12) 0.34 (12)

G3 0.37 (12) 1.17 (16) 29.14 (17) 0.35 (10) 0.35 (10) 1.10 (13) 0.83 (9) 0.79 (12) 1.73 (15) 0.05 (13) 0.18 (16) 0.40 (16)

G4 0.22 (3) 1.41 (15) 30.84 (18) 0.35 (14) 0.37 (6) 0.66 (4) 0.92 (1) 0.85 (15) 1.58 (12) 0.04 (7) 0.17 (15) 0.39 (15)

G5 0.25 (7) 1.38 (14) 28.39 (16) 0.35 (13) 0.36 (7) 0.42 (2) 0.91 (2) 0.82 (13) 1.63 (13) 0.04 (10) 0.17 (14) 0.37 (14)

G6 0.30 (9) 1.20 (5) 34.57 (19) 0.35 (8) 0.33 (12) 2.15 (18) 0.86 (5) 0.18 (1) 1.45 (9) 0.05 (14) 0.11 (5) 0.22 (5)

G7 0.59 (17) 1.00 (17) 25.99 (13) 0.34 (17) 0.43 (3) 0.88 (11) 0.69 (15) 0.56 (10) 2.21 (17) 0.10 (16) 0.20 (17) 0.42 (17)

G8 0.43 (14) 1.03 (10) 26.90 (14) 0.35 (12) 0.36 (8) 1.20 (14) 0.76 (13) 0.55 (9) 1.63 (13) 0.06 (15) 0.15 (10) 0.31 (10)

G9 0.25 (8) 0.64 (12) 20.81 (2) 0.35 (11) 0.36 (9) 2.24 (19) 0.68 (16) 0.85 (16) 1.43 (8) 0.04 (8) 0.15 (11) 0.34 (12)

G10 0.19 (2) 1.01 (8) 23.08 (6) 0.36 (1) 0.27 (19) 0.73 (6) 0.87 (4) 0.53 (8) 1.24 (5) 0.02 (3) 0.13 (7) 0.28 (8)

G11 0.13 (1) 0.76 (2) 17.86 (1) 0.36 (2) 0.27 (18) 0.76 (8) 0.85 (6) 0.42 (7) 0.88 (1) 0.01 (1) 0.09 (2) 0.19 (2)

G12 0.24 (6) 1.22 (3) 27.49 (15) 0.36 (5) 0.31 (15) 0.70 (5) 0.89 (3) 0.20 (3) 1.28 (6) 0.04 (6) 0.10 (3) 0.21 (3)

G13 0.24 (5) 1.00 (6) 24.04 (7) 0.36 (4) 0.28 (16) 0.88 (10) 0.85 (8) 0.24 (5) 1.54 (11) 0.04 (10) 0.13 (6) 0.26 (6)

G14 0.82 (19) 0.56 (19) 22.40 (4) 0.32 (19) 0.62 (1) 1.42 (16) 0.34 (19) 1.51 (19) 2.62 (19) 0.11 (17) 0.29 (19) 0.65 (19)

G15 0.23 (4) 1.00 (1) 24.14 (8) 0.36 (3) 0.28 (17) 0.94 (12) 0.85 (7) 0.33 (6) 0.88 (2) 0.02 (2) 0.09 (1) 0.19 (1)

G16 0.31 (10) 1.07 (4) 25.18 (11) 0.35 (6) 0.31 (14) 0.78 (9) 0.83 (9) 0.20 (4) 1.16 (3) 0.03 (4) 0.10 (3) 0.21 (4)

G17 0.44 (15) 0.91 (11) 24.96 (10) 0.35 (15) 0.37 (5) 1.27 (15) 0.71 (14) 0.86 (17) 1.46 (10) 0.05 (12) 0.15 (13) 0.34 (11)

G18 0.45 (16) 0.83 (7) 25.53 (12) 0.35 (16) 0.39 (4) 1.64 (17) 0.67 (17) 0.19 (2) 1.95 (16) 0.11 (19) 0.14 (9) 0.28 (7)

