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Abstract 

The cooling systems contribute to 40% of overall building energy consumption. Out 
of which, 40% is wasted because of faulty parts that cause anomalies in the cooling 
systems. We propose a three-stage, non-invasive part-level anomaly detection tech-
nique to identify anomalies in both cooling systems, a ducted-centralized and a duct-
less-split. We use COTS sensors to monitor temperature and energy without invading 
the cooling system. After identifying the anomalies, we find the cause of the anomaly. 
Based on the anomaly, the solution recommends a fix. If there is a technical fault, 
our proposed technique informs the technician regarding the faulty part, reducing 
the cost and time needed to repair it. In the first stage, we propose a domain-inspired 
time-series statistical technique to identify anomalies in cooling systems. We observe 
an AUC-ROC score of more than 0.93 in simulation and experimentation. In the second 
stage, we propose using a rule-based technique to identify the cause of the anomaly. 
We classify causes of anomalies into three classes. We observe an AUC-ROC score of 1. 
Based on the anomaly classification, we identify the faulty part of the cooling system 
in the third stage. We use the Nearest-Neighbour Density-Based Spatial Clustering 
of Applications with Noise (NN-DBSCAN) algorithm with transfer learning capabili-
ties to train the model only once, where it learns the domain knowledge using 
the simulated data. The trained model is used in different environmental scenarios 
with both types of cooling systems. The proposed algorithm shows an accuracy score 
of 0.82 in simulation deployment and 0.88 in experimentation. In the simulation we 
used both ducted-centralized and ductless-split cooling systems and in the experi-
mentation we evaluated the solution with ductless-split cooling systems. The overall 
accuracy of the three-stage technique is 0.82 and 0.86 in simulation and experimen-
tation, respectively. We observe energy savings of up to 68% in simulation and 42% 
during experimentation, with a reduction of ten days in the cooling system’s downtime 
and up to 75% in repair cost.
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Introduction
The cooling systems contribute to 40% of buildings’ energy consumption (Vishwanath 
et al. 2017). They consume more energy when there are anomalous instances, and these 
instances occur due to faults in the cooling system. Faults in cooling systems lead to 
energy wastage of up to 40% of its overall lifetime energy consumption (Narayanaswamy 
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et al. 2014). Anomalies and the cause behind these anomalies must be identified in real-
time. Delay in detecting anomalies increases downtime and energy wastage (Rashid 
et al. 2019). Real-time identification of anomalies guides users to quickly take necessary 
action when a fault occurs and reduces the wastage of energy by cooling systems.

The cooling systems are categorized into two categories—ducted-centralized cool-
ing systems and ductless-split cooling systems. In a ducted-centralized cooling system, 
a compressor is connected to many Air Handling Units (AHUs) using ducts. Here, the 
ducts transfer cold air from the compressor to the rooms. However, in the ductless split 
cooling systems, one compressor is connected to one AHU using copper pipes which 
transfer cold air from the compressor to the room. Both of the cooling systems come 
with an Energy Rating (ER) which represents the maximum cooling capacity of the cool-
ing system. The user decides on a particular cooling system based on the requirements. 
Both types of cooling systems are prone to anomalies.

Real-time detection of anomalies in cooling systems is an important task, especially in 
critical systems where it is required to maintain the room’s temperature throughout with 
minimum downtime. Detection of these anomalies comes under the scope of time-series 
anomaly detection as sensors produce time-series data. The two primary techniques to 
detect such anomalies are the classical approach and the Deep Learning (DL) approach. 
In the classical approach, we perform a time or frequency domain analysis of the time 
series signal to find anomalous instances and use distance metrics to identify anomalies. 
In the DL approach, we train a model to learn normal behavior. If the variables are not 
highly correlated, we consider them anomalies (Malki et al. 2022).

The techniques mentioned above are capable of identifying anomalies in time-series 
data. However, these techniques cannot explain the reason behind the anomalies. These 
techniques are data-sensitive and require a large amount of data. However, anomalies 
in real-world systems depend on various environmental and deployment factors. We 
do not have a large dataset at the initial stages of real-world deployment. Hence, these 
approaches are not suitable for such applications. For example, identifying an unusually 
high change in energy consumption by the cooling systems. There are various reasons 
behind this unusual change in energy consumption for example—technical, incorrect set 
temperature, or the AC has degraded over time and is not capable of cooling the room 
now. In this paper, we propose a novel NN-DBSCAN technique to identify the cause of 
anomalies. The proposed technique uses Transfer Learning, by virtue of which, it facili-
tates its deployment in new setups.

The current state of the art requires professional assistance for Fault Detection and 
Diagnosis (FDD) in cooling systems (Li and Braun 2009). They deployed a large set of 
sensors on each physical part of the cooling system to observe the changes. For exam-
ple, Li and Braun (2009), proposed to detect faults using temperature sensors. These 
temperature sensors are deployed on the condensing unit, liquid line, suction line, and 
evaporating lines. Based on these data points, they proposed to identify faults. These 
techniques are accurate but require many sensors, which increases the cooling system’s 
cost. The need for professional assistance makes these solutions not scalable to residen-
tial cooling systems.
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Janetzko et  al. proposed a novel unsupervised visual anomaly detection technique 
(Janetzko et al. 2014). They first understood the energy consumption pattern and then 
predicted the energy consumption during normal execution. If there was any devia-
tion, they assigned it as an anomalous instance. The instance is represented as a color-
ing matrix where different intensities of colors are assigned based on the significance of 
deviation. Araya et al. proposed the use of ensemble learning techniques to identify the 
anomalies in energy systems (Araya et al. 2017). They proposed a collective contextual 
anomaly detection using sliding window (CCAD-SW). They used multiple anomaly clas-
sifiers and ensembled the results of those classifiers for the identification of anomalies. 
The solution is evaluated using HVAC data collected from a real-world building. These 
solutions are only capable of identifying anomalies and are not able to identify the cause 
of anomaly and the faulty part.

In this paper, we propose an IoT and Machine Learning-based solution to identify 
anomalies and the cause of those anomaly in a real-world system. We collect tempo-
ral data using energy and temperature sensors in real-time. Using the collected data, we 
identify anomalous instances observed during the execution of the cooling system. Fig-
ure 1 shows the deployment of an IoT sensor connected with the AHU of the cooling 
system. It records the overall energy consumption of the cooling system.

