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Introduction
Climate change and sustainable development have become important research areas 
due to their application in various facets of our economic life. In this present time, cli-
mate change (CC) has become a pressing issue that governments, organizations, and 
researchers are seriously working on the modalities to analyze data generated from 
vast climate change and sustainability-related activities. Climate change is considered 
one of the global threats just like the coronavirus (COVID-19), a pandemic that has 
caused over 6.9 million deaths as of the 12th of December 2023. Hence, both phe-
nomena constitute a big threat to global existence. The contagious disease novel coro-
navirus (Tao et al. 2020; Sharma and Gupta 2021) has deeply impacted the national 
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Big climate change data have become a pressing issue that organizations face 
with methods to analyze data generated from various data types. Moreover, stor-
age, processing, and analysis of data generated from climate change activities are 
becoming very massive, and are challenging for the current algorithms to handle. 
Therefore, big data analytics methods are designed for significantly large amounts 
of data required to enhance seasonal change monitoring and understand and ascer-
tain the health risks of climate change. In addition, analysis of climate change data 
would improve the allocation, and utilisation of natural resources. This paper pro-
vides an extensive discussion of big data analytic methods for climate data analy-
sis and investigates how climate change and sustainability issues can be analyzed 
through these approaches. We further present the big data analytic methods, 
strengths, and weaknesses, and the essence of analyzing big climate change using 
these methods. The common datasets, implementation frameworks for climate change 
modeling, and future research directions were also presented to enhance the clarity 
of these compelling climate change analysis challenges. This big data analytics method 
is well-timed to solve the inherent issues of data analysis and easy realization of sus-
tainable development goals.
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economic development negatively in recent times. Presently, big data analytics meth-
ods have successfully assisted in analyzing large climatic data, and contagious disease 
data, and have recorded impressive results. Therefore, climate change could be best 
described as a change in the earth’s climates, at local, regional, or global scales, and 
attributed greatly to the increased levels of atmospheric carbon dioxide (CO2) pro-
duced by the use of fossil fuels (Sebestyén et al. 2021). It is further explained as the 
changes in the earth’s climate driven primarily by human activity since the pre-indus-
trial period, particularly the burning of fossil fuels, and removal of forests, resulting 
in a relatively rapid increase in CO2 concentration in the earth’s atmosphere.

Climate change as one of the sustainable development goals (SDGs) (Huan et  al. 
2021) has been transformed and enhanced through big data analytics (BDA). The 
high volumes of data generated from vast climate change environments such as satel-
lites, fossil fuels, earth’s orbit, climate simulation, etc., can be regarded collectively 
as big data. The process of examining and gaining knowledge of large significant cli-
mate change data to reveal hidden patterns, extract useful data, and the correlation 
between them to enable decision support is termed big data analytics (Abdullah et al. 
2020; Ikegwu et al. 2021). BDA methods offer storage support, decision support, pro-
cessing, and proper strategy against climate change effects and improve people’s resil-
ience in the face of the adverse effects of climate change through trends, patterns, 
prediction, and technical analysis using generated data.

However, data analysis, uncertainty in data storage, and processing related to cli-
mate change have become big threats to human and wildlife inhabitation. Quite 
several research studies have been carried out on big data analytics for big climate 
change data processing. Nonetheless, our findings clearly show, to the best of our 
knowledge, that none of these studies has comprehensively and specifically addressed, 
in detail, the peculiar BDA methods for analysing large climate change. For instance, 
an earlier study by Hassani and Huang (2019) reviewed big data and climate change, 
and the researchers pinpointed the values of big data and its applications in climate 
change-related studies in recent years. However, useful tools and BDA methods to 
tackle the diverse large climate change data were not discussed. Another related 
recent study (Ornella 2020) presented a survey on “why nature won’t save us from 
climate change but technology will”. This study highlighted the need to approach cli-
mate change issues with technologies where the author refers to carbon capture, stor-
age mechanisms, etc. Nonetheless, the technological methods specifically dedicated 
to addressing storage, data uncertainty, and processing were left out. A more recent 
study by Sebestyén et  al. (2021) reviewed the applications of data science, big data, 
and the importance of big data tools in climate change. This, however, does not cover 
the big data and big data analytics methods to solve the peculiar issues inherent in cli-
mate change to attain sustainable development goals (SDGs) (Huan et al. 2021; Tür-
keli 2020).

Consequently, this review is a well-timed investigation of big data analytics meth-
ods for combating climate change for sustainable development. Based on the available 
studies in the literature, there are no specific reviews that provide important discus-
sion on these all-encompassing methods-based BDA approaches. As such, the con-
tributions of this investigation to the current body of knowledge in big data, big data 
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analytics, and climate change are presented in Fig. 1. The specific contributions of this 
paper to the body of knowledge are as follows:

•	 To provide extensive discussion of big data analytics methods for climate change 
effects, and describe how climate change issues can be analysed and resolved;

•	 To present the data type and source of big climatic data for climate change analysis;
•	 To comprehensively explore the prospective analytics methods to handle vast climate 

change data including their strengths and weaknesses;
•	 To highlight the purpose of big data analytics methods in climate change and sus-

tainable development.

The remainder of this paper is organized as follows: “The impact of climate changes” 
section presents the impact of climate change. “The conventional methods” section 
discusses the methods for modeling and combating climate change. “The big data 
analytic methods” section presents the big data analytics methods. “Purpose for ana-
lysing big climate data using big data analytic methods” section discusses the purpose 
of analysing big climatic data using big data analytic methods. The common datasets 
for modeling and combating climate change effects are presented in “The common 
datasets for modeling and combating climate change effects” section. Implementa-
tion frameworks for climate change modeling using big data analytics are discussed 
in “Implementation frameworks for climate change modeling using big data analyt-
ics” section. Finally, “Open research directions” section provides the conclusions and 
future research directions.

Big Data Analytic Methods for Climate Change

Modeling methods

Health Hadoop File 
Distributed System

The Common Datasets for 
Modeling and Combating 
Climate Change Effects

Impact of Climate 
Change

The Methods for 
Modeling and Combating 

Climate Change
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using BDA

Economy

Agriculture

Purpose for Analysing Big 
Climate Data using BDA Methods

The big data analytics method

Data Types and 
Sources

The datasets, 
difference, and 
Similarities of 
Modeling and 

Combating 
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Effects

Cross MapReduce
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Google BigTable

Apache Spark

Mahout 

Apache Flume 

Fig. 1  Taxonomy of big data analytics methods for climate change
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The impact of climate changes
Climate change has impacted various areas of human endeavor and the ecosystem. The 
atmospheric Carbon Dioxide (CO2) level is increasing with speed due to the industrial 
revolution that has cut all edges of life. The pressing component areas that have been 
impacted widely include health, economy, and agriculture. The impact of climate change 
is represented in Fig. 2.

Health

Climate change has revolved around human health. It is no longer a gainsaying that 
climate change is affecting healthy living. Due to global warming is a result of a con-
sistent increase in levels of atmospheric carbon dioxide (CO2) generated from fossil 
fuels (Sebestyén et  al. 2021) (CO2). These continue to cause threats and cause havoc 
on human life and its surroundings. For instance, the recent study by Habibullah et al. 
(2022) uses global data of species such as fishes, birds, amphibians, mammals, plants, 
reptiles, etc. from 115 countries to investigate the climate change impact on biodiversity 
loss. The results show three variables (temperature, precipitation, and natural disaster 
occurrence to increase the loss of biodiversity. Another related study by Vicedo-Cabrera 
et al. (2021) presented heat-related human health impacts using empirical data from 732 
locations in 43 countries to estimate the rate of mortality burdens. This, however, shows 
how climate change has affected negatively human health. The 37.0% (range 20.5–76.3%) 
of heat-related deaths is as a result of anthropogenic climate change. Nevertheless, there 
are other factors such as government and public attitude toward climate change that 
were not considered. Other effects of climate change on human health include infec-
tious diseases, air pollution, heat waves, etc. as seen in the case of the Karachi, Pakistan 
location, however, the weather instability and environmental policies are not addressed 
(Babar et  al. 2021). Furthermore, psychologically, climate change causes anxiety and 
mental health as experienced by functional and cognitive-emotional impairment includ-
ing a symptom of Major Depressive Disorder (MDD) and Generalized Anxiety Disorder 
(GAD) as shown from uncommon empirical research (Schwartz et al. 2023). However, 

Fig. 2  The impact of climate change
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this research is based on associations between constructs and leaving directionality con-
structs unattained. In a related study, it was portray the view and obviously that climate 
change causes both emotional and psychological trauma even in young people between 
the ages of 16- and 25 years in 10 different countries surveyed (Clayton et al. 2023). The 
awakening clarion call on the implication of this effect of climatic change perception was 
deeply emphasis upturn for collaborative action to be taken by the educators, stakehold-
ers, international communities, etc. (Ogunbode 2025).

Economy

The burden of climate change on the economy and general business activities is pos-
ing a serious concern. Climate change has progressively affected the small open econ-
omy as assessed using the Keynesian dynamic stochastic general equilibrium model 
(Economides and Xepapadeas 2019). It also affects the macroeconomy as reviewed by 
the central banks’ monetary policy assessment of the inflation outlook (Andersson et al. 
2020). Hence, this calls for technological innovation, and fiscal revenue generation as 
energy efficiency increases and the price of renewable energy falls. Climate change has 
impacted different countries such as Zambia, Pakistan, Nigeria, Bangladesh, Ethiopia, 
etc. are faced with high resilient intensity of atmospheric weather and anthropogenic 
climate change which is currently becoming a global threat. Our environment, energy 
usage, economic growth, and gross domestic product (GDP) are being impacted nega-
tively. Many research efforts and global bodies are bent on providing strategies, poli-
cies, tools, etc. to ameliorate these trending impacts. For instance, the global warming of 
1.5 °C presents unresolved policy issues, hence, a measure was provided by Semieniuk 
et  al. (2021) to limit climate change by reducing energy demand, though, still practi-
cally impossible due to large energy savings in a growing global economy and industrial 
production. Also, the adverse effect of climate change has been causing a lot of dam-
age to economic viability. To this concern, Bhopal et al. (2021) utilized the climate-resil-
ient green economy (CRGE) approach in 2011 as a low-carbon development strategy in 
Ethiopia. Government. This is also to reduce the vulnerabilities both in health and the 
economy, however, the persistent nature of climate change still imposes threats. More 
so, a recent study by Hossain et al. (2022) saw a dynamic computable general equilib-
rium model to analyse the outcome of climate change on Bangladesh’s economy. The 
model identifies a decrease of − 6.17% and investment declines by − 7.7% of the aver-
age gross domestic product (GDP) of Bangladesh as a result of climate change impact. 
Additionally, economic and biophysical uncertainties have been drastically caused by 
the effect of climate change. The study by Deangelo et  al. (2023) attempted to utilize 
Seaweed growth and techno-economic models to address the costs of global seaweed 
production in Net-zero greenhouse gas. Farming seaweed at a relative scale to match the 
global carbon budget is quite challenging. However, this requires more digital models 
such as Artificial Intelligence (AI) and other sophisticated tools to reduce economic and 
biophysical problems. Similarly, the impact of climate change on economic growth is 
denigrating due to global warming. For instance, Tol (2024) the outcome of the research 
about a meta-analysis of the overall climatic change impact on economics close to the 
growth impact estimated as a function of weather shocks. Hence, the social cost of car-
bon reviews a close pattern to the overall impact estimates. The implication of social 
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cost beckoned on the emissions issues such as parameterization, the rate, and extent of 
warming, and the aggregation of impacts among the people and issues over some time. 
Nonetheless, more enlightenment on the impacts of moderate warming in the short and 
medium term should be considered. More recent studies on the climate change impact 
on the economy are contained in Anh et al. (2023), Javadi et al. (2023).