G19 0.77 (18) 0.85 (8) 22.66 (5) 0.33 (18) 0.52 (2) 0.35 (1) 0.55 (18) 0.87 (18) 2.29 (18) 0.11 (18) 0.24 (18) 0.52 (18)
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were stable, while using the GE variance component (θi’), 
genotypes G7, G14, G18 and G19 were stable. Using the Lin 
and Binns’s superiority index (Pi) statistic, genotype G19 
followed by G5, G1 and G4 with the lowest values showed 
the greatest stability, relative to other genotypes. The 
joint regression determined the stability of each geno-
type through the slope of regression line (bi) and variance 
in regression deviation (Sdi

2). According to this model, 
genotypes G1, G7, G8, G10, G13, G15 and G16 had bi ≈ 1, 
of which G8 and G15 had lower grain yield than the aver-
age yield performance, therefore, were poorly adapted to 
all test environments. Genotypes G3, G4, G5, G6 and G12 
showed bi > 1 and low rates of average stability; hence, 
they are suitable for high-yielding environments. Geno-
types G9, G11, G14, G17, G18 and G19 had bi < 1, of which 
G11 and G19 produced higher grain yield compared to the 
average yield performance and, therefore, were specific-
ity adapted to low yielding environments (Table 3). Based 
on Sdi

2 statistic, genotypes G4, G10, G11 and G15 with the 
lowest values showed the greatest stability. Based on Pin-
thus’s coefficients of determination (R2), G3, G4, G10 and 
G12 genotypes were four top-ranked stable genotypes 
compared to other genotypes. The best-ranked geno-
types based on the AMMI stability value (ASV) were G6, 
G12, G16 and G18. Genotypes G1, G11, G15 and G16 with 
the lowest vales of sums of the absolute value of the IPC 
scores (SIPC) were separated from others as the stable 
genotypes. According to the average of the squared eigen-
vector values (EV) statistic, genotypes G10, G11, G15 and 
G16 were the most stable compared to others (Table  3). 
Two parametric statistics––the absolute value of the rel-
ative contribution of IPCAs to the interaction (Za) and 
the weighted average of absolute scores (WAASB)––indi-
cated similar patterns and identified genotypes G11, G12, 
G15 and G16 as the most stable.

The WAASB statistics was used to better characterize 
ideal genotypes based on both mean grain yield and sta-
bility. Figure  2D shows distribution of barley genotypes 
based on the mean grain yields and WAASB values. The 
first quadrant included AHZ1, DAB1, ZAB1, ZAB2 and 
GON2 environments, as well as genotypes G3 and G14. 
These genotypes showed lower grain yield compared with 
the average grain yields. In addition, all environments 
had lower productivity than the average mean; thus, the 
genotypes and environment belonging to this section 
have the largest role in GEI. Genotypes G4, G7 and G19 
along with environments DAB2, GON1 and MOG1 were 
placed in the second quadrant. These genotypes have 
a higher grain yield than average yield and on the other 
hand, environments have a big role in GEI. Besides, the 
environments placed in this quadrant provide above-
average production; hence, they deserve special atten-
tion to discriminate the high-yielding genotypes. The G6, 

G8, G9, G15, G17 and G18 genotypes with lower grain yield 
than average yields, along with the AHZ2 environment 
fell in the third quadrant. Environment AHZ2 with low 
performance showed the minimum discrimination power 
in GE interaction. Indeed, the WAASB values for these 
genotypes and environment were minimum. The fourth 
part of biplot comprised the rest of genotypes. Hence, 
G1, G2, G5, G10, G11, G12, G13 and G16 genotypes with low 
WAASB values and high performance compared to aver-
age yield were identified as the most stable genotypes 
(Fig.  2D). The G13 and G15 showed yield performance 
equal to average yields and were placed on the border of 
the third and fourth quadrants. Furthermore, the status 
AHZ2 environment was like G13 and G15; hence, it means 
that the productivity of this environment was equal to 
the average performances.

Spearman’s rank correlation between stability statistics
A heatmap-based Spearman’s rank correlation coefficient 
was used to investigate relationships between mean grain 
yield (GY) and the calculated stability indices (Fig.  3). 
Based on the results, GY correlated positively and sig-
nificantly with Pi, NP(2), NP(3), NP(4), S(3), S(6), KR, bi, Za, 
ASV and WAASB. Other positive and significant asso-
ciations were observed between the following stability 
statistics: Pi with NP(2), NP(3), NP(4), S(3), S(6), KR, bi, ASV 
and WAASB; NP(2) with EV, Sdi

2, R2, S(3), S(6) KR and NP(4); 
NP(4) with EV, R2, S(3), S(6), NP(3) and KR; S(6) with EV, R2, 
S(3), KR, NP(3) and Sdi

2; NP(3) with S(3), KR, Sdi
2, R2, EV, W2, 

σ2, SIPC and θi; S(3) with S(2), S(1), NP(1), KR, R2, SIPC, σi
2, 

Wi
2, θi’, EV and Sdi

2; KR with S(1), S(2), NP(1), W2, σ2, θi’, 
EV, Sdi

2, R2, SIPC, and θi’; R2 with Sdi
2, EV, W2, σ2, θi’, bi, 

S(2), S(1), NP(1), ASV, WAASB, Za and SIPC; Sdi
2 with EV, 

W2, σ2, θi’, bi, S(2), S(1), NP(1), ASV, WAASB, Za and SIPC; 
EV with W2, σ2, θi’, S(2), S(1), NP(1), bi, ASV, WAASB, Za 
and SIPC; σ2 with W2, θi’, S(2), S(1), NP(1), bi, ASV, WAASB, 
Za and SIPC; W2 with θi’, S(2), S(1), NP(1), bi, ASV, WAASB, 
Za and SIPC; θi’ with S(2), S(1), NP(1), bi, ASV, WAASB, Za 
and SIPC; SIPC with S(1), S(2), NP(1), bi, ASV, WAASB and 
Za; NP(1) with S(1), S(2), bi, ASV, WAASB and Za; S(1) with 
S(2), bi, ASV, WAASB and Za; Za with bi, WAASB and 
ASV; bi with ASV and WAASB; WAASB with ASV.

Clustering of stability parameters and genotypes
The calculated stability statistics were classified into two 
main clusters. The first cluster (CI) further divided into 
two sub-clusters (CSI and CSII). The CSI included GY, 
CV, Pi, NP(2), NP(3), NP(4), S(3), S(6) and KR stability sta-
tistics. In the second cluster (CSII), stability statistics 
S(1), S(2), NP(1), W2, σ2, Sdi

2, θi’, R2, EV classified together 
in the same sub-sub-cluster, while ASV, WAASB, Za and 
SIPC statistics placed a separate the second sub-sub-clus-
ter. The second main cluster lonely included θi stability 
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statistic (Fig.  3). In the case of investigated genotypes, 
a hierarchical cluster analysis was computed based on 
squared Euclidean distance using Ward’s method. The 
grouping pattern obtained from this analysis showed that 
all barley genotypes were separated into two main clus-
ters (Fig. 4). The first cluster (CI) further was divided into 
two sub-clusters (SCI-I and SCI-II). The SCI included 
genotypes G1, G2 and G10 and had a higher average 
grain yield than the average mean (4.81 tons ha−1 vs. 4.56 
tons ha−1) and the lowest ranks for almost all nonpara-
metric stability statistics. Of these, G1 and G10 also had 
acceptable average ranks (ASR) for parametric stability 
statistics; hence, they can be selected as the high-yield-
ing and stable genotypes (Table  4). The SCII comprised 
genotypes G11, G12, G13, G15 and G16. The average 
grain yield of this sub-cluster was higher than the aver-
age yields (4.65 56 tons ha−1 vs. 4.56 56 tons ha−1), and 
all genotypes had the lowest ASR for parametric stabil-
ity statistics. The second main cluster (CII) was splat-
ted into three sub-clusters. The first sub-cluster (SCII-I) 
included genotypes G4, G5 and G19 so that its average 

Fig. 3  Heatmap showing the relationships between grain yield and stability statistics based on Spearman’s rank correlation test. GY grain yield, S(i) 
Huehn’s (1979) and Nassar and Huehn’s (1987) nonparametric stability statistics, NP(i) Thennarasu’s (1995) nonparametric stability statistics, LR Kang’s 
(1988) rank-sum, Wi

2 Wricke’s (1962) ecovalance, σi
2 Shukla’s (1972) stability variance, Sdi

2 deviation from regression, bi slope of regression line, θi 
Plaisted and Peterson’s (1959) mean variance component, θi’ Plaisted’s (1960) GE variance component, Pi Lin and Binns’s (1988) superiority index, R2 
Pinthus’s (1973) coefficients of determination, ASV AMMI stability value, SIPC sum of the absolute value of the IPCA scores, EV average of the squared 
eigenvector values, Za the absolute value of the relative contribution of IPCAs to the interaction, WAASB the weighted average of absolute scores. 
ns, * and ** indicate nonsignificant, and significant at 0.05 and 0.01 probability levels, respectively

Fig. 4  Dendrogram showing hierarchical classification of 19 
investigated barley genotypes based on their ranks for grain yield and 
stability statistics using Ward’s method
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grain yields were more than the average yields (5.03 tons 
ha−1 vs. 4.56 tons ha−1). Among these genotypes, only 
G5 had a minimum ASR value for nonparametric stabil-
ity statistics. The SCII-II included two genotypes G6 and 
G9 with lower mean grain yield relative to average yields. 
Remain genotypes were categorized in the SCII-III. The 
average grain yield of this cluster was lower than average 
performance (4.38 tons ha−1 vs. 4.56 tons ha−1). All geno-
types in this sub-cluster had a higher ASR compared to 
other genotypes, and therefore, they were recognized as 
the most unstable genotypes.

Discussion
In the present study, we observed highly significant differ-
ences among the investigated barley genotypes that indi-
cate genetic differences between test materials (Table 2). 
In addition to the significant effect of genotypes, remark-
able differences among environments and GEI effects 
reveal climate change from year to year and location 
to location clearly affects barley production. Further-
more, the results of AMMI showed that the magnitude 

of environment (E) and GEI in explaining the total varia-
tion of grain yield were higher than genotype (G), show-
ing remarkable differences in the genetic background 
of barley genotypes across environments (Vaezi et  al. 
2018). Likewise, Khalili and Pour-Aboughadareh (2016), 
Vaezi et  al. (2017, 2018), Ghazvini et  al. (2018), Kumar 
et al. (2018), Vaezi et al. (2019), Ahakpaz et al. (2021) and 
Ghazvini et al. (2021) reported a significant level of GEI 
for grain yield in barley genotypes. The environments 
AHZ1 and DAB2 showed the lowest and highest produc-
tivity, respectively, and the difference between them was 
3.11 tons ha−1 that is more than the grain yield produced 
in the AHZ1 environment (2.88 tons ha−1) (Fig. 2A). This 
result could be appreciated for breeders and agronomist 
for optimization of barley productivity under low-yield-
ing environments in the tropical climate in Iran. Investi-
gation of barley genotypes in the METs reveals that there 
is a high level of variation in the case of grain yield pro-
ductivity, yield stability and climate adaptations (Table 2). 
Hence, further evaluation of tested genotypes could be 
used for either developing the high-yielding genotypes or 
improving grain stability performance and productivity 
due to suitable breeding strategies.

Variability in response to various environments identi-
fies genotypes with different ranks of yield potential and 
its stability. In addition, to achieve high performance 
across various environments, stability of genotypes 
in terms of grain yield is an important component to 
increase adaptation for cultivation (George and Lundy 
2019). Various stability statistics and models have been 
proposed for evaluating stability of the test genotypes. 
In the current research, after revealing the existence of 
significant GEI for grain yield, several stability statistics 
were served to identify the most stable barley genotypes. 
In the AMMI analysis, the first two IPCAs accounted for 
49.10% of the total variance. Thus, IPCA1 and IPCA2 can 
represent important details regarding the distribution of 
genotypes and environments. As shown in Fig.  2B, the 
distribution of genotypes based on mean grain yield and 
IPCA1 scores was a useful approach to evaluation of yield 
performance and stability, simultaneously. The results 
showed that genotype G12, G13 and G16 with the low-
est IPC1 scores and the high mean yield relative to over-
all average yield can represent to have high yield stability. 
Besides, the wide dispersion of environments relative to 
investigated barley genotypes shows high environmental 
variability compared to genotypes (Ahakpaz et al. 2021). 
Stability methods commonly are classified into two 
main concepts: (1) static stability, where a stable geno-
type maintains its constant yield across environments, 
in other words, lower stability corresponds to greater 
sensitivity to diverse environments (Dyke et  al. 1995), 
and (2) agronomic concept or dynamic stability, which 

Table 4  The average sum of ranks (ASRs) for nonparametric 
and parametric stability statistics in the 19 investigated barley 
genotypes across ten environments during 2018–2020 cropping 
seasons

Numbers in parentheses indicate the ranking pattern of genotypes based on the 
mean grain yield

Genotypes with the lowest ASR values have been highlighted

Genotype code GY ASR value

Nonparametric Parametric All 
stability 
statistics

G1 4.88 (3) 4.0 7.7 6.0
G2 4.81 (5) 6.0 10.2 8.3

G3 4.45 (13) 13.6 12.5 13.0

G4 4.81 (4) 11.9 10.6 10.8

G5 5.15 (1) 5.9 10.5 8.3

G6 3.77 (18) 13.1 9.3 11.2

G7 4.68 (9) 14.0 14.4 14.0

G8 4.42 (14) 13.2 12.0 12.6

G9 3.76 (19) 11.9 10.9 11.7

G10 4.73 (7) 1.4 5.5 4.0
G11 4.65 (10) 7.9 4.1 5.8
G12 4.75 (6) 5.2 6.2 5.8
G13 4.59 (11) 9.4 7.4 8.3

G14 4.38 (15) 17.9 16.1 16.7

G15 4.53 (12) 6.7 5.3 6.1

G16 4.72 (8) 6.0 6.8 6.6

G17 4.37 (16) 15.3 12.8 14.0

G18 4.01 (17) 16.7 12.8 14.5

G19 5.11 (2) 8.7 14.5 11.7
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points that the GEI is minimum and the mean yield of a 
stable genotype in each test environment is like the mean 
response of the tested genotypes. In other words, this 
concept of stability is dependent on the subset of specific 
environments (Lin et al. 1986). In this regard, for further 
dissection of the relationships among stability statistics, 
these associations were graphically assessed using a heat-
map pattern based on Spearman’s rank correlation matrix 
(Fig. 3). In the present study, our results showed a signifi-
cant correlation between mean grain yield (GY) with Pi, 
NP(2), NP(3), NP(4), S(3), S(6), KR, bi, Za, ASV and WAASB 
stability statistics. Hence, these statistics are related to 
the dynamic concept of stability and selection based 
on each of them is acceptable (Becker and Leon, 1988). 
This result agrees with findings reported by Scapim et al. 
(2012), Ahmadi et al. (2015),  Khalili  and Pour-Abougha-
dareh (2016), and Vaezi et al. (2018). The results showed 
that all AMMI-based stability statistics (ASV, SIPC, EV 
and Za) had a positive and significant correlation with 
each other and also with most parametric and nonpara-
metric statistics, especially S(1), S2), NP(1), bi, W2, θi’, Sdi

2 
and R2. As an interesting result, WAASB statistic showed 
a positive and significant correlation with the most sta-
bility statistics. Since the WAASB is calculated based on 
the BLUP approach and uses all IPCAs, this result is not 
unexpected (Olivoto et  al. 2019). However, a close cor-
relation between WASSB and other stability statistics 
is considerable. Another result obtained from the map 
pattern is clustering the calculated stability statistics. 
The WAASB along with all AMMI-based statistics and 
several nonparametric and parametric measures were 
grouped in the same cluster. The GY along with CV, Pi, 
NP(2), NP(3), NP(4), S(3), S(6) and KR was grouped together 
in the same cluster. These results indicate each of stabil-
ity statistics given a similar ranking pattern for assessing 
genotypes.

Our results also indicated that various stability sta-
tistics gave similar ranking patterns in the selection of 
stable genotypes (Table 3), suggesting that any of them 
would be suitable for selecting desirable genotypes. 
As mentioned heretofore, one of the main objectives 
of the present study is to determine the efficiency of 
the WAASB index in identifying the ideal barley geno-
types. According to the results presented in Table 3, the 
WAASB statistic indicates a ranking pattern, for at least 
one genotype, similar to all stability statistics except 
S(1), S(2), S(6), NP(1), NP(4), Pi and bi. Therefore, the selec-
tion of genotypes based on this statistic can result in 
select high-yielding and stable genotypes. The biplot 
rendered using the WAASB and mean grain yield was 
used to better characterize superior genotypes in terms 
of yield potential and stability. The WAASB’ biplot 
may be helpful over AMMI’s biplot in selecting highly 

productive and broadly adapted genotypes. Indeed, in 
this way all IPCAs are used, which it turns allows GEI 
patterns that are not retained in IPCA1 to be consid-
ered in the genotypes’ ranking (Olivoto et  al. 2019). 
Among test environments, three environments DAB2, 
GON1 and MOG1 with higher productivity compared 
to the total mean showed a big role in GEI and there-
fore can be considered as the special environments for 
identifying high-yielding genotypes. The genotypes G1, 
G2, G5, G10, G11, G12, G13, and G16 with the lowest 
WAASB values and high grain yield were identified as 
the most stable genotypes (Fig. 2D).

To solve difficulty in selection of superior genotypes 
based on a single statistic, the average sum of ranks 
(ASR) of grain yield and stability statistics was calcu-
lated. In this method, the low ASR value indicates high 
level of stability. As per the results, we found that geno-
types G1, G5, G10 and G12 had the lowest ASR values 
in terms of nonparametric statistics, while G10, G11, 
G12 and G15 had the lowest ASR values in terms of 
parametric stability statistics (Table 4). With respect to 
these results, both nonparametric and parametric sta-
bility statistics simultaneously identified G10 and G12 
genotypes as the most stable genotypes compared to 
the control (G1 and G19) and other genotypes. These 
results support the fact that there is a strong correla-
tion between the results of selection patterns achieved 
from both parametric and nonparametric stability sta-
tistics groups. The HCA is one of the powerful multi-
variate methods to classify genetic materials. In the 
present study, the HCA was performed based on the 
ranking matrix of genotypes. Based on obtained den-
drogram, the investigated genotypes grouped into 
two main clusters which further divided into several 
sub-clusters. The control genotype G1 along with hi-
yielding and stable genotypes with relatively low ASRs 
was placed in the first cluster. Indeed, these genotypes 
may have specific adaptation to some of the environ-
ments (Vaezi et  al. 2019). The second main group was 
further divided into three sub-groups, which each of 
them embraced some genotypes with a range of low to 
high performance (Fig. 4). However, we did not find any 
genotype with a low ASR value. Among the classified 
genotypes in this cluster, only two genotypes G5 and 
G19 have the potential to use in future barley breed-
ing programs. Considering our results, genotype G10 
and G12 showed high performance and acceptable ASR 
values. With respect to their performances, G10 and 
G12 produced 4.73 and 4.75 11 tons ha−1 grain yield, 
respectively, which showed a bit of performance less 
than both control genotypes. Considering the result of 
joint regression, the G10 showed bi ≈ 1, whereas G12 
had bi = 1.22. We surmise genotypes G10 and G12 have 
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a general and specific adaptability, respectively, due to 
their good stability and adaptation to various environ-
ments. In general, our results indicated that they could 
be recommended as superior barley genotypes for cul-
tivation in warm regions.

Conclusions
According to the obtained results, it is concluded that 
the AMMI model is a powerful approach to dissect GEI 
in MET experiments in barley. All the stability statis-
tics are found to be positive and significantly correlated 
with each other, and nine out of twenty-four statistics 
also showed a significant positive correlation with grain 
yield. This correlation is important because each of them 
can use for identifying the most stable genotypes. Based 
on both univariate and multivariate statistics groups, 
genotypes G10 and G12 were selected as superior geno-
types. In other words, the selected barley genotypes have 
acceptable performance and stability compared to the 
controls (G1 and G19) and other genotypes. As a conclu-
sion, these genotypes could be released as commercial 
cultivars in tropical regions climate of Iran.
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