We propose three staged non-invasive part-level anomaly detection techniques to 
identify the fault and its cause in real-time. Here, we do not connect sensors to each 
part of the cooling system separately, making the proposed approach non-invasive. 
At first, we use statistical inference to find the anomalous instances of energy con-
sumption during the execution of the cooling system. Here, we use domain-inspired 
statistical inference to identify a significant change in energy consumption con-
cerning the past data. Then, we define a set of rules based on domain knowledge to 

Fig. 1  An IoT-based sensor connected with AHU in series. It records the overall energy consumption of 
the cooling system. The sensor records the current consumption by the cooling system using the current 
transformer. The sensor is 4 G enabled, which provides us data anywhere, anytime around the globe, 
when required. We present the outdoor unit setup which forwards the cold air to Indoor Unit Setup which 
circulates the cold air in the room
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identify the cause of anomalous energy consumption instances. Once the anomaly 
is identified from stage one, it is forwarded to the second stage. Finally, we identify 
the faulty part. We propose a non-invasive solution that only considers the overall 
energy consumption and environmental conditions of the cooling system and identi-
fies the faulty part without explicitly connecting a sensor to each part of the cooling 
system. Our proposed solution is out-of-the-box, i.e., it does not require repeated 
training with every new real-world deployment. It learns the percentage impact of 
each cooling system part and identifies the faulty part. From our knowledge, these 
two features are a big step forward from state-of-the-art. The proposed solution is 
a plug-and-play solution where we just need to connect the energy sensor with the 
cooling system.

To the best of our knowledge, no one has considered finding faults and the faulty 
cooling system part in real-time. The proposed technique uses a set of rules that are 
constructed with the inference of domain knowledge to identify the faults. The follow-
ing are the significant contributions of this paper. This paper is an extended version of 
the paper published in Energy Informatics. Academy Conference 2023 (Kaushik and 
Naik 2023). 

1.	 We propose the use of domain-inspired statistical inference for the real-time identifi-
cation of anomalies in real-world systems. Here, we use O(n) space to identify faults, 
reducing memory overhead. Other state-of-the-art solutions require O(n2) , they 
need long-term historical data for prediction (Sathe and Aggarwal 2016). Solutions 
with high space complexity need to perform more statistical operations, leading to 
an increase in computing time.

2.	 We propose a rule-based method to identify the cause of anomalies in cooling sys-
tems. These rules are deduced from the domain knowledge.

3.	 If the cause of the anomaly is classified as a technical anomaly, we help the technician 
by identifying the faulty part of the cooling system. We propose NN-DBSCAN with 
a transfer learning framework to classify the faulty part of the cooling system. The 
proposed technique requires only a single training. Once trained, it is used in any 
deployment, irrespective of cooling system deployment.

4.	 We evaluate our proposed solution in a simulation environment using EnergyPlus, 
where we deploy more than forty faults. We also evaluate it in an experimenta-
tion setup with six cooling systems. We observe an AUC − ROC score of 0.95 in 
the simulation and 0.93 in the experimentation setup to identify anomalies. We 
observe an AUC − ROC score of 1 in simulation and experimentation deploy-
ment for identifying the cause of anomaly using domain-inspired rules. Finally, 
depending on the anomaly’s cause, we identify the faulty part of the cooling sys-
tem. Here, we observe an accuracy score of 0.82 in the simulation and 0.88 in the 
experimentation. We observe energy savings of up to 68% and 42% in simulation 
and experimentation, respectively, with a reduction in downtime of the cooling 
system by ten days and a reduction in repair cost up to 75% reasoning early identi-
fication of faulty parts.
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Background and problem statement
Cooling systems cool the enclosed area by removing heat and humidity. Using a chemi-
cal refrigerant, the cooling system transfers unwanted heat and moisture to the external 
environment. It consists of five major components—compressor, condenser, evaporator, 
expansion valve, and AHU. Figure 2 shows a basic architecture of the cooling system.

Compressor: The compressor of a cooling system changes the pressure on the refriger-
ant by increasing the temperature so that the refrigerant reaches a gaseous state. After 
reaching the gas state, the compressor stops working, and the gas starts cooling down.

Condenser: The condenser receives high-pressure gas from the compressor. It works 
on the principle of heat transfer, where heat is transferred from a hot substance to a 
cold substance. Here, the gaseous refrigerant is converted back to liquid refrigerant.

Evaporator: The refrigerant flowing in the evaporator tubes gets converted into 
vapors due to reduced pressure in evaporator tubes. This process makes the tube 
cooler and exchanges hot air from the enclosed environment.

AHU: It exchanges the cold air from the cooling system with the hot air from the 
room.The primary component of an AHU unit is the fan, which helps in the circula-
tion of air in the room.

Problem statement To investigate whether faults have a discernible impact on 
temperature and energy consumption, we inject commonly observed faults (Li and 
O’Neill 2019) in each of the five components. Some of the commonly observed faults 
are refrigerant leakage, component failure, blockage of the expansion valve, compres-
sor motor failure, etc. We plot the measured temperature and energy values in Fig. 3. 
We see an opportunity to differentiate the faults from the measured values. However, 
an appropriate clustering technique is needed to accurately identify the faults, which 
we address in this paper.

Fig. 2  The architecture of the cooling system consists of five major components—compressor, condenser, 
evaporator, expansion valve, and AHU. The compressor contributes the highest energy consumption, and the 
AHU the lowest



Page 6 of 27Kaushik and Naik ﻿Energy Informatics            (2024) 7:46 

The proposed technique to identify an anomalous instance, its cause, and the faulty 
component responsible for the cause consists of three stages. In the first stage, we 
detect the anomaly in real-time using time-series patterns. In the second stage, we 
identify the cause behind the anomaly using domain-inspired rules. In the third stage, 
we identify the faulty component if a technical fault exists. Here are the definitions of 
the terms we use in our paper. 

Tset	� Set temperature of ductless-split cooling system (◦C)
Troom	� Present temperature of the room (◦C)
Tgoal	� Desired final temperature of the room (◦C)
Texternal	� External environmental temperature (◦C)
τ	� Change in temperature per unit time by ductless-split cooling sys-

tems (◦C)
P	� Energy consumption per hour by the ductless-split cooling systems 

(W · h−1 )

�T 	� Change in the room temperature (◦C)
�t	� Time interval between measurements (min)
PA	� Past anomaly instance
ER	� Energy Rating of the cooling system
PAP	� Energy consumption by the faulty part
AN	� Anomaly cause
Anomaly Cause1	� Anomaly occurred due to wrong Tset

Anomaly Cause2	� Anomaly occurred due to technical fault
Anomaly Cause3	� Anomaly occurred due to cooling requirements not met

We measure AUC − ROC , accuracy, and F1 scores for evaluating the solution.
AUC − ROC : It is used to measure the performance of the classification algorithms 

at various thresholds. It presents the capability of a classification algorithm to dis-
tinguish between classes. The AUC​ can be ranged from 0 to 1. Here, 1 represents the 

Fig. 3  (1) represents the energy consumption by the cooling system with different technical anomalies 
for each part. Here, (a) represents the expansion valve, (b) condenser, (c) compressor, (d) AHU, and (e) 
evaporator.Each faulty component has an impact on energy consumption and temperature. With an 
appropriate clustering technique, we can identify the faulty component
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perfect classifier. The higher the value of AUC​, the better the performance of the clas-
sification algorithm. The ROC curve is plotted between True Positive Rate (TPR) and 
False Positive Rate (FPR) , and the area under the ROC curve is called AUC​.

Here, TP represents True Positives, and FN represents False Negatives. The equation 
represents the probability of the correct classification of positive instances.

Here, FP represents false positives, and TN represents true negatives. The equation rep-
resents the probability of correctly classifying the instance as false.

We only use the AUC − ROC score for stage 1 and 2 evaluations. The reason behind 
this is the data set. In stage 1, we have a data set from the sensors. Here, the anomalies 
are rare. In stage 2, we have three causes of anomalies, and the occurrence of each cause 
of the anomaly is different.

Accuracy: It measures the success of the prediction of classes. It tells how often our 
proposed technique correctly predicts all predictions made by the model. We use this 
metric to evaluate stage 3 because, in stage 3, we collect data from the simulation with 
the same number of occurrences of each fault.

The accuracy is calculated using the correct predictions and total predictions. Using this, 
we can check the degree of predictions made by the proposed solution conforms to the 
correct value.
F1 : It identifies the distribution of prediction. It is used to measure the performance of 

the classifications made. This is calculated by taking the harmonic mean of precision and 
recall. Evaluation using F1 is important because it helps in indicating the performance of 
the classifier when there are uneven instances. For example, the occurrence of anomaly 
is rare; hence, using only accuracy is not sufficient in these cases. F1 score is a more vital 
evaluation in these cases. Here, precision is calculated by TP

TP+FP and recall using TP
TP+FN .

Related work
The problem of anomaly detection is a focus of research. We classify the existing work 
into (a) ones focused on general techniques for any domain and (b) ones focused on a 
specific domain.

(1)TPR =
TP

TP + FN

(2)FPR =
FP

FP + TN

(3)accuracy =
TP + TN

TP + FP + TN + FN

(4)F1 score = 2×
precision× recall

precision+ recall
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General techniques

Malki et al. (2022) proposed the use of ARIMA to predict future values of IoT data, and 
based on this data, they used the LightGBM model and Prophet to identify the faulty 
instances. The approach to identifying this type of anomaly is point anomaly detection. 
There, they did not identify the cause or faulty component of the IoT system.

Arjunan et al. (2015) proposed to identify anomalies using data from multiple users. 
Each user was a neighborhood because they had similar environments, thus hav-
ing similar responses to the environmental factors affecting energy consumption. The 
neighborhood is decided based on prior knowledge. The proposed method did not 
detect anomalies while reducing the fault positive rate. Rashid et al. (2016) proposed a 
Collect Compare and Score framework to identify the anomalies. They collected data 
from smart meters and compared it with past data. If there was a significant difference 
between the two, they used local outlier factors to score the anomaly within the range of 
0–1.

Narayanaswamy et al. proposed the Model Cluster and Compare framework in Naray-
anaswamy et  al. (2014). They used unsupervised clustering to detect the anomalies 
automatically. The first step was to identify the abnormal instances, the second was to 
compare and perform clustering, and finally, they used intelligent rules for grouping the 
anomalies. The proposed technique could identify faults. However, it did not identify the 
faulty part of the system.

Rashid et  al. (2019) proposed the UNUM rule-based technique on appliance-level 
energy consumption data to identify the behavior of the duty cycle of an appliance. They 
used k-means to identify the ON-OFF state of the system. Lastly, using a rule-based 
technique, they identified whether there existed a fault or not. If we use their anomaly 
detection technique, it identifies anomalies, but it does not identify the cause of anoma-
lies and the faulty part of the cooling system.

Chiosa et al. an IoT-based method for Anomaly Detection and Diagnosis (ADD) (Chi-
osa et al. 2022). The proposed solution works on the energy meter level data to perform 
ADD. The proposed solution uses the advantages of both supervised and unsupervised 
learning algorithms. The proposed solution consists of six stages— (1) Data pre-pro-
cessing, (2) Subsequence and context definition, (3) Group definition, (4) Contextual 
Matrix Profile (CMP) calculation, (5) Anomaly detection and the last step (6) is Anomaly 
Diagnosis. Step (1) includes the replacement of missing values from the dataset using 
linear interpolation, then in step (2) authors proposed to use Classification and Regres-
sion Tree (CART) to identify sub-sequences. Then in step (3) Hierarchical clustering is 
performed to divide the energy data into the groups, the data in these clusters are then 
used to generate the CMP matrix in step (4). Then, in step (5) the authors proposed to 
identify anomalous instances using the Euclidean distance. Finally, a severity score is cal-
culated based on the computed CMP. The proposed solution only identifies the existence 
of anomalies. They do not focus on identifying the cause and faulty components.

Wang et al. proposed a secure federated learning-based framework and explored 
the forecasting capabilities of these for building data analysis (Wang et  al. 2023). 
They proposed the use of Deep Learning models for data analysis. The architecture 
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of the proposed solution contains seven components, namely (1) Federated server, 
(2) Federated client, (3) Data prepossessing, (4) Deep learning model, (5) Load fore-
casting, (6) Unsupervised learning model, and (7) Anomaly prediction. The work-
ing of proposed solution is categorized into two (1) Energy data platform—here the 
deep learning models are trained with the energy data and then the weights from 
deep learning models is forwarded to federated learning framework. In (2) the data 
is used for data analysis. Here they use Gaussian Mixture Model Clustering for pre-
dicting anomalies. The proposed solution focuses on identifying the instances of 
anomalies.

Domain‑specific techniques

Seem (2007) proposed a data analysis method to identify anomalies in home energy con-
sumption. Li and O’Neill (2019) proposed a probabilistic framework to rank the faults 
in the Heating Ventilation and Cooling (HVAC) system. They used occupant comfort 
and energy consumption data for this purpose. The proposed technique only focused on 
identifying the impact of the fault and not the faulty part. However, our proposed tech-
niques identify the faulty part of the cooling system.

Zhao et al. (2017) proposed a Bayesian-based probabilistic technique to identify the 
faulty part inside AHU. Here, they used a set of twelve sensors to identify the exact faulty 
part. They also assigned a prior probability of occurrence of a particular fault. Our pro-
posed technique uses only energy consumption data to identify the fault.

Rashid and Singh (2018) proposed to identify the patterns of past energy consump-
tion data. Based on these patterns, they proposed to identify anomalies. There, they used 
only energy consumption data collected using smart sensors. They achieved an AUC 
score of 0.89 for chillers. However, our proposed architecture not only identifies anoma-
lies but also finds the cause of the anomaly.

Fontugne et al. (2013) proposed the Strip Bind and Search (SBS) framework to iden-
tify the anomalies in buildings. They proposed to identify the pattern of the relation-
ship between the devices and their usage patterns. If they observed a deviation in the 
relationship, they classified it as an anomaly. However, it did not identify the class of 
anomaly. It is important to identify the class of anomaly as it allows us to suggest the 
user take necessary action.

Methodology
We present the method’s three-staged approach to identify anomalies and their 
causes. The proposed methodology first focuses on identifying anomalies in cool-
ing systems. If it identifies the existence of an anomaly, the rule-based technique is 
used to classify the type of anomaly into three categories ranging from human error 
to technical fault. Based on these rules, we suggest an action to the user to make the 
execution cooling system more energy-efficient. Finally, the proposed methodology 
identifies the faulty parts of the cooling system, making them easier and faster to 
repair.
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Identifying the anomalies

The cooling system’s energy consumption follows a pattern. When the cooling system’s 
compressor is ON, it consumes more energy. When it is OFF, it consumes less energy. 
This ON and OFF cycle continues for the entire duration of execution. The systems have 
an ER that specifies the maximum energy a cooling system can consume. This ER also 
represents the capacity of the cooling system.

Due to an anomaly generated by a fault or a misconfiguration, the energy consump-
tion by the cooling system fluctuates. This leads to a change in the cooling cycle of the 
cooling system. Generally, a cooling system’s average cooling cycle is 30 min, where the 
compressor is in the ON state for 20 min and in the OFF state for 10 min.

We propose to identify such changing patterns of the energy consumption of cool-
ing systems due to the anomalies. In the first iteration, when we do not have any past 
data for the new deployment, we use the ER of the cooling system as a benchmark and 
compare it with current energy consumption data. For the subsequent cycles, we take 
the moving average of energy consumption by the cooling system in three cycles and 
compare the average value with data from the past non-anomalous cycle. We declare an 
anomaly if the difference between the two values is more than 5%.

The proposed anomaly detection Algorithm  1 does not require substantial storage 
space for identifying faults and anomalies compared to earlier proposed techniques dis-
cussed in Malki et al. (2022). The space complexity of the proposed algorithm is O(n). n 
is the number of sensory values input to the anomaly detection algorithm. We want to 
minimize the memory requirement so that the solution works on a low-cost IoT device. 
In Sathe and Aggarwal (2016), the authors use an n× n matrix to identify the anomalous 
instances, which takes O(n2) space. The time complexity of our algorithm is also O(n).

The time-series anomaly identification techniques in this subsection identify the 
existence of anomalies. However, only awareness about existence will not enable us to 
overcome it. In the next sub-section, we take a step forward to identify the cause of 
anomalies using a rule-based approach.

Algorithm 1  Real-time anomaly detection
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Identifying a cause of the anomaly

We classify the reason behind any change in the cooling system’s energy consumption 
into the following three categories.

•	 Anomaly Cause1 – Wrong Tset

•	 Anomaly Cause2 – Technical fault in the cooling system
•	 Anomaly Cause3 – Cooling requirements are not satisfied

In Frank et al. (2018), the authors discussed important faults in cooling systems. Those are 
cooling system ON/OFF modes with setpoint schedules, oversized equipment design, air 
duct leakage, AHU motor degradation, compressor flow, condenser fan, inefficient evapo-
rator airflow, and malfunctioning sensor. We consider all these and categorize them into 
three types based on the actions needed to fix them. In anomaly cause 1, we consider faults 
due to incorrect cooling system ON/OFF modes with setpoint schedules. Anomaly Cause2 
category consists of air duct leakage, AHU motor degradation, compressor flow, condenser 
fan, inefficient evaporator airflow, and sensor faults. Anomaly Cause3 identifies the faults 
due to oversized and undersized equipment design.

In Table 1, we use data collected from the environment and the cooling system. When 
an anomaly exists, we identify its cause using these rules. These rules are based on domain 
knowledge. Using these rules, we conclude and suggest a fix. We measure these parameters 
every 2 min and use those values in the algorithm. The parameters are for both types of 
cooling systems.

Anomaly Cause1  

The Tset of the cooling system is not according to the cooling requirements, and the cool-
ing system cannot reach the Tgoal . The Troom is below or above the desired levels. In both 
scenarios, the energy consumption pattern will change. When the Tset is less than Tgoal , the 
system will consume more energy to cool the room. When the Tset is more than Tgoal , the 
system will go into an issue called short cycling. Both issues are identified by observing a 
change in energy consumption patterns.

To detect a wrong Tset , we first identify whether it can cool the room with the given cool-
ing system. The cooling systems deployed in a room come with a cooling limit. We calculate 

Table 1  Identifying a cause of the anomaly

Anomaly cause Rule No. Rule Actions

Anomaly Cause1 Rule 1 Troom < Tgoal Tset of AC is high—Change Tset
Rule 2 Tgoal < Troom Tset of AC is low—Change Tset

Anomaly Cause2 Rule 3 �Texternal < �Troom Cooling in Troom is less than Texternal—Identify faulty part

Rule 4 �Troom < 0 Unable to cool—Identify faulty part

Rule 5 PA > 4 More than 4 continuous anomalies—Identify faulty part

Anomaly Cause3 Rule 6 Troom < Tset No need to cool—Turn OFF cooling system

Rule 7 �Troom ≤ 0 && 
Tset = minimum && 
Troom ≤ Tgoal

Unable to reach the Tgoal—Cooling system not sufficient
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the cooling requirements using the room’s heat load and decide on the maximum cooling 
capacity of the system to be deployed in the room. To identify whether it is possible to cool 
or not, we use τ calculated as follows:

�T  represents the change in the room temperature in a given duration of time. The �T  
considers all dynamic heat loads inside the room, which change with time.

τ represents the capacity of the cooling system. The cooling system’s ability depends 
upon whether the system can bring the temperature down to the desired level and is 
checked by multiplying the τ by the time for which the system is executed. We consider 
the ideal continuous execution time of the cooling system ON cycle to be 20 min. Here, 
20 represents the ideal cooling cycle time (Kaushik and Naik 2023).

Rule 1 and Rule 2 in Table  1 are to identify whether there exists an anomaly of the 
“ Anomaly Cause1 ” type. These rules compare the Troom with Tgoal to identify whether the 
cooling system is cooling or not. These rules suggest the user take the necessary action 
to increase or decrease the Tset . We mention the rules in Table 1.

Anomaly Cause2  

Detecting technical faults in the cooling system requires an expert’s opinion. A trained 
engineer who is an expert in the domain uses a set of multi-meters and sensors to iden-
tify faults. Detecting these faults automatically is a non-trivial task. To detect these faults 
automatically, we propose to use the domain knowledge from the literature to construct 
a set of rules that help us identify the existence of technical faults in an AC. If the faults 
are not repaired, the cooling system will continue to waste energy.

The Rule numbers 3, 4, and 5 are deduced from the domain knowledge. We consider 
the impact of the cooling system in the environment where it is deployed. Using Rule 3, 
we identify an impact of the cooling system’s execution on the Troom and compare it with 
the change in Texternal . If the cooling (reduction in temperature) is less than the change in 
Texternal , the cooling system consumes abnormal energy.

In Rule 4, if we observe that no change in the Troom while the cooling system is being 
executed and consuming energy. We conclude that the cooling system cannot cool 
the room. This leads to disruption in the execution cycle of the cooling system. Rule 5 
observes the anomalous behaviour of the cooling systems. If the system has continu-
ously observed more than four anomalies with Anomaly Cause1 classification, then it is a 
technical fault. If the user does not take action shown in Table 1, the cooling system will 
continue its execution with faults, thereby wasting energy.

(5)�T = Tgoal − Troom

(6)τ =
�T

�t(2minutes)
(◦C ·min−1)

(7)
τ ∗ 20
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Anomaly Cause3  

The deployment of the cooling system is based on the static factors affecting the room’s 
heat load. However, the real-world environment is not static. There are dynamic factors 
that change the heat load of the room over a duration of time. For example, if a large 
number of people enter the room at any instance of time, the heat load of the room will 
be increased, and the AC may not be capable enough to maintain the Tgoal . For example, 
if the user assumes that an AC with a particular tonnage will be sufficient based on room 
size.

Even if we deploy a cooling system with sufficient cooling capacity, its cooling capac-
ity reduces over time. Hence, checking the cooling capacity of the cooling systems is 
required, especially in critical environments where maintaining cooling levels is needed. 
To check the cooling systems’ capabilities to satisfy the cooling requirements, we use 
Rules 6 and 7.

Rule 6 checks whether the Troom is already less than the Tset . If this is the case, the 
cooling system will consume significantly less energy executing the fans of AHU. 
However, the compressor will be turned OFF. In this scenario, the cooling does not 
need to execute its cooling cycle. Due to the default functionality, the cooling system 
will try to turn ON the compressor and immediately turn it OFF. It causes the prob-
lem of short cycling.

Rule 7 identifies anomalous instances as Anomaly cause3 when the change in Troom is 
less than equal to 0, which represents the cooling system, can cool, and the Tset of the 
cooling system is set to a minimum. However, the room’s Tgoal is not reached, leading 
to continuous execution of the cooling system compressor at total capacity. When the 
cooling system is executing at full capacity and cannot reach the Tgoal , we conclude 
that the system cannot satisfy the cooling requirements.

Fig. 4  We show Workflow for identifying the cause of the anomaly. We present the parameters used by each 
rule and the flow of data and decisions. Here, the rectangular box represents the data variable, the circular 
represents decision capabilities, and the rectangle with curve edges represents both decision and data 
variable
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Using the proposed rule-based technique, the anomalous instance of the cooling 
system could be classified into two anomaly causes simultaneously.For example, if the 
cooling system cannot cool the room, the anomaly could be classified in two catego-
ries— Anomaly Cause1 and Anomaly Cause2 . To identify the exact cause, we use the 
following.

Figure 4 presents the workflow of the proposed solution. This workflow shows the 
dependencies of each anomaly on the rules and input variables. From this rule-based 
causal tree, we get active high (1) or active low (0) values for each anomaly cause. 
When there is more than one active high anomaly, the particular type of anomaly is 
selected based on its priority. Here, the priority of Anomaly Cause1 is the highest, and 
for Anomaly Cause3 is the lowest. The priority is based on the chances of occurrence 
and the intensity of the anomaly.

With our proposed solution, we can identify anomalies and classify them into types. 
We suggest an action when the Anomaly Cause1 and Anomaly Cause3 are identified. 
However, when Anomaly Cause2 is identified, in the next subsection, we propose to 
identify the faulty part of the cooling system.

Identifying the faulty part

We classify anomalies into Anomaly Cause1 , Anomaly Cause2 , and Anomaly Cause3 
classes using the discussed domain-inspired rules. When the anomaly is classified as 
Anomaly Cause1 and Anomaly Cause3 , our technique suggests an action to the user. For 
example, if Anomaly Cause1 is observed, it suggests to change the cooling system’s Tset . If 
it is Anomaly Cause3 , it indicates that the cooling system is incapable of cooling or is not 
required. However, when the anomaly is classified as Anomaly Cause2 , we identify the 
part of the faulty AC to reduce the mean time to repair.

To identify the part of the cooling system with fault, we propose a Machine Learn-
ing technique, NN-DBSCAN. It is based on the principle of DBSCAN. We have k inde-
pendent and identically distributed samples J = j1, j2, . . . , jk drawn from distribution F  
over RD . Using two hyper-parameters of DBSCAN, we find a set of n clusters with high 
empirical density for samples in J  (Schubert et  al. 2017). These hyper-parameters are 
eps and minPts. The eps is the maximum possible distance between the two samples to 
be considered a neighborhood. The minPts is the minimum number of samples to be 
considered as a core point for a cluster. The DBSCAN is a clustering algorithm, not a 
classification algorithm, because it is an unsupervised approach. We use DBSCAN to 
classify the anomalies by taking the average of each cluster and comparing it with each 
cause’s average from the data set. The cluster with the closest average is assigned to the 
particular cause.

To calculate the eps hyper-parameter, we use the Nearest Neighbour technique. We 
plot an elbow curve and select the value where the elbow occurs based on the distances 
obtained using the Nearest Neighbor. To calculate the second hyper-parameter minPts, 
the standard approach suggests selecting it to be twice the number of features. However, 
this approach does not always lead to an optimal value (Sefidian 2022). We use the gradi-
ent descent technique to get the optimal-minPts by executing the DBSCAN algorithm 
multiple times (Ramadan et al. 2022). The detailed formal algorithm is shown in 2.
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Algorithm 2  Optimal-minPts

The challenge with DBSCAN is that we need a large amount of data to obtain den-
sity-based clusters accurately. However, in the real world, the problem is that we do 
not have enough data to classify the data points into clusters using DBSCAN. To deal 
with this challenge, we propose NN-DBSCAN with transfer learning capabilities. NN-
DBSCAN requires training, which is performed using data from the simulation, and it 
is done once. In NN-DBSCAN, we train the model with transfer learning capabilities 
to be used in other deployments with the same application. During training, we calcu-
late the initial cluster value, the centroid of the clusters formed during training. Then, 
we use these initial cluster values as domain knowledge in different deployments, 



Page 16 of 27Kaushik and Naik ﻿Energy Informatics            (2024) 7:46 

enabling transfer learning. We allocate data to the cluster in other deployments based 
on the Euclidean distance between the observed point from the data set and the ini-
tial cluster value. Once we have the minPts in each cluster, the algorithm continues as 
DBSCAN. The Algorithm 3 represents the proposed NN-DBSCAN.

To obtain cluster centers from the past data, we take the average energy consumption for 
each cluster, where each cluster represents a different anomalous part. We then calculate a 
fingerprint of a particular anomalous part concerning normal/usual energy consumption.

The Eq. 8 gives us a percentage contribution when a part of the cooling system is faulty. 
This percentage is the same for all the cooling systems, as the principle working of each 
is the same. So, we use the same percentage of fingerprints obtained during training for 
the initial cluster center assignment.

Equation  9 computes the initial center for the cluster of a particular anomaly cause. 
Here, i = 1, 2, 3, 4, and 5 represent different parts with the possible anomaly. The initial 
centers calculated using Eq. 9 are used as initial cluster points to enable transfer learn-
ing capabilities in the proposed solution. Each cooling system part is used for different 
functionalities with varying energy consumption. Further, we observe that the number 
of clusters formed with NN-DBSCAN equals the number of parts present in the cooling 
system.

To identify the faulty part, our proposed NN-DBSCAN algorithm assigns each faulty part 
to one of the incenters of clusters, representing each part of the cooling system, based on 
the Euclidean distance between the observed point and the incenter. Once the number of 
instances in each cluster exceeds the minPts, the algorithm assigns the cluster based on the 
density. The calculation of the incenter is based on the percentage of energy consumed by 
each part of the cooling system when we simulate the faults for one cooling system model. 

(8)Anomalous_Part =
(ER+ PAP)

|ER|
× 100

(9)incenteri =
Anomalous_Parti × ER

100

Fig. 5  The proposed techniques takes P and ER of the cooling system as input. Using those, it identifies 
the existence of anomalies in stage 1. Stage 2 identifies the causes of these anomalous instances. If it is a 
technical anomaly, it identifies the faulty part using our proposed NN-DBSCAN. We train the model only once 
using simulated data. We transfer the model to any new cooling system using the latter’s ER 
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Through transfer learning, we transform the learned model for other cooling systems. The 
transfer learning technique takes ER data from the datasheet as input and computes values 
for the incenters for the new model. Our use of transfer learning for NN-DBSCAN enables 
zero training requirements when deployed to the new cooling systems. Figure 5 shows a 
flowchart of the proposed three-stage solution. The three-staged proposed solution takes 
data points as input, which are used to identify anomalies in stage 1. Once anomalies are 
confirmed, stage 2 uses a rule-based approach to identify the anomaly’s cause. If the anom-
aly is classified as a technical anomaly, then the proposed solution identifies the faulty part 
using NN-DBSCAN.

Algorithm 3  NN-DBSCAN

Complexity analysis Stage 1 of the proposed solution uses a moving average, which 
takes O(n) time. In stage 2, we use the rule-based technique that requires at most 
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eight comparisons for every data point, which leads to a time complexity of O(1). 
In stage 3, our proposed NN-DBSCAN has O(5 ∗minPts) complexity, where 5 is the 
number of clusters. The number of minPts is always less than n. Hence, the overall 
complexity of the proposed technique is O(n). Here, n is the number of sensory values 
input to the anomaly detection algorithm.

Evaluation setup
This section describes the experimentation setup, simulation setup, and metrics we 
use to evaluate our proposed technique. We evaluate the proposed technique in an 
experimentation environment by deploying a set of energy sensors and environmen-
tal sensors in the environment. These sensors provide the energy consumption by 
the cooling system and room temperature to a data server at intervals of every two 
minutes.

The temperature data collected using environmental sensors helps us obtain a thermal 
model of the enclosed room. We deploy multiple environmental sensors in the room 
for each cooling system. A complete thermal modeling of an environment is impossi-
ble if we only collect the room’s temperature data. The external temperature also affects 
the thermal model. Hence, we deploy environmental sensors to collect temperature data 
from the external environment.

We evaluate our proposed solution in two different experiment scenarios. In the first 
deployment, the heat load consists of one server rack, one switching rack, forty PCs with 
Intel i7 processors, three high-performance computers, and two tower servers. In the 
second deployment, we have three server racks and two network switching racks. Both 
the setups consist of six ductless-split cooling systems.

In the experimental environment, deploying many faults that can occur in a cooling 
system is challenging. To overcome this challenge, we perform simulations using the 
EnergyPlus simulator. Here, we consider more than forty faults and use the proposed 
technique to identify faults and their causes. These faults are consequences of faults 
in one of the five components of the cooling system. We encode these faults in the 
simulator.

We simulate a building environment with an area of 123m2 . The building is an office 
environment. It comprises fifteen people, thirty personal computers, and a server rack. 
We assume each person can access two computers, one desktop and a laptop. The total 
energy consumption by all the heat sources is 40kWh. We use weather data to simulate 
an external environment, with the average external temperature of 26, 32, and 38◦C . 
With Tgoal set at 19◦C.

To generate anomalous cases in simulation and experiments, we collect data using the 
EnergyPlus simulator. We inject faults in the cooling systems by changing the configura-
tion and thresholds. The paper published by OSTI (Li and O’Neill 2019) details how to 
inject faults in the cooling systems using a simulator. For example, a reduction in refrig-
erant flow rate in the compressor leads to a faulty compressor. We use actual ACs with 
some faults we can instrument in the experimentation setup. The simulations consider 
all the possible faults.
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We evaluate the proposed three-step solution in simulation and experimentation 
environments. In both simulation and experimentation environments, we have con-
sidered buildings with similar dimensions. The external temperature in experimenta-
tion is uncontrolled. However, in simulations, we evaluated the solution in six different 
environments where the external temperature ranges from 24 to 42◦C . We train the 
proposed NN-DBSCAN using simulation data to identify the faulty part. During this 
training, it learns the domain knowledge. Due to its capability of transfer learning, we do 
not need to train the model again while testing on different deployments.

Learning of the model

We use the data from the simulation with a ductless-split cooling system at an aver-
age Texternal of 38◦C . We opt for the ductless-split cooling system because the principle 
working of both ductless-split and ducted-centralized cooling systems are the same, and 
the energy consumption ratio by each component is also the same. We split the data set 
equally into training and testing. We use a 50:50 split of the dataset for training with all 
types of anomalies so that it can learn the fingerprint of each part of the cooling sys-
tem. We have an equal number of instances in the dataset for each anomalous part. Any 
other split configuration leads to missing cases of a particular type of anomaly. Hence, 
the technique is unable to learn complete domain knowledge. To test the generalizability 
of the proposed approach, we perform testing with different datasets where no training 
is performed.

Results
Simulation

Data collection and preparation

We deploy a ducted centralized cooling system and a ductless-split cooling system in 
a simulated building environment. In these cooling systems, we inject faults by chang-
ing the configuration and capacity of parts. More than forty faults occur based on the 
changes in the configuration of the five major AC parts. We collect simulation data in 
three environments, where Texternal ranges from 24◦C to 42◦C . We manually labeled 
the data set’s fault cause and the faulty component. The data is collected at intervals of 
two minutes for one year using EnergyPlus. The simulation dataset consist of P, Troom , 
Texternal , AN, and FaultyPart. The training data for our proposed technique consists of 
21,600 data points, out of which there are 12,600 data points representing more than 
forty types of anomalies. To test our proposed technique, we use a simulated data set 
with 1,576,800 data points for anomalies in six different scenarios with a ductless-split 
cooling system and ducted-centralized cooling system in three different external envi-
ronments where the Texternal ranges from 24◦C to 42◦C.

Identifying anomalies

For this stage, we do not need to train the proposed approach before use. It is a statistical 
method that only needs energy consumption by the cooling system without anomaly as 
apriori. We get this apriori energy consumption from past data or the data sheet of the 
cooling system. Here, we observe an AUC − ROC score of 0.95.
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Identifying cause of the anomaly

At this stage, no training is required. The proposed approach classifies the anomalies 
based on rules. In stage 2, we observe the AUC − ROC score of 1.

Identifying the faulty component

This stage requires training. Here, we first train the proposed NN-DBSCAN and then 
evaluate it with the help of test data. We compare the results obtained from the pro-
posed NN-DBSCAN with other state-of-the-art techniques. These techniques are Neu-
ral Network (NN), XGBoost, CatBoost, DBSCAN, and LightGBM.

We construct a NN with one node at the input layer and two hidden layers, each with 
ten nodes. We opt for the softmax activation function and auto loss function(Zhao et al. 
2021). We use XGBoost with multi:softprob loss function, CatBoost with MultiClass loss 
function, DBSCAN with same eps and minPts as NN-DBSCAN here, we assign causes 
to each cluster manually, and LightGBM with multi_logloss as loss function (Chen and 
Guestrin 2016; Dorogush et al. 2018; Schubert et al. 2017; Ke et al. 2017). We compare 
these state-of-the-art techniques’ accuracy score and F1 score with our proposed tech-
nique that uses NN-DBSCAN.

Figure 6 compares the proposed NN-DBSCAN with other state-of-the-art classifica-
tion approaches. Here, we observe that our proposed NN-DBSCAN outperforms com-
pared to CatBoost, NN, XGBoost, and LightGBM. It performs as well as the standard 
DBSCAN. However, NN-DBSCAN stores relevant domain information that can be 
used in the future for transfer learning when deployed with another cooling system. We 
observe an accuracy score of 0.82 and F1 score of 0.79 with NN-DBSCAN.

We compare these classification techniques in a new simulation deployment with a 
ducted-centralized cooling system instead of a ductless-split cooling system. We do not 
perform any training. Our proposed NN-DBSCAN results in an accuracy score of 0.8 
and F1 score of 0.76. The closest state-of-the-art solution is DBSCAN, with an accuracy 
score of 0.67 and F1 score of 0.64, and NN performed worst with an accuracy score of 
0.28 and F1 score of 0.42.

The NN applies mathematical operations and combinations to the dataset’s features. 
In our case, we use a single feature, P, for anomalous part identification, due to which 
the NN cannot learn the pattern of the associated anomalous part. XGBoost, CatBoost, 
and LightGBM are tree-based classification techniques. These tree-based techniques are 
highly prone to slight data variations. CatBoost performed better than the others. In the 
density-based approach, DBSCAN and NN-DBSCAN perform better because of their 
ability to differentiate between clusters with high and low density.

From the above-discussed results, we observe that the accuracy of the proposed model 
and other state-of-the-art reaches up to 82%. This is because the energy fingerprint of 
the three cooling system components is similar. These three components are the con-
denser, evaporator, and expansion valve. The condenser and evaporator are coils; they 
both have identical energy footprints. The working of the expansion valve is to control 
the flow to the evaporator, the energy footprint of the expansion valve is low, and due 
to a fault in the expansion valve, the evaporator does not perform its expected function. 
Hence, the footprint of the evaporator is added to the energy footprint of the expan-
sion valve. These reasons make it difficult for the ML model to distinguish between the 
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three with high accuracy. Combining these three classes, we obtain an accuracy score of 
1 with the proposed NN-DBSCAN.

Figure  7 depicts the performance of the proposed three staged techniques with an 
average accuracy score of 0.82 and an average F1 score of 0.73 in six unique simulated 
deployments. In the six deployment scenarios, we consider both ductless-split and 
ducted-centralized cooling systems with external temperatures of 26◦C , 32◦C , and 38◦C . 
Figure 7 shows that our proposed approach works with different cooling systems in dif-
ferent environments after a single training. With our proposed solution, we observe a 
confidence interval of 0.82± 0.02 for accuracy with a confidence level of 95% . This rep-
resents that the proposed technique will classify with an accuracy of 0.80 to 0.82 for 95% 
of times.

Efficacy of the proposed interventions

We further evaluate our proposed technique concerning energy savings when the user 
takes the suggested action. Here, we observe the maximum energy savings of up to 68% 
with a mean energy savings of 34%. Early identification of faulty parts leads to a reduc-
tion in repair and downtime of the cooling systems. It also saves the repair cost because 
the early identification prevents the complete damage of the faulty part.

Experimentation

Data collection and preparation

We collect energy and temperature data using sensors in a data server deployed at a 
remote location. We use industry-grade sensors; we tested the accuracy of their meas-
urements using a multimeter. The sensor self-calibrates itself every two hours. The data 
is collected using Representational State Transfer (REST) APIs at an interval of two 
minutes. The data set features are Troom , Texternal , P, and timestamp. The user provides 
the Tset and Tgoal . We prepossess this time-series data. The data has been collected for 
more than two and a half years. We use data from the complaint management system 
(CMS) as the ground truth for an anomaly shown in Fig. 8. The CMS contains informa-
tion related to observed anomalies by the occupants. This CMS data includes the date 

Fig. 6  A comparison of proposed NN-DBSCAN with the standard techniques used for classification in 
time-series application. Here, NN-DBSCAN performs similarly to DBSCAN and better than all other standard 
state-of-the-art techniques in terms of accuracy and F1 score. Our proposed solutions show a higher F1 score, 
meaning it can correctly classify the distributions. This is possible due to the initial cluster assignment in our 
approach. The other state-of-the-art approaches are not capable of doing so, leading to misclassification 
when there is less data available
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Fig. 7  We present the performance of the proposed NN-DBSCAN in three different environments. With 
combinations of the two types of cooling systems. There are six scenarios on the x-axis: 1 represents the 
scenario with a ductless-split cooling system with an average external temperature of 26◦C here, we 
observe that the AUC − ROC score for stage 1 is 0.97, for stage 2 is 1 and accuracy score for stage 3 is 0.83. 
The overall accuracy and F1 scores are 0.83 and 0.78, respectively. Scenario 2 represents the scenario with a 
ducted-centralized cooling system with an average external temperature of 26◦C here, AUC − ROC score for 
stage 1 is 0.95, for stage 2 is 1 and accuracy score for stage 3 is 0.81. The overall accuracy and F1 scores are 0.81 
and 0.76, respectively. Scenario 3 represents the scenario with a ductless-split cooling system with an average 
external temperature of 32◦C here we observe AUC − ROC score for stage 1 is 0.93, for stage 2 is 1 and the 
accuracy score for stage 3 is 0.82. The overall accuracy and F1 scores are 0.82 and 0.72, respectively. Scenario 
4 represents the scenario with a ducted-centralized cooling system with an average external temperature 
of 32◦C here, AUC − ROC score for stage 1 is 0.95, for stage 2 is 1, and the accuracy score for stage 3 is 0.81. 
The overall accuracy and F1 scores are 0.81 and 0.71, respectively. Scenario 5 represents the scenario with a 
ductless-split cooling system with an average external temperature of 38◦C here, AUC − ROC score for stage 
1 is 0.97, for stage 2 is 1, and the accuracy score for stage 3 is 0.83. The overall accuracy and F1 scores are 0.83 
and 0.75, respectively. Scenario 6 represents the scenario with a ducted-centralized cooling system with 
an average external temperature of 38◦C here, AUC − ROC score for stage 1 is 0.96, for stage 2 is 1, and the 
accuracy score for stage 3 is 0.82. The overall accuracy and F1 scores are 0.82 and 0.73, respectively

Fig. 8  The complaint management system with information related to the faults, cause of fault, and the 
downtime of the cooling system. We use the data from the CMS as ground truth, representing the faults 
reported by the technicians in the cooling systems. We compare the ground truth with the predictions made 
by our solution to evaluate its performance
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and time when the anomaly was first identified, the timestamp of the complaint’s reso-
lution, and the technician’s reason. These complaints are logged by an occupant or the 
room administrator based on changes in room temperature measured using a tempera-
ture sensor or high-temperature warning on servers. We collect this data from six differ-
ent ductless-split cooling systems. The experimentation dataset contains 221,450 data 
points. Note that the model is pre-trained and is not connected to this data.

Identifying anomalies

We use this stage’s proposed domain-inspired statistical technique to identify the anom-
aly. Here, no pre-training is required. We observe an AUC − ROC score of 0.93 in an 
experimentation deployment.

Identifying cause of the anomaly

We observed a AUC​ score of 1 in the simulation with the rule-based technique. Simi-
larly, in experimentation deployment, the AUC​ score obtained at this stage is 1.

Identifying the faulty component

We do not perform any model pre-training for experimentation deployment. We take 
the model which is already pre-trained with simulated data.

Here, our proposed NN-DBSCAN classifies the faulty components with an 
AUC − ROC score of 0.88 and an F1 score of 0.81, shown in Figure 9. The significant 
increase in accuracy compared to simulation is because the anomalies from the evapora-
tor, condenser, and expansion valve are rare in real-world experimentation.

Figure 10 depicts the performance of the proposed technique and observations in five 
scenarios— 1. AUC − ROC score of 0.93 for identifying anomalies, 2. AUC − ROC score 
of 1 for identifying the anomaly’s cause, 3. accuracy score of 0.88 with NN-DBSCAN for 
identifying faulty part, 4. an overall accuracy score of 0.86, and 5. overall F1 score of 0.84. 
Here, the overall scores represent combining all three stages. The overall accuracy score 
of the proposed technique in experimentation deployment is 0.86. With our proposed 
solution, we observe a confidence interval of 0.86± 0.04 for accuracy with a confidence 
level of 95% . This represents that the proposed technique will classify with an accuracy 
of 0.82 to 0.86 for 95% of times.

Efficacy of the proposed interventions

During experimentation, our proposed solution identifies anomalous instances of the 
cooling systems. Here, we observe maximum energy savings of up to 42% and mean 
energy savings of 30% with a downtime reduction of more than ten days when the action 
is taken immediately after identifying a faulty component by our proposed technique. 
In this scenario, a fault exists in the cooling system’s compressor. The faulty AC stopped 
working ten days after our proposed solution flagged the anomaly, and the technician 
repaired it in an hour. Reducing downtime is crucial in critical environments where it 
is required to maintain the Tgoal throughout the day. Early identification of the faulty 
part using our proposed techniques saves up to 75% of repair costs as it prevents the 
complete damage of the faulty part. We observe a mean reduction of 60% repair cost of 
cooling systems.



Page 24 of 27Kaushik and Naik ﻿Energy Informatics            (2024) 7:46 

We observe that NN-DBSCAN takes 0.031 s. The overall inference latency for identi-
fying anomalies in the cooling system using our proposed three-staged anomaly detec-
tion technique is 0.05 seconds.

Conclusion and discussion
This paper proposes a novel, non-invasive part-level anomaly detection technique. It is 
a three-stage approach. In the first stage, we identify whether an anomaly exists or not. 
In the second stage, we classify the type of anomaly, and in the third stage, we iden-
tify the faulty part of the cooling system. To identify anomalies, we propose a statistical 
method with domain inference to identify whether there exists an anomaly in the cool-
ing system or not. We use the energy rating specified in the datasheet of the cooling sys-
tem. At this stage, we observe an AUC​ score of up to 0.95 in simulation and 0.93 during 
experimentation.

Once the anomalous instance is identified, we identify the cause. Where we have a 
set of rules based on domain knowledge to identify the type of anomaly, this identifica-
tion also represents the cause. If the anomaly type is “Anomaly Cause1” then the set 

Fig. 9  Accuracy and F1 score with the proposed approach during experimentation. We get an accuracy score 
of 0.88 and an F1 score of 0.81. With NN-DBSCAN, we observe that F1 and accuracy scores are the highest 
compared to other state-of-the-art techniques. A higher F1 score presents the reliability of our solution. Our 
proposed technique outperforms the state-of-the-art

Fig. 10  On the x-axis, we represent the five scenarios—AUC − ROC for identifying anomalies, AUC − ROC 
for identifying the cause of anomalies, accuracy score for identifying faulty parts, overall accuracy score, and 
overall F1 score. We observe AUC − ROC scores of 0.93 and 1 for identifying anomalies and identifying the 
cause of the anomaly, respectively. The accuracy score is 0.88 for identifying the faulty part of the cooling 
system. The overall accuracy of the proposed approach is 0.86, and the overall F1 score is 0.82. Our solution’s 
overall performance is considered excellent as the AUC-ROC score is always above 0.8 (Mandrekar 2010)
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temperature of the cooling system is wrong. We suggest the user increase or decrease the 
set temperature to overcome the anomaly. If it is “Anomaly Cause2”, we inform the user 
that the anomaly cause is technical and identify the faulty part. Finally, if it is “Anomaly 
Cause3”, we tell the user that either the cooling system is not capable enough to cool the 
room or you need a cooling system with lower capacity. We observe an AUC − ROC 
score of 1 using the set of rules.

When an anomaly is classified as “Anomaly Cause2”, we assist the technician by identi-
fying the faulty part of the cooling system. We proposed NN-DBSCAN for this purpose. 
The proposed NN-DBSCAN is required to be trained only once in its lifetime. During 
pre-training, it obtains domain knowledge. In the case of cooling systems, it learns about 
the energy fingerprint of each part in the cooling system. Using this domain knowledge, 
our proposed techniques work with all cooling systems in any enclosed environment.

In the simulation, we observe a maximum accuracy score of 0.82. This is because 
the energy fingerprints of the condenser, evaporator, and expansion valve are similar 
because of their working principle. However, in the experimentation, we observe a maxi-
mum accuracy score of 0.88. The reason behind this significant increase is that during 
experimentation, the occurrence of a fault in the three discussed components is rare. 
The accuracy score for the proposed three-staged technique is 0.86 in experimentation 
and up to 0.82 in simulation, which is comparable to the accuracy of the state-of-the-art 
FDD methods that use a large number of sensors for the identification of faulty parts in 
cooling systems. The state-of-the-art which is an invasive method, where expert opinion 
is also required for the identification of the anomalies. These techniques claim to work 
with an accuracy of 80%, which is less than what our solution achieved.

We conduct case studies. We observe significant energy savings using the proposed 
techniques. In the simulation, we observe energy savings of up to 68% when the cooling 
system’s compressor is faulty. During the experimentation with our proposed technique 
saves up to 42% of energy. We observe a reduction of downtime by ten days and a reduc-
tion in repair cost by up to 75% due to the early identification of the faulty part using our 
proposed technique.

Our proposed solution requires pre-training before deployment for detecting anoma-
lies; hence, the classification of faulty parts depends on the fidelity of the pre-training 
data. The rule-based system proposed in this paper focuses on environmental factors 
not dependent on the hardware setup.
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