Agriculture

Food insecurity and scarcity are seriously clocking towards the widening of climate 
change. The world’s climate system has gradually over time changed as a result of human 
activities. Hence, the changes have affected natural ecosystems and the general standard 
of human beings. Despite strategies and planning to address this rapid occurrence, there 
is still an impact on agricultural food production negatively. Agriculture has played a 
vital role in human sustainability and the economic gross domestic product (GDP) of 
every nation as no nation can survive without food. The survival of agriculture, the nat-
ural ecosystem, and the nation’s capacity building depends on policies, strategies, and 
campaigns against harmful greenhouse gas emissions. The inherent problem of meet-
ing the continuously increasing food demand for the growing population will be fur-
ther ignited by climate change across the world. Nonetheless, researchers are working 
around the clock to ensure finding optimum solutions. For instance, climate change has 
disrupted agriculture and reduced agricultural total factor productivity (TFP) by 34% as 
a result of high temperatures, drought, heat waves flood strikes, etc. (Fuglie 2021). These 
uncertainties continue to trail agriculture as farmers in Iran lamented as the changes in 
precipitation, temperature, and CO2 fertilization increase (Karimi et al. 2018). In addi-
tion, climate change is causing agricultural food vulnerability as reported by farmers 
in Norte de Santander, Colombia (Núñez et al. 2018) and ASEAN agricultural sectors 
(Handayani and Abubakar 2020). Similarly, climate change has an impact adversely on 
crops (e.g. maize, rice, cotton, sugarcane, bajra, gram, etc. due to the CO2 high emission 
observed in Pakistan, Nigeria, and at globe (Rehman et al. 2022). Additionally, Ngoma 
et al. (2021) analysed the climate change on household welfare and agriculture in Zam-
bia. This was achieved using a chain of modeling analytic tools called systematic assess-
ment of climate-resilient development framework (SACRED) to address the uncertainty 
trailed by the climate challenges. Hence, adaptation interventions are sorted to sustain 
the future of smallholder agriculture across the globe. More so, the SACRED method 
was utilised to provide a consistent framework for data analysis to assess temperature, 
precipitation, and evaporation impacts of different climate scenarios based on dynamic 
computable general equilibrium models in Ethiopia and Mozambique (Manuel et  al. 
2021; Solomon et al. 2021). Furthermore, more investigation was carried to ascertain the 
impact of climate change on agriculture. Anh et al. (2023) investigated climate change 
based on short and long-term effects on Vietnam’s agriculture, at the macro stage with 
reference to production and values. This study utilized Autoregressive Distributed Lag 
(ARDL) model. The results shows that it does unfavorably affects the global food security 
in Vietnam and beyond, thereby, increasing poverty alleviation and sustainable devel-
opment. Also, assessment carried out in Central India, particularly in Vidarbha region 
shows that 70 farmers from the study areas who engaged in cotton cultivation were mar-
ginalized due to climate change perception. Following perception from the designed 
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questionnaire, climate change has adverse impact on crop sowing, growth, post-harvest, 
livestock, etc. Therefore, in all cases, instances, and scenarios reviewed, it is quite under-
standable that climate change has greater negative effective on agricultural practice and 
sustainable food security development. This was a rejoinder as it is echoed and predicted 
at different degrees and magnitudes over the Sri Lanka and nations at large to be global 
warming and the resultant climatic change by the year 2025 (Nanda and Perera 2019).

The methods for modeling and combating climate change
In this section, the conventional methods and big data analytic methods are discussed. 
Figure 3 shows the pictorial view of the methods for modeling and combating climate 
change. Also, the strength and weaknesses of this method are presented in Table 1.

The conventional methods

There are different conventions or traditional methods for modeling and combating cli-
mate change. The most effective modeling approaches include the computable general 
equilibrium (CGE) model, statistical model, gateway belief model (GBM), soil and water 
assessment tool model (SWAT), etc. These are succinctly discussed in the subsection.

Computable general equilibrium (CGE)

The computable general equilibrium model (Hossain et al. 2022) is a standard tool for 
empirical analysis and is dedicated to economic analysis word-wide. It captures the 
economy’s supply and demand side and allows for adjustments (e.g. quantities and price) 
based on policy shock. The CGE could be a static or dynamic computable general equi-
librium (DCGE) model. The static model is best utilized when the specific economic 
period is known. The DCGE model allows definite features of short and long-term 

Fig. 3  The methods for modelling and combating climate change



Page 8 of 28Ikegwu et al. Energy Informatics             (2024) 7:6 

Ta
bl

e 
1 

St
re

ng
th

s 
an

d 
w

ea
kn

es
se

s 
of

 th
e 

m
et

ho
ds

 fo
r m

od
el

in
g 

cl
im

at
e 

ch
an

ge

M
et

ho
ds

D
es

cr
ip

tio
n

St
re

ng
th

W
ea

kn
es

s
Re

fe
re

nc
es

M
ac

hi
ne

 le
ar

ni
ng

A
I m

et
ho

d 
th

at
 a

na
ly

ze
s, 

in
fo

rm
s 

m
ea

n-
in

g,
 a

nd
 p

re
di

ct
s 

th
e 

ou
tc

om
e 

of
 la

rg
e 

cl
im

at
e 

ch
an

ge
 d

at
a

O
ffe

r f
as

t d
at

a 
an

al
ys

is
 a

nd
 p

re
di

ct
io

n,
 

an
d 

im
pr

ov
e 

cl
ea

n 
en

er
gy

 a
cc

es
s. 

It 
off

er
s 

de
ci

si
on

-s
up

po
rt

Re
qu

ire
s 

a 
lo

t o
f t

ra
in

in
g 

da
ta

, t
im

e-
co

n-
su

m
in

g 
in

 le
ar

ni
ng

Ro
ln

ic
k 

et
 a

l. 
(2

01
9,

 2
02

2)
, S

ab
a 

et
 a

l. 
(2

02
0)

, 
A

bb
ot

 a
nd

 M
ar

oh
as

y 
(2

01
7)

D
ee

p 
le

ar
ni

ng
Is

 a
n 

M
L 

m
et

ho
d 

in
vo

lv
in

g 
a 

no
nl

in
ea

r 
ap

pr
oa

ch
 fo

r s
im

ul
at

io
n 

an
d 

pr
ed

ic
tio

n 
in

 b
ot

h 
m

in
in

g 
an

d 
di

ag
no

si
s 

of
 la

rg
e 

cl
im

at
e 

da
ta

Ea
sy

 d
is

co
ve

ry
 o

f c
lim

at
e 

pa
tt

er
ns

 a
na

ly
si

s, 
w

el
l-p

er
fo

rm
ed

 fo
r s

im
ul

at
io

n 
an

d 
pr

ed
ic

-
tio

n 
of

 c
lim

at
e 

ch
an

ge

It 
in

vo
lv

es
 o

ve
rfi

tt
in

g 
in

 n
eu

ra
l n

et
w

or
ks

, 
an

d 
hy

pe
r-

pa
ra

m
et

er
 o

pt
im

iz
at

io
n,

 a
nd

 is
 

ex
pe

ns
iv

e 
to

 tr
ai

n

H
ua

n 
et

 a
l. 

(2
02

1)
, Z

ha
ng

 a
nd

 L
i (

20
20

), 
Zh

u 
et

 a
l. 

(2
01

7)
, K

ur
th

 e
t a

l. 
(2

01
9)

A
rt

ifi
ci

al
 in

te
lli

ge
nc

e
A

na
ly

tic
s 

m
et

ho
d 

re
sp

on
si

bl
e 

fo
r s

up
-

po
rt

in
g 

si
m

ul
at

io
n 

an
d 

de
ci

si
on

-m
ak

in
g 

in
fu

se
d 

in
to

 e
ar

th
 o

bs
er

va
tio

n 
da

ta
 a

nd
 

si
m

ul
at

io
n 

cl
im

at
e 

da
ta

Su
pp

or
t s

im
ul

at
io

n 
an

d 
qu

ic
k 

de
ci

si
on

-
m

ak
in

g.
 F

ur
th

er
 h

el
ps

 in
 c

lim
at

e 
ch

an
ge

 
di

sc
ov

er
y

H
as

 a
 h

ig
h 

co
st

 o
f i

m
pl

em
en

ta
tio

n.
 A

ls
o,

 
ha

ve
 d

at
a 

ac
qu

is
iti

on
 is

su
es

Se
be

st
yé

n 
et

 a
l. 

(2
02

1)
, K

ad
ow

 e
t a

l. 
(2

02
0)

, 
H

un
tin

gf
or

d 
et

 a
l. 

(2
01

9)

CG
E

Te
ch

ni
qu

e 
fo

r e
m

pi
ric

al
 a

nd
 e

co
no

m
ic

 
an

al
ys

is
 w

or
ld

w
id

e.
 It

 c
ap

tu
re

s 
th

e 
ec

on
o-

m
y’

s 
su

pp
ly

 a
nd

 d
em

an
d 

si
de

 a
nd

 a
llo

w
s 

fo
r a

dj
us

tm
en

ts
 b

as
ed

 o
n 

po
lic

y 
sh

oc
k

It 
al

lo
w

s 
de

fin
ite

 fe
at

ur
es

 o
f s

ho
rt

 a
nd

 
lo

ng
-t

er
m

 p
ol

ic
y 

sh
oc

ks
 to

 b
e 

de
te

r-
m

in
ed

. I
t d

et
ec

ts
 a

ny
 e

xo
ge

no
us

 v
ar

ia
bl

e 
th

at
 c

ha
ng

es
 a

ny
 q

ua
nt

ity
. A

ls
o,

 fl
ex

ib
le

It 
dw

el
ls

 o
nl

y 
on

 e
co

no
m

ic
 p

ol
ic

ie
s 

an
d 

sh
oc

ks
 a

nd
 la

ck
s 

co
m

pu
ta

tio
na

l l
ib

ra
rie

s 
fo

r d
yn

am
ic

 v
ar

ia
bl

e 
da

ta
 a

na
ly

si
s

H
os

sa
in

 e
t a

l. 
(2

02
2)

, M
an

ue
l e

t a
l. 

