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Abstract

Alzheimer’s disease (AD) is a neurodegenerative disorder that impairs memory formation and disrupts neurocognitive
function. This neuropathy is characterized by neural loss, neurodegeneration, and formation of amyloid plaques and
neurofibrillary tangles. Approved medications provide only symptomatic relief without affecting AD progression.
Because of the multifactorial nature of AD and the absence of effective treatment, stem cell-based therapy has
been regarded as an effective, safe, and innovative therapeutic approach to overcome AD. Different sources of stem
cells are employed for AD treatment, such as neural stem cells (NSCs), mesenchymal stem cells (MSCs), embryonic
stem cells (ESCs), and induced pluripotent stem cells (iPSCs). There is a growing body of evidence supporting the
promising therapeutic potential of stem cell transplantation, which might be attributed to the mechanistic actions exerted
by stem cells such as inducing hippocampal neurogenesis, secreting paracrine factors, exerting anti-inflammatory activity,
showing anti-amyloidogenic potential, and finally resulting in cognitive recovery. Although stem cell-based therapy
faces potential hurdles, it holds a potential hope to provide a safe, effective, and feasible clinical application of stem
cells in AD patients.
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Background
Alzheimer’s disease (AD) is an untreatable and age-related
neurodegenerative disorder responsible for 50 to 70% of
all dementia cases worldwide (Zhagn and Li 2014). AD,
the most common form of dementia, is clinically identified
by a slowly progressive decline in neurocognitive func-
tions because of neural and synaptic loss, and deposition
of neurotoxic proteins such as extracellular senile
amyloid-β (Aβ) plaques and intracellular neurofibrillary
tangles (NFTs) (Popovic and Brundin 2006). AD is a pro-
teinopathy due to excessive accumulation of misfolded
and neurotoxic proteins like hyperphosphorylated tau
protein and Aβ-42, which leads to neurotoxicity and sub-
sequent synaptic failure (Reitz et al. 2011). AD neuropathy
is a typical example of a complex multifactorial brain
disorder that is considered to some extent a “stem cell
disease,” as deposition of Aβ-42 plaques has a negative
impact on stem cell proliferation, and even newly generated

neurons and glia ceased to survive in an AD-related
microenvironment (Tincera et al. 2016).
Therefore, regenerative therapy, using stem cells,

could be regarded as a promising and safe approach
for regeneration of altered or lost cellular functions
(Kocaoglu et al. 2014). Although the underlying mecha-
nisms of stem cell-based therapy need more clarification,
there are several preclinical studies demonstrated
encouraging results (Kwak et al. 2018). This review de-
monstrates AD pathogenesis and summarizes the relevant
stem cell research, mechanistic actions, and challenges in
developing different stem cells for AD treatment.

The pathology of AD and current treatment
Alzheimer’s disease (AD) is a multifactorial brain
disorder, with several pathogenic factors including
genetic factors, oxidative stress, Aβ-induced neuroto-
xicity, excitotoxicity, neuroinflammation, mitochondrial
dysfunction, and cytoskeletal alteration of synapse compo-
nents; therefore, it is complicated to determine its exact
pathophysiologic cascade (Huang and Mucke 2012;
Ferreiro et al. 2012). There are several assumptions that
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explain AD neuropathy such as cholinergic assumption,
oxidative stress assumption, and amyloid cascade assump-
tion (Bali et al. 2017). However, approximately one-third
of AD patients showed no radiographic signs of amyloid
plaques (Doraiswamy et al. 2014). Therefore, more
advanced diagnostic approaches should be developed to
enable the early diagnosis of AD (James et al. 2015;
Sperling et al. 2011).
Amyloid cascade hypothesis assumed that the uncon-

trolled proteolytic processing of amyloid precursor protein
(APP) results in the excessive accumulation of Aβ deposits
(Querfurth and La Ferla 2010). APP is hydrolyzed through
two major pathways; the non-amyloidogenic (α-secretase)
pathway that leads to the generation of non-pathogenic
amyloid products and the amyloidogenic (β- and ɣ-secre-
tases) pathway that results in the formation of two forms of
Aβ peptides: predominant Aβ-40 (90%) and fibrillogenic
Aβ-42 (10%), involved in AD pathology (Portelius et al.
2010; Perneczky and Alexopoulos 2014; Bali et al. 2017).
Accumulation of Aβ plaques induces neurotoxicity and
triggers a cascade of pathological events leading to neuroa-
poptosis in the central nervous system (CNS) (Pallas and
Camins 2006; Hardy 2009), (Fig. 1).
On the other hand, Tau is an “intracellular microtubule-

associated protein” that plays an essential role in micro-
tubule stabilization; therefore, atypical hyperphosphory-
lation of tau protein results in the formation of NFTs
and disruption of microtubules (Khan and Bloom 2016;
Bali et al. 2017). Moreover, microglial activation, and
associated inflammatory mechanisms contribute to AD

pathophysiology (Meraz-Ríos et al. 2013; Millington et
al. 2014). In addition, metabolic dysfunction resulted in
elevated levels of reactive oxygen species (ROS),
reactive nitrogen species (RNS), and inflammatory media-
tors that generate neuroinflammation in AD subjects
(Luque-Contreras et al. 2014). Another critical theory in
AD pathogenesis is “Cholinergic hypothesis,” which de-
scribes the impairment of cholinergic neurotransmission
and the selective deficiency of the neurotransmitter acetyl-
choline (ACh) in AD brains (Zivin and Pregelj 2008).
Based on etiology, they are two classes of AD:

early-onset familial (FAD)—approximately 10% of the
cases—and late-onset sporadic (SAD)—90% of the cases
(Bekris et al. 2010). Familial AD (FAD) is a very rare
autosomal dominant AD disorder that affects patients
under the age of 65 years (Amemori et al. 2015), its early
onset is associated with mutations in specific genes
such as APP, presenilin 1 (PS1), and presenilin 2 (PS2)
(Bekris et al. 2010; Schipper 2011). Sporadic AD (SAD)
appears to have a complex genetic profile and interacting
environmental factors (Alzheimer’s Association 2016).
SAD is characterized by deposition of extracellular Aβ
plaques, hyperphosphorylation of tau, microglial acti-
vation, and finally the massive neuronal and synaptic loss,
resulting finally in brain atrophy in later stages of AD
(Duncan and Valenzuela 2017), (Fig. 2).
Current medications for AD are symptomatic and are

characterized by their neuromodulatory functions such as
acetylcholinesterase (AChE) inhibitors (Coyle and Kershaw
2001), antioxidants (Zandi et al. 2004), and amyloid-β

Fig. 1 The amyloidogenic and non-amyloidogenic pathways of the amyloid precursor protein (APP): APP is enzymaticaly hydrolyzed by either α-
or β-secretase. The non-amyloidogenic pathway, implicating α-secretase, leads to the extracellular release of non-pathogenic products. The
amyloidogenic pathway, involving β-secretase (BACE1) and ɣ-secretase, results in the generation of amyloid products of varying length (Aβ-40
and Aβ-42), accumulation of these neurotoxic proteins could lead to neurodegenration and might be the main cause of AD
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targeting medications (Cummings et al. 2017). For
example, AChE inhibitors can ameliorate cholinergic func-
tion through blocking neurotransmitter degradation and
increasing the brain content of neurotransmitters (Confa-
loni et al. 2016; Stella et al. 2015). However, this type of
treatment can only provide temporary symptomatic relief
without attenuating AD progression (Monacelli and Rosa
2014). Another type of treatment, such as anti-Aβ aggre-
gation agents and β-secretase inhibitors, is aimed to pre-
vent amyloid plaque formation and to facilitate amyloid
clearance (Huang and Mucke 2012; Salloway et al.
2014). However, several Aβ-targeting treatments failed
to restore neurocognitive function (Coric et al. 2012;
Doody et al. 2013; Kile et al. 2017). Actually, the “one
alteration, one disease, one drug” strategy is not applied
for AD (Kimura, 2016); therefore, different targets in the
brain should be considered (Fang et al. 2018). Moreover,
therapeutic interventions should be introduced at the
early AD stages (Tong et al. 2015). Hence, it is very
important to understand the etiology of AD for clinical
application of alternative therapeutic approaches such as
stem cell-based therapy (Banik et al. 2015).

Stem cell-based therapy for AD
Stem cell-based therapy is a promising, safe, and
effective therapeutic strategy for several neurodege-
nerative diseases, including AD (Kocaoglu et al. 2014;
Chang et al. 2014; Wernig et al. 2008). Stem cell-
based-approach is still under development but rapid
achievements indicate its therapeutic potential for

reversing AD-associated neurodegeneration, as well as,
improving cellular and structural functions (Lee et al.
2015; Kwak et al. 2018). This therapeutic potential might
be partly attributed to the neurosecretory (paracrine)
effect, as several neurotrophic factors are implicated in
neuromodulation of various cellular functions that ameli-
orate the pathological features and neurocognition in AD
animal models (Fang et al. 2018).
Stem cells are capable of spontaneous self-renewal and

subsequent differentiation into specialized cells, such as
neurons and glial cells (Eriksson et al. 1998; Paspala et al.
2009). Based on the differentiation capacity, there are
three types of stem cells: totipotent cells that have the po-
tential to create an organism, pluripotent cells that can be
transformed into all cell types, and multipotent cells that
can be differentiated into cell types in their own tissues
(Yoo et al. 2013). Based on origin, stem cells are divided
into embryonic, fetal, and adult types (Takahashi et al.
2008). Choosing the suitable cell source is an important
step to develop a stem cell-based therapy (Duncan and
Valenzuela 2017). The most commonly utilized stem cells
in AD-related studies are embryonic stem cells (ESCs),
induced pluripotent stem cells (iPSCs) (Takahashi et al.
2006), mesenchymal stem cells (MSCs) (Drela et al. 2013),
and neural stem cells (NSCs) (Kim et al. 2013). This
review attempts to provide a simplified idea of stem
cell-based therapy for AD. We described the underlying
pathology of AD and demonstrated the different stem
cells used in AD animal models and referred to their
possible mechanistic actions as summarized in Table 1.

Fig. 2 Pathological events related to underlying AD neurodegeneration. These events include the amyloid deposition in the brain due to the
uncontrolled cleavage of APP and the degeneration of neurotoxic Aβ-42 peptides, hyperphosporhylation of tau protein and the formation of
intracellular neurofibrillary tangles, the deficiency of acetylcholine (ACh) due to its increased hydrolysis by acetylcholinesterase (AChE), oxidative
stress, and mitochondrial dysfunction
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Table 1 Transplantation studies of stem cells in AD animal models

Stem cell type AD subject Therapeutic outcome and mechanism of action References

NSCs Aged Tg-AD mice -Improved cognition
-paracrine support (BDNF)

Blurton-Jones et al.
2009

NSCs AD rats Improved learning and memory function Xuan et al. 2009

NSCs APP /PS1 Tg mice -Enhanced expression of synaptic proteins
-Improved spatial memory

Zhang et al. 2014

NSCs APP /PS1 Tg mice -Ameliorated cognitive deficits
-Anti-inflammatory activity
* No difference was found in Aβ levels

Zhang et al. 2015a

NSCs APP /PS1 Tg mice -Enhanced mitochondrial biogenesis
-Reduced cognitive deficits

Zhang et al. 2015b

overexpressing ChAT-NSCs Cognitive decline-rat model Restored cognition Park et al. 2012

overexpressing ChAT-NSCs Aged mice Improved memory function Park et al. 2013

Human NSCs Tg2576 mice -Enhanced neurogenesis
-Improved cognition

Lilja et al. 2015

Human NSCs -3xTg-AD mice -CaM/Tet-DT(A)
model of neuronal loss

-Improved cognition
-Enhanced synaptogenesis

Ager et al. 2015

NEP-expressing NSCs -3xTg-AD
-Thy1-APP mice

Anti-amyloidogenic effect Blurton-Jones et al.
2014

MSCs Aβ-treated mice Modulated Wnt signaling pathway Oh et al. 2015

UCB-MSCs APP /PS1 Tg mice -Rescued memory deficits
-Anti-amyloidogenic effect
-Paracrine support

Yang et al. 2013

UCB-MSCs AD model promoted hippocampal neurogenesis
and synaptic activity

Kim et al. 2015

UCB-MSCs APP/PS1 Tg mice Anti-amyloidogenic effect via SCAM-1 Kim et al. 2012

Human UCB-MSC APP/PS1Tg mice -Improved memory function
-Anti-amyloidogenic effect
-Anti-hyperphosphorylation of tau

Lee et al. 2012b

adipose-derived MSCs AD mice - Microglial activation
-Ameliorated neuropathological deficits

Ma et al. 2013

AT-MSCs APP/PS1 Tg mice -Enhanced neurogenic activity
-Improved cognitive impairment

Yan et al. 2014

VEGF overexpressing BM-MSCs 2xTg-AD mice -Anti-amyloidogenic effect
-Improved cognitive impairment

Garcia et al. 2014

BM-MSCs Aβ mice -Induced microglial migration when exposed
to Aβ in vitro
-Increased release of CCL5, NEP, IL-4
-Anti-amyloidogenic effect
-Improved cognitive impairment

Lee et al. 2012a

BM-MSCs APP/PS1 Tg mice -Anti-amyloidogenic activity
-Anti-inflammatory effect
-Anti- hyperphosphorylation of tau
-Improved cognitive function

Lee et al. 2010

BM-MSCs Aβ-injected C57BL/6 mice -Microglial activation
-Anti-amyloidogenic activity

Lee et al. 2009

PD-MSC Aβ mouse model -Regulated neurogenesis, glial cell activation
and altering cytokine expression

Yun et al. 2013

MSCs AD models -Enhanced autophagy
-Anti-amyloidogenic activity
-Upregulated BECN1/Beclin 1 expression

Shin et al. 2014

Encapsulated human -MSCs Double Tg-AD mouse -Anti-amyloidogenic activity
-Anti-inflammatory activity

Klinge et al. 2011

hESC Radiation-induced cognitive impairment -Improved cognitive function Acharya et al. 2009

ESC-derived NPCs Aβ rats Improved cognitive function Tang et al. 2008
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Stem cells used for the treatment of AD
Neural stem cells (NSCs)
NSCs are derived from the embryonic or adult brain
and are responsible for the generation of all neural cell
types such as neurons, astrocytes, and oligodendrocytes
(Kim et al. 2013; Shroff 2018); their presence is re-
stricted to neurogenic niches of the subventricular zone
(SVZ) and the granular layer of the hippocampal den-
tate gyrus (DG) (Duncan and Valenzuela 2017). Multi-
potent NSCs are capable of self-renewal and
differentiation into functional glia, neurons, astrocytes,
and oligodendrocytes (Gage 2002) and can be obtained
from fetal and postmortem neonatal brain tissues
(Martínez-Morales et al. 2013) or differentiated from
iPSCs and ESCs (Hermann and Storch 2013; Yu et al.
2013a, 2013b).
The mechanistic action of NSCs is regulated by meta-

bolic processes such as oxygen consumption and energy
production (Almeida and Vieira 2017; Fatt et al. 2015;
Wang et al. 2012a). Mitochondrial dysfunction is impli-
cated in AD progression (Swerdlow et al. 2014); there-
fore, more research is required to estimate the
connection between the metabolic switch of NSCs and
AD pathogenesis (Fang et al. 2018).
Experimentally, it was found that engrafted NSCs could

survive, migrate, proliferate, and differentiate into choli-
nergic neurons, astrocytes, and oligodendrocytes, resulting
in increased synaptic strength and amelioration of cogni-
tive function in AD animal models (Yamasaki et al. 2007;
Xuan et al. 2009; Blurton-Jones et al. 2009). Most NSC
transplantation studies successfully recovered cognitive
dysfunction in AD animal models but failed to decrease
Aβ plaques (Blurton-Jones et al. 2009; Zhang et al. 2015a;
Ager et al. 2015). In another study, Park et al. (2012)
demonstrated that transplantation of human choline
acetyltransferase (ChAT)-NSCs into (AF64A-cholino-
toxin-induced) AD rats improved cholinergic neuronal
integrity through elevating ACh in cerebrospinal fluid
(CSF). In addition, NSCs might exert “paracrine neuro-
protection” through enhancing the expression and release
of neurotrophic factors such as brain neurotrophic factor
(BDNF) and nerve growth factor (NGF), increasing neuro-
genesis, and finally improving neurocognitive function in

AD rat model and aged primate (Blurton-Jones et al.
2009; Chen and Blurton-Jones 2012; Park et al. 2013;
Fan et al. 2014). Moreover, transplanting NSCs, derived
from the hippocampus of neonatal rats, into AD rats
resulted in the generation of new cholinergic neurons and
improvement of cognitive function (Xuan et al. 2009).
Interestingly, the transplantation of human NGF-

expressing NSCs (genetically modified) ameliorated
cognitive function in AD mice (Lee et al. 2012a). In
addition, transplantation of BDNF-overexpressing NSCs
improved synaptic density and restored memory forma-
tion (Wu et al. 2016). On the other side, transplantation
of genetically modified NSCs that express neprilysin
(NEP), the Aβ-degrading enzyme, into the hippocampi
of AD transgenic (Tg) mice, reduced Aβ pathology and
improved synaptic plasticity and function (Blurton-Jones
et al. 2014). In accordance, transplantation of fetal NSCs
into the cerebral lateral ventricles of AD mice resulted
in activation of Akt/GSK3β pathway, the subsequent
inhibition of tau hyperphosphorylation, and the final
improvement of memory function (Lee et al. 2015).
Therefore, NSC transplantation attenuated both tau- and
Aβ neuropathy and could represent an effective treatment
against AD proteinopathy.
Altogether, transplanted NSCs mitigate neuroinflamma-

tion, enhance neurogenesis, promote synaptogenesis, and
rescue cognitive functions of AD animal models (Yang et
al. 2016; Lilja et al. 2015; Ager et al. 2015; Zhang et al.
2015b). Moreover, NSC transplantation resulted in modu-
lation of cross talk between NSCs and endothelial cells
(Li et al. 2006). Thus, NSC-based therapy for AD could
provide a suitable neural microenvironment to inhibit neu-
rodegeneration and to sustain the survival of mature
neurons (Xuan et al. 2009). However, they are limitations
to NSCs such as failure to improve Aβ pathology, limited
differentiation capacities to generate sufficient numbers of
NSCs and cholinergic neurons, unwanted generation of
non-neuronal cell types, and uncontrolled differenti-
ation into glial cell types (Xuan et al. 2009; Ager et al.
2015; Lee et al. 2016). Moreover, NSC content in the
human brain declined with age (Manganas et al. 2007).
This age-associated decline in NSCs might affect the effi-
cacy of transplantation.

Table 1 Transplantation studies of stem cells in AD animal models (Continued)

Stem cell type AD subject Therapeutic outcome and mechanism of action References

ESC-derived NPCs AD rats Improved cognitive function Moghadam et al. 2009

iPSC-derived NPCs APP-Tg mice -Cholinergic function
-Improved spatial memory

Fujiwara et al. 2013

human IPSC-ML/NEP2 5XFAD AD mouse Anti-amyloidogenic activity Takamatsu et al. 2014

Abbreviations: Aβ amyloid beta, AD Alzheimer’s disease, Tg transgenic, APP /PS1: Tg mice amyloid precursor protein (APP)/PS1 transgenic (Tg) mice, ChAT choline
acetyltransferase, UCB-MSCs umbilical cord-derived MSCs, AT-MSCs adipose tissue-derived mesenchymal stem cells, BM-MSCs bone marrow-derived MSCs, NEP
neprilysin, PD-MSC placenta-derived MSCs, hESC human embryonic stem cells, NPCs neuronal precursor cells, IPSC-ML/NEP2 iPSC-derived macrophages expressing
Neprilysin-2, 2xTg-AD mice double transgenic mice model of AD express APP and PS1 mutation, 3xTg-AD mice triple transgenic mice model of AD express APP,
PS1 and microtubule-associated protein tau (MAPT) mutation, 5XFAD mice overexpress 3 APP mutations and 2 PS1 mutations
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NSCs showed relatively low risks in tumorigenesis and
immunogenicity; that renders them the ideal candidates
for neuronal transplantation in the human brain
(Kim et al. 2013). As an alternative strategy for neuronal
replacement, NSCs could represent a promising and safe
approach to deliver potential therapeutic agents and
disease-modulating proteins (Liu 2013, Martínez-Morales
et al. 2013, Chen and Blurton-Jones 2012, Dunnett and
Rosser 2014; Blurton-Jones et al. 2014).

Mesenchymal stem cells (MSCs)
MSCs can be derived from various origins as demon-
strated in (Fig. 3). MSCs, under certain conditions, can
differentiate into different cell types of mesodermal origin
such as chondrocytes, cardiomyocytes, adipocytes, osteo-
blasts, myocytes, and tendon cells. Interestingly, MSCs are
featured by their regenerative potential due to self-renewal
capacity and multipotency (Hsun and Yang 2018).
MSCs are multipotent progenitors derived from different

adult tissues and are capable of in vitro self-renewal (Lanza
and Atala 2014). Moreover, MSCs are capable of support-
ing hematopoiesis and cartilage regeneration (Bianco et al.
2013). MSCs have several modulatory features such as
accessibility, ease of handling, availability, and a broad
range of differentiating potential (Divya et al. 2012).
MSCs are characterized by the Blood-Brain Barrier
(BBB)-crossing ability, active homing ability, and efficient
migratory capacity toward damaged brain regions; more-
over, MSCs could be clinically used in AD patients,
because of their less-invasive systemic administration
(intravenously), without inducing tumorigenicity or
immunogenicity, besides lacking ethical concerns (Oh et
al. 2015, Ra et al. 2011, Fang et al. 2018).
MSC transplantation into AD models demonstrated

neuroprotective potential through modulating neu-
roinflammation, boosting survival signaling, enhancing

endogenous hippocampal neurogenesis, suppressing
neuroapoptosis, and augmenting the Wnt signaling
pathway (Oh et al. 2015; Heppner et al. 2015; Laroni et al.
2015). For instance, transplantation of Bone marrow-
derived MSCs (BM-MSCs) into murine AD models atten-
uates neuroinflammation, improves both neuropathology
and neurocognitive functions (Huang and Mucke 2012).
Moreover, transplantation of BM-MSCs into APP/PS1 Tg
mice reduced the size of pE3-Aβ plaque (Naaldijk et al.
2017). BM-MSCs demonstrated their ability to upregulate
expression of “Nestin and ChAT-positive cells” and
decreased hippocampal Aβ plaques at the damaged brain
region (Bali et al. 2017). Furthermore, placenta-derived
MSCs (PD-MSC) improved memory dysfunction in
Aβ-42-infused AD mice (Yun et al. 2013).
MSCs can induce hippocampal neurogenesis through

secretion of neurotrophic factors (Tfilin et al. 2010). The
neuronal replacement potential of MSCs is mediated by
the released neurotrophic factors (Oh et al. 2015;
Teixeira et al. 2015). Transplantation of BM-MSCs into
the lateral ventricles of the brain in Tg AD mouse model
increased expression of vascular endothelial growth factor
(VEGF) that improved the endothelial dysfunction and
enhanced synaptic plasticity (Garcia et al. 2014) and could
be employed as a therapeutic approach for AD. In
addition, MSCs demonstrated anti-inflammatory and
immunomodulatory activities, such as upregulating neu-
roprotective mediators, downregulating pro-inflammatory
cytokines, and, activating microglial activity to improve
Aβ pathology (Lee et al. 2012a; Yang et al. 2013). These
mechanistic actions exerted by MSC could render them as
possible candidates for effective neuronal replacement.
In the CNS, there are two opposite microglial pheno-

types: M1 (pro-inflammatory) and M2 (anti-inflammatory).
M1 microglia release pro-inflammatory cytokines such as
IL-1β. M2 microglia are induced by IL-4, IL-13, apoptotic

Fig. 3 Origin of mesenchymal stem cells (MSCs). MSCs can be isolated from the umbilical cord blood, bone marrow, and adipose tissue. MSCs
are capable of self-renewal and differentiation into multiple cell lineages
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cells, or other anti-inflammatory cytokines (Tang and Le
2016). M2 microglia are involved in ameliorating Aβ neur-
opathy after transplantation (Ma et al. 2013; Yang et al.
2013). Therefore, targeting the balance of M1/M2 microglia
and activation of M2-like microglia is a potential strategy to
ameliorate AD-associated neuroinflammation (Lee et al.
2012b; Darlington et al. 2013). The anti-inflammatory and
anti-amyloidogenic activities of MSCs might be attributed
to microglial activation (M2 microglia) and their ability to
express CCL5, a chemoattractive factor secreted by trans-
planted BM-MSCs, to enroll additional microglial cells
(Lee et al. 2009; Lee et al. 2012b; Turgeman 2015). Bi-lat-
eral transplantation of human umbilical cord-derived MSCs
(hUCB-MSCs) into double transgenic mice released soluble
intracellular adhesion molecule-1 (sICAM-1), enhanced
microglial expression of Aβ-degrading enzymes via the
sICAM-1/LFA-1 signaling pathway, and subsequently
decreased hippocampal Aβ plaques (González and
Pacheco 2014, Kim et al. 2012), through microglial
activation (Giunti et al. 2012). This proves the
multi-targeting therapeutic potential of MSCs, and the
activation of cell plasticity in AD brain, especially when
coupled with therapeutic substances such as NEP
(Laroni et al. 2015; Kim et al. 2012).
Furthermore, transplantation of BM-MSCs and UCB-

MSCs into AD animal models was able to activate
endogenous microglia, to suppress monocyte-derived den-
dritic cells, to generate cholinergic neurons, and to de-
crease Aβ plaques and safely recover cognitive function
(Sun et al. 2013; Zhang et al. 2012). In addition, human
MSCs are capable of promoting autophagy, enhancing Aβ
clearance, and boosting neuronal survival in Aβ-induced
AD mice (Shin et al. 2014).
Moreover, adipose tissue-derived MSCs (AT-MSCs)

might have a common transcriptional profile with BM-
MSCs (Peroni et al. 2008). AT-MSCs secrete neurotrophic
factors and differentiate into neuron-like and astrocyte-like
cells (Gutiérrez-Fernández et al. 2013; Ikegame et al. 2011).
Intracerebral transplantation of AT-MSCs into APP/PS1 Tg
AD mice enhances neurogenesis (Yan et al. 2014). In
addition, AT-MSCs, when co-cultured with Aβ, secrete ac-
tive NEP-containing exosomes (Katsuda et al. 2013b). Exo-
somes are cell-derived membrane vesicles that regulate
physiological or pathological pathways through acting as
mediators of cell-to-cell communication and transferring
genetic information to recipient cells (Record et al. 2011).
Furthermore, administration of exosomes could represent
an alternative therapy for AD (Fang et al. 2018; El
Andaloussi et al. 2013). Intravenous administration of
MSC-derived exosomes enhances functional recovery in
stroke-induced rats (Bang et al. 2016); this might be
attributed to “miR delivery to target cells,” thereby regulat-
ing the expression of genetic information and promoting a
therapeutic response (Juranek et al. 2013). For instance,

MSC transplantation raised miR-133b expression in the
brains of stroke-induced rats and regulated neurite out-
growth (Xin et al. 2012).
Recently, three-dimensional (3D) modeling aimed to

simulate the in vivo-like microenvironment of the stem
cells, to preserve their characteristics and to enhance
their mechanism of action (Sart et al. 2014; Frith et al.
2010); this approach could assist the clinical application
of stem cells (Bang et al. 2016). For example, “3D MSCs”
expresses higher neuromodulating factors (Frith et al.
2010); thereby this type of MSCs could present a higher
therapeutic potential.
Finally, we could consider that MSCs, a double-edged

weapon in neurodegenerative disorders, provide both
neuroprotection and immunomodulation, and at the
same time, MSCs have an uncontrolled homing mecha-
nism to lesion sites in aged AD models due to their low
efficacy (Laroni et al. 2015; Fabian et al. 2017). There-
fore, more research is required to understand the
homing mechanism of MSCs to optimize their migration
capacities and to promote the therapeutic potential of
transplanted MSCs that home directly to the brain
(Fang et al. 2018; De Becker and Riet 2016).

Embryonic stem cells (ESCs)
Pluripotent ESCs are stem cells derived from the
inner cell mass of developing blastocysts and give rise
to all cell types during the embryonic development
(Lerou 2011). ESC transplantation resulted in a safe
recovery of neurocognitive function in rodent models of
brain injury (Acharya et al. 2009). However, because of
their pluripotent differentiation capacity, ESCs demon-
strated drawbacks such as the risk of tumorigenesis and
uncontrolled cell growth, besides the risk of immuno-
genic rejection (Acharya et al. 2009; Fong et al. 2010;
Ratajczak et al. 2014; Chen et al. 2015).
Nonetheless, it was suggested that ESC-derived NSCs

could be safely transplanted without the risk of tumor
formation (Araki et al. 2013, Tang et al. 2008). In vitro
pre-differentiation of ESCs into NSCs and their subse-
quent transplantation into an AD rodent model resulted
in the generation of cholinergic neurons and memory
enhancement (Moghadam et al. 2009).
The conversion of ESCs into medial ganglionic

eminence-like progenitor cells, and their subsequent
transplantation into a murine brain injury model, resulted
in amelioration of neurocognitive function through gene-
rating cholinergic and dopaminergic neuronal subtypes
(Liu 2013). Transplantation of ESC-derived neural
progenitor cells (NPCs) into AD animal models can result
in a therapeutic outcome, through differentiation into
astrocytic and neuron-like cells and enhancing memory
performance (Tang et al. 2008). In addition, transplanting
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“neuron-like cell (NLC)-derived mouse ESCs (mESCs)”
into AD-induced rats enhanced the neuronal connectivity
and reduced brain lesions (Hoveizi et al. 2018).
They are several successful trials to differentiate ESCs

into different neural cell types, including dopaminergic
neurons (Krencik et al. 2011, Kriks et al. 2011, Lee et al.
2007). Human ESCs (hESCs) were able to generate
astroglial cells, spinal motor neurons, and dopaminergic
neurons (Lee et al. 2007). In addition, an ex vivo slice
culture study reported stable functional integration of
cholinergic neuron from hESCs (Bissonnette et al. 2011).
However, hESCs in FDA-approved clinical trials elicit
ethical concerns (Liras 2010).
The neurocognitive decline in AD patients may occur

because of degeneration of basal forebrain cholinergic
neurons (BFCNs) and the subsequent cholinergic dys-
function. Yue and Jing (2015) successfully differentiated
both mouse and human ESCs into BFCNs from a highly
pure population of BFCN progenitors. Both mouse
and human ESC-derived BFCN progenitors were
transplanted into transgenic AD mice and gave rise to
functional cholinergic neurons that resulted in neurocog-
nitive recovery. Therefore, BFCNs might be a typical
model of donor cells; however, more research is required
to elucidate the potential of transplanted BFCNs.

Induced pluripotent stem cells (iPSCs)
IPSCs are pluripotent stem cells reprogrammed (in vitro)
from adult somatic cells (Ye et al. 2013). Takahashi et al.
(2006) discovered that four transcription factors (TFs)
[Sox2, Oct4, Klf4, and c-myc] could reprogram murine
fibroblasts, through retroviral transduction, to ESC-pluri-
potency state.

iPSCs are more available, easily generated, less
immunogenic, and less ethically controversial. Further-
more, iPSCs have the capacity to provide an unlimited
source for different cell types. Additionally, iPSCs are
regarded as “disease modeling” approach for drug
screening and testing, identifying novel drugs, and
patient-tailored (personalized) cell therapy (Tang 2012;
Araki et al. 2013), (Fig. 4). iPSC-derived neurons are
structurally and functionally mature and can form active
synaptic circuits (Pang et al. 2011).
Moreover, applications of iPSCs in AD have been more

concerned with the development of cell-based AD
models (Kwak et al. 2018). Actually, using iPSC-derived
neurons to recap AD pathogenesis in vitro has signifi-
cant applications in screening for potential therapeutic
drugs (Pen and Jensen 2017). The first AD model using
iPSCs was generated using five transcription factors
(OCT4, SOX2, KLF4, LIN28, and NANOG) from fibro-
blasts of FAD patients; these iPSCs were then differen-
tiated into neurons that may increase Aβ-42 expression
to mimic Aβ pathology; thus, these iPSCs could repre-
sent a potential strategy for the development of thera-
peutic drugs against AD (Yagi et al. 2011). For example,
the intra-hippocampal transplantation of human iPSC-
derived cholinergic NPCs into a transgenic AD mouse
model improved spatial memory performance by gene-
rating mature cholinergic neurons (Fujiwara et al. 2013).
In addition, iPSCs could be used to generate NEP-
secreting macrophages (Takamatsu et al. 2014).
To establish a successful iPSC-based therapeutic

approach against AD, we should consider the following
factors: examining the haplobanks of human leukocyte
antigen (HLA), defining standardized and optimized

Fig. 4 The potential applications of iPSC-based therapy for AD. iPSC-based therapy is a therapeutic approach for replacing lost or damaged
neural tissues. iPSCs could be used for generation of healthy neurons and astrocytes, by genetic modification, for in vivo transplantation.
Moreover, iPSCs could act as an in vitro tool for AD modeling and anti-AD drug screening and testing
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protocols to generate NSCs or hippocampal neurons,
and establishing an astrocyte-generation technique for
providing neurotrophic agents (Pappas et al. 2015;
Hunsberger et al. 2016). Moreover, chimeric modeling
and three-dimensional (3D) modeling were used to
imitate different cellular interactions (such as amyloido-
genic pathway) in the AD brains; in addition, genome-
editing techniques were employed to enable isogenic
comparison of different mutations while keeping a
constant genetic background (Fang et al. 2018).
Interestingly, human iPSCs derived from somatic cells

of either FAD or SAD patients contain a patient-specific
(personalized) pathogenic background and can present an
effective method for AD modeling, which could represent
a link between preclinical (animal models) and clinical
application. Moreover, it could aid in the understanding of
AD pathogenesis, identifying therapeutic targets, and drug
screening of the novel treatments against AD (Yang et al.
2016). Furthermore, it was found that human iPSC lines
have only a 10–50% differentiation potential for neu-
rons, as compared to ESCs, which have a nearly 90%
differentiation potential (Wang et al. 2015), that is why,
the possibility of employing iPSCs as a tool for the devel-
opment of specific and tailored AD patient model systems
remains challenging (Tang 2012). More interestingly, de-
generation of basal forebrain cholinergic neurons (BFCNs)
is closely associated with a neurocognitive decline in AD.
Thus, the generation of tailored BFCNs from AD
patient-specific iPSCs is crucial for in vitro disease
modeling and for the development of novel AD treat-
ments (Yang et al. 2016). BFCNs derived from SAD-iPSCs
showed a significant elevation in Aβ plaque formation
which is regarded as a typical AD (Duan et al. 2014). Re-
cently, Schöndorf et al. (2018) derived iPSCs from dermal
fibroblasts of two SAD patients and three controls to
examine SAD pathogenesis. In addition, Najar et al.
(2018) generated iPSCs from two FAD patients. Thus,
these studies might contribute to explain the etiology of
AD and to influence the future treatment of AD. There-
fore, iPSCs could provide unique platforms to detect the
early-AD phenotypes that may help to uncover the under-
lying mechanisms of this neuropathy (Yang et al. 2016).
However, there are several hurdles concerning the

clinical application of iPSCs such as long-term safety
and efficacy, tumorigenicity, immunogenicity, patient-
derived genetic defects, optimal reprogramming, and
ethical issues (Kwak et al. 2018; Lomax et al. 2013).
For instance, using integrating (e.g., viral) vectors to
generate patient-specific iPSCs results in genetic mu-
tation and disruption of endogenous genes (Stadtfeld
and Hochedlinger 2010). Additionally, viral delivery
system (using retroviral or lentiviral vectors) is effi-
cient and reproducible in reprogramming to induce
iPSCs (Sommer et al. 2012); however, the random

viral integration increases the risk of tumorigenesis
(Okita et al. 2007). This can be avoided through transfec-
tion of linear DNA by poly-cistronic vectors, but this
would result in lower reprogramming efficiency. Fortu-
nately, many viral integration-free systems for iPSCs
generation have been utilized, such as adenovirus, epi-
somal vectors, and direct protein delivery (Yang et al. 2016).
In addition, several murine iPSCs conceal epigenetic

abnormalities and continue to keep the epigenetic
memory of their donor cells, as well as the absence of
efficient targeting strategies to repair mutant alleles
(Panopoulos et al. 2011). Therefore, generating high-
fidelity cells of known-fate is required for a long-
lasting effect of the transplantation and will have to be
guaranteed before the clinical use of reprogrammed
cells (Pen and Jensen 2017).

Other cells
Novel sources of stem cell have demonstrated potential
in neuronal-regeneration, including neural crest stem
cells, hematopoietic stem cells, human dental pulp
stem cells (DPSCs), and olfactory ensheathing cells
(Kwak et al. 2018). For example, DPSCs are being
examined as a potential stem cell source for transplant-
ation in AD models (Apel et al. 2009; Ahmed et al. 2016).
DPSCs are cranial neural crest-derived MSCs that fa-
cilitate their neural differentiation (Mead et al. 2017).
Moreover, DPSCs are easily harvested, available, less
invasive, and less immunogenic and demonstrate
neurotrophic potential (Luo et al. 2018). Notably, the
somatic cell nuclear transfer procedure involving olfactory
ensheathing cells, via the intranasal route, is another
promising technology (Baig and Khan 2014; Baig 2014).
Remarkably, there are very few reports registered at

https://www.clinicaltrials.gov/ of transplantation of stem
cells in AD patients. In 2011, Medipost Co Ltd. com-
pleted an open level, phase I safety and efficacy trial on
Korean AD patients, but the outcomes were not revealed
(Bali et al. 2017). There has been increasing commercial
interest to convert preclinical studies into clinical prac-
tice on AD patients. Actually, the growing interest in
stem cell transplantation should be controlled by gov-
ernmental regulations (Fang et al. 2018). Several laws
and guidelines under agencies like the Food and Drug
Administration (FDA), the European Medicines Agency
(EMA), and others control stem cell-based therapy
(Frese et al. 2016).

Mechanistic actions of transplanted stem cells for
treatment of AD
Regenerative medicine using stem cells could represent a
promising therapeutic approach for the management of
chronic disorders like AD; this is mainly attributed to the
potential actions exerted by stem cells such as improving
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the neurogenic potential, exerting anti-inflammatory
effect, presenting neurotrophic support, and having an
anti-amyloidogenic potential (Fig. 5, Table 1).

Induction of endogenous neurogenesis (neurogenic
potential)
Neurogenesis (neural regeneration) is the process of
differentiation of neural progenitor cells (NPCs) into
specific, functional, and fate-known new neurons, which
synaptically integrated into the pre-existing neural circuit
of the host (Ming and Song 2005; Jin and Galvan 2007). It
takes place in the subgranular zone (SGZ) of the den-
tate gyrus (DG) and the subventricular zone (SVZ) of
the lateral ventricles (Alvarez-Buylla and Garcia-
Verdugo 2002). In humans, the neurogenic potential
declines normally with age and is associated with AD
progression (Donovan et al. 2006; Klempin and Kem-
permann 2007; Lopez-Toledano and Shelanski 2007a),
impaired neurogenesis plays a role in AD pathogenesis
(Hollands et al. 2016). AD murine models demon-
strated dysfunction of neurogenesis; this refers to the
imbalance between neuroregeneration and neurodegen-
eration (Haughey et al. 2002). Neurogenesis is
associated with maintenance of neurocognitive func-
tion; therefore, stimulation of adult neurogenesis has
been the main target in AD treatment (Li et al. 2015).
Several effector molecules are both involved in AD
pathogenesis, and, in the modulation of neurogenesis;
such as apolipoprotein E (ApoE), PS1, APP, neuro-
trophic factors, transcription factors, metabolic factors,
and epigenetic regulators (Yang et al. 2011; Gadadhar
et al. 2011; Ghosal et al. 2010; Horgusluoglu et al.

2017). Therefore, neurogenesis is enhanced as a self-
repairing mechanism in the early stages of AD;
however, the survival of newly generated neurons was
hampered by the progression of neurodegeneration
(Chen et al. 2008). For instance, deposited Aβ plaques
could impair neurogenesis in AD animal model
(Veeraraghavalu et al. 2010). Therefore, application of
stem cell-based therapy for AD depends on the neuro-
genic capacities of stem cells, identifying key molecules
in the modulation of endogenous neurogenesis
(Zhang and Jiang 2015; Fang et al. 2018).
Transplanted stem cells can enhance endogenous

neurogenesis to replace damaged neurons in the AD brain
(Mu and Gage 2011; Kanno 2013). Novel neurons, derived
from donor cells or activated neurogenesis, demonstrated
their ability to mediate structural and functional inte-
gration in the pre-existing network and to modulate
neurogenesis (Yu et al. 2013a, 2013b; Bonaguidi et al.
2011). These new neurons are capable of secreting neuro-
trophic factors (Enciu et al. 2011) and increasing brain
ACh levels, thus improving neurocognitive functions in
AD animal models (Park et al. 2013; Park et al. 2012;
Yang et al. 2013; Ma et al. 2013; Njie et al. 2012).
Furthermore, genetically reprogrammed stem cells can
possess the migratory capacity and can be employed as
vehicles to deliver neurotrophic factors or to enhance
genetic expression that can alter the AD pathway
(Mucke 2009). As demonstrated in AD animal models,
transplanted stem cells have the potential to improve
several cellular functions, such as synaptic connectivity
(Blurton-Jones et al. 2009), neurogenesis (Kim et al. 2015),
microglial activity (Yang et al. 2013), angiogenesis

Fig. 5 The potential mechanistic actions exerted by stem cells against Alzheimer’s disease
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(Garcia et al. 2014), mitochondrial function (Zhang et al.
2015b), and autophagy (Shin et al. 2014). Therefore, stem
cell transplantation could represent a promising and
safe approach to treat AD, as it affects this disease
through multiple mechanisms that result in re-building
the neural integrity and improving the neurocognitive
function (Fang et al. 2018; Lee et al. 2016; Choi et al.
2014a).
However, it has been suggested that engrafted stem

cells are not the sole source of the newly generated
neurons (Sullivan et al. 2015; Zhang et al. 2013). Hence,
rather than using the cell-replacement model in AD,
activation of endogenous NPCs and stimulation of neuro-
genesis could improve the microenvironment, support
neuroregeneration, and enhance the survival of injured
neurons (Lunn et al. 2011), and prevent secondary
neuronal damage, through the neurotrophic support
(Burns et al. 2009).

Neurotrophic and neuroprotective activity
Transplanted stem cells demonstrated neurotrophic/para-
crine potential (Martino and Pluchino 2006), through in-
creasing the levels of different neurotrophic factors such as
brain-derived neurotrophic factor (BDNF)—the classic
paracrine mediator—(Blurton-Jones et al. 2009), glial cell
line-derived neurotrophic factor (GDNF) (Kim et al. 2012),
insulin-like growth factor 1 (IGF-1) (Klinge et al. 2011),
glucagon-like peptide-1 (GLP-1) (Zhang et al. 2014), nerve
growth factor (NGF) (Jin et al. 2002), and vascular endothe-
lial growth factor (VEGF) (Garcia et al. 2014). For example,
NSCs, ESCs, and MSCs can express high levels of BDNF
and NGF, which are important positive neuroregulators in
endogenous neuronal survival and synaptic plasticity (Yan
et al. 2014). Moreover, Blurton-Jones et al. (2009) showed
that NSC transplantation into the brains of transgenic AD
models elevated brain BDNF levels and enhanced the hip-
pocampal synaptic density. Similarly, Yan et al. (2014) dem-
onstrated that MSC transplantation induced endogenic
activity in the hippocampal SGZ and SVZ and improved
cognitive function in APP/PS1 transgenic AD mice. In
addition, transplantation of NGF-expressing human NSCs
(hNSCs) into the hippocampi of ibotenic acid-injected mice
(a model of neurocognitive dysfunction) exerted neurore-
generative potential and restored memory formation
(Wang et al. 2012b). Furthermore, Chen and Blurton-Jones
(2012) found that delivery of recombinant BDNF could
resemble the potential of NSC transplantation in AD trans-
genic animals.
BDNF and CREB (cAMP response element-binding

protein) play a major role in the process of memory
formation and consolidation (Song et al. 2015;
Dominguez et al. 2016). Since CREB is a DNA-binding
protein and acts as a transcription factor for BDNF, it

is possible that a relationship exists between the role
of BDNF expression and its regulation by CREB in re-
storing memory function (Lee et al. 2013). Suzuki et
al. (2011) reported that elevated BDNF levels were as-
sociated with improvement of both long-term memory
(LTM) and short-term memory (STM), suggesting that
CREB-mediated BDNF expression plays an intrinsic
role in memory formation. Besides secreting neuro-
trophic factors, the therapeutic potential of stem
cell-derived extracellular vesicles was also investigated
(Katsuda et al. 2013a).
It is essential to upregulate (either pharmacologically or

with gene therapy) the neurotrophic factors (Jin et al.
2002). Nonetheless, this is complicated by several obstacles,
such as the age-dependent decline of hippocampal neuro-
genesis, the massive loss of hippocampal neurons in AD
patients, and the possible effect of AD pathology on neuro-
genesis (Lopez-Toledano et al. 2007a, 2007b). Moreover,
endogenous NSCs demonstrated a limited capacity to
compensate for damaged cells, as well as, NSCs
become “gliogenic” rather than neurogenic (Li et al.
2010). Therefore, the comprehensive mechanism of
endogenous neuroregeneration needs more clarifica-
tion (Tang 2012).

Immunomodulation and anti-inflammatory activity
Chronic inflammation is involved in neurodegenerative dis-
eases, including AD (Voloboueva and Giffard 2011). Certain
stem cell types such as NSCs and MSCs showed anti-
inflammatory activities by decreasing pro-inflammatory cy-
tokines and upregulating anti-inflammatory factors (Ylostalo
et al. 2012). MSCs represent a good source of inflammatory
mediators and growth factors (Caplan and Dennis 2006).
Moreover, MSCs could deliver therapeutic molecules such
as proteins (Hsun and Yang 2018).
UCB-MSC transplantation into transgenic AD mice

attenuated neuroinflammation, induced microglial
expression of neprilysin (NEP), decreased hippocampal
Aβ plaques, and ameliorated neurocognitive function
(Kim et al. 2012). Moreover, intra-hippocampal trans-
plantation of NPCs into Aβ-42 peptide-injected hippo-
campi in AD rats is neuroprotective and attenuates
inflammatory reactivity (Ryu et al. 2009).
Noteworthy, “Cholinergic anti-inflammatory pathway” is

mediated by ACh, which has anti-inflammatory activity,
through inhibiting production of tumor necrosis factor
(TNF-α) and IL-1β and suppressing the activation of
nuclear factor-kB (NF-kB) (Pavlov and Tracey 2006).
Transplantation of ChAT-overexpressing human NSCs
(HB1.F3.ChAT) into AD animal models restored neurocog-
nitive function and improved memory function; this might
be attributed to the elevated levels of ACh in CSF and the
successful migration of transplanted cells to affected brain
regions (Naert 2012; Kim et al. 2012). Therefore, cell-based
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therapies that simultaneously increase neurotransmitters
and growth factors could achieve better outcomes (Choi et
al. 2014a).

Anti-amyloidogenic potential
Alzheimer’s disease (AD) is characterized by the depos-
ition of neurotoxic Aβ plaques (Walsh and Selkoe 2004).
Therefore, stem cells transplantation is an effective and
promising strategy for functional recovery for AD
(Choi et al. 2014a), through enhancing the clearance of
Aβ plaques. For instance, transplanted MSCs into mur-
ine AD models increased NEP expression, cleared Aβ ag-
gregates, and enhanced neural survival (Bales et al. 2006;
Szabo et al. 2008; Choi et al. 2014a). Moreover, NSCs can
express metalloproteinase 9 (MMP9) which is regarded as a
degrading enzyme for Aβ peptides (Miller et al. 2003). Simi-
larly, adipose tissue-derived stem cells (ADSCs) demon-
strated a similar anti-amyloidogenic potential coupled with
anti-inflammatory activity (Melchor et al. 2003). Moreover,
transplanting stromal cell-derived factor-1 into AD trans-
genic animals resulted in clearance of Aβ plaques (Xue et
al. 2012). Additionally, engrafted MSCs cleared Aβ plaques,
through differentiating into microglia or recruitment of ac-
tivated microglia (Lee et al. 2012a).
Autophagy plays a critical role in maintaining Aβ

homeostasis by enhancing the clearance of Aβ deposits in
the brain (Shin et al. 2014). Autophagy acts as a
cytoprotective response, under stress conditions, for the
degradation of abnormal and aggregated proteins (Cuervo
et al. 2010). Dysfunction in the autophagic system may lead
to deposition of Aβ plaques (Shin et al. 2014). They are
several autophagic vacuoles (AVs) that accumulate in the
AD brains (Lee et al. 2010). Autophagy markers
(e.g., ATG5, ATG12, and microtubule-associated protein 1
light chain 3 [LC3]) are correlated with Aβ neuropathology
(Ma et al. 2010). Moreover, the immunofluorescent ana-
lysis showed that MSC transplantation raised fusion of
Aβ-containing auto-phagosomes (LC3-II) and lysosomes
(LAMP2), raised activity of lysosomal enzymes, and en-
hanced the autolysosome formation and catabolic function,
which may be accompanied with neuronal survival. This
neuroprotective potential might be attributed to lysosomal
activity mediated through autolysosome formation. Thus,
using MSCs to modulate the autophagy mechanism might
be a promising therapeutic strategy for AD (Shin et al.
2014). It was evidenced that some compounds can reduce
Aβ levels through activation of autophagy or lysosomal
proteolysis (Parr et al. 2012; Lai and McLaurin 2012). MSC
transplantation into an AD animal model (Aβ intoxi-
cated) resulted in a marked increase in autophagosome
induction and a significant decrease in Aβ levels (Shin
et al. 2014). This confirms the potential role of MSCs
as an autophagy modulator that enhances clearance of
neurotoxic Aβ deposits; thus, a therapeutic strategy for

AD is to enhance Aβ clearance through induction of the
autophagy-lysosome pathway (Caplan and Dennis 2006;
Shin et al. 2014).

Challenges in stem cell-based therapies of AD
They are several challenges concerning the clinical trans-
lation of stem cell-based therapy such as tumorigenicity,
immune rejection, contamination, genetic modification,
uncontrolled migration and growth, and unintended
trans-differentiation (Kwak et al. 2018). Therefore, more
research is required to set protocols for standard prepar-
ation of cells suitable for transplantation, to clarify the
mechanism underlying symptomatic relief upon trans-
plantation, and to determine the immune response after
transplantation (Yue and Jing 2015). Furthermore, the
safety and efficacy of transplanting genetically-engineered
cells in humans have not yet been legitimized, as well as,
there is a need for stem cell genome alteration which
could encounter ethical restrictions (Fang et al. 2018).
Some of those issues are listed below:

Time of transplantation
Regarding that AD is a progressive chronic disease
that takes several years before clinical manifestation
of symptoms; it is essential to determine the appro-
priate time window for transplantation during AD
progression (Fang et al. 2018). It was suggested that
NSC transplantation, at the onset of AD, is more ef-
fective when the brain suffers the fewest alterations in
microenvironment detrimental to neurogenesis (Fan et
al. 2014). Moreover, the hippocampus, in the early
stage of AD, could be the main therapeutic target
(Stensola et al. 2012). For example, one study used
the transgenic (Tg2576) murine model (12-month--
old), demonstrated age-related neurocognitive decline,
showed that transplantation restored neurocognition,
and improved AD neuropathology, while transplant-
ation failed in a 15-month-old mice (Kim et al. 2015).
Therefore, the therapeutic approach will become more
complicated and less effective, as the AD associated
neurodegeneration progresses.

MSC transplantation into elder stroke-patients, who
already have a limited content of NSCs/NPCs and
BM-MSCs, will be of no significance because of loss of
regenerative capacity of MSCs (Bang et al. 2016). This
attenuation of the potential of stem cell-based therapy
in aged patients could result from aging in either the
donor cells or the host cells (Manganas et al. 2007). In
addition, the neurogenic activity of BM-MSCs de-
clined with age; this implies the significance of the
“aging/rejuvenation of donor cells” to the efficiency of
stem cell-based therapy (Bang et al. 2016).
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Location of transplantation
Determining the ideal site for introducing the new popu-
lation of neurons/stem cells is of great importance and
may play a critical role in the treatment of AD. The
NSC-rich regions like the hippocampus and the lateral
ventricles are possible candidates (Bock et al. 2011).
Therefore, the hippocampus is the typical target site
for introduction of transplanted cells in AD patients
(Igarashi et al. 2014).
The recognition of grid cells and functionally spe-

cialized neurons and the establishment of computa-
tional models of grid cells make it possible to detect
the damaged neurons and affected neural circuits
(Giocomo et al. 2011). However, it is still difficult to
attain an accurate grid map of the brain due to its
complex structure and overlapping functions in AD.
Therefore, it is necessary to develop more precise
brain grid charts to estimate the ideal locations for cell
transplantation for each AD patient (Li et al. 2015).

Donor-to-donor heterogeneity
Identifying “genetic and epigenetic backgrounds” of
donor cells is essential for successful transplantation.
Although the brain is immune-privileged, the human
leukocyte antigen (HLA) profile of donor cells must be
examined to avoid the immune response after trans-
plantation (Chen et al. 2012). During the production of
neuronal cells for transplantation, the genetic defects
responsible for AD symptoms must be corrected in the
donor cells (Yagi et al. 2011). For instance, heterogeneity
between iPSC clones from the same individual and
iPSCs from different individuals is the major obstacle in
the application of iPSC-technology (Arber et al. 2017);
this could be achieved by genetic editing with molecular
scissors such as CRISPR (Marchetto et al. 2009).
Selecting pure donor cells could reduce variability and
improve functional outcomes in the newly generated
products (Yuan et al. 2011).
Instead of using the immunosuppressive agents

(Freed et al. 1992), “cell encapsulation techniques” were
used to avoid the possible immune rejection of the
transplanted cells; the encapsulated cells are protected
with a polymeric semi-permeable membrane, which
permits the exchange of essential molecules for cellular
metabolism, from the immune response for a stable de-
livery of therapeutic agents. For example, encapsulated
somatic cells were employed to deliver trophic factors
to treat AD (Garcia et al. 2010; Spuch et al. 2010;
Eriksdotter-Jönhagen et al. 2012; Wahlberg et al. 2012).
For example, encapsulated MSCs transfected with
GLP-1 were capable of inhibiting inflammatory events
(Klinge et al. 2011). Moreover, in vivo or in situ repro-
gramming of iPSCs might represent a solution for the

possibilities of transplantation rejection and tumorige-
nesis (Qu et al. 2001, Zhou et al. 2008).

Functional integration
Stem cell-based therapy for AD should be accompanied
by the administration of antioxidants and neurotrophic
factors. NSC transplantation exerts a neurogenic poten-
tial by providing paracrine support to existing NSCs
rather than forming new functional neurons (Feng et al.
2009). Additionally, the transplantation of stem cells is
often accompanied by massive death of transplanted
cells in the brain (Limke and Rao 2003). New strategies
such as “deep brain stimulation” showed positive out-
comes in relieving AD symptoms (Gratwicke et al. 2013;
Hescham et al. 2013).

Ethical issues and safety concerns
Stem cell-based therapy is an ethically challenging
process; it is considered an invasive procedure that
could cause several clinical complications and direct
harm to the already damaged areas. Ethically, it is im-
portant to estimate the efficacy of transplantation-
based therapy, to decrease the risk of therapeutic
misconception, to reduce the risk of pain, and to
highlight the importance of informed consent (Ciervo
et al. 2017; King and Perrin 2014). Actually, the de-
bate of ethical concerns in stem cell-based therapy
showed the difficult equilibrium between the impera-
tives of caution and the progress for clinical trials
(King and Perrin 2014). Translation of preclinical
studies into successful clinical trials for AD provokes
several ethical and safety concerns. For instance, the
unlimited and undesired differentiation capacity of
iPSCs raises the risk of non-ethical generation of
genetically modified human embryos, human cloning,
and human-animal chimeras, as well as, the risk of
tumorigenesis. Similarly, MSC transplantation pro-
vokes safety issues concerning their capacity to induce
tumor growth and metastasis (Volarevic et al. 2018).
The ethical issue concerning the destruction of a hu-
man embryo hindered the development of clinical ap-
plication of hESC; moreover, the pluripotent nature of
hESCs renders them more prone to form tumors due
to their uncontrolled growth after in vivo transplant-
ation (Nussbaum et al. 2007). Thus, iPSCs are consid-
ered morally superior to hESCs (Meyer 2008);
however, the main safety challenge regarding iPSC-
based therapy is the risk of teratoma formation due
to the uncontrolled differentiation (Wernig et al.
2008). In addition, the difference between the niche
of the host cells and that of the in vitro cultured cells
reduces the proliferative and differentiating capacity
(Marks et al. 2017).
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Reprogramming of somatic adult cells into NSCs
could solve the problem of the immune rejection by
“autologous transplantation” and evade the ethical limi-
tations associated with the use of embryonic (fetal)-
derived stem cells. Besides ethical and safety concerns,
the efficiency of reprogramming and the epigenetic
background of stem cells are among the obstacles that
should be avoided before the clinical translation of iPSCs
(Ciervo et al. 2017). On the other side, MSCs can be ob-
tained easily from patients allowing “autologous trans-
plantation” and avoiding ethical limitations related to
the use of ESCs (Lewis and Suzuki 2014).

In vitro senescence of stem cells
The incomplete success to translate preclinical studies
into clinical application might be attributed to the
age-related regenerative activity between AD animal
models and AD patients (Bang et al. 2016). Stem cells
such as MSCs are subjected to “in vitro senescence”
which might affect their performances through losing
their characteristics (e.g., homing capacity, prolife-
ration, paracrine function) during “ex vivo culturing”
(Bonab et al. 2006; Li et al. 2008). In addition, AD
occurs mostly in aged patients, thus “aged” MSCs derived
from aged AD patients showed the characteristics of
senescence, such as losing the differentiation capacity.
Therefore, it is important to evade age-associated

defects such as shorter telomere length in transplanted
cells (Yang et al. 2018). This could take place by presen-
ting “retroviral vectors that carry the gene for the cata-
lytic subunit of telomerase” to MSCs and therefore
guarantee the normal proliferation and differentiation
capacity during “large-scale expansion” (Hsun and Yang
2018). Finally, the in vitro approach of “large-scale
expansion” is aimed to generate a massive population of
stem cells for clinical therapy; this is accompanied with
the use of anti-aging (senolytic) drugs such as nicotina-
mide riboside, quercetin, and danazol (Grezella et al.
2018). In addition, transplanted stem cells should be
differentiated on large-scale “in vitro,” without affecting
their cellular identity and genetic profile, to ensure their
efficacy (Zonari et al. 2017; Marks et al. 2017).

Future directions of stem cell-based therapy against AD
Future research should be directed to define a standar-
dized protocol for isolation and differentiation of stem
cells, through identifying their sources and designing
methodologies for their isolation and differentiation into
different lineages (Avinash et al. 2017). More research is
required to define the sources, types, stages, doses, and
routes of stem cell transplantation in AD animal
models to validate their optimum therapeutic outcome
(Banik et al. 2015).

Administration of anti-oxidative nutraceuticals such as
polyphenols could help to prevent AD progression
(Borai et al. 2017). For example, resveratrol, a grape-
derived polyphenolic compound, facilitates transplant-
ation of hUC-MSCs into the brains of AD mice and
promotes functional outcomes of MSCs through activat-
ing SIRT1 signaling pathway and stimulating NPCs pro-
liferation, and finally enhances neurocognitive function
(Wang et al. 2018).
Moreover, using nanomaterials in combination with

stem cells could introduce several applications in brain
regenerative studies (Alipour et al. 2018). Nanomaterials
provide an ideal platform for enhancing the efficacy of
stem cell treatment (Misra et al. 2016), imaging and
tracking of stem cells (Sibov et al. 2014), implying
genetic modifications to mediate stem cell proliferation
and differentiation (Tiwari et al. 2013), and improving
neuronal differentiation of stem cells into neurons
(Stephanopoulos et al. 2014). For example, adminis-
tration of curcumin-encapsulated PLGA nanoparticles
(Cur-PLGA-NPs) into Aβ-treated rats upregulated the
genes necessary for the NSC proliferation and differen-
tiation, activated Wnt signaling pathway, and improved
neurocognitive function (Tiwari et al. 2013).
In time, more advanced stem cell therapies hold the

potential for the clinical treatment of AD (Li et al. 2014).
The safe and ethical future of stem cell-based therapy
for AD will be slow, expensive, and tightly regulated
(Dunnett and Rosser 2014).

Conclusion
This review has summarized the relevant use of stem
cell-based therapy for the management of Alzheimer’s dis-
ease (AD). Treatment of complicated AD requires targeting
multiple pathogenic pathways; therefore, stem cell-based
therapy might represent a multi-target therapeutic inter-
vention that enhances neuroregeneration and suppresses
neurodegeneration through exerting anti-inflammatory,
anti-amyloidogenic, immunomodulating, and neuroprotec-
tive activities. However, more research is required to
evaluate the most effective combination of therapeutic
actions of stem cells to amend AD pathology, to apply
supporting approaches that could improve mechanistic
actions of stem cells such as genetic editing and 3D
modeling and to provide supporting synergistic treat-
ments such as administration of natural products,
nanoparticles, and antioxidants. Several preclinical trials
provided an optimistic prospect for treating AD and paved
the way for the subsequent clinical application of stem
cell-based therapy, which requires standardized protocols
for the isolation and expansion of stem cells to get the de-
sired therapeutic outcome. Finally, moving forward in the
rapidly advanced stem cell research demands the proper
combination of creativity, accuracy, and caution.
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