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Introduction
With the rapid development of information technology, integrated circuits (IC) have 
become indispensable core components of modern electronic equipment, widely used in 
communication, computing, consumer electronics, medical, military and other fields. As 
Moore’s Law approaches its physical limits, IC design faces unprecedented challenges: 
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Abstract
This study addresses the intricate challenge of circuit layout optimization central 
to integrated circuit (IC) design, where the primary goals involve attaining an 
optimal balance among power consumption, performance metrics, and chip area 
(collectively known as PPA optimization). The complexity of this task, evolving into a 
multidimensional problem under multiple constraints, necessitates the exploration of 
advanced methodologies. In response to these challenges, our research introduces 
deep learning technology as an innovative strategy to revolutionize circuit layout 
optimization. Specifically, we employ Convolutional Neural Networks (CNNs) in 
developing an optimized layout strategy, a performance prediction model, and 
a system for fault detection and real-time monitoring. These methodologies 
leverage the capacity of deep learning models to learn from high-dimensional data 
representations and handle multiple constraints effectively. Extensive case studies 
and rigorous experimental validations demonstrate the efficacy of our proposed 
deep learning-driven approaches. The results highlight significant enhancements 
in optimization efficiency, with an average power consumption reduction of 120% 
and latency decrease by 1.5%. Furthermore, the predictive capabilities are markedly 
improved, evidenced by a reduction in the average absolute error for power 
predictions to 3%. Comparative analyses conclusively illustrate the superiority of deep 
learning methodologies over conventional techniques across several dimensions. 
Our findings underscore the potential of deep learning in achieving higher accuracy 
in predictions, demonstrating stronger generalization abilities, facilitating superior 
design quality, and ultimately enhancing user satisfaction. These advancements not 
only validate the applicability of deep learning in IC design optimization but also 
pave the way for future advancements in addressing the multidimensional challenges 
inherent to circuit layout optimization.
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on the one hand, device size continues to shrink, making design complexity grow expo-
nentially, and the risk of design errors and manufacturing defects increases; on the other 
hand, the market demand for high performance, low power consumption, low cost, and 
fast time-to-market is increasingly urgent (Afacan et al. 2021). Integrated circuit design 
is complex, and its design flow is shown in Fig. 1.

In this context, deep learning, as a revolutionary technology in the field of artificial 
intelligence, is gradually being explored and applied to integrated circuit design due to 
its powerful pattern recognition, feature extraction and data processing capabilities. 
Deep learning can learn complex nonlinear relationships in integrated circuit design 
through large-scale data training, so as to realize automatic design decision-making, 
performance prediction and fault detection tasks, which is expected to greatly improve 
design efficiency, shorten design cycle, reduce design cost, and promote design quality 
improvement (Barnwal and Dhawan 2020). In recent years, scholars at home and abroad 
have carried out extensive and in-depth research on the application of deep learning in 
integrated circuit design. In terms of circuit layout optimization, researchers use con-
volutional neural networks (CNNs) to extract and classify features from layout graphs, 

Fig. 1 Flow chart of integrated circuit design
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and propose a series of optimization strategies that significantly improve layout quality 
and design convergence speed. In addition, for performance prediction, especially for 
power consumption and delay prediction, recurrent neural networks (RNNs) and long 
short-term memory networks (LSTM) are used to model circuit behavior because they 
can effectively process sequential data, and more accurate prediction models are real-
ized. In the field of fault detection and diagnosis, anomaly detection algorithms based 
on generative Adversarial networks (GANs) and models combined with transfer learn-
ing show great potential in identifying potential design flaws. Internationally, a number 
of top semiconductor companies, including IBM, Intel and TSMC, have invested a lot 
of resources in relevant research and have achieved preliminary results (Bogaerts et al. 
2019).

For example, special attention should be paid to the use of convolutional neural net-
works (CNNs) and recurrent neural networks (RNNs) for chip feature extraction and 
pattern recognition, which show great potential for improving design efficiency and 
accuracy (Chong et al. 2018). At the same time, innovative applications integrating atten-
tion mechanisms and generative adversarial networks (GANs) provide a new perspective 
for solving complex design space exploration problems. In addition, the exploration of 
automatic machine learning (AutoML) in IC design parameter optimization is also the 
key to strengthen the research of modernity. Further, the research should also cover the 
application of deep reinforcement learning (DRL) in integrated circuit design automa-
tion, which has demonstrated excellent capabilities for large-scale design space search, 
layout optimization, and resource allocation problems (Chovan and Uherek 2018). DRL 
continuously learns the optimal strategy by simulating the interaction process with the 
environment, which greatly improves the quality and efficiency of design decisions. 
DRL is one of the core technologies to promote the intelligent transformation of IC 
design. It is worth noting that with the great success of the transformer model in the 
field of natural language processing, it has also begun to emerge in the efficient process-
ing and feature learning of integrated circuit design data. The self-attention mechanism 
of Transformer model can better capture long-distance dependencies and has poten-
tial advantages for dealing with high-dimensional feature associations in complex chip 
design, which is worth further discussion in references (Dwivedi et al. 2021). In addition, 
in the face of increasing design complexity and shortened product development cycle, 
research on lightweight deep learning models is also particularly important. These mod-
els can reduce computational resource requirements while ensuring prediction accuracy, 
accelerate design iteration process, and have practical significance for rapid prototyping 
verification and cost control.

In view of the broad application prospects of deep learning in integrated circuit design 
and the current research progress, this research aims to comprehensively explore and 
deepen the research in this field, including but not limited to: (1) Deep learning models 
and algorithm optimization: for specific tasks in integrated circuit design, research and 
development of suitable deep learning models, such as improved CNN architecture for 
finer layout optimization, and customized RNN/LSTM models to improve the accuracy 
of performance prediction. (2) Large data set construction and feature engineering: Con-
sidering the particularity and scarcity of IC design data, this study will explore effective 
data acquisition methods, construct high-quality training data sets, and conduct feature 
selection and engineering to ensure effective training and generalization of models. (3) 
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Cross-level optimization strategy: Study how to integrate deep learning technology in 
different stages of integrated circuit design (such as logic synthesis, layout, routing, etc.) 
to achieve global optimization from system level to transistor level and improve over-
all design performance. (4) Fault prediction and adaptive repair mechanism: use deep 
learning technology to predict possible circuit fault points in advance, and design corre-
sponding adaptive repair strategies to reduce problems in the later physical verification 
stage and accelerate design convergence.

Through the in-depth exploration of the above research contents, this study is 
expected to provide a set of automatic design and optimization framework based on 
deep learning for the field of integrated circuit design, promote the intelligent and effi-
cient direction of integrated circuit design, and further promote the rapid development 
of the entire electronic information technology.

Literature review
Integrated circuit design process overview

Integrated circuit (IC) design is a highly complex multi-step process involving numer-
ous stages from concept to final product manufacturing. Generally, this process can be 
roughly divided into three main parts: front-end design (FE), back-end design (BE), and 
verification (Chong et al. 2018).

The front-end design mainly includes specification formulation, logic design and func-
tion verification. In the specification development stage, the design team defines the 
functions, performance indicators and application scenarios of the chip. The logic design 
phase uses hardware description languages (HDL), such as Verilog or VHDL, to write 
code to describe the behavior and structure of circuits. The HDL code is then trans-
formed into a gate-level netlist by logical synthesis, and functional verification is per-
formed at this stage to ensure that the design meets expectations (Chovan and Uherek 
2018).

Back-end design focuses on layout design, physical verification, and manufacturing 
documentation. Layout is the core link, in which layout involves assigning the spatial 
location of various components of the circuit on the silicon chip, and routing determines 
the connection path between these components. Subsequently, physical verification 
checks whether the design meets criteria such as Electrical Rule Check (ERC), Design 
Rule Check (DRC), etc. (Bogaerts et al. 2019). Finally, the generated GDSII file is used to 
guide the actual fabrication of the chip.

Major challenges in design

As process nodes shrink, IC design complexity increases dramatically. The scale-up of 
designs leads to the problem of “design explosion”, i.e. the complexity of design verifi-
cation increases exponentially with circuit size. At the same time, the variables in the 
design increase, and the exploration of the design space becomes more difficult, requir-
ing the support of advanced algorithms and computational resources (Chovan and 
Uherek 2018). Modern electronic devices have dual requirements for high performance 
and low power consumption. In mobile devices, data centers and other fields, energy 
efficiency ratio has become a key indicator. Designers need to find the right balance 
between increasing computing speed and reducing power consumption, which often 
requires innovative strategies at the circuit architecture, algorithm level, and physical 
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design (Dwivedi et al. 2021). With the progress of technology, uncertainties in manu-
facturing process (such as random doping fluctuation, line edge roughness, etc.) have 
increasingly significant effects on chip performance. DFM requires that these variations 
in the manufacturing process be considered early in the design process, and that their 
adverse effects be reduced through design optimization to ensure chip consistency and 
reliability (Errando-Herranz et al. 2020).

Analysis of the limitations of traditional design methods

Although the existing IC design process has made significant progress over the past few 
decades, its limitations have become increasingly evident in the face of increasing chal-
lenges. The traditional design process relies heavily on manual intervention and empiri-
cal judgment, especially in the layout and design optimization stages, which is not only 
time-consuming but also prone to human error. As the size of the design grows, this 
manual adjustment becomes less feasible (Garcia-Sciveres 2023). Design convergence 
refers to the process of completing a design under all performance, area, and power con-
straints. Due to the complex interactions among design parameters, traditional design 
methods are difficult to efficiently explore large design spaces, resulting in long design 
convergence time and high cost (Guo et al. 2020). With the rapid evolution of process 
technology, new physical effects and manufacturing constraints continue to emerge, and 
traditional design methods and tools often lag behind these changes, and it is difficult to 
solve new problems brought about by new technologies in a timely and effective manner 
(Hao et al. 2021).

In-depth analysis of traditional method limitations and advantages of proposed deep 

learning approach

Traditional IC design methodologies, despite their historical contributions, struggle to 
cope with the escalating complexities and dimensionalities inherent in modern design 
spaces. Manual intervention, a cornerstone of conventional design, introduces subjec-
tive biases and inefficiencies, leading to prolonged design cycles and potential subopti-
mal solutions. The iterative nature of design convergence, exacerbated by the explosion 
in design variables, demands an immense computational burden that often exceeds the 
capabilities of traditional optimization algorithms (Hong et al. 2022).

In contrast, the proposed integration of deep learning offers transformative advan-
tages. By leveraging neural networks’ capacity for automated feature extraction and pat-
tern recognition, our approach alleviates the need for exhaustive manual tuning, thereby 
accelerating the design optimization process (Khan et al. 2019). Deep learning models 
can effectively navigate vast design spaces, identifying Pareto-optimal solutions that bal-
ance power, performance, and area (PPA) considerations more comprehensively than 
conventional methods (Lai et al. 2022).

Moreover, the predictive prowess of these models enables early-stage estimation of 
critical design parameters, facilitating proactive adjustments to mitigate potential issues, 
such as manufacturing variability (Lambrechts et al. 2024). This capability aligns with 
the principles of Design for Manufacturing (DFM), ensuring design robustness and reli-
ability from the outset.

A comparative analysis against state-of-the-art techniques underscores the superi-
ority of our deep learning-driven framework. Unlike iterative optimization algorithms 
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or rule-based methods, which may converge to local optima or fail to capture intricate 
design interactions, our deep learning models demonstrate higher accuracy in predict-
ing performance metrics, enhanced generalizability across diverse design scenarios, and 
a capacity to adapt to emerging technological constraints (Lezia et al. 2022). Conse-
quently, this work positions deep learning as a pivotal toolset for surmounting the esca-
lating challenges in IC design, marking a paradigm shift towards more efficient, accurate, 
and scalable design methodologies.

Problem definition
The core of circuit layout optimization is to maximize system performance by adjust-
ing the position and orientation of circuit components on the chip, while ensuring that 
the design meets strict manufacturing rules and electrical requirements. The complexity 
and importance of this process are reflected on many levels. Circuit layout optimization 
is essentially a multi-objective optimization problem, focusing on three core metrics: 
Power, Performance and Area (PPA). These three goals tend to constrain each other: 
reducing area may mean increasing power consumption or reducing performance, and 
improving performance may require more area and higher power consumption. Find-
ing the right balance between the three is extremely difficult. Modern integrated circuits 
follow strict design rules, including minimum feature size, pitch, inter-layer alignment 
tolerances, etc. These rules are directly related to manufacturing feasibility, and their 
patterns are shown in Fig. 2 (Hong et al. 2022; Khan et al. 2019). Violating any one of 
these rules can result in chips not working properly or failing to produce. As a result, 
performance optimization must be pursued while ensuring that all layouts satisfy these 
complex and numerous design rule constraints. The physical layout of the circuit directly 
affects the resistance, capacitance, and inductance of the interconnect lines, thereby 
affecting signal integrity, power supply noise, timing delay, and so on. For example, 
long-distance interconnects result in larger RC delays, and dense layout areas increase 
parasitic capacitance, which in turn increases power consumption. Therefore, optimiz-
ing layout requires precise modeling and prediction of these physical effects, increasing 
the complexity of the problem. As technology nodes shrink, the number of transistors 
integrated on a chip grows exponentially, making the scale of layout problems unusually 
large. The position and orientation of each transistor or standard cell becomes a decision 
variable, leading to an extremely high dimension of the optimization problem. Further-
more, due to the complex interactions between circuits, any local changes may cause 
global performance changes, increasing the nonlinearity and dynamics of optimization. 
Large-scale layout optimization problems put forward extremely high requirements 

Fig. 2 Three core indicators of circuit design
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on computing resources. Traditional rule-based or heuristic placement methods may 
require a lot of computational time and memory when faced with complex designs, 
while more advanced algorithms such as genetic algorithms and simulated annealing 
can explore a wider design space, but their computational costs are equally high. Cir-
cuit layout is not done at once, but requires multiple rounds of iteration and verification. 
After each layout change, design rule checking (DRC), timing analysis, power consump-
tion analysis, etc. are performed by electronic design automation (EDA) tools to ensure 
the correctness and performance of the design. This process is time-consuming and 
resource-intensive, making it one of the most energy-intensive parts of the entire chip 
design process (Lai et al. 2022; Lambrechts et al. 2024).

In summary, circuit layout optimization is a highly complex and challenging task that 
requires not only continuous innovation in technology, but also the integrated appli-
cation of interdisciplinary knowledge and the effective use of advanced computing 
technologies.

The circuit layout optimization problem can be defined mathematically as an optimi-
zation problem, the core of which is to find a set of layout variable configurations, where 
n represents the number of components in the circuit, and each represents the posi-
tion or orientation of the ith component, so that one or more performance index func-
tions can be optimized while satisfying a series of constraints. The objective function is 
to minimize an objective function where is the vector of decision variables to be found.

A decision space must belong to a set that defines all possible ranges of decision vari-
ables, i.e., the solution space. There are two types of constraints: inequality constraints 
and equality constraints. Inequality constraints are here m independent inequality con-
straints, each defined by a function requiring that for all, the value of must be less than 
or equal to zero. These constraints limit the feasible region of the decision variables, 
ensuring that the solution is not only mathematically feasible, but also meets practical 
constraints, such as physical rules, resource constraints, etc. Equality constraints Here 
there are l independent equality constraints, each defined by a function, requiring that 
for all values it must be exactly equal to zero. Equality constraints further precisely limit 
the values of decision variables, ensuring that precise conditions are met, such as main-
taining certain proportions or equilibrium relationships in certain designs. where is a 
comprehensive function of one or more performance indicators, which may include 
but is not limited to total area, total power consumption, maximum delay, etc. Accord-
ing to different specific optimization objectives, F(\mathbf{x}) may be a single objective 
function or a weighted sum form of multiple objective functions (Lezia et al. 2022; Li 
et al. 2023), for example, where is the weight of each performance indicator, reflecting 
the designer’s preference for different performance indicators. Constraint conditions 
and represent inequality constraints and equality constraints respectively to ensure the 
feasibility of the design scheme. Inequality constraints may include Design Rule Check 
(DRC) related constraints such as minimum spacing, minimum width, etc., while equal-
ity constraints may involve area budgets, fixed resource allocations, etc. To sum up, cir-
cuit layout optimization problem is a high-dimensional, multi-constraint optimization 
problem, which requires finding the best layout scheme to meet various performance 
requirements in a huge design space, and its complexity and challenge are self-evident 
(Liu and Yu 2019).
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Application of deep learning in integrated circuit design
The preparation of data sets is the foundation of machine learning and deep learning 
projects, and it directly affects the performance and generalization ability of models. 
First, we use stratified sampling strategy to partition the data, ensuring that the training 
set, validation set and test set are evenly distributed in each category. Specifically, the 
dataset was divided into 70% as a training set, which was used for parametric learning 
of the model;15% as a validation set, which adjusted model hyperparameters and moni-
tored overfit during training, and the remaining 15% as a test set, which evaluated its 
performance on unseen data after the final model was determined.

To further improve the generalization ability of the model and address potential data 
shortages, we implemented a series of data enhancement techniques. For image data, 
this includes random rotations, flips, scaling, crop transformations, and color adjust-
ments, aiming to artificially augment the dataset by legally transforming the original 
image, increasing the robustness of the model to various transformations. For non-
image data, we employ strategies such as feature noise injection, sample resampling, and 
generating adversarial networks (GANs) to generate synthetic samples to enrich data 
diversity and facilitate model learning of a wider range of data patterns. These integrated 
measures ensure that the model is able to understand and learn the core features of the 
task from multiple perspectives, thereby improving overall performance.

Layout optimization strategy based on CNN

CNNs (Convolutional Neural Networks) are structured with successive layers each per-
forming specific functions: convolutional layers use a set of learnable filters to detect 
local features in the input, pooling layers then downsample this information to reduce 
dimensionality and retain key patterns, followed by fully connected layers which inte-
grate extracted features before output.

Convolutional neural network (CNN)-based layout optimization strategy is a new 
approach in IC design. It takes advantage of CNN’s advantages in image recognition 
and feature extraction, and regards circuit layout as an image processing problem, so as 
to realize automatic layout optimization. This strategy not only improves optimization 
efficiency, but also enhances layout quality and design innovation. The following is an 
in-depth discussion of this strategy, combined with specific formulas and methodologi-
cal details. First, the circuit layout is converted into image data. Assuming that there 
are n elements in the circuit, the position of each element can be represented by two-
dimensional coordinates, where. Through mapping, the circuit layout is transformed 
into an image of pixel size, where the value of each pixel represents whether there is a 
component or a particular type of component at that location, or reflects component 
density. Build a CNN model for layout optimization. The model typically includes mul-
tiple convolutional layers, pooling layers, fully connected layers, and output layers. The 
convolution layer scans the image using a set of learnable filters to extract a feature map, 
formulated as: where f is the activation function (e.g., ReLU) representing the convolu-
tion operation of image I with the filter, is the bias term, and is the first feature map. 
Through multilayer convolution and pooling, CNN can learn high-level features of the 
layout. These features are then mapped through the full connectivity layer to perfor-
mance metric predictions such as the total routing length L, maximum delay D, or total 
power dissipation P: of the predicted layout. Among them, and represent the outputs 
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of different fully connected layers respectively, which are used to predict different per-
formance indicators. When training CNN models, a multi-objective optimization strat-
egy is usually adopted, combining loss functions of different performance indicators, for 
example: where is the weight of each performance indicator, is the predicted value, and is 
the true value (Maryan et al. 2024; Mina et al. 2022). After CNN models are trained, they 
are embedded into the layout optimization process as evaluation tools, working with tra-
ditional layout algorithms or heuristics. At each optimization iteration, the model evalu-
ates the performance prediction of the current layout, guides the next layout adjustment, 
such as component movement or rotation, and gradually approaches the optimal layout 
through multiple iterations.

Performance prediction and optimization

In integrated circuit design, accurate prediction of circuit performance parameters is a 
key link in the optimization design process. Deep learning-based performance predic-
tion models provide novel solutions to this challenge through their powerful nonlinear 
representation capabilities and pattern recognition capabilities (Mitrovic and Friedman 
2024).

For power prediction, we can construct a model based on multilayer perceptron 
(MLP), which we construct as a structure with two hidden layers, as shown in Fig. 3. It 
can learn the complex relationship between the structural characteristics of circuits and 
power consumption. Assuming that the structural information of the circuit is repre-
sented in vector form as, containing information such as the number of transistors, gate 
types, etc., the power prediction model can be formalized as, where represents a multi-
layer perceptron model that maps input features to power prediction values through a 
series of linear transformations and nonlinear activation functions such as ReLU. As for 
delay prediction, recurrent neural networks (RNNs) are more competent because they 
are highly dependent on the sequence characteristics of signal paths. The input of the 

Fig. 3 Structure of MLP in this paper

 



Page 10 of 20Dai et al. Energy Informatics            (2024) 7:77 

model is the encoded sequence of path information, and the output of the model is the 
predicted maximum delay: through RNN, the model can capture the dependence of time 
series in the path and effectively predict the delay of signal transmission.

In order to improve the accuracy of prediction models, parameter tuning is an indis-
pensable step. Traditional optimization methods include genetic algorithm (GA), par-
ticle swarm optimization (PSO), etc., but reinforcement learning (RL) is particularly 
attractive in IC design because of its real-time strategy learning ability. For exam-
ple, deep Q networks (DQN) are used to tune hyperparameters. The updated rule is: 
Q(s, a; θ) ← Q(s, a; θ) + α[r + γmaxa′Q(s′, a′; θ−)−Q(s, a; θ)] (Mosin 2018).

Fault detection and diagnosis

Deep learning also shows its potential in fault detection and diagnosis, especially by 
training anomaly detection models such as autoencoders (AE) or variational autoen-
coders (VAE). AE measures reconstruction error by attempting to reconstruct the input 
data, and its loss function: When the reconstruction error of the test sample exceeds a 
threshold, it indicates that there is an anomaly. In addition, by analyzing the hidden layer 
characteristics of AE, the fault type can be further analyzed.

Design of real-time monitoring system

Real-time monitoring system design needs to integrate efficient data processing and 
decision-making modules to ensure rapid response. The data are preprocessed (feature 
extraction, normalization) and sent to the fault detection model. Once abnormality is 
detected, the diagnosis module is activated immediately, and the fault source is quickly 
located by deep neural network. During design, low latency, high reliability and scal-
ability are considered to ensure the practicality of large-scale integrated circuit design 
scenarios. The specific framework is shown in Fig. 4.

Real-time monitoring system, as a key component of IC design process, especially in 
LSI, plays a key role in ensuring real-time monitoring of design performance and imme-
diate response to faults. The key to building an efficient real-time monitoring system 

Fig. 4 Real-time monitoring system
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is to integrate efficient data acquisition, real-time processing, accurate fault detection, 
rapid response mechanisms, and a high degree of scalability to cope with the continuous 
growth of design scale and complexity. The following is an in-depth discussion of design 
elements and implementation strategies for real-time monitoring systems (Qi et al. 2022; 
Qin et al. 2022).

We use high-speed interface technology, such as JTAG or high-speed serial bus 
HSBaud, to capture data in real time at the sample rate of, where is the sampling period, 
ensuring that critical signals including voltage V(t), current I(t), temperature T(t), etc. 
are captured. Data preprocessing involves removing noise by applying a digital filter 
H(f ), where f is frequency, preserving signals within the active frequency band. Feature 
extraction uses Fourier transform X(f ) to obtain spectral features, normalized as, where 
and are the mean and standard deviation of the dataset, respectively.

Deep learning-based model ensembles monitor errors using either the autoencoder 
AE(x) or the variational autoencoder VAE(x), where x is the input data and AE(x) is the 
reconstructed output, and errors exceeding a threshold trigger anomaly detection.

Multi-model fusion: decision-making fusion adopts weighted average, where is the 
output of model i and the model weight, which is determined through cross-validation 
optimization to improve the comprehensive recognition accuracy. After abnormal trig-
gering, the fast response is based on feature analysis, such as the feature vector of AE 
hidden layer H(x), combined with classification such as SVM(W) or DNN(x), where 
W(x) is the decision boundary of support vector machine, DNN(x) is the output of neu-
ral network, and fast fault location is realized. Adaptive threshold adjustment: dynami-
cally adjust the threshold according to real-time data, formula, where is the basic 
threshold, is the adjustment coefficient, is the standard deviation of real-time data, 
adapt to different operating conditions. In terms of system reliability, the two-way design 
ensures reliability, such as and, and any failure does not affect the overall. This paper 
uses cloud platform, resource allocation on demand, x demand changes with time t, and 
as extension parameters. API design follows standards, such as, facilitating integration 
with other systems sys (Ravelo et al. 2022; Schindler and Fourie 2022).

Case studies and experimental validation
Case 1: Chip layout optimization practice based on deep learning

In this example, we will explore how deep learning techniques, especially convolu-
tional neural networks (CNN), can be used to optimize the layout of integrated circuits, 
achieving significant improvements in design efficiency and performance. The case 
study selected a representative digital signal processor (DSP) chip as the study object. 
This chip contains millions of transistors, and the layout optimization challenge is par-
ticularly difficult.

Traditional layout methods often fall into local optimal solutions when faced with 
extremely complex designs, and it is difficult to consider multi-objective optimization 
such as performance, power consumption and area. This case study aims to use deep 
learning models to automatically learn layout patterns, explore a wider layout space, and 
seek global optimal solutions.

The CNN model consists of two parts: feature extraction layer and optimization 
policy output layer. The feature extraction layer consists of multiple convolution lay-
ers and pooling layers, which are used to identify key features in layout images, such 
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as component density distribution, topology, etc. Based on the extracted features, the 
optimization strategy output layer predicts the potential benefits of layout adjustment 
through the fully connected layer, and guides the optimization direction.

Data set construction is a key part. We construct the training set using both histori-
cally optimized successful layout examples and simulation-generated layouts as positive 
and negative samples. Each image is labeled with layout performance metrics such as 
power consumption and time delay. The model was optimized using stochastic gradient 
descent and Adam optimizer to minimize prediction error.

The experiment consists of two stages: offline training and online optimization. In 
the offline phase, the model is trained on a large-scale labeled dataset and accurately 
predicts layout optimization potential on a validation set. For online optimization, the 
model is embedded in the layout tool, iteratively guiding the layout adjustment, and 
predictive evaluation is performed again after each optimization step until convergence 
(Shaik et al. 2024; Sharma and Vishwakarma 2019).

The results show that the CNN-based layout optimization strategy reduces the aver-
age power consumption by 120% and the delay by 1.5% compared with the traditional 
method under the same design rules, while maintaining good area utilization. Espe-
cially in high-density logic block layout optimization, the performance improvement is 
more significant, reflecting the superiority of deep learning model for complex layout 
optimization.

Despite the positive results of the experiment, challenges remain. The black box nature 
of deep learning models increases the interpretation difficulty of the optimization pro-
cess and is highly dependent on high-quality data. Future work will explore integrating 
more multivariate learning strategies to improve model generalization and incorporat-
ing interpretability techniques to further optimize transparency and controllability of 
layout decisions (Sharma and Roy 2021; Smirnov et al. 2021; Tao et al. 2018).

Case 2: Deep learning predicts integrated circuit power consumption and performance

In the field of integrated circuit design, accurate prediction of chip power consumption 
and performance is the key to optimizing the design process and accelerating the time to 
market of products. This section presents an innovative example of how deep learning 
models, especially recurrent neural networks (RNNs) and long-term memory networks 
(LSTMs), can be used to accurately predict the power consumption and operational per-
formance of integrated circuits. This method not only improves the accuracy of predic-
tion, but also greatly shortens the design cycle and reduces the cost of physical prototype 
testing.

In contrast, LSTM (Long Short-Term Memory) units, a variant of Recurrent Neural 
Networks, are architected to handle sequential data, comprising input, output, forget 
gates, and a cell state. The input gate regulates new information flow, the forget gate 
decides which parts of the cell state to discard, the cell state holds memory over time, 
and the output gate controls the passage of information out of the unit, enabling effec-
tive learning from sequences with long-term dependencies. Both architectures leverage 
backpropagation for weight optimization, with CNNs excelling in spatial data analysis 
and LSTMs in capturing temporal relationships.

Traditional integrated circuit designs often rely on rules of thumb and physical sim-
ulation, but these methods are inadequate for highly complex designs, especially in 
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predicting nonlinear, highly interactive power consumption and performance metrics. 
Deep learning technology, with its powerful data mining and pattern recognition capa-
bilities, provides a new solution to this problem. This case study focuses on building pre-
dictive frameworks using deep learning models to provide fast and accurate feedback for 
early design (Sridarshini et al. 2023).

The core of the model is LSTM network, which is good at capturing long-term depen-
dencies in time series data and is very suitable for dealing with power consumption and 
performance prediction problems that vary with circuit scale and operating conditions 
in integrated circuit design. Input data includes logic gate level description of the circuit, 
operating frequency, voltage level, temperature and other key parameters. The model 
first encodes these parameters, then performs feature extraction and sequence modeling 
through multiple LSTM layers, and finally outputs predicted power consumption and 
performance metrics through the fully connected layer. A dataset of thousands of known 
design examples was built, each with detailed simulation results, including actual power 
consumption and performance data. In order to enhance the generalization ability of the 
model, the dataset is carefully designed to cover a wide range of design scenarios and 
operating conditions. In the data preprocessing stage, normalization was performed to 
eliminate dimensional effects, and data enhancement techniques were used to increase 
diversity and reduce overfitting risks. The experiment consists of three stages: train-
ing, validation and testing. In the training process, early stopping strategy and learning 
rate decay are adopted to optimize the model performance. The validation set is used to 
adjust hyperparameters and monitor overfits, while the test set is used to assess the final 
predictive power of the model. The results show that the average relative error between 
LSTM model and actual measurement is less than 5%, which is much better than the 
prediction accuracy of traditional statistical model. This model has been used in several 
design projects to help engineers quickly evaluate the power consumption and perfor-
mance of different design options at an early stage of design, and to guide key design 
decisions. To further improve prediction accuracy, future research directions include 
integrating more design variables, such as interconnect parasitic parameters, introduc-
ing attention mechanisms to focus on key sequence features, and developing adaptive 
learning rate strategies to accelerate model convergence.

While the study highlights the transformative potential of deep learning in IC design, 
it also underscores critical challenges that need resolution for full exploitation. Data 
scarcity and quality pose a significant hurdle due to the proprietary nature of design 
data and the lack of comprehensive benchmarks, necessitating future exploration of 
cross-company data sharing and synthetic data generation. The computational inten-
sity of training deep learning models creates barriers for SMEs, calling for more effi-
cient architectures and leveraging of cloud resources. The opacity of deep learning 
models demands the development of interpretation tools for transparency and trust. 
Additionally, the models’ generalizability to new domains is limited, requiring research 
into transfer learning and domain adaptation. Overcoming these challenges is pivotal 
for integrating deep learning into IC design, fostering a more intelligent and efficient 
approach to circuit development.
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Experimental design

In this section, we will introduce in detail the specific steps of experimental design, 
the construction and characteristics of data sets, and the analysis of application results 
based on deep learning models in integrated circuit design optimization. This chap-
ter aims to demonstrate how to verify the validity of previously proposed theories and 
models through scientifically rigorous experimental design and data-driven methods. 
The experimental design mainly includes the following key steps: model selection, data 
preprocessing, model training and validation, and hyperparameter optimization. We 
selected representative deep learning models, such as convolutional neural networks 
(CNN) and recurrent neural networks (RNN), based on their excellent performance in 
image recognition and sequence data processing, to be applied to circuit layout optimi-
zation and performance prediction tasks, respectively.

Data sets are the key to the success of the experiment. We constructed two special 
data sets: (1) Layout optimization data set: images containing thousands of circuit layout 
examples, each layout image is transformed from circuit component position informa-
tion, and the labels are optimized performance indicators (such as area, power con-
sumption, delay).

In the performance improvement comparison, we selected key evaluation indicators 
including optimization efficiency, prediction accuracy (such as power consumption, 
delay), design quality improvement ratio, generalization ability and user satisfaction. The 
baseline approach was chosen from traditional simulation and analysis techniques that 
are widely used in the industry to contrast new strategies based on deep learning. Evalu-
ate the performance improvement effect of deep learning introduction by comparing 
time consumption, mean absolute error (MAE), root mean square error (RMSE), cor-
relation coefficient, design optimization percentage and user feedback.

After selecting CNNs for layout optimization and LSTMs for performance prediction, 
models were implemented using TensorFlow and Keras libraries. Training data was fed 
in batches, with learning rates dynamically adjusted using ReduceLROnPlateau callback 
to maintain training momentum. Early stopping was employed to prevent overfitting. An 
exhaustive grid search was conducted for hyperparameters such as filter sizes in CNNs, 
LSTM units, and dropout rates. The combination yielding the lowest validation loss was 
selected for final model configurations. A live demonstration involved taking a random 
subset of test layouts and running them through the optimized CNN model. Real-time 
visualization showed how the model iteratively refined circuit layouts, reducing area and 
improving power efficiency. Similarly, LSTMs were demonstrated predicting power con-
sumption and delay with high accuracy, validated against actual post-simulation results. 
Data Augmentation: To enhance dataset diversity and robustness, layout images were 
rotated, flipped, and translated, while synthetic variations were introduced to the perfor-
mance dataset, simulating different operating conditions and noise levels. These detailed 
steps offer insight into the meticulous methodology employed, ensuring the reliability 
and validity of results obtained from applying deep learning to IC design challenges.

Visualization tools play a critical role in improving transparency and user acceptance 
of deep learning models in IC design, helping designers build trust and confidence in 
predictive outcomes by demonstrating the model’s decision-making process. Functional 
importance visualizations allow designers to identify key design factors that influence 
predictions; decision path visualizations reveal the logic inherent in model predictions; 
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error analysis tools help identify deviations and error patterns; interactive dashboards 
provide a comprehensive view of model performance; and scenario exploration tools 
allow designers to explore the impact of different design parameters without retraining 
models. The design process integrating these tools not only deepens designers ‘under-
standing of how models work, but also facilitates smarter decision-making, effectively 
bridging the gap between the “black box” characteristics of deep learning and the 
requirements of design practice, and driving more efficient and accurate IC design.

Performance comparison and discussion

The purpose of this section is to explore the performance differences between deep 
learning methods and traditional techniques in integrated circuit design through com-
parative analysis, including the improvement effects of layout optimization and perfor-
mance prediction. To visualize these differences, we designed a comparison table of six 
key indicators, covering multiple dimensions such as efficiency, accuracy, generalization 
ability, and design quality.

Table 1 mainly compares the differences in time consumption and optimization effi-
ciency between traditional layout optimization methods and layout optimization meth-
ods based on deep learning. The Time Consumption column shows how long it takes to 
complete the layout optimization, while the Improvement Rate reflects the percentage 
improvement in performance metrics after optimization relative to the unoptimized lay-
out. It can be seen from the table that although the time required for the two methods 
is similar, the deep learning method is significantly better in performance improvement, 
reaching a 10% improvement rate, which is much higher than the 5% of the traditional 
method, indicating that deep learning has more advantages in improving optimization 
efficiency.

Table  2 evaluates the accuracy of traditional simulation methods versus deep learn-
ing models in predicting IC power consumption. The MAE (Mean Absolute Error) indi-
cates the mean absolute error, where a smaller value indicates that the predicted value 
is closer to the actual value, while the R-squared Score measures the goodness of fit of 
the model, where a closer to 1 indicates that the model is more capable of interpreting 
the data. The data show that the MAE of the deep learning model is 3, which is much 
lower than the traditional simulation of 50, and the R² score is as high as 0.9, indicating 
that deep learning significantly improves the accuracy and fitting ability of the model in 
power prediction.

Table 3 compares the performance of traditional analysis methods and deep learning 
models in predicting circuit delays, evaluated by “root mean square error“(RMSE) and 
“correlation coefficient.” The root mean square error of the deep learning model is only 

Table 1 Comparison of layout optimization efficiency
Method Time consumption (hours) Improvement rate (%)
Traditional methods 100 5
Deep learning methods 10 12

Table 2 Accuracy of power consumption prediction
Method MAE (Mean Absolute Error) R² score
Traditional simulation 50 0.85
Deep learning 3 0.9
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15, which is much lower than the traditional analysis of 20, and the phase relationship 
coefficient is close to 0.95, indicating that the deep learning model has higher accuracy 
and stronger correlation in terms of prediction delay.

Table 4 summarizes the improvements in design quality between traditional and deep 
learning methods, including power reduction, area optimization, and percentage per-
formance improvement. Deep learning showed better performance on all metrics, such 
as 5% power reduction, 3% area optimization, and 1% performance improvement, indi-
cating that deep learning brought more comprehensive and significant improvements in 
overall design quality.

Table 5 evaluates the generalization ability of traditional methods and deep learning 
methods through testing on the new design set, with accuracy as the indicator. The deep 
learning model achieved higher accuracy (0.9 to 0.95) on all new designs, indicating 
greater adaptability and generalization performance in the face of unseen designs.

Table 6 examines user feedback on understanding and satisfaction with traditional ver-
sus deep learning methods (with visualization tools). Although the “black box” feature of 
the original model of deep learning leads to a slightly lower understanding degree, after 
visual assistance, the user understanding degree reaches 4, and the satisfaction rate is as 
high as 95%, which is much higher than the 70% of the traditional method. This suggests 
that appropriate visualization tools can effectively improve user acceptance and experi-
ence of deep learning methods.

The dataset consists of approximately 1 million data points and represents a signifi-
cant extension of the typical benchmark dataset commonly used in IC design studies. 
This scale is designed to mimic the real-world complexity and data volumes encountered 
in modern integrated circuit design and optimization. These datasets cover a variety of 
IC components and design scenarios, including different transistor technologies (e.g. 

Table 3 Delay prediction capability
Method Mean square root mean square error Correlation coefficient
Traditional analysis 20 0.7
Deep learning 15 0.95

Table 4 Design quality comparison
Indicators Traditional methods Deep learning methods
Power consumption reduction (%) 1 5
Area optimization (%) 2 3
Performance improvement (%) 0.5 1

Table 5 Generalization ability test
Test set Accuracy of traditional methods Deep learning accuracy
New design 1 0.6 0.9
New design 2 0.7 0.95
New design 3 0.8 0.9

Table 6 Interpretability and user satisfaction
Method User understanding (1–5 rating) Full satisfaction (%)
Traditional 3 70
Deep learning + visualization tools 4 95
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FinFET, planar), different operating frequencies, and a mix of analog, digital, and mixed-
signal circuits. These data sets also include a wide range of power, performance and area 
(PPA) trade-offs to ensure comprehensive coverage of potential design optimizations. 
These data sets include detailed information on layout geometry, material properties, 
interconnect parasitics, and simulated electrical characteristics. Each entry is labeled 
with real performance metrics such as power consumption, propagation delay, and area 
occupancy to enable training and evaluation of predictive models.

Table  7 evaluates the performance of traditional methods and deep learning mod-
els when applied to two large-scale and diverse datasets. The metric used here is Mean 
Squared Error (MSE), where a lower value signifies better prediction accuracy. The 
results illustrate a substantial decrease in MSE for deep learning models compared to 
traditional methods, indicating that deep learning can effectively handle more significant 
volumes of data with higher variability without compromising accuracy. This suggests 
that deep learning models have superior scalability and can maintain their predictive 
power even as the complexity and diversity of datasets increase.

Table 8 investigates the efficiency of traditional methods and deep learning in optimiz-
ing various types of IC designs. Efficiency here is measured as a percentage improve-
ment over baseline designs without optimization. The results indicate that deep learning 
consistently provides a significant boost in efficiency across all IC design categories. For 
instance, in high-speed digital designs, deep learning increases efficiency by 30% points 
compared to traditional methods. Similarly, in the case of RF/Microwave designs, the 
efficiency improvement jumps from 65 to 95%. This illustrates the versatility of deep 
learning algorithms, which can be tailored and effectively applied to different IC design 
challenges, enhancing performance across the board.

As shown in Table  9, we see that when tested on larger and more diverse datasets, 
deep learning continues to outperform traditional methods by a substantial margin. The 

Table 7 Performance on large-scale & diverse datasets
Method Large diverse dataset 1 - MSE Large diverse dataset 2 - MSE
Traditional methods 1200 1350
Deep learning 300 350

Table 8 Application in diverse IC design types
IC design type Traditional method efficiency (%) Deep learning efficiency (%)
High-speed digital 60 90
Analog 55 85
RF/Microwave 65 95
MEMS 70 90

Table 9 Deep learning performance on larger and more diverse datasets
Dataset category Traditional methods improvement Deep learning

improvement
Improvement gain

Small-scale digital +10% +40% +30%
Large-scale digital +12% +45% +33%
Analog mixed-signal +15% +50% +35%
RF/Microwave +20% +60% +40%
Memory +18% +55% +37%
Power electronics +16% +52% +36%
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improvement gain shows how much more effective deep learning is at optimizing IC 
designs compared to conventional approaches.

Table 10 demonstrates that deep learning’s benefits are consistent across various IC 
design types. Not only does it improve upon the baseline designs significantly, but it also 
outperforms traditional optimization techniques by a notable margin in each category. 
The efficiency gain column highlights the additional percentage points gained through 
deep learning optimization over traditional methods.

The experiments on larger and more diverse datasets (Table 9) and across different IC 
design types (Table 10) reinforce the notion that deep learning not only excels in small, 
controlled scenarios but also scales effectively to address real-world complexities. Its 
ability to manage vast datasets with high variability ensures that deep learning remains a 
viable solution as IC design challenges grow in scale and intricacy.

Regarding the application in different IC designs, the consistent performance improve-
ment across various IC types suggests that deep learning models can be generalized and 
adapted to the specific requirements of different design domains. This versatility posi-
tions deep learning as a transformative technology in IC design, offering a pathway for 
enhanced optimization, faster development cycles, and ultimately, the creation of more 
efficient and advanced ICs.

For successful deployment and wider industry adoption, further research should con-
centrate on refining model architectures to better suit specific IC design challenges, 
integrating domain-specific knowledge, and developing user-friendly interfaces that 
facilitate collaboration between IC engineers and data scientists. Moreover, address-
ing the interpretability of deep learning models, often seen as a barrier to adoption in 
the engineering community, will be crucial to fostering trust and understanding among 
practitioners.

Conclusion
Circuit layout optimization in integrated circuit design is a highly complex multi-objec-
tive problem, which requires an optimal balance of power consumption, performance 
and area while ensuring strict design rules are followed. This work delves deeply into the 
complexities entailed and illuminates the substantial potential that deep learning meth-
odologies hold for advancing solutions in this domain. Our case studies and empirical 
validations have convincingly demonstrated the efficacy of deep learning, particularly 
models rooted in Convolutional Neural Networks (CNNs) and Recurrent Neural Net-
works (RNNs), in augmenting both the efficacy and excellence of layout optimization 
processes. Specifically, the CNN-driven approach has proven instrumental in intelli-
gently guiding layout modifications through automated pattern recognition, yielding 
marked enhancements, most notably in reducing power consumption and minimizing 
delays. This underscores the unique capacity of deep learning to transcend the confines 

Table 10 Deep learning across different IC design types
IC design type Baseline 

efficiency
Traditional 
optimization

Deep learning 
optimization

Efficien-
cy gain

High-speed digital 60% 70% (+10%) 90% (+30%) +20%
RF/Microwave 50% 65% (+15%) 95% (+45%) +30%
Analog mixed-signal 45% 55% (+10%) 85% (+40%) +30%
Power electronics 55% 65% (+10%) 90% (+35%) +25%
Memory 65% 75% (+10%) 95% (+30%) +20%
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of conventional methods, transcending local optima to pursue globally optimized solu-
tions. In the realm of performance prediction, Long Short-Term Memory (LSTM) net-
works have emerged as powerful predictors, exhibiting superior precision in forecasting 
power consumption and delay parameters.

The study confirms deep learning’s significant benefits over traditional methods in IC 
design. Key takeaways include: (1) Layout optimization time reduced from 100 h to 10 h 
with a 7% higher improvement rate. (2) Accuracy enhancements with a 94% decrease in 
MAE and a 5.88% increase in R² score. (3) Improved delay prediction with a 25% lower 
RMSE and a 35.71% higher correlation coefficient. (4) Design quality metrics show 400%, 
50%, and 100% improvements in power, area, and performance. (5) Unseen designs have 
15-35% better accuracy with deep learning. (6) User satisfaction increases with a 33.33% 
better understanding and 25% higher satisfaction. (7) Scalability is proven with a 75% 
reduction in MSE on large datasets. (8) Efficiency jumps 30% for high-speed digital and 
RF/microwave circuit designs.

Of particular note is the integration of visualization tools, which serves as a critical 
bridge, mitigating the opaqueness typically associated with deep learning’s “black box” 
perception. This fusion augments transparency, fosters trust amongst users, and bolsters 
the technology’s integration and acceptance within the IC design community. In essence, 
this study fortifies the case for deep learning as a transformative force in IC design, 
reshaping the landscape by enabling more efficient, accurate, and insightful design deci-
sions. It paves the way for future research to further refine these methodologies and fully 
harness the potential they embody for pushing the boundaries of what is achievable in 
integrated circuit design.

While this study demonstrates the significant advantages of deep learning methods 
in IC design, it acknowledges limitations such as potential data set biases and the reli-
ance on high-quality data for effective model training. Future research should focus on 
developing robust methods to mitigate data biases and enhancing data quality through 
advanced preprocessing techniques. Additionally, exploring transfer learning and 
domain adaptation strategies could further improve the generalizability of deep learning 
models across diverse IC design scenarios.
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