(2
02

1)
, 

So
lo

m
on

 e
t a

l. 
(2

02
1)

, S
ha

hp
ar

i e
t a

l. 
(2

02
1)

, 
Je

ns
en

 e
t a

l. 
(2

02
1)

St
at

is
tic

al
A

 k
ey

 m
od

el
 d

ep
lo

ye
d 

in
 a

na
ly

si
ng

 a
nd

 
pr

ed
ic

tin
g 

cl
im

at
ic

 c
on

di
tio

ns
 w

ith
 re

ga
rd

 
to

 s
im

pl
e 

re
gr

es
si

on
 u

p 
to

 n
on

-p
ar

am
et

ric
 

sp
at

io
te

m
po

ra
l B

ay
es

ia
n 

m
od

el
s

It 
ha

s 
st

ru
ct

ur
al

 s
im

pl
ic

ity
 a

nd
 e

ffe
ct

iv
e 

da
ta

 m
od

el
in

g 
an

d 
an

al
ys

is
 to

 fo
st

er
 p

as
t 

cl
im

at
e 

da
ta

 fo
r p

re
di

ct
io

n

Li
m

ite
d 

in
 m

od
el

in
g 

an
d 

an
al

yz
in

g 
bi

g 
cl

im
at

e 
da

ta
Sw

ee
ne

y 
et

 a
l. 

(2
01

8)
, Y

ar
iy

an
 e

t a
l. 

(2
02

0)
, 

Si
dd

iq
ua

 e
t a

l. 
(2

02
1)

, W
or

ku
 e

t a
l. 

(2
02

0)
, 

Ja
ck

so
n 

et
 a

l. 
(2

01
8)

G
BM

A
 d

ua
l p

ro
ce

ss
 th

eo
ry

 o
f a

tt
itu

de
 c

ha
ng

e 
su

pp
or

tin
g 

m
ix

ed
 p

er
ce

pt
io

n 
of

 p
eo

pl
e 

op
po

se
 th

e 
sc

ie
nt

ifi
c 

ju
dg

m
en

t t
ha

t 
cl

im
at

e 
ch

an
ge

 is
 c

au
se

d 
by

 h
um

an
s

O
ffe

rs
 th

eo
ry

 o
f a

tt
itu

de
 c

ha
ng

e 
ba

se
d 

on
 

th
e 

po
lit

ic
al

 a
nd

 p
er

so
na

l p
er

ce
pt

io
n 

th
at

 
is

 g
oo

d 
da

ta
 m

od
el

in
g 

an
d 

im
pl

em
en

ta
-

tio
n

O
nl

y 
ba

se
d 

on
 th

eo
ry

 a
nd

 n
ot

 a
na

ly
tic

s 
pr

oc
es

s 
of

 d
at

a 
m

od
el

in
g 

an
d 

an
al

ys
is

Va
n 

D
er

 L
in

de
n 

(2
02

1)
, K

er
r a

nd
 W

ils
on

 
(2

01
8)

SW
AT

​
A

 h
yd

ro
lo

gi
ca

l m
od

el
in

g 
to

ol
 m

ou
nt

ed
 to

 
hy

dr
ol

og
ic

 a
nd

 e
nv

iro
nm

en
ta

l s
im

ul
at

io
ns

G
oo

d 
fo

r h
yd

ro
lo

gi
c 

an
d 

en
vi

ro
nm

en
ta

l 
si

m
ul

at
io

ns
 o

f s
en

si
ng

 d
at

a
It 

do
es

n’
t fi

t i
n 

th
e 

ad
va

nc
ed

 a
na

ly
si

s 
an

d 
pr

ed
ic

tio
n 

of
 c

lim
at

e 
ch

an
ge

A
ko

ko
 e

t a
l. 

(2
02

1)
, L

i a
nd

 F
an

g 
(2

02
1)

, 
A

zn
ar

ez
 e

t a
l. 

(2
01

4)
, A

lit
an

e 
et

 a
l. 

(2
02

2)
, 

Ka
lb

 e
t a

l. 
(2

02
1)



Page 9 of 28Ikegwu et al. Energy Informatics             (2024) 7:6 	

policy shocks to be determined. CGE is essential and globally used to capture direct, 
and indirect, represent the economy, and explicitly maintain consistency at the macro 
and micro levels (Shahpari et  al. 2021). The CGE also detects any exogenous variable 
that changes any quantity of the economy and gives rise to consequences throughout the 
system. More so, it helps the data to be numerically calibrated to their algebraic frame-
work and mathematical programming that captures the outcome of the basic features of 
the dynamic model. In addition, the essence of this CGE mode is to explain the function 
of prices in an economy. The strength bestows in their flexibility since they can adapt 
to a wide range of policies and shocks. Furthermore, CGE model has three major com-
ponents; data, theory, and shocks. These are combined to bring effective results. The 
results depend on numerical predictions of the changes in the economic system. For 
instance, a recent study by Hossain et al. (2022) utilised a dynamic computable general 
equilibrium model to analyse the impact of climate change on Bangladesh’s economy. 
The result shows that Bangladesh’s GDP is affected by − 6.17% and even declines by 
− 7.76% in investment. Further predictions show a reduction of − 3.08 and − 3.7% col-
lectively in 2030 and 2050, especially in the rice sectors. Also, Jensen et al. (2021) applied 
the CGE model to analyse seven current and future climate change challenges for Myan-
mar, state and region-specific paddy yield change of 30-year intervals between the 2020s, 
2050s, and 2080s. This application produced effective results to point out strong differ-
ences in climatic change effects in the nation’s states and regions on agricultural pro-
duction. Furthermore, DCGE was deployed in the analysis of Mozambique’s agricultural 
sector and household welfare (Manuel et al. 2021). This shows acute negative impacts 
are experienced in the agricultural sector, especially for maize and cassava as crop yields 
decrease. More so, DGCE identifies the decline in production of teff, maize, and sor-
ghum by 25.4, 21.8, and 25.2%, respectively by 2050 compared to the base period of 2025 
in Ethiopia’s agricultural production (Solomon et  al. 2021). Further to this, Ethiopia 
nation will lose its agricultural GDP to 31.1% at factor cost by 2050 as a result of climate 
change. However, GCE is not generally utilised in all-purpose climate change modeling 
because it dwells more on economic policies and shocks. It lacks computational libraries 
for dynamic variable data analysis.

Statistical model

The statistical model is one of the key models used in analysing and predicting climatic 
conditions. The statistical modeling methods encompass simple regression up to non-
parametric spatiotemporal Bayesian models deployed for effective data modeling and 
analysis to foster past climate change (Sweeney et  al. 2018). The statistical model is 
known for its structural simplicity. The kind of statistical models deployed for the assess-
ment and evaluation of climate change data include Regression, Bivariate, Frequency 
Ratio (FR), Evidential Belief Function (EBF), and Ordered Weight Average (OWA) that 
has been widely utilized (Yariyan et  al. 2020; Siddiqua et  al. 2021). For instance, Yari-
yan et al. (2020) combined different statistical models (e.g. FR, EBF, and OWA) for flood 
susceptibility in Kurdistan Province, Iran to reduce the harmful effects of flooding that 
were highly contributed due to the impact of climate change on rainfall. The hybrid 
of the models achieves 95.1% efficiency. Also, the computation of the Flood Potential 
Index (FPI) was achieved with 2 bivariate statistical models (Costache 2019). This used 
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10 flood conditioning factors together with 158 flood pixels and 158 non-flood pixels 
that were validated through the ROC curve model. This shows that 25% of the upper 
and middle basin of the Prehova river is due to climatic change impact. A recent study 
by Yang et al. (2022) utilised a geographically and temporally weighted regression model 
(GTWR) to show the climate change effect on corn yield in U.S. Corn Belt making it 
possible to retain the original data from spatiotemporal heterogeneity data. These, how-
ever, showed over 40 years, from 1981 to 2020 the positive effect of climate change on 
corn yield, with temperature having a major effect compared to precipitation. More so, 
statistical models show off a great evaluation to assess and make future projections on 
the best approach, simulations, strategy, measures, and policies in different hemispheres 
and states such as Indiana (Hamlet et al. 2020), Jemma sub-basin, upper Blue Nile Basin 
of Ethiopia (Worku et al. 2020), Scotland’s Atlantic salmon rivers (Jackson et al. 2018), 
and regions of Pakistan (Siddiqua et al. 2021). However, the current data generation is 
generic and spontaneous and requires advanced data analysis libraries or techniques to 
handle.

Gateway belief model (GBM)

The gateway belief model (Van Der Linden 2021) is a dual process theory of attitude 
change, that portrays what political strategists have perceived for decades: observed sci-
entific agreement plays a key role in people’s attitudes about contested scientific issues. 
This model is mixed in the sense that people oppose the scientific judgment that cli-
mate change is caused by humans. So, it borders on the degree of belief of these peo-
ple’s perception of climate change. It tells how real people think about climate change 
and how much people worry about the issue. This perception continues, which depends 
on the level of consensus and the extent of their endorsement of those issues. How-
ever, it empirically evaluated the messages about the scientific consensus on the real-
ity of anthropogenic climate change and the safety of genetically modified food shifting 
perceptions of scientific consensus (Kerr and Wilson 2018). Therefore, the consensus 
was perceived in informing personal beliefs about climate change, nonetheless, results 
indicated limitations in the impact of single and one-off messages. This perception of 
people’s view on climate change causes arguments in the sense that some authors argue 
that environmentalism is not the main cause of thoughts or behaviors about climate 
change. Relatively, the evolved social needs for belongingness, understanding, control, 
self-enhancement, and trust are more practical intervention targets than the attempt to 
create environmentalist beliefs or identities (Brick et al. 2021). A study by Van Der Lin-
den et al. (2019) presented a large-scale confirmatory replication of GBM on a national 
quota sample of the US population (N = 6301). The result shows from the hypotheses 
of the GBM that change in perceived scientific consensus causes subsequent changes in 
cognitive (belief ) and affective (worry) judgments about climate change, which in turn 
are associated with changes in support for public action.

Soil and water assessment tool model (SWAT)

The soil and water assessment tool model (Akoko et  al. 2021) is a hydrological mod-
eling tool dedicated to hydrologic and environmental simulations. It is a physically 
based, semi-distributed, and continuous time hydrological model. Typically, the SWAT 
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model was developed to assess water resources and predict the impacts of land use/
cover changes including land management practices on soil erosion, sedimentation, 
and non-point source pollution on large river basins/watersheds. The SWAT model has 
been widely applied in the assessment of climate change impact globally. For example, 
Li and Fang (2021) applied the SWAT model to assess the impact of climate change 
on the stream flow in the Mekong Basin of the Mun River, Southeast Asia. The result 
shows that climate change has a great impact on the river stream monthly flow changes 
were negatively related to temperature (p < 0.05) in the dry season and positively linked 
to precipitation (p < 0.01) in the wet season. It also projected an increase of streamflow 
by 10.5%, 20.1%, and 23.2% during 2020–2093 under three climate scenarios. This pro-
vides a scientific basis for adaptive management, although, this model is only good in in 
hydrologic and environmental simulations related practices. Also, Aznarez et al. (2014) 
employs SWAT mode and remote sensing data to analyse the climate change impact on 
hydrological ecosystem services in Laguna del Sauce, Uruguay. The result shows that 
water resources were negatively affected in the Laguna del Sauce catchment, particularly 
in the representative concentration pathways (RCP) by 8.5 scenarios. However, a com-
parative analysis of other locations is not covered. Furthermore, water Erosion monitor-
ing and prediction were analysed to ascertain the effect of climate change in the R’ Dom 
watershed in Morocco using the revised universal soil loss equation (RUSLE) and SWAT 
Equations (Alitane et al. 2022). SWAT model was employed in the modeling of surface 
water availability in a Semi-Arid Basin, El Kalb River, Lebanon (Kalb et al. 2021) due to 
climate change, and assessment of the future impact of climate change on the Hydrology 
of the Mangoky River, Madagascar (Finaritra et al. 2021). However, all these studies are 
geared towards providing adaptation strategies, projection, and evaluation of tackling 
climate change issues, managing water resources, and water engineering.

The big data analytic methods

This subsection discusses the big data analytic (BDA) methods or approaches employed 
to analyse climatic big data (CBD).

Machine learning

Machine learning (Rolnick et al. 2019) is the analytics method that can analyze, inform 
meaning, and predict the outcome of large climate change data. The impact of machine 
learning (ML) in tackling climate change issues includes: offering fast data analysis and 
prediction helping to reduce greenhouse gas emissions and assisting society in adapting 
to a changing climate. It further accelerates the prevention of the leakage of methane 
from natural gas pipelines and compressor stations, modeling emissions, and improv-
ing clean energy access. More so, ML methods such as support vector machine (SVM), 
Decision Tree (DT), Random Forest (RF), k-Nearest Neighbors (k-NN), Naïve Bayes, 
etc., are utilized to access the health risk across subpopulations due to climate change 
effects. For example, Machine learning methods such as DT, SVM, and k-NN were uti-
lized to detect the daily number of COVID-19 infected and death cases during the pan-
demic lockdown (Saba et  al. 2020). Also, the ML analytic method was applied for the 
evaluation of anthropogenic and natural climate change, which optimize the spectral 
features of the component sine waves (Abbot and Marohasy 2017). Many recent other 
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works utilised ML methods in solving climate change effects. Few of the recent stud-
ies include (Zia 2021; Manley and Egoh 2022; Davenport and Diffenbaugh 2021; Ikegwu 
et al. 2023).

Deep learning

Deep learning (DL) is one of the analytics methods that has played a crucial role in big 
data analysis. Deep learning (Zhang and Li 2020) is a nonlinear method for simulation 
and prediction in both mining and diagnosis of large climate data. It discovers climate 
patterns and predicts climate change needs. Another reason is that DL is capable of dis-
covering unknown hidden information in big climate data. The known DL methods are 
neural networks (NNs) such as artificial neural networks (ANNs), convolutional neural 
networks (CNNs), deep neural networks (DNNs), etc., which are used for climate pattern 
analysis. The NNs are the interconnection of sample computing cells known as process-
ing units or neurons. In addition, the algorithms associated with these methods include 
Metropolis, Gibbs sampling, simulated annealing, variation approach, etc., which are 
deployed for the simulation of large climate data. DL is an important aspect of analytics 
methods applied in significant climate data analysis to achieve sustainable development 
goals (Huan et al. 2021) vision on climate change. For instance, ANNs were utilized for 
the simulation and forecasting of climate and meteorological variables such as tempera-
ture, rainfall, solar radiation, and wind speed (Abbot and Marohasy 2017). Also, DL was 
applied in the analysis of remote sensing data on climate change and urbanization (Zhu 
et al. 2017). Recently, Kurth et al.  (2019) analyzed extracted pixel-level masks of hash 
weather patterns using deep learning methods. This, however, achieved a parallel effi-
ciency of 79.0%.

Artificial intelligence

Artificial intelligence (Sebestyén et al. 2021) is an analytics method for big data analysis 
saddled with the responsibility of supporting simulation and decision-making infused 
into earth observation data and simulation climate data. The methods produce a bet-
ter result when combined with numerical climate model data. For example, Kadow et al. 
(2020) reconstructs missing climate data from global climate datasets (HadCRUT4) 
using the artificial intelligence (AI) image inpainting approach. Therefore, uncertainties 
and biases in climate records were reduced. Furthermore, AI methods discovered cli-
mate connections to enhance earth system model (ESM) simulation and weather fea-
tures (Huntingford et al. 2019). Some other works that have utilised the AI approach in 
combating climate change effects include (Benzidia et al. 2021; Lozo and Onishchenko 
2021; Narayan 2021; Cheong et  al. 2022; Avand et  al. 2021; Hwang et  al. 2021; Cowls 
et al. 2021).

Purpose for analysing big climate data using big data analytic methods

Climate change (CC) and sustainability development (SD) have been transformed and 
enhanced through big data analytics (BDA) methods. The purpose of BDA methods in 
CC&SD as one of 13 out of the 17 sustainable development goals (SDGs) (Huan et al. 
2021) include:
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(i)	Climate change detection: Big data analytics methods such as Hadoop MapRe-
duce framework spatial cumulative sum algorithms (SCUMSUM) are used to 
reduce large climate data to monitor the seasonal changes exhibited (Manogaran 
and Lopez 2018). The spatial cumulative sum algorithms such as cumulative sum 
(CUSUM), bootstrap analysis, and spatial autocorrelation methods were utilized to 
determine the slow and drastic changes in the mean value of vast climate data. For 
example, (Manogaran and Lopez 2018) applied the SCUMSUM algorithms and the 
BDA methods to monitor the changes in rainfall, precipitation, maximum and min-
imum temperature, humidity, wind speed, and solar. This, however, achieved high 
result performance up to 81.48%.

(ii)	 Disease identification: Disease identification (Lopez and Sekaran 2016) involves 
identifying and predicting diseases that occur due to climate change, in which ana-
lytics methods have played a vital role. These diseases could be illnesses and abnor-
malities in the human body system. For example, the analytics methods such as the 
CUSUM algorithm and Bootstrap analysis method combined with big data analyt-
ics help to identify and predict malaria, coronavirus, Ebola virus, dementia, and 
Parkinson’s (Tao et al. 2020; Sharma and Gupta 2021; Manogaran and Lopez 2018). 
These methods further accelerate the monitoring of physiological and psychologi-
cal changes such as high temperature, dengue fever, and emotional stress, of the 
human body that occur as a result of climate change. In a recent development, big 
data analytics methods have successfully assisted in analysing contagious disease 
data and have recorded impressive results as reported in the current studies. For 
instance, a recent study by Saba et  al. (2020) utilized analytic techniques such as 
decision trees, support vector machines, and k-Nearest Neighbors to detect and 
forecast the daily overall number of COVID-19 infected and death cases during the 
pandemic lockdown. A more recent study by Rasheed et al. (2021) deployed linear 
regression and convolution neural network techniques in post-COVID-19 diagno-
sis from data obtained from chest X-ray images. The study achieved the accuracy of 
LR and CNN, 95.2–97.6% without principal component analysis (PCA) and 97.6–
100% with PCA respectively.

(iii)	Emission reduction: A combination of technological, natural mechanism, and eco-
nomic approaches as essential means of combating climate change will help reduce 
carbon emissions. However, nature alone cannot protect us from the climate change 
effects but technology paradigm or a hybrid approach (Ornella 2020). BDA tools 
such as Apache Hadoop, MongoDB, Lambdoop, etc., are utilized to reduce carbon 
emissions concerning oil exploitation, smart buildings, and smart city development 
(Zhang and Li 2020; Gomede et al. 2018). In addition, the implementation of a low 
fossil-carbon energy system and energy use improvement also reduce carbon emis-
sions. More so, remote sensing data generated through earth observation and ana-
lytics emanating from the basis of satellites, aircraft, and ground-based structures 
are utilized to form a decision-support, prediction, and forecast for further global, 
regional, and field scales towards carbon emission reduction.

(iv)	Monitoring and evaluation: BDA methods facilitate monitoring, evaluation, and 
adaptation through the utilization of digital devices such as smartphones, sensors, 
social media, earth observation data, and climate simulation data. Therefore, it 
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examines how an adaptation program designed to enable storm warnings affects 
the standard of living before, during, and even after a storm event, as well as moni-
tors if and how these changes could occur over time (Ford et al. 2016).

(v)	 Cloud-based ecosystem: BDA methods help to create a cloud-based ecosystem 
from vast data sources combined with the appropriate techniques and software-
as-a-service (SAAS) to revolutionize the agricultural sector, marine ecosystem, and 
green industries; hence, leveraging the cost-effectiveness of storage of voluminous 
amounts of data on the cloud (Schnase et al. 2017; Jiao et al. 2015).

(vi)	Decision support: It offers a decision support system and proper strategy against 
climate change effects and improve people’s resilience in the face of the adverse 
effect of climate change through trends, pattern, prediction, and technical analysis 
using machine learning and artificial intelligence (Knüsel et al. 2019; Heckman et al. 
2018). It further offers early warning surveillance thereby enhancing the capacity to 
respond to climate change (Ford et al. 2016).

(vii)	 Assessment of disaster damage: Humanitarian operation and crisis management 
are yielding excellent results using the application of big data analytics techniques 
(Akter and Wamba 2017). The BDA helps to visualize, analyse and predict disas-
ters, thereby making them easy to manage. Quick disaster response is most com-
pelling because it imposes some threats. Some of the threats include lives, meet-
ing humanitarian needs (food, shelter, clothing, public health, and safety), clean-up, 
damage assessment, task assignment, resource allocation, etc. The application of 
big data such as satellite imageries, Global Positioning System (GPS) traces, mobile 
Call Detail Records (CDRs), social media posts, etc., in conjunction with advances 
in data analytic techniques (e.g., data mining and big data processing, machine 
learning, and deep learning) can facilitate the extraction of geospatial information 
that is highly needed for rapid and effective disaster response (Cumbane 2019). For 
instance, Guo et al. (2020) utilised a data mining approach, econometric regression 
model and input–output model are implemented in the system, based on multi-
source data including hourly rainfall, geographical conditions, historical and real-
time disaster information, socioeconomic data, and defense countermeasure.

(viii)	 Rainfall-runoff modeling: Rainfall-runoff (Xiang et al. 2020) is viewed as a com-
plex nonlinear time series model. It has been widely used for water resources man-
agement, hydro-power development, urban planning, irrigation, and other agro-
hydrological/meteorological activities planning. Over time, it has attracted much 
attention from researchers to utilise the model for effective time series predictions 
in hydrology. Nonetheless, the application of big data analytics methods has made 
it more efficient for prediction. For instance, Xiang et al. (2020) utilised machine 
learning and deep learning (e.g. long short‐term memory, sequence‐to‐sequence, 
etc.) models to predict runoff using rainfall data sets. However, the spatial inequal-
ity of rainfall is still ignored inside each sub-watershed. Also, machine learning 
methods were used to investigate rainfall-runoff modeling at an hourly timescale, 
which achieved better accuracy (Muhammad et al. 2020).

(ix)	Crop recognition: Big data from remote sensors that it possible for the identifica-
tion and classification of crop species automatically, fast, and cost-effective to avoid 
the use of human experts (Tantalaki et al. 2019). Remote sensing helps crop map 
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building by pixel classification as it is important for the development of precision 
agriculture. Crop recognition involves two methods; a joint likelihood decision 
fusion multi-temporal classifier and Markov model-based technique (Zhang and Li 
2020). The first method which the class with the highest likelihood of producing 
the observed single-date/multidate classifications for a given remote sensing image. 
The second method, the Markov model-based technique relates the varying spec-
tral response along the crop cycle with plant phenology for different crop classes 
and recognizes different crops by analysing their spectral temporal profiles over a 
sequence of remote sensing images. For example, Shelestov et al. (2017) classifica-
tion for multi-temporal satellite imagery for crop mapping was effectively carried 
through big data processing tools such as SVM, decision tree, random forest classi-
fier, etc., and Google Earth Engine (GEE) platform.

(x)	 Rainfall estimation: Seasonal (e.g. monthly, yearly, etc.) rainfall estimation and pre-
diction are made possible with the help of BDA. This influence directly or indirectly 
the kind of rainfall estimation variables. This variable is dependable on data input. 
Examples of these input data variables include maximum, minimum, and aver-
age temperature (°C), vapor pressure (hPa), wind speed (km/h), humidity (%), and 
cloud cover (%) (Pundru et  al. 2022). In addition, there is a variety of radar data 
processing algorithms involved in rainfall product data generation requests. These 
include data quality control, rain rate estimation, rainfall accumulation, and conver-
sion of spherical (polar) to geographic coordinates (Seo et al. 2019; Khan and Bhui-
yan 2021). These data are analysed for effective rainfall estimation and decision-
making with BDA methods. For example, (Pundru et  al. 2022) utilised machine 
learning models with singular-spectrum analysis otherwise known as least-squares 
support vector regression (LS-SVR), and random forest (RF) for rainfall prediction. 
Root Mean Square Error (RMSE) and Nash–Sutcliffe Efficiency (NSE) were used to 
assess the performance of the models that achieved 71.6% and 90.2% respectively. 
The model productively predict the rainfall.

The common datasets for modeling and combating climate change effects
The extensive review showed that there are various methods or models developed for 
analysing a large volume of climate change data (Zhang and Li 2020). Government agen-
cies and other philanthropic bodies are adopting the methods to study the trends, and 
patterns, and extract useful data in the climatic change environments by identifying new 
opportunities to combat climate change issues. Therefore, in this section, we focus on 
data types and sources, and common datasets utilised by various authors in modeling 
climate change. Moreover, the datasets at terabyte, petabyte, and even Exabyte scales 
from diverse sources are utilized to form a basis for the increase in global warming 
research.

Data types and sources

Recently, the epoch of big data has created a variety of datasets from vast sources in 
climate change domains. These datasets include several modalities, each of which has a 
diverse representation, distribution, scale, and density. Hence, data mining and big data 
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analytics methods are launched to discover hidden knowledge from the numerous data-
sets formed to aid quick decision-making (Zhang and Li 2020; Al-shiakhli 2019). This, in 
essence, helps humans better understand climate change and its analysis. Hence, large 
climate change data types and sources are categorically classified into two, namely; earth 
observation and climate simulation big data types. These are briefly discussed below:

	(i)	 Earth observation big data (EOBD) type
	Earth observation big data type involves the remote sensory observation utilized for 

monitoring large-scale variability of global climate and environmental changes 
(Zhang and Li 2020). The EOBD data source includes satellite, weather, atmos-
phere, hydrosphere, biosphere, lithosphere, station, and gridded data. The data 
generated from this source helps to obtain current climate conditions and predict 
future climate changes. This kind of dataset is made available in some domains or 
agencies such as the National Aeronautics and Space Administration (NASA), US 
Government Open Data Initiative (USGODI), SeaDataNet (SDN), National Centre 
for Environmental Information (NCEI), Climate Research Unit (CRU), and Data 
Distribution Centre (DDC), etc. (Grotjahn and Huynh 2018; Hartter et  al. 2018; 
Tariq et al. 2019). For instance, Blume et al. (2023) utilized EOBD such as Senti-
nel-2 mosaic Bottom of Atmosphere imagery having 18,881 single 100 × 100-km 
tiles. The study’s results support spatially-explicit seagrass and ocean ecosystem 
accounting, and further assist policy-making, blue carbon crediting, and all neces-
sary financial investments. The study used random forest machine learning algo-
rithms to assess and analyze the desired data. Additional, Béjar et al. (2023) imple-
mented discrete global grid systems (DGGS) using earth observation data cubes 
having rHEALPix to enable the efficient integration of diverse spatial data. How-
ever, a lot more is anticipated from the design framework, including fully func-
tional operations and the integration of rHEALPix-safe and rHEALPix-aware fea-
tures in the Python application programming interface for the open data cube.

	(ii)	 Climate simulation big data (CSBD) type
	The data generated from these categories are generally used to predict future climate 

change trends and assess their impacts. The CSDB data sources are validated by 
foundational elements of climate science known as coupled model inter-compari-
son project (CMIP) standards (Colorado-Ruiz et al. 2018). The objective of CMIP 
is to elucidate past, present, and future climate change arising from natural and 
unforced variability. The example of such data generated from CSBD includes 
higher resolution complex physical, chemical, and biological processes. More data 
sources include DECK [diagnostics, evaluation, characteristics of Klima (climate)], 
coordination, climate projection data, infrastructure, and documentation data 
(Zhang and Li 2020). Hence, MCIP and DECK historical simulation formed the 
major source of CSBD. The datasets are useful in climate change predictions using 
analytics methods. These datasets of this nature can be found in National Oce-
anic and Atmosphere Administration (NOAA) reports, NASA Earth Observatory 
(NASAEO), Global Carbon Project (GCP), and Data—Climate Change (World 
Bank) (Tariq et  al. 2019; Pinkerton and Rom 2014). Take for example, (Nikolaev 
et al. 2020) utilized general circulation models simulated data of an 800 year time 
series from CanESM2 using deep learning methods to train on them and testing 
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with the historical data. Nevertheless, depending on the available historical data, 
the simulated data needs to be fine-tuned further to lessen overfitting. Addition-
ally, the recent study by Wang et al. (2023) implemented machine learning tech-
niques to model snowmelt runoff in a high-altitude mountainous area in the 
Xiying River Basin without the need for observation data. These techniques used 
meteorological data at the watershed level. In order to improve the machine learn-
ing model’s prediction of snowmelt runoff in alpine mountains, snow remote sens-
ing data was used. This was also supported by the numerical simulation analysis of 
surface air temperature between 1980 and 2019 as carried out Krasnodar city, Rus-
sia (Volvach et al. 2023) and related comparison with hemispheric and regional sea 
ice extent using NOAA and NASA passive microwave-derived (Meier et al. 2022). 
Following research and comparison, it was determined that the space-based obser-
vation had more local circumstances than the ground-based observation based 
on the data from the World Data Center (ground based) and the POWER project 
(space based). More recent study by Hayasaka (2024) consistently examine the 
fire weather conditions in Mexico by utilizing hourly weather data, simulated cli-
mate data, and 20 years’ worth of satellite hotspot and rainfall data. This, however, 
attempted to improve local fire forecasts and trends in future fire across the globe.

The datasets, differences, and similarities for modeling and combating climate change 

effects

Based on the critical review, we identify 42 works that have used different or similar 
datasets for the implementation of climate change-related problems to identify oppor-
tunities, predict, and project effective measures, policies, strategies, and techno-drive 
to combat the effects of the global warming of climate change. Various data or datasets 
have been generated by different authors to implement climate change impacts. These 
datasets are structured and analysed using climate change methods (e.g. CGE, statisti-
cal, GBM, SWAT, ML, DL, AI, etc.). The climate change methods were discussed in “The 
methods for modeling and combating climate change” section. Therefore, some of these 
data are climate change earth observational big data, climate change simulated big data, 
and social media climate change big data. From the review, seventeen (17) out of 42 
primary papers reviewed used earth observational clime change big data e.g. (Habibul-
lah et al. 2022; Davenport and Diffenbaugh 2021; Kadow et al. 2020; Avand et al. 2021), 
twenty-one (21) utilised climate simulation big data, e.g. (Hossain et al. 2022; Handayani 
and Abubakar 2020; Yang et  al. 2022; Zia 2021; Seo et  al. 2019), and four (4) authors 
make use of social media data e.g. (Manley and Egoh 2022; Hwang et al. 2021; Liu 2021).

For example, some of the climate change earth observational data that have been 
utilised by various authors include HadCRUT4, Red list by IUCN, multi-country 
multi-city (MCC) that contain about 732 locations in 43 countries, social account-
ing matrix (SAM), DDEM, Oxford station data, 923 PRISM station data, a house-
hold that contains about 395 from 8 villages, 6301 of US Pop from Qualtrices LLC, 
etc. (Habibullah et al. 2022; Vicedo-Cabrera et al. 2021; Davenport and Diffenbaugh 
2021; Kadow et al. 2020; Xiang et al. 2020; Atube et al. 2021). Then, some examples 
of climate simulation datasets include 14 Gradient Circulation Models (GCMs) from 
CMIPs, 20 GCMs from CMIP6, National Centre for Hydrological Meteorological 
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Forecasting (NCHMF), Resnet 50 dataset, NEXRAD from Amazon Web Service 
(AWS), Coordination of Information on Environment (CORINE), Regional Climate 
Model (RCM), General Inspectorate for Emergency Situation (GIES) dataset, etc. 
(Costache 2019; Yang et al. 2022; Van Der Linden et al. 2019; Alitane et al. 2022; Zia 
2021; Narayan 2021; Muhammad et  al. 2020; Seo et  al. 2019; Colorado-Ruiz et  al. 
2018; Wang and Tian 2022).

Similarly, some of the authors who utilised datasets from Coupled Model Inter-
comparison Project Phase 5 and 6 (CMIP5 and CMIP6) include (Hossain et al. 2022; 
Hamlet et  al. 2020; Colorado-Ruiz et  al. 2018; Wang and Tian 2022), social media 
datasets include (Manley and Egoh 2022; Hwang et al. 2021; Liu 2021). Also, National 
or global datasets such as GIES, CORINE, NCHMF, HadGEM, SRTMN, RCM, NASS, 
USDA, APHRODITE, etc., include (Costache 2019; Jackson et al. 2018; Li and Fang 
2021; Kalb et  al. 2021; Zia 2021; Muhammad et  al. 2020; Yang et  al. 2020; Nowack 
et al. 2018). Table 2 presents the datasets, differences, similarities, and methods for 
modeling and combating climate change effects.

Table 2  The datasets, differences, similarities, and methods for modeling and combating climate 
change effects

Dataset/source Methods/models Authors

Gradient circulation model from CMIP5 
and CMIP6

Statistical, ML, DL, CGE, SWAT​ Hossain et al. (2022), Hamlet et al. 
(2020), Li and Fang (2021), Finaritra et al. 
(2021), Colorado-Ruiz et al. (2018), Wang 
and Tian (2022), Hosseini et al. (2021), 
O’Gorman and Dwyer (2018)

Flicker, Twitter API (7632 tweets and 
7634 news articles), ZigBee, from the 
social media site

ML, statistical Manley and Egoh (2022), Hwang et al. 
(2021), Liu et al. (2021)

Resnet50 ML, AI Narayan (2021)

4 km daily precipitation of 923 station 
data from PRISM Climate Group

ML Davenport and Diffenbaugh (2021)

HadCRUTH4, HadGEM3 AI, statistical Kadow et al. (2020), Nowack et al. (2018)

Precipitation data from local rain 
gauge network, proxy temperature 
records, rainfall data

ML Abbot and Marohasy (2017), Khan and 
Bhuiyan (2021), Hua-dong et al. (2015), 
Amato et al. (2020), Avand and Moradi 
(2021)

NCHMF dataset ML Zia (2021)

Panel data of land, labour, fertilizer, 
and temperature from the World Bank 
database and FAO statistics

Statistical Handayani and Abubakar (2020)

Empirical data from 732 locations in 
43 countries, and cross-national of 115 
countries, Red List by IUCN, SDG index 
from 162 countries of 15,400 datasets

Statistical, ML Türkeli (2020), Habibullah et al. (2022), 
Vicedo-Cabrera et al. (2021)

Landset8 images sensor DL Shelestov et al. (2017)

Global Digital elevator model (DEM), 
land cover, soil map

SWAT​ Alitane et al. (2022), Kalb et al. (2021)

Social accounting matrices (SAM) such 
as temperature, precipitation, and 
evaporation

CGE Manuel et al. (2021)
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Implementation frameworks for climate change modeling using big data 
analytics
The data processing and analysis of high-voluminous climate change data generated 
or sourced from public sites or databases require efficient frameworks to be handled. 
The big data analytics modeling platforms or tools include HDFS, cross—MapReduce, 
YARN, Google BigTable, Spark, Mahout, and Flume. These frameworks are briefly 
explained. The strength and weaknesses of these frameworks are presented in Table 3.

	(i)	 Hadoop file distributed system (HFDS)
	Hadoop file distributed system (Shih 2018) is an analytic storage framework created 

from the Apache family and it is responsible for storing large data. The essence of 
HDFS is to store large data generated from earth observation and climate simula-
tion datasets. HDFS handles large data and maintains the simplicity of usage. It can 
read data into distributed arrays without introducing a single point of data con-
version. For instance, (More et al. 2019) utilized HDFS to load historical weather 
datasets crawled from National Climatic Data Centres. This dataset was analysed 
to detect climate change with the help of MapReduce which was applied to remove 
scalability issues. Conversely, HDFS and MapReduce work in common, HDFS 
stores the data, and MapReduce is deployed to process the large datasets and store 
them back in HDFS. For example, a recent study by Greca et al. (2023) deployed 
big data framework such as Hive and Hadoop to store, manage, and process cli-
mate change earth surface temperature data from NOAA’s MLOST, NASA’S GIS-
TEMP and UK’s HADCRUT. Following the research result, it shows that in the 
city of Durres, the temperature increased by 1.1 °C since the inception of the pre-
industrial era.

	(ii)	 Cross MapReduce
	Cross MapReduce is a technological framework enabled by the Apache Hadoop eco-

system that provides data splitting into the distributed format, data mapping, shuf-
fling, and classification to reduce document search (Mirpour et al. 2021). This is 
essential in the processing of large climate change data because it is capable of pro-
cessing all geo-distributed data. Cross MapReduce (CMR) merges the records that 
have the same keys in the cluster using reduce function. CMR sequentially contains 
three components; MapCombine, Gshuffle, and GlobalReducer. This component 
is jointly utilized to minimize transferring of data volumes globally. For example, 
Mirpour et al. (2021) proposed a Cross MapReduce framework to minimize trans-
ferred data volume and determine the number as well as the locations of global 
reducers. This, however, achieved a 40% reduction in the amount of data transfer 
over the Internet. In addition, MapReduce helps to detect climate change from a 
large volume of weather data (More et al. 2019). After climate change detection, 
there is a need for prediction to be infused in the data to form decision support, 
hence; machine learning.

	(iii)	 Yet another resource negotiator (YARN)
	YARN (Cumbane 2019) is a batch-processing framework, that coordinates the compo-

nents of the Hadoop framework. YARN is implemented on top of HDFS which 
helps the execution of multiple and distributed climate big data in parallel across 
applications. YARN is an important framework because it dynamically handles 
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multiple processing and real-time interactive processing of climate big data. Fur-
thermore, it improves multi-tenancy, cluster utilization, scalability, and compatibil-
ity in climate big data processing and management. For example, Kanwar (2018) 
implemented YARN-based method using climate weather datasets. This compara-
tively improves Hadoop execution, tightens up confines, and fixes the scheduling 
and resource carriage issues.

	(iv)	 Google BigTable
	Climate big data storage is important and requires an efficient implementation frame-

work that can handle distributed, column-oriented data storage and a large amount 
of climate-unstructured data (Ikegwu et al. 2022). In addition, handling Google’s 
internet search and web service operations and its related services of climate 
change data storage is efficiently carried out with the help of Google BigTable. For 
example, the database choice was taken into consideration while implementing 
geospatial-temporal data processing and storing; Google BigTable, Cansandra, etc. 
were thought to have a significant impact (Shykhmat and Verses 2023). Predictive 
maintenance for agricultural vehicles is included in the analysis. Meteorological 
stations, weather satellites, and environmental organizations can provide informa-
tion about the weather, climate, and air quality. Vehicle performance is significantly 
impacted by weather conditions. For instance, excessive heat can cause an engine 
to overheat; rain and snow can muddy fields, making traction more difficult; and 
dust and sand are quite harsh on-air filters and radiators. However, managing geo-
spatial-temporal data in a distributed fashion involves specific challenges and con-
cerns.

	(v)	 Apache Spark
	Apache Spark (More et al. 2019; Ikegwu et al. 2022) is a fast and large-scale climate data 

processing. Major libraries (e.g., graphX, machine learning libraries (MLlib), spark 
streaming API, and spark SQL) are supported by a spark. Hence, runs programs up 
to 100× faster compared to some other big data frameworks (e.g. Hadoop, MapRe-
duce, etc.) especially in memory or on disk up to 10×. Spark technology works well 
with Hadoop, YARN cluster manager, Java VM, and other architecture. Further-
more, Apache Spark can process a high volume of climate big datasets generated 
in memory with a high-speed response time and in addition, provides an alterna-
tive platform for stream data processing and analysis. For instance, Xu et al. (2020) 
accurately utilizes Spark to forecast wind speed big data in multi-step. It shows that 
the Spark distributed computing framework has a faster computation speed when 
processing climate big data, compared to other baseline processing frameworks.

	(vi)	 Mahout
	The Mahout (Zhang and Li 2020) is one of the machine learning libraries and frame-

works that provides scalable, easy-to-use, and extensibility libraries for big data 
analytics. Mahout-Samara is a newer version, the project helps users build their 
own distributed algorithms, instead of using the existing library. However, it is not 
friendly as the configuration is not compatible with the existing Hadoop cluster. 
Nonetheless, some companies have utilised Mahout in big data analytics such as 
LinkedIn, Mendeley, etc. For example, Bhavanandam (2022) utilized Mahout to 
expedite unsupervised machine learning algorithms for crop yield prediction based 
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on weather. This paradigm facilitates the identification and forecasting of various 
agricultural production conditions. In addition, Mahout was used to determine the 
climate parameters that affect the study, evaluation, and forecast of acer mono sap 
liquid water using machine learning models and data from the Internet of Things 
(Lee 2020). Despite the study’s 98.25% accuracy rate, everyday yields have persis-
tent issues since the specific data provided by Korea Forest Service and Meteoro-
logical office are introduced.

	(vii)	Apache Flume
	Apache Flume is a streaming framework platform that enables distributed, reliable, and 

accessible web services from different sources to efficiently collect, aggregate, and 
move large amounts of climate data to a centralized defined datastore (Ikegwu 
et al. 2022; Doreswamy and Manjunatha 2017). Apache Flume provides simple and 
flexible architecture based on streaming data flows with robust, fault-tolerant, reli-
able, failover and recovery mechanisms to ensure efficient big data processing and 
management. This architecture has been widely utilized in climate change-related 
data processing and streaming. For example, Bouziane et al. (2021) suggested using 
a cloud-based architecture like Apache Flume, IoT, Hadoop, etc. to speed up the 
intelligent management of water resources because climate change raises energy 
and water consumption globally.

Open research directions
The identified areas of further research are highlighted below:

	(i)	 Data understanding challenges
	The understanding of data is essential as it forms the basic subjects utilized in cli-

mate change prediction and forecast to aid strategic planning, policy formulation, 
modeling, and implementation of climate change impacts. The challenge in data 
encompasses data observation, structure, format, pre-processing, feature extrac-
tion, modeling, etc., which is still inherent to the implementation of climate change 
effect (Avand et  al. 2021; Dueben and Bauer 2018). Take, for instance, the volu-
minous geographical dataset, spatial–temporal dataset, and meteorological dataset 
from public climatic databases such as CMIP5, HadGEM3, NCHMF, social media 
site, CORINE, IFC-Cloud-NEXRADGIES, NASS, USDA, etc. (Hossain et al. 2022; 
Costache 2019; Yang et al. 2022; Zia 2021; Manley and Egoh 2022; Seo et al. 2019; 
Colorado-Ruiz et al. 2018) that are being extracted require full training using big 
data analytic models before knowledge can be informed with it for effective data 
analysis, prediction, and forecasting. Further research is also beckoned on how 
to obtain updated stored data automatically and when needed on public climatic 
database domain, government documentaries, and high precision real-time map 
big data (Guo et al. 2020). Furthermore, understanding and familiarization of the 
data storage, processing, analysis, modeling, and visualization to aid organizational 
policy-makings are necessary and this area requires urgent research to ensure 
comprehensive knowledge on the digital trends of the data collected.

	(ii)	 Problems with climate change selection methods
	Selecting climate change analytics methods (Huan et al. 2021; Hossain et al. 2022; Sid-

diqua et al. 2021; Van Der Linden 2021; Kalb et al. 2021; Kadow et al. 2020; Rolnick 
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et  al. 2022) is difficult due to the nature of the model to be used. Each method 
requires extensive and indebt training. Each method has strengths and weaknesses 
and requires special skills to choose which method is best suited for climate data 
modeling and analysis. Further comparison is needed to determine the more effi-
cient approach to select the methods based on the processing and analysing tasks. 
More so, more dynamic updates are required by the developers of General Circu-
lation Models (GCMs) to improve climate modeling resulting in high emissions 
(Finaritra et al. 2021). More focus is required specifically to choose the appropriate 
methodologies and theoretical sensors or lenses to expedite the particularities of 
the selected methods.

	(iii)	 Issues with climate big data management
	The data cleaning reliability, a large volume of data aggregation of different climate big 

data generated, etc. requires an improvement. There is also an issue in encoding 
data for climate data security and privacy are most essential to the data-driven 
environment and for organizational success. Finding elastic measures to han-
dle large datasets is challenging due to the progressive generation of climate big 
data. However, some architectures such as Spark, Hadoop libraries, and MapRe-
duce have been considered by different authors (Mirpour et al. 2021; Xu et al. 2020; 
Manogaran and Lopez 2018), though much improvement on the frameworks and 
libraries for effective data processing and evaluation is achieved.

	(iv)	 Technological trends challenges
	As big data analytics improves the modeling and analysis of climate big data, improv-

ing the climate processes still required further studies. The emergence and con-
vergence of different technology and embedded system day-by-day has made 
the implementation of climate big data storage and processing quite difficult. For 
instance, big data has its peculiar challenge, a lot of data generation, data integra-
tion, real-time streaming of data, network speed accessibility, data diversity and 
security, data cloud storage, etc. (Ikegwu et al. 2022). Although, AI and intelligent 
system (Kadow et al. 2020; Narayan 2021; Irrgang et al. 2021) that sense and learn 
from the environment helps to solve the identified complex earth processes. How-
ever, it still further requires research studies. Enhanced sensors, better satellite 
imagery, faster data storage, better software and hardware, and smarter intelligent 
systems are required to solve the inherent embedded system challenges (Preteek 
et al. 2020) and these requires an indebt research.

Conclusion
Climate science and big climate data-intensive areas has been drastically affected by the 
emergence of big data analytics and essential technological revolutions. Big data ana-
lytic methods have unprecedentedly impacted large climate data analysis. Researchers 
have hitherto realized the need to increase research on climate change. However, cli-
mate change as the global warming effect has negatively impacted the economic growth 
and human standard of living across the globe. All these ravaging issues can be tackled 
with a technological approach. In this paper, we present the impact of climate change, 
the methods for modeling and combating climate change effects, the purpose of deploy-
ing big data analytics to analysis climate big data, and big data analytics methods. In 
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addition, the source of data and the type of datasets utilized for modeling climate change 
and implementation frameworks to combat climate change effects were also discussed. 
Furthermore, open research directions were highlighted to give insight for future stud-
ies. The practical implications of this study are multi-faceted. First, it provide vast 
array of data analytics methods for climate scientists to model climate change effects 
for appropriate policy formulation by governmental organizations. Second, the review 
unveil wide varieties of climate data recently collected for climate change effects mod-
elling. Third, the study act as avenue to promote the need for the global community to 
adopt and speedy up campaign against climate change. Finally, the research revealed 
important areas where big data analytics based climate change modelling could be 
deployed. Various strategies were outlined in literature to mitigate the impacts of cli-
mate change. These include reduction in CO2 emission by industries, adopting efficient 
implementation of renewable energy, and afforestation.

Author contributions
ACI coined out the title, surfed the internet for materials, and participated in manuscript preparation especially “Introduc-
tion” and “Implementation frameworks for climate change modeling using big data analytics” sections, and formatting 
of the manuscripts. HFN drafted out the structures, wrote “The methods for modeling and combating climate change” 
section and participated in the proofreading of the entire manuscript sections. ME does the grammatical check, correc-
tion, and editing. CVA screened the materials and participated in writing “The impact of climate changes” section. EM 
filtered the selected journals and participated in manuscript editing. SAI worked on “The common datasets for modeling 
and combating climate change effects” section. In addition, URA participated in the manuscript draft, proofreading, and 
reviewing of the entire manuscript.

Funding
There is no external funding received by the authors.

Availability of data and materials
Not applicable.

Code availability
Not applicable.

Declarations

Ethics approval and consent to participate
The authors certify that the study was performed in accordance with the ethical standards as laid down in the 1964 
Declaration of Helsinki and its later amendments or comparable ethical standards. The full APC waiver was approved by 
the management of Springer Nature after written documents informed consent was obtained from all the participants/
authors. The waiver approval was contained via https://​artic​le-​disco​unts-​and-​waive​rs.​sprin​gerna​ture.​com/​reque​st-​
summa​ry/​ededa​f80-​77f2-​4641-​90ee-​5bf2a​33fb3​9e.

Consent for publication
No applicable.

Competing interests
The authors declare no competing interests.

Received: 4 December 2023   Accepted: 5 February 2024

References
Abbot J, Marohasy J (2017) The application of machine learning for evaluating anthropogenic versus natural climate 

change. GeoResJ 14:36–46. https://​doi.​org/​10.​1016/j.​grj.​2017.​08.​001
Abdullah MF, Amin MZM, Zainol Z, Ideris MM (2020) Big data analytics as game changer in dealing impact of climate 

change in Malaysia: present and future research. In: IoTBDS 2020—Proc. 5th Int. Conf. Internet Things, Big Data 
Secur., no. IoTBDS, pp 461–469. https://​doi.​org/​10.​5220/​00097​94404​610469

Akoko G, Le TH, Gomi T, Kato T (2021) A review of SWAT model application in Africa. Water 13:1313
Akter S, Wamba SF (2017) Big data and disaster management: a systematic review and agenda for future research. Ann 

Oper Res 283:1–21. https://​doi.​org/​10.​1007/​s10479-​017-​2584-2

https://article-discounts-and-waivers.springernature.com/request-summary/ededaf80-77f2-4641-90ee-5bf2a33fb39e
https://article-discounts-and-waivers.springernature.com/request-summary/ededaf80-77f2-4641-90ee-5bf2a33fb39e
https://doi.org/10.1016/j.grj.2017.08.001
https://doi.org/10.5220/0009794404610469
https://doi.org/10.1007/s10479-017-2584-2


Page 25 of 28Ikegwu et al. Energy Informatics             (2024) 7:6 	

Alitane A et al (2022) Water erosion monitoring and prediction in response to the effects of climate change using RUSLE 
and SWAT equations: case of R’ Dom watershed in Morocco. Land 11:93

Al-Shiakhli S (2019) Big data analytics: a literature review perspective. Luleå University of Technology, Luleå
Amato F, Guignard F, Robert S, Kanevski M (2020) A novel framework for spatio-temporal prediction of environmental 

data using deep learning. Sci Rep 10(1):1–11
Andersson M, Baccianti C, Morgan J (2020) Climate change and the macro economy. Econstor, No. 243. http://​hdl.​handle.​

net/​10419/​234484%​0ASta​ndard-​Nutzu​ngsbe​dingu​ngen
Anh DLT, Anh NT, Chandio AA (2023) Climate change and its impacts on Vietnam agriculture: a macroeconomic perspec-

tive. Ecol Inform 74:101960. https://​doi.​org/​10.​1016/j.​ecoinf.​2022.​101960
Atube F, Malinga GM, Nyeko M, Okello DM, Alarakol SP, Uma IO (2021) Determinants of smallholder farmers’ adaptation 

strategies to the effects of climate change: evidence from northern Uganda. Agric Food Secur 10:1–14. https://​doi.​
org/​10.​1186/​s40066-​020-​00279-1

Avand M, Moradi H (2021) Using machine learning models, remote sensing, and GIS to investigate the effects of chang-
ing climates and land uses on flood probability. J Hydrol 595:125663

Avand M, Moradi HR, Lasboyee MR (2021) Spatial prediction of future flood risk: an approach to the effects of climate 
change. Geosciences 11(1):1–20. https://​doi.​org/​10.​3390/​geosc​ience​s1101​0025

Aznarez C, Jimeno-s P, Pacheco JP, Senent-aparicio J (2014) Analysing the impact of climate change on hydrological 
ecosystem services in Laguna del Sauce (Uruguay) using the SWAT model and remote sensing data. Remote Sens 
13:2021

Babar MS, Tazyeen S, Khan H, Tsagkaris C, Essar MY, Ahmad S (2021) Impact of climate change on health in Karachi, 
Pakistan. J Clim Change Health 2:100013

Béjar R, Lacasta J, Lopez-Pellicer FJ, Nogueras-Iso J (2023) Discrete global grid systems with quadrangular cells as refer-
ence frameworks for the current generation of Earth observation data cubes. Environ Model Softw 162:105656. 
https://​doi.​org/​10.​1016/j.​envso​ft.​2023.​105656

Benzidia S, Makaoui N, Bentahar O (2021) The impact of big data analytics and artificial intelligence on green supply 
chain process integration and hospital environmental performance. Technol Forecast Soc Change 165:120557

Bhavanandam S (2022) Weather-based crop yield prediction using machine learning and big data analytics. Easy Chair 
Prepr 7443:1–12

Bhopal A, Medhin H, Bærøe K, Norheim OF (2021) Climate change and health in Ethiopia: to what extent have the health 
dimensions of climate change been integrated into the climate-resilient green economy? World Med Health 
Policy 13(2):293–312

Blume A, Pertiwi AP, Lee CB, Traganos D (2023) Bahamian seagrass extent and blue carbon accounting using earth obser-
vation. Front Mar Sci 10:1–10. https://​doi.​org/​10.​3389/​fmars.​2023.​10584​60

Bouziane S, Aghoutane B, Moumen A, Sahlaoui A, El Ouali A (2021) Proposal of a big data system for an intelligent man-
agement of water resources. E3S Web Conf 314:02002. https://​doi.​org/​10.​1051/​e3sco​nf/​20213​14020​02

Brick C, Bosshard A, Whitmarsh L (2021) Motivation and climate change: a review. Curr Opin Psychol 42:82–88. https://​
doi.​org/​10.​1016/j.​copsyc.​2021.​04.​001

Cheong SM, Sankaran K, Bastani H (2022) Artificial intelligence for climate change adaptation. Wiley Interdiscip Rev Data 
Min Knowl Discov 12:e1459

Clayton SD, Pihkala P, Wray B (2023) Psychological and emotional responses to climate change among young people 
worldwide: differences associated with gender, age, and country. Sustainability 15:3540. https://​doi.​org/​10.​3390/​
su150​43540

Colorado-Ruiz G, Cavazos T, Salinas JA, De Grau P, Ayala R (2018) Climate change projections from coupled model inter-
comparison project phase 5 multi-model weighted ensembles for Mexico, the North American monsoon, and the 
mid-summer drought region. Int J Climatol 38(15):5699–5716. https://​doi.​org/​10.​1002/​joc.​5773

Costache R (2019) Flood susceptibility assessment by using bivariate statistics and machine learning models—a useful 
tool for flood risk management. Water Resour Manag 33:3239–3256

Cowls J, Tsamados A, Taddeo M, Floridi L (2021) The AI gambit: leveraging artificial intelligence to combat climate 
change—opportunities, challenges, and recommendations. Ai Soc 38:1–25

Cumbane SP (2019) Review of big data and processing frameworks for disaster response applications. Int J Geo-Inf 8:387. 
https://​doi.​org/​10.​3390/​ijgi8​090387

Davenport FV, Diffenbaugh NS (2021) Using machine learning to analyze physical causes of climate change: a case study 
of U.S. Midwest extreme precipitation. Geophys Res Lett 48(15):e2021GL093787. https://​doi.​org/​10.​1029/​2021G​
L0937​87

Deangelo J et al (2023) Economic and biophysical limits to seaweed farming for climate change mitigation. Nat Plants 
9:45–57. https://​doi.​org/​10.​1038/​s41477-​022-​01305-9

Doreswamy I, Gad, Manjunatha BR (2017) Hybrid data warehouse model for climate big data analysis. In Proceedings of 
IEEE international conference on circuit, power and computing technologies, ICCPCT 2017. https://​doi.​org/​10.​
1109/​ICCPCT.​2017.​80742​29

Dueben PD, Bauer P (2018) Challenges and design choices for global weather and climate models based on machine 
learning. Geosci Model Dev 11(10):3999–4009. https://​doi.​org/​10.​5194/​gmd-​11-​3999-​2018

Economides G, Xepapadeas A (2019) The effects of climate change on a small open economy. Econstor, No. 7582
Finaritra M, Tanteliniaina R, Zhai J (2021) Assessment of the future impact of climate change on the hydrology of the 

Mangoky River, Madagascar using ANN and SWAT. Water 13:1239
Ford JD et al (2016) Big data has big potential for applications to climate change adaptation. Proc Natl Acad Sci USA 

113:10729–10732. https://​doi.​org/​10.​1073/​pnas.​16140​23113
Fuglie K (2021) Climate change upsets agriculture. Nat Clim Change 11:293–299. https://​doi.​org/​10.​1038/​

s41558-​021-​01018-5
Gomede E, Gaffo FH, Briganó GU, de Barros RM, de Mendes LS (2018) Application of computational intelligence to 

improve education in smart cities. Sensors 18(1):1–26. https://​doi.​org/​10.​3390/​s1801​0267

http://hdl.handle.net/10419/234484%0AStandard-Nutzungsbedingungen
http://hdl.handle.net/10419/234484%0AStandard-Nutzungsbedingungen
https://doi.org/10.1016/j.ecoinf.2022.101960
https://doi.org/10.1186/s40066-020-00279-1
https://doi.org/10.1186/s40066-020-00279-1
https://doi.org/10.3390/geosciences11010025
https://doi.org/10.1016/j.envsoft.2023.105656
https://doi.org/10.3389/fmars.2023.1058460
https://doi.org/10.1051/e3sconf/202131402002
https://doi.org/10.1016/j.copsyc.2021.04.001
https://doi.org/10.1016/j.copsyc.2021.04.001
https://doi.org/10.3390/su15043540
https://doi.org/10.3390/su15043540
https://doi.org/10.1002/joc.5773
https://doi.org/10.3390/ijgi8090387
https://doi.org/10.1029/2021GL093787
https://doi.org/10.1029/2021GL093787
https://doi.org/10.1038/s41477-022-01305-9
https://doi.org/10.1109/ICCPCT.2017.8074229
https://doi.org/10.1109/ICCPCT.2017.8074229
https://doi.org/10.5194/gmd-11-3999-2018
https://doi.org/10.1073/pnas.1614023113
https://doi.org/10.1038/s41558-021-01018-5
https://doi.org/10.1038/s41558-021-01018-5
https://doi.org/10.3390/s18010267


Page 26 of 28Ikegwu et al. Energy Informatics             (2024) 7:6 

Greca S, Shehi I, Nuhi J (2023) Analyzing climate changes impacts using big data Hadoop. CEUR Workshop Proc 
3402:21–27

Grotjahn R, Huynh J (2018) Contiguous US summer maximum temperature and heat stress trends in CRU and 
NOAA Climate Division data plus comparisons to reanalyses. Sci Rep 8(1):1–18. https://​doi.​org/​10.​1038/​
s41598-​018-​29286-w

Guo J, Wu X, Wei G (2020) A new economic loss assessment system for urban severe rainfall and flooding disasters based 
on big data fusion. Environ Res 188:109822. https://​doi.​org/​10.​1016/j.​envres.​2020.​109822

Habibullah MS, Din BH, Tan SH, Zahid H (2022) Impact of climate change on biodiversity loss: global evidence. Environ Sci 
Pollut Res 29(1):1073–1086

Hamlet AF, Byun K, Robeson SM, Widhalm M, Baldwin M (2020) Impacts of climate change on the state of Indiana: 
ensemble future projections based on statistical downscaling. Clim Change 163(4):1881–1895. https://​doi.​org/​10.​
1007/​s10584-​018-​2309-9

Handayani T, Abubakar L (2020) The impact of climate change on agriculture sector in ASEAN. J Phys Conf Ser 
1651:012026. https://​doi.​org/​10.​1088/​1742-​6596/​1651/1/​012026

Hartter J et al (2018) Does it matter if people think climate change is human caused? Clim Serv 10(January):53–62. 
https://​doi.​org/​10.​1016/j.​cliser.​2017.​06.​014

Hassani H, Huang X (2019) Big data and climate change. Big Data Cogn Comput 3:1–17. https://​doi.​org/​10.​3390/​bdcc3​
010012

Hayasaka H (2024) Synoptic-scale wildland fire weather conditions in Mexico. Atmosphere 15:96
Heckman JJ, Pinto R, Savelyev PA (2018) Federal data science: transforming government and agricultural policy using 

artificial intelligence. Academic Press, London
Hossain SS, Delin H, Mingying M (2022) Aftermath of climate change on Bangladesh economy: an analysis of the 

dynamic computable general equilibrium model. J Water Clim Change 13(7):2597–2609
Hosseini M, Bigtashi A, Lee B (2021) Generating future weather files under climate change scenarios to support building 

energy simulation—a machine learning approach. Energy Build 230:110543
Hua-dong G, Li Z, Lan-wei Z (2015) Earth observation technology has provided highly useful information in global. Adv 

Clim Change Res. https://​doi.​org/​10.​1016/j.​accre.​2015.​09.​007.​This
Huan Y, Liang T, Li H, Zhang C (2021) A systematic method for assessing progress of achieving sustainable development 

goals: a case study of 15 countries. Sci Total Environ 752:141875. https://​doi.​org/​10.​1016/j.​scito​tenv.​2020.​141875
Huntingford C, Jeffers ES, Bonsall MB, Christensen HM, Lees T, Yang H (2019) Machine learning and artificial intelligence 

to aid climate change research and preparedness. Environ Res Lett 14(12):124007. https://​doi.​org/​10.​1088/​1748-​
9326/​ab4e55

Hwang H, An S, Lee E, Han S, Lee CH (2021) Cross-societal analysis of climate change awareness and its relation to SDG 
13: a knowledge synthesis from text mining. Sustain 13(10):1–21. https://​doi.​org/​10.​3390/​su131​05596

Ikegwu AC, Nweke HF, Anikwe CV, Alo UR, Okonkwo OR (2022) Big data analytics for data-driven industry: a review of 
data sources, tools, challenges, solutions and research directions. Clust Comput 25:3343–3387. https://​doi.​org/​10.​
1007/​s10586-​022-​03568-5

Ikegwu AC, Nweke HF, Alo UR, Okonkwo OR (2021) HMCPAED: a new framework for students’ dropout prediction. In: 
ICT4NDS2021: ICT and sustainability in the 5th industrial revolution, Ilorin, pp 131–140. Ilorinuijipc.com.ng

Ikegwu AC, Friday H, Chioma N, Anikwe V (2023) Recent trends in computational intelligence for educational big data 
analysis. Iran J Comput Sci 6(3):1–28. https://​doi.​org/​10.​1007/​s42044-​023-​00158-5

Irrgang C et al (2021) Will artificial intelligence supersede earth system and climate models? https://​doi.​org/​10.​1038/​
s42256-​021-​00374-3

Jackson FL, Fryer RJ, Hannah DM, Millar CP, Malcolm IA (2018) A spatio-temporal statistical model of maximum daily river 
temperatures to inform the management of Scotland’s Atlantic salmon rivers under climate change. Sci Total 
Environ 612:1543–1558. https://​doi.​org/​10.​1016/j.​scito​tenv.​2017.​09.​010

Javadi A, Ghahremanzadeh M, Sassi M, Javanbakht O, Hayati B (2023) Economic evaluation of the climate changes on 
food security in Iran: application of CGE model. Theor Appl Climatol 151(1–2):567–585. https://​doi.​org/​10.​1007/​
s00704-​022-​04289-w

Jensen HT, Keogh-Brown M, Tarp F (2021) Climate change and agricultural productivity in Myanmar: application of a new 
computable general equilibrium (CGE) model. Econstor. https://​doi.​org/​10.​35188/​UNU-​WIDER/​2021/​121-1

Jiao NZ et al (2015) Climate change and anthropogenic impacts on marine ecosystems and countermeasures in China. 
Adv Clim Change Res 6(2):118–125. https://​doi.​org/​10.​1016/j.​accre.​2015.​09.​010

Kadow C, Hall DM, Ulbrich U (2020) Artificial intelligence reconstructs missing climate information. