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Abstract

Background: The reoccurrence of the resistant strains of Mycobacterium tuberculosis to available drugs/medications
has mandated for the development of more effective anti-tubercular agents with efficient activities. Therefore, this
work utilized the application of modeling technique to predict the inhibition activities of some prominent
compounds which been reported to be efficient against M. tuberculosis. To accomplish the purpose of this work,
multiple regression and genetic function approximation were adopted to create the model.

Results: The established model was swayed with topological descriptors: MATS7s, SM1_DzZ, TDB3v, and RDF70v.
More also, interactions between the compounds and the target “DNA gyrase” were evaluated via docking approach
utilizing the PyRx and Discovery Studio simulated software. Meanwhile, compound 19 has the most perceptible
binding affinity of − 16.5 kcal/mol. Consequently, compound 19 served as a reference structural template and
insight to design twelve novel hypothetical agents with more competent activities. Meanwhile, compound 19h was
observed with high activity among the designed compounds with more prominent binding affinities of − 21.6 kcal/
mol.

Conclusion: Therefore, this research recommends in vivo, in vitro screening and pharmacokinetic properties to be
carried out in order to determine the toxicity of the designed compounds.
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Background
The World Health Organization (WHO) has declared
tuberculosis as a major health issue to date. Despite its
descending trend in prevalence and occurrence, new
cases were still reported by every continent particularly
in Southeast Asia and Africa. The WHO, in 2017, re-
ported 9 million of who get infected and mortality rate
of 1.6 million people globally (W.H.O 2018).

Anti-tubercular drugs recommended for treating tu-
berculosis include the following: rifampicin, pyrazina-
mide, para-aminosalicylic acid, and isoniazide (Adeniji
et al. 2020a). However, reports have shown that patients
do not respond positively to the administered drugs due
to the resistance strain of Mycobacterium tuberculosis
toward the current drugs. More also, most of these
drugs have been reported with adverse side effect
(Adeniji et al. 2020a). Therefore, the pursuit of novel
anti-tubercular agents with enhanced and efficient
properties/activities with minimum side effects against
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M. tuberculosis still remains a challenge to pharmacist
and chemists (Adeniji et al. 2020b).
A type II topoisomerase target “DNA gyrase (3IFZ)” is

present in all bacteria. It produces negative supercoils
for the whole bacterial chromosome which relaxes the
supercoils that generate the translocating RNA polymer-
ase which shortened the chromosome for appropriate
segregation during cell division (James 2009; Huang
et al. 2006). This enzyme is a tetramer that is made up
of “two subunits A” which comprises the DNA binding
domain and “two subunits B” which catalyzes the reac-
tion that quickly cleaves two DNA strands which depend
on ATP hydrolysis. The two subunits A and B, i.e., GyrA
and GyrB, aid the DNA replication by breaking and re-
uniting the DNA strand. Based on the function stated,
the termination of the DNA replication can be blocked
by prominent inhibitors targeting either the GyrA (DNA
domain) or the GyrB (ATP binding cavities).
Heterocyclic molecules have been conventionally de-

veloped and established to play vital roles in medicinal
applications due to their structural entities (Zhang et al.
2006). Triazole and its analogue among all other hetero-
cyclic compounds are being considered in pharmaco-
logical fields due to its unique structure and properties
(Adeniji et al. 2020b; Zhang et al. 2006). Triazole is a
five-membered ring heterocyclic diunsaturated com-
pound composed of two carbon atoms at and three ni-
trogen atoms at non-adjacent positions, respectively.
Recent researches have shown that triazole nucleus has
gained huge attention among pharmacist, biochemist,
biologist, and chemists as it is one of the major bioactive
molecules in pharmaceuticals particularly in drug design
and chemotherapeutical (Holla et al. 2005). Triazole has
been reported to show substantial and extensive kind of
pharmacological activities such as analgesic and anti-
tubercular (https://patents.justia.com/patent/8865910,
(Hafez et al. 2008)), anti-neoplastic (Guan et al. 2007),
and anti-malarial (Gujjar et al. 2009). It is also reported
as the most efficient molecules toward anti-TB activity
(Patel et al. 2010).
For the time being, advancement of computational

chemistry led to new challenges of drug discovery. Com-
putational chemistry has made in silico methods to be-
come widely used in the field of structure-based drug
design which reduces the cost for effective evaluation of
large virtual database of chemical compounds. Such
computational method includes quantitative structure-
activity relationships (QSARs) and molecular docking
(Adeniji et al. 2020a).
The first stage is to design and synthesis novel hypo-

thetical compounds with enhanced anti-tubercular activ-
ity and less toxicity/side effect with the approaches and
methods that will consider the rate of experimental runs
and time factor. Reference to the design of novel drug

candidate, computer-aided drug design, has demon-
strated a crucial part for the discovery of new molecules
in pharmaceutical design, drug metabolism, and medi-
cinal chemistry (Adeniji et al. 2019). This approach had
facilitated the improvement in the course of
optimization of chemical structures with well-defined
purposes (Adeniji et al. 2020c). Quantitative structure-
activity relationship study and molecular docking are
one of the computer-aided drug design approaches
which had been broadly utilized in the design, improve-
ment, and synthesis of first-hand drug (Adeniji et al.
2020a). QSAR investigation had shown to be an expedi-
ent technique for forecasting biological/inhibition
activities, properties of any chemical compound by mak-
ing use of an experimental data, and molecular descrip-
tors. This idea is based on the correlation between the
information derived from any chemical space or
structural molecule illustrated by the descriptor and
well-defined experimental data provided. Meanwhile,
molecular docking technique helps to foresee the bind-
ing location and affinity of the existing interaction be-
tween the molecule (ligand) and the target, thereby
providing an idea to design a prospective drug with bet-
ter activity against the target (Adeniji et al. 2020a).
Therefore, the study aimed to carry out computational
investigation, virtual docking simulation of 1,2,4-triazole
analogues, and in silico design of new proposed com-
pounds against DNA gyrase.

Methods
Collection of dataset
Forty molecules comprising the analogues of 1,2,4-tri-
azole reported as anti-tubercular agents that were used
in this study were acquired from the literature (https://
patents.justia.com/patent/8865910). The general struc-
ture of analogues of 1,2,4-triazole and the predicted and
experimental activities of these compounds were pre-
sented in Fig. 1 and Table 1, respectively.

Optimization and descriptor calculation
Optimization of the studied compounds so as to attain
steady conformation was achieved with the aid of density

Fig. 1 General structure of 1,2,4-triazole derivatives
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Table 1 Inhibitory compounds as anti-tubercular agents

S/N Molecules Experimental activity
(pBA)

Predicted activity
(pBA)

Residual Leverage

1a 1-benzyl-4-(((1-((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)-3-
(tert-butyl)-1H-1,2,4-triazol-5-yl)thio)methyl)-1H-1,2,3-triazole

5.7268 6.0896 − 0.3628 0.1619

2 1-benzyl-4-(((1-((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)-3-
(4-nitrophenyl)-1H-1,2,4-triazol-5-yl)thio)methyl)-1H-1,2,3-triazole

5.5023 5.3625 0.1398 0.2423

3a 1-benzyl-4-(((1-((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)-3-
(4-methoxyphenyl)-1H-1,2,4-triazol-5-yl)thio)methyl)-1H-1,2,3-triazole

6.007 6.3186 − 0.3116 0.1304

4a 1-benzyl-4-(((1-((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)-3-
(4-chlorophenyl)-1H-1,2,4-triazol-5-yl)thio)methyl)-1H-1,2,3-triazole

5.0064 5.5561 − 0.5497 0.3033

5a 3-(allylthio)-1H-1,2,4-triazole 5.7317 5.6841 0.0476 0.0303

6 1-benzyl-4-(((1-((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)-5-
(tert-butyl)-1H-1,2,4-triazol-3-yl)thio)methyl)-1H-1,2,3-triazole

5.6376 5.5557 0.0819 0.3826

7 1-benzyl-4-(((1-((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)-5-
(4-methoxyphenyl)-1H-1,2,4-triazol-3-yl)thio)methyl)-1H-1,2,3-triazole

4.7441 5.1002 − 0.3561 0.3538

8 1-benzyl-4-(((1-((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)-5-
(4-chlorophenyl)-1H-1,2,4-triazol-3-yl)thio)methyl)-1H-1,2,3-triazole

6.1674 5.9575 0.2099 0.0601

9a 1-benzyl-4-(((1-((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)-1H-1,2,4-
triazol-5-yl)thio)methyl)-1H-1,2,3-triazole

6.3713 6.9926 − 0.6213 0.3184

10 1-benzyl-4-(((1-((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)-3-methyl-
1H-1,2,4-triazol-5-yl)thio)methyl)-1H-1,2,3-triazole

7.4134 7.2209 0.1925 0.0598

11 5-(4-nitrophenyl)-3-(prop-2-yn-1-ylsulfonyl)-1H-1,2,4-triazole 5.7441 6.3581 − 0.614 0.0714

12 5-(4-methoxyphenyl)-3-(prop-2-yn-1-ylsulfonyl)-1H-1,2,4-triazole 5.9258 6.0358 − 0.11 0.0424

13 5-(4-chlorophenyl)-3-(prop-2-yn-1-ylsulfonyl)-1H-1,2,4-triazole 7.5281 7.0701 0.458 0.0762

14 1-allyl-3-(tert-butyl)-5-(prop-2-yn-1-ylthio)-1H-1,2,4-triazole 6.3793 6.2871 0.0922 0.1938

15a 1-allyl-5-(tert-butyl)-3-(prop-2-yn-1-ylthio)-1H-1,2,4-triazole 8.0615 7.5772 0.4843 0.0658

16 5-(allylthio)-3-methyl-1H-1,2,4-triazole 7.8807 7.7668 0.1139 0.0504

17 5-(allylthio)-3-(tert-butyl)-1H-1,2,4-triazole 6.4171 6.4769 − 0.0598 0.1296

18 5-(allylthio)-3-(4-nitrophenyl)-1H-1,2,4-triazole 5.9471 6.443 − 0.4959 0.0347

19 3-(allylthio)-5-(4-chlorophenyl)-1H-1,2,4-triazole 8.0899 7.7759 0.314 0.1757

20 3-(allylthio)-5-(4-methoxyphenyl)-1H-1,2,4-triazole 7.6397 7.7175 − 0.0778 0.3321

21 1-allyl-3-(allylthio)-1H-1,2,4-triazole 6.3981 5.9875 0.4106 0.4076

22 1-allyl-3-(allylthio)-5-methyl-1H-1,2,4-triazole 5.8131 6.3817 − 0.5686 0.2386

23 1-allyl-3-(allylthio)-5-(tert-butyl)-1H-1,2,4-triazole 6.2878 6.2104 0.0774 0.2302

24a 1-allyl-3-(allylthio)-5-(4-nitrophenyl)-1H-1,2,4-triazole 8.0615 7.703 0.3585 0.2547

25 1-allyl-3-(allylthio)-5-(4-methoxyphenyl)-1H-1,2,4-triazole 7.366 6.8935 0.4725 0.3849

26 1-allyl-3-(allylthio)-5-(4-chlorophenyl)-1H-1,2,4-triazole 7.659 6.844 0.815 0.232

27a 1-allyl-5-(allylthio)-1H-1,2,4-triazole 7.9432 7.7982 0.145 0.0307

28a 1-allyl-5-(allylthio)-3-methyl-1H-1,2,4-triazole 7.9759 8.6181 − 0.6422 0.4921

29a 1-allyl-5-(allylthio)-3-(tert-butyl)-1H-1,2,4-triazole 5.2717 7.6208 − 2.3491 0.3163

30 1-allyl-5-(allylthio)-3-(4-nitrophenyl)-1H-1,2,4-triazole 6.304 6.0214 0.2826 0.1944

31 1-allyl-5-(allylthio)-3-(4-methoxyphenyl)-1H-1,2,4-triazole 7.3233 7.1344 0.1889 0.4957

32 1-allyl-5-(allylthio)-3-(4-chlorophenyl)-1H-1,2,4-triazole 6.0097 6.995 − 0.9853 0.0482

33a 3-(prop-2-yn-1-ylsulfonyl)-1H-1,2,4-triazole 5.5994 5.735 − 0.1356 0.095

34a 5-methyl-3-(prop-2-yn-1-ylsulfonyl)-1H-1,2,4-triazole 4.9074 5.7514 − 0.844 0.1017

35 5-(tert-butyl)-3-(prop-2-yn-1-ylsulfonyl)-1H-1,2,4-triazole 6.8568 6.9247 − 0.0679 0.178

36 1-benzyl-4-(((3-methyl-1H-1,2,4-triazol-5-yl)thio)methyl)-1H-1,2,3-
triazole

7.8456 7.1946 0.651 0.0981

37 4-(((1H-1,2,4-triazol-5-yl)thio)methyl)-1-benzyl-1H-1,2,3-triazole 7.3079 7.9753 − 0.6674 0.0334
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functional theory [DFT (B3LYP/631G*)] using Spartan
14 (Adeniji et al. 2019). Each optimized structure was
imported into PaDEL Descriptor software which calcu-
lated about 1876 molecular descriptors. These descrip-
tors provide relevant information on the potential
hydrogen bonds of path length, potential electronic
properties, hydrophobic, relative ionization, and steric
which may sway the biological activity.

Pretreatment of calculated descriptors and splitting of
dataset
All calculated descriptors were screened using a pre-
treatment 1.2 software so as to eliminate redundant and
descriptors with less information in order to build an
optimum model with high predictability (Adeniji et al.
2020c). Meanwhile, Kennard and Stone’s algorithm
method available in Data-division 1.2 software was
employed to split the data into modeling dataset (train-
ing set) and validation dataset (test set ) with a ratio of
7:3, i.e., 70 to 30%. Model construction was executed on
the training set while the validity and confirmation were
checked on the test set.

Construction of QSAR models and validation test
Construction of optimum model that could serve as a
tool for predicting reported experimental biodata and
also serve as a tool to design novel compound was
developed using the genetic function approximation
approach. This technique randomly selected combined
descriptors that could give a good prediction of the
dataset. To generate the model in linear equation
form, the idea of multiple-linear regression was
adopted to generate the multivariant equation which
was executed in the Material Studio software version

8.0 and also to assess the internal validation of the
built model.

Leverage measure (applicability domain)
Leverage (hi) values for the dataset that made up the
studied compound were calculated in order to define
the chemical space (applicability domain) of the
model built. Graphical interpretation of the leverage
value for each of the compound plotted against their
respective standardized residual is described as Wil-
liams’ plot. The diagonal of the hat matrix element is
termed the leverage calculated for both the training
and test sets; meanwhile, the standardized residual is
the validated residual estimated between predicted
and reported experiment activities for both the train-
ing and test sets. The leverage (hi) was calculated
using Eq. 1 which was used to check for outlier com-
pound at a defined space (applicability domain
boundary) of ± 3 (Adeniji et al. 2020b):

hi ¼ Nj NTN
� � − 1

NT
J ð1Þ

Nj denotes the matrix of i for the modeling set (train-
ing data). N denotes the m × d matrix for the training
data, and NT is the transpose of the training data (N).
NT

j denotes the transpose matrix Nj. In order to evaluate

for an influential molecule, the warning leverage h∗ de-
fined in Eq. 2 was calculated to define the limit
boundary:

h� ¼ 3
d þ 1ð Þ
N

ð2Þ

where d and N denoted the number of descriptors and
the number of training data (Adeniji et al. 2020b).

Table 1 Inhibitory compounds as anti-tubercular agents (Continued)

S/N Molecules Experimental activity
(pBA)

Predicted activity
(pBA)

Residual Leverage

38 1-benzyl-4-(((3-(tert-butyl)-1H-1,2,4-triazol-5-yl)thio)methyl)-1H-1,2,3
-triazole

7.314 7.7043 − 0.3903 0.7119

39 1-benzyl-4-(((1-((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)-1H-1,2,4-
triazol-3-yl)thio)methyl)-1H-1,2,3-triazole

6.8719 7.1271 − 0.2552 0.2365

40 1-benzyl-4-(((1-((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)-5-methyl-1H-
1,2,4-triazol-3-yl)thio)methyl)-1H-1,2,3-triazole

7.9759 7.7716 0.2043 0.6105

Superscript “a” represents the test set. The calculated activity (pA) is generated using the QSAR model built in this study. The residual values are the difference
between the observed activity (pA) and calculated activity (pA). Leverage value for each compound represents the diagonal element of the hat matrix which
defines the applicability domain space of the each compound

Table 2 Name of the selected descriptors used in the QSAR model

S/NO Descriptor symbols Name of descriptor Class

1 MATS7s Moran autocorrelation − lag 7/weighted by I-state 2D

2 SM1_DzZ Spectral moment of order 1 from Barysz matrix/weighted by atomic number 2D

4 TDB3v 3D topological distance-based autocorrelation − lag 3/weighted by van der Waals volumes D

5 RDF70v Radial distribution function − 070/weighted by relative van der Waals volumes 3D
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Assessment of Y-randomization test
Another criterion to be considered while establishing a
built model is the Y-randomization test. This assessment
is an external validation test which was achieved by ran-
dom shuffling on the training data. (Adeniji et al. 2020a;
Roy et al. 2011; Adeniji et al. 2020d). In order to create
the multiple-linear regression model, descriptors, i.e., in-
dependent variables, which are the independent variables
were kept untouched while the biological activities, i.e.,
dependent variable, were shuffled. To establish that the
created model is not accidentally obtained, the R2 and
Q2 values for the built model must be relatively low for
many trials. More also, the Y-randomization coefficient
(cR2

pÞ presented in Eq. 3 must be ≥ 0.5 so as to affirm

that the model is robust:

cR2
p ¼ R� R2 − Rrð Þ2� �2 ð3Þ

Rr is the average of R of random models, and R is the
correlation coefficient (Adeniji et al. 2020d; Tropsha
et al. 2003).

Verification and confirmation of the built model
The constructed model was subjected to various statis-
tical tools to verify the potency of the model. Moreover,
the internal and external threshold values have been laid
to ascertain and affirm any kind of built model for valid-
ation as reported in Table 6 (Adeniji et al. 2020a; Roy
et al. 2011; Adeniji et al. 2020d; Tropsha et al. 2003;
Adeniji et al. 2018). Therefore, both the internal and ex-
ternal tests reported in this work were compared and
verified with the generally accepted threshold value to
ascertain the potency and the robustness of the built
model.

Molecular docking procedure
Receptor-ligand docking interaction was carried out to
know the binding affinity and to ascertain the possible
ligand binding sites. The docking simulations were
achieved using the AutoDock4.2 incorporated in the
PyRx software. The targeted enzyme (DNA gyrase) in
the form of crystal structure with PDB code 31FZ was

Table 3 Calculated descriptors for training set in the model

Compound
ID

Descriptors Predicted
activityMATS7s SM1_DzZ TDB3v RDF70v

Training set

2 0.0026 1.4821 658.7772 2.0498 4.9250

6 − 0.3317 1.9107 633.2209 15.5345 5.0064

7 − 0.0516 2.1607 685.7303 13.2508 5.7386

8 − 0.1336 2.5578 696.3924 24.0959 4.7441

10 − 0.2464 1.9107 661.5998 22.5805 6.1674

11 − 0.0726 1.9107 633.9043 24.8431 7.4134

12 0.1240 2.5536 695.4821 28.0128 5.7441

13 − 0.1179 2.1607 688.6992 26.4488 5.9258

14 − 0.1765 2.5578 699.4567 26.6119 6.3793

16 0.0551 1.0536 621.0873 0.2906 6.1667

17 − 0.1773 1.0536 572.3149 1.7741 6.4171

18 0.3859 1.6964 732.5999 3.7133 5.9413

19 0.0766 1.3036 712.3987 2.8412 7.6397

20 − 0.1182 1.7006 746.2645 3.1697 8.0899

21 0.0020 1.0536 591.6153 1.2108 6.3981

22 0.1950 1.0536 616.2699 2.0915 5.8131

23 − 0.2311 1.0536 582.2291 2.0369 6.2878

25 0.1290 1.3036 688.9992 2.9870 5.7268

26 0.0164 1.7006 712.3814 3.6128 7.3660

30 0.2273 1.6964 707.5776 4.1750 6.5267

31 0.0180 1.3036 693.4308 3.4526 5.7405

32 − 0.0601 1.7006 717.2290 3.2901 5.6533

35 − 0.8213 1.5536 621.1500 5.2505 7.3233

36 − 0.1353 2.1964 773.1185 5.3930 6.0097

37 − 0.2347 1.8036 754.5958 5.1746 6.0928

38 − 0.2668 2.2006 789.7752 5.0883 8.0990

39 0.0350 1.0536 622.7128 4.6434 6.8568

40 0.2186 1.0536 686.1800 1.0517 7.3079

Test set

1 0.1841 1.6964 703.6135 4.0508 6.0916

3 0.0008 1.0536 584.7233 4.7949 6.3205

4 − 0.1670 1.4821 618.5815 7.5425 5.5581

5 − 0.2527 1.9107 651.0893 13.7845 5.6861

9 − 0.1673 1.0536 619.5964 1.9757 6.9946

15 − 0.0020 1.0536 625.8344 4.9127 7.5792

24 − 0.4581 1.0536 634.4842 1.9049 7.7050

27 − 0.0327 1.0536 669.1703 1.2825 7.8002

28 − 0.1381 1.0536 694.5662 3.1503 8.6201

29 − 0.0090 0.4286 550.5198 0.3573 7.6228

33 − 0.1718 1.9107 657.0710 14.0439 5.7370

34 − 0.3329 2.5143 731.9698 5.0947 5.7534

Descriptor value generated for each compound for the purpose
of reproducibility

Table 4 Pearson’s correlation coefficient for the descriptor used
in the QSAR model

MATS7s SM1_DzZ TDB3v RDF70v

MATS7s 1

SM1_DzZ − 0.4244 1

TDB3v 0.0743 0.1344 1

RDF70v − 0.6903 0.0675 0.0534 1

Pearson’s correlation coefficient to evaluate the multicollinearity between
each descriptor
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Table 5 Statistical parameters that influence the model

Descriptors Regression coefficient Mean effect (ME) p value (confidence interval) VIF Standard error

MATS7s − 1.2762 − 0.2213 1.57E−07 2.7392 2.10E−08

SM1_DzZ − 2.7874 − 0.9015 4.69E−05 3.8417 3.93E−06

TDB3v 0.2107 3.7301 3.91E−09 3.4016 3.02E−07

RDF70v 0.1488 1.0381 6.45E−05 4.4398 5.23E−06

Statistical consideration to evaluate the strength and magnitude of each descriptors, inter-existence between the descriptors and computational error

Table 6 Validation parameters for each model using multilinear regression (MLR)

S/
NO

Validation parameters Formula Threshold Model

Internal validation

1 Friedman lack of fit (LOF) SEE
ð1 − wþq� j

N Þ2
Significantly
low

0.1802

2 R-squared
1 − ½

P
ðYobs − Ypred

Þ2P
ðY

obs − �Y training

Þ2�
R2 > 0.6 0.7759

3 Adjusted R-squared R2 − P ðN − 1Þ
N − pþ1

R2adj > 0:6 07381

4 Cross-validated R-squared (Q2
cvÞ 1 − ½

P
ðYpred − Yobs

Þ2P
ðY

obs − �Y training

Þ2�
Q2 > 0.6 0.6954

5 Significant regression Yes

6 Significance-of-regression F value 13.42

7 Critical SOR F value (95%)
P

ðYpred − Yobs
Þ2

p =

P
ðYpred − Yobs

Þ2
N − p − 1

F(test) > 2.09 2.7294

8 Replicate points 0

9 Computed observed error 0

10
Min expt. error for non-significant LOF (95%) 0.4120

Model randomization

11
Average of the correlation coefficient for randomized data ( Rr ) R < 0:5 0.3642

12
Average of determination coefficient for randomized data (R

2
r Þ R

2
r < 0:5 0.1823

13
Average of leave one out cross-validated determination coefficient for randomized
data ( Q

2
r )

Q
2
r < 0:5 −

0.3915

14
Coefficient for Y-randomization (cR2pÞ R2 � ð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jR2 − R

2
r j

q
Þ

cR2p > 0:6 0.9229

External validation

15
=r20 − r

0 2
0=

< 0.3 0.1591

16
r2 − r20

r2
< 0.1 0.0023

17
r2 − r

0 2
0

r2
< 0.1 0.0136

18
R2test R2test ¼ 1 −

P
ðYpredtest − Yobstest Þ2P
ðYpredtest − �Y training Þ

2
>0.6 0.6550

SEE is the standard error of estimation, w is the total number of terms present in the built model except the constant term, j is the number of descriptors
confined in the built model, q is a user-defined factor, and N is the number of compounds of training set. Yobs, �Y training, and Ypred are the observed activity, the
mean observed activity of the training compounds, and the predicted activity, respectively. r2 is the correlation coefficients of the plot of observed activity against
predicted activity values, ro

2 is the correlation coefficients of the plot of observed activity against predicted activity values at zero intercept, and r′o
2 is the

correlation coefficients of the plot of predicted activity against observed activity at zero intercept (Adeniji et al. 2020a; Roy et al. 2011; Adeniji et al. 2020d)
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retrieved from a protein data bank (Piton et al. 2010;
Piton et al. n.d.). With the Discovery Studio
Visualizer software, all forms of solvent molecules, li-
gands, and cofactors imported with the enzyme were
removed in order to achieve good binding interac-
tions between the enzyme (protein) and the ligands
(molecules). Thereafter, the enzyme protein was saved
in PDB format which is recognized by the PyRx soft-
ware and transformed as macromolecule (Adeniji
et al. 2020a; Adeniji et al. 2018). Optimum conform-
ation of the ligands (1,2,4-triazole derivatives) at mini-
mum energy to enhance efficient binding interaction
with the enzyme was achieved using Spartan 14 soft-
ware as an optimized tool utilizing density functional
theory [DFT (B3LYP/631G*)]. Thereafter, all the li-
gands optimized were saved as PDB format which is
also recognized by the PyRx software and transformed
as micromolecules (Adeniji et al. 2020a; Adeniji et al.
2018). In the PyRx software, the docking interaction
between the targeted enzyme and the protein was
then computed to evaluate the binding affinities while
the interaction types such as hydrogen bonding, elec-
trostatic interaction, and hydrophobic interaction were
visualized and analyzed using the Discovery Studio
Visualizer 16 software (Adeniji et al. 2018; Ibrahim
et al. 2020).

Procedure for the in silico design of novel triazole
derivatives
Substitution, elimination, and addition techniques were
employed to design some proposed anti-tubercular
agents with enhanced activities via modification of the
template structure (compound 19) using the approach of
ligand-based design (Adeniji et al. 2020a; Adeniji et al.
2020b). The template was selected as the reference
compound and backbone to design new promising com-
pounds due to its prominent activity values found within
the applicability domain phase. The discovery of the new
compounds was successfully achieved based on the
information derived for the computed mean effect on
the descriptor with high influence on the biological
activities.

Results
Proposed QSAR model

pBA ¼ − 1:276219502�MATS7s − 2:787371275
� SM1 DzZþ 0:020733853� TDB3v
þ 0:148823521� RDF70v þ 1:546675296

Discussion
Dataset comprises 1,2,4-triazole, and its analogue
against M. tuberculosis was successfully split into 28

modeling datasets (training set) and 12 validation
datasets (test set) with the algorithm laid by Kennard
and Stone (Adeniji et al. 2020d). The 28 training set
data was used to construct the genetic functional al-
gorithm using the multilinear regression technique as
a model equation.
The analysis of the derived genetic functional algo-

rithm model explores the physicochemical and structural
influence of the studied compounds with their respective
anti-tubercular activities. The derived model was estab-
lished with geometrical and topological descriptors:
MATS7s, SM1_DzZ, TDB3v, and RDF70v which influ-
enced the model with relevant information and contri-
bution as presented in Table 2. Meanwhile, all the
calculated descriptors for the whole compounds for the
purpose of validity and reproducibility are reported in
Table 3. These descriptors were identified and correlated
with anti-tubercular activity values.
Pearson’s correlation statistics and variance inflation

factor (VIF) were utilized to validate the descriptors in
the proposed model (Adeniji et al. 2020b; Adeniji et al.
2020c; Roy et al. 2011; Adeniji et al. 2020d). Pearson’s
correlation statistics investigated between each descrip-
tor were all < ± 0.8 as presented in Table 4 which signi-
fies that no multicollinearity was found between each
pair of descriptors. Interestingly, all the calculated values
for the VIF reported in Table 5 are less than 10 which
implies there is no inter-correlation existence for each
descriptor. However, if the reported VIF value is > 10,
this shows that the proposed model is likely unstable;

Table 7 Y-randomization parameters test for model 1

Model R R2 Q2

Original 1 1 1

Random 1 0.5799 0.3363 − 0.1498

Random 2 0.3665 0.1344 − 0.4056

Random 3 0.3999 0.1599 − 0.3927

Random 4 0.4189 0.1754 − 0.3763

Random 5 0.1595 0.0254 − 0.5045

Random 6 0.5494 0.3018 − 0.1199

Random 7 0.2301 0.0530 − 0.5541

Random 8 0.3366 0.1133 − 0.4290

Random 9 0.3660 0.1340 − 0.2959

Random 10 0.4405 0.1940 − 0.2196

Random model parameters

Average r 0.3642

Average r2 0.1823

Average Q2 − 0.3915

cRp2 0.9229

Y-randomization test to ascertain the robustness of the model
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therefore, the model needs to be rechecked (Adeniji
et al. 2020a; Adeniji et al. 2020b; Adeniji et al. 2020c).
Meanwhile, the results of the VIF are in full agreement
with Pearson’s correlation statistics.
More also, another statistical parameter, i.e., one way

analysis of variance (ANOVA), was computed to
evaluate the significant correlation between the anti-
tubercular activities and the descriptors at 95% confi-
dence level. The probability values reported in Table 5

are found to be (p < 0.05) for each of the descriptors.
This signifies that the null hypothesis suggesting no
correlation between anti-tubercular activities and the de-
scriptors in the proposed model is annulled. Thus, the
alternative hypothesis proposing a significant correlation
between the anti-tubercular activities and the descriptor
is accepted (Adeniji et al. 2020d).
The relative direction, importance, and contribution of

each descriptor in the proposed model were computed

Fig. 3 Plot of predicted activity against experimental activity of test set

Fig. 2 Plot of predicted activity against experimental activity of training set
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using the mean effect (ME) approach as reported in
Table 5. The value of the mean effect calculated for each
descriptor in a model suggests the contribution that
each descriptors plays in the model while the sign signi-
fies the direction at which the descriptor influences the
anti-tubercular activities (Adeniji et al. 2020b; Adeniji
et al. 2020d).
The proposed model was validated internally by

squared correlation coefficient (R2 = 0.7759), adjusted

squared correlation coefficient (R2
adj ¼ 0:7381), and leave

one out cross-validation squared correlation coefficient
(Q2 = 0.6954) values (Table 6). Meanwhile, the robust-
ness and fitness of the constructed models were ascer-
tained by Y-randomization coefficient (cR2

p ¼ 0:9229) as

reported in Table 7 to strongly affirm that the proposed
model is not derived by chance. Externally, the proposed
model was also cross-validated with significant

Fig. 5 The Williams plot of the standardized residuals versus the leverage value. The Williams plot to determine the influential and outlier
molecule and defined boundary ± 3 and warning leverage h* = 0.64

Fig. 4 Plot of standardized residual activity versus experimental activity

Adeniji et al. Bulletin of the National Research Centre          (2020) 44:132 Page 9 of 17



Table 8 Docking analysis between triazole analogue and the target (DNA gyrase)

Ligand Binding
affinity
(BA),
kcal/
mol

Hydrogen bond Hydrophobic interaction

Amino acid Bond length (Ao) Amino acid

1 − 6.09 ASN74 1.3454 PRO134, VAL78, LA167, ALA233

2 − 6.49 GLN385 1.6445 VAL83, VAL83, LEU76, TRP182

3 − 6.09 LEU103
TRP182

2.3421
3.0328

ALA233, PRO346, ALA167

4 − 5.89 ASN74 2.7656 ALA167, LEU164, VAL83

5 − 7.69 GLN383 2.8102 PHE338, CYS345, VAL83

6 − 5.99 ALA1 23 1.2233 PHE248, VAL228, CYS143, LEU176

7 − 3.99 – – TRP182, ALA167, VAL78, SER247, CYS145

8 − 7.49 ALA167 2.4332 CYS221, TRP182, ALA212, PRO165

9 − 7.59 GLN385 1.3443 ALA143, TRP182, PHE168

10 − 12.29 THR77
GLN385

2.4554
2.4332

LEU164, VAL78, VAL228, ALA236

11 − 4.09 – – PHE243, ALA167

12 − 6.19 VAL112 1.3452 ALA203, PHE130, VAL78

13 − 12.69 – – PHE128, VAL78, PRO232, VAL128, SER237

14 − 6.39 THR87 1.4234 ALA237, TRP123, LEU154, VAL228

15 − 9.439 THR78 1.2433 ALA167, TRP122, LEU184, VAL228, VAL73

16 − 13.69 ASP110
PHE109
ALA111

2.3503
2.1532
2.6856

TYR113, PRO112

17 − 8.69 GLN385
CYS345

2.7332
2.4333

VAL78, ALA233, TRP182, VAL78

18 − 7.69 GLN385 2.5433 PRO285, PHE168, ALA167, VAL83, PRO285, VAL83

19 − 17.79 GLN101
TRP103
SER118
ASP122
ASP122

2.29648
2.28554
2.43913
2.99768
2.22618

TRP103

20 − 14.59 VAL78
ALA233
LEU76

2.1322
2.4876
2.4517

SER237, THR238, PHE168, PRO285, VAL78, ALA167

21 − 8.59 ASN78
ASP232

3.0175
2.2831

LEU207, VAL228, LEU73, VAL78, PRO245

22 − 6.19 THR77 2.4532 PHE168, TRP182, TRP182, PHE168, VAL78, ALA167

23 − 8.09 GLN385
SER237

2.1265
2.2453

PRO285, PHE338, CYS345, VAL78, ALA233

24 − 14.09 TRP182 1.7232 VAL82, PRO285, VAL78, VAL78, ALA167, PRO285

25 − 7.89 ASP282
LYS136
GLN385

2.1238
2.1433
2.2334

LEU103, VAL78, TRP182, ALA167, PRO285

26 − 14.79 GLN105
ALA167
VAL82

2.2339
2.2344
2.5753

LYS173, ALA128, PHE168, TRP182, PHE230, ALA111, PRO112, VAL82, VAL78

27 − 9.19 ASP78
GLN385

3.3648
2.4850

PRO346, ALA167, PHE168, TRP182, CYS345, ALA233

28 − 10.59 VAL77 2.4322 TRP182, ALA167, TRP182, PRO285, VAL27, PRO34

29 − 6.79 ASN74 3.4567 VAL99, PHE280, VAL142

30 − 7.59 GLN385 2.17739 VAL78, ALA233, LEU161, PHE168, TRP18
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predictive squared correlation coefficient (R2
Pred ¼ 0:6550

) which all met the threshold requirement for accepting

any proposed model reported in Table 6.
The proposed QSAR model and the findings gotten in this

study were compared with the recent model established in
the literature as presented below (Adeniji et al. 2020b):

pBA ¼ − 3:927401745 MATS2sð Þ
þ 4:730973152 nHBint3ð Þ
þ 1:1035920582 maxtsCð Þ
þ 0:310934301 TDB9uð Þ
− 0:791306892 RDF90ið Þ
− 4:281096493 RDF110sð Þ
þ8:840916286

N train ¼ 35;N test ¼ 15; R2 ¼ 0:9368
� �

;

R2
adj ¼ 0:8960

� �
Q2 ¼ 0:8550
� �

cR2
p ¼ 0:6849

� �
R2
Pred ¼ 0:7925

� �

The validation factors stated in the literature and com-
pared with those reported in this study were all in full

agreement with the threshold criteria reported in Table 6
which really implies and affirms that the proposed
model is robust and fitted.
In addition, the coefficient (R2) values of 0.7659 and

0.6550 presented Figs. 2 and 3 for training and test sets
also support the degree of correlation between the pre-
dicted anti-tubercular activities in this work and the re-
ported experimental anti-tubercular activities in the
literature. More also, the correlation coefficient (R2)
values also fall with the minimum threshold value re-
ported in Table 6 for any accepted proposed QSAR
model.
The residual plot shown in Fig. 4 suggests that this

model can be used for the prediction of the anti-
tubercular activity values for new compound since all
the standardized residual values for training and test sets
fall within the distinct boundary of ± 2 on the vertical
axis, i.e., standard residual axis. Moreover, the low re-
sidual value computed ascertains no inaccuracy and no
computational incompetency in the model prediction
(Adeniji et al. 2020c; Adeniji et al. 2020d).
Applicability domain (AD) ensures that the proposed

model is vividly used only to predict compounds similar

Table 8 Docking analysis between triazole analogue and the target (DNA gyrase) (Continued)

Ligand Binding
affinity
(BA),
kcal/
mol

Hydrogen bond Hydrophobic interaction

Amino acid Bond length (Ao) Amino acid

LEU103 2.2281

31 − 14.29 GLN385
CYS170

2.0343
2.1732

PHE215, LEU207, MET66, VAL78, ALA147, PRO94

32 − 7.79 VAL95 2.6433 LEU217, TYR113, PRO112, VAL78

33 − 6.19 GLN105
ARG72

2.5433
2.1843

ALA137, VAL122, TRP182, PHE220

34 − 4.09 THR77
GLN385
ALA167
GLN385
ALA167

2.1123
2.6234
2.6012
2.1922
2.6302

PHE168, VAL78

35 − 8.19 THR77
ALA167
GLN385

2.1423
2.3432
2.134

GLY232, VAL228, PHE168, TRP182, LYS175, ALA233

36 − 14.59 PHE164
CYS134
GLY232

2.2211
2.211
2.3732

PHE168, TRP182, PRO169, LYS136, VAL78, ALA167

37 − 9.23 ARG165
GLN385
ARG386

1.99395
2.3433
2.4551

ALA167, PHE185, VAL228, CYS134, ASN74

38 − 6.89 THR65 1.43511 CYS170, ALA233, GLN385

39 − 8.29 GLN385 1.322 ARG165, GLN385, CYS234, VAL167, GLN385

40 − 15.69 – – LEU103, GLY96, PHE205, ARG101, LEU207

Isoniazid − 14.6 SER279
ALA337

2.29943
2.52954, 2.24657

PHE338, CYS345
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Fig. 6 a The 2D interactions between DNA gyrase and isoniazide. b The 2D interactions between DNA gyrase and ligand 19. c H-bond
interaction between DNA gyrase and ligand 19

Adeniji et al. Bulletin of the National Research Centre          (2020) 44:132 Page 12 of 17



in terms of distance measure, i.e., leverage h (Adeniji
et al. 2020a; Adeniji et al. 2020b; Adeniji et al. 2020c;
Roy et al. 2011; Adeniji et al. 2020d; Tropsha et al.
2003). AD for the proposed model using the Williams
plots is presented in Fig. 5 which gives a graphical dis-
covery of both influential compounds and outliers. The
leverage measure is used to detect the outlier while
warning leverage h* is used to detect the influential
compound. In Fig. 5, all the compounds appeared to fall
within the defined leverage measure of ± 3. Hence, no
compound is said to be an outlier. However, compounds
38 and 40 are influential molecules since their computed
leverage values exceed the warning leverage of h* = 0.54.

Molecular docking analysis
Analysis of docking interactions of the studied com-
pounds with the protein target (DNA gyrase) is pre-
sented in Table 8. Interaction binding affinities between
the protein binding pocket and the ligands range from −
4.09 to − 17.79 kcal/mol as shown in Table 8. Mean-
while, when the binding affinity of the conventional
drugs, i.e., isoniazide (− 14.6 kcal mol−1), was compared
with the binding affinities of the studied compounds, it
was observed that compound 19 among the 1,2,4-tri-
azole analogues has a binding affinity of −
17.79 kcal mol−1 greater than conventional drugs and
other derivatives. Thus, ligand (compound 19) was visu-
alized and evaluated using Discovery Studio Visualizer
to ascertain its binding and interaction type. The 2-
dimension interaction of ligand 19 with the protein tar-
get site is shown in Fig. 6. Five conventional hydrogen
bonds (2.29648, 2.28554, 2.43913, 2.99768, and
2.22618°A) were bonded with GLN101, TRP103,
SER118, ASP122, and ASP122. Two hydrogen bonds
were observed with the S=O of the ligand as an H-
acceptor and linked with GLN101 and TRP103 of the
protein active site while three hydrogen bonds were ob-
served with the N-H group as an H-donor with SER118,
ASP122, and ASP122 of the protein active site as re-
ported in Fig. 8. Increase in the number of hydrogen
bonding in ligand 19 compared to three conventional

hydrogen bonds in isoniazide, i.e., 2.3001, 2.5301, and
2.2161°A, with ALA337, ALA337, and SER279 as pre-
sented in Fig. 8 accounts for the potency of ligand 19
over the commended drug.

Computational design of novel anti-tubercular agents
Substitution, elimination, and addition techniques were
employed to design some novel anti-tubercular agents
with enhanced activities via modification of the template
structure (compound 19) presented in Fig. 7 using the
approach of ligand-based design (Adeniji et al. 2020a;
Adeniji et al. 2020b). The template was selected as the
reference compound and backbone to design new prom-
ising compounds due to its prominent activity values
found within the applicability domain phase reported in
Fig. 5. The discovery of the new compounds was suc-
cessfully achieved based on the information derived for
the computed mean effect on the descriptor: TDB3v and
RDF70v with high influence on the biological activities
of the studied compounds and substitution and deletion
which was simply made on the position of acetylene and
1H-1,2,4-triazole moiety at positions 8 and 12 seen in
Fig. 7. Based on the approach, twelve prominent com-
pounds with improved anti-tubercular activities were
successfully designed by substituting and eliminating the
alkyl group, H atom, methoxy group, and 1H-1,2,4-tri-
azole at positions 8 and 12 of the reference presented in
Table 9. To ascertain and affirm the reliability of the de-
signed compounds, leverage value was computed for all
the designed compounds. Interestingly, all the computed
leverage values for the designed compounds appeared to
fall the warning leverage (h* = 0.64) in Fig. 5. Meanwhile,
compound 19h was observed with high activity among
the designed compounds. This was as a result of the
alkyl group (CH3) substituted at position 12 and 1H-1,2,
4-triazole substituted at position 8 of the reference tem-
plate acting as electron donating substituents via positive
inductive effect (+I), thereby increasing the electron
density and making the pharmacophore of compound
19h more basic compared to other designed compounds.

Fig. 7 a The lead compound (19). b The general formula of the lead compound (19) as a design template

Adeniji et al. Bulletin of the National Research Centre          (2020) 44:132 Page 13 of 17



Table 9 Generated descriptors and predicted activities for the designed compounds
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Table 10 Docking analysis between designed compound 19h and the target (DNA gyrase)

Ligand Binding affinity
(BA), kcal/mol

Hydrogen bond Hydrophobic interaction

Amino acid Bond length (Ao) Amino acid

19h − 21.6 TRP103 2.32531 TRP103

SER104 2.69785

GLY120 2.50087

GLY120 2.27506

PRO119 2.31546

VAL278 2.66424

TRP103 2.63031

Fig. 8 a The 2D interactions between DNA gyrase and designed ligand 19h. b The H-bond interaction between DNA gyrase and designed
ligand 19h
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Validation of designed compound 19h via molecular
docking
Designed compound 19h was docked with the protein
target (DNA gyrase) in order to confirm its potency with
the binding site of the target. The target formed − 21.6
kcal/mol binding affinity with the ligand (compound
19h) as stated in Table 10 which appeared to be
higher than the template (compound 19) binding af-
finity (− 17.79 kcal/mol) stated in Table 8. Ligand 19h
formed seven conventional hydrogen bonds with tar-
geted protein. The triazole “N-H group” acting as an
H-bond donor provides contribution of five hydrogen
bond linkages: two H-bonds with GLY120, one H-
bond with PRO B:119, single H-bond with VAL278,
and one H-bond with TRP103. More also, the triazole
“S=O” acting as an H-bond acceptor provides mean-
ingfully two H-bond bonds with TRP103 and SER104
as presented in Fig. 8. The increase in the number of
hydrogen bonds in the receptor-ligand complex gives
reasonable explanation why the binding affinity of de-
signed compound 19h is higher than its reference
template structure (compound 19) since more hydro-
gen bonds are observed in the designed compounds
(Adeniji et al. 2020a; Adeniji et al. 2020b). Finally, the
correlation between the QSAR studies and molecular
docking is presented in Fig. 9. It is seen that the
anti-tubercular activity of each molecule that made
up the dataset coincides with the binding affinity with
significant correlation of R2 = 0.7206. Therefore, this
signifies that there is relationship between the QSAR
and molecular docking results at p < 0.05.

Conclusion
Combined in silico and theoretical approach was suc-
cessfully applied to derive a proposed QSAR model cap-
able of predicting the activities of 1,2,4-triazole and its

analogue against M. tuberculosis. This model serves as a
prominent tool for structural insight to design new
hypothetical anti-tubercular compounds against multiple
strain M. tuberculosis. Meanwhile, the reliability, signifi-
cance, fitness, and robustness of the model have been
fully established via internal and external assessments
and validated molecular descriptors: MATS7s, SM1_
DzZ, TDB3v, and RDF70v that influence the anti-
tubercular activities. Analysis of leverage measure also
showed that the proposed model has a high predictabil-
ity rate to predict all the anti-tubercular compounds that
fall within its applicability domain space. In addition,
docking studies showed that compound 19 has notice-
able binding affinities from − 17.79 kcal/mol. Hence, it
served as a structural template and insight to design
twelve novel hypothetical agents with more competent
activities. Meanwhile, compound 19h was observed with
high activity among the designed compounds with a
prominent binding affinity of − 21.6 kcal/mol. Therefore,
in vivo, in vitro screening and pharmacokinetic proper-
ties should be carried out in order to determine the tox-
icity of the designed compounds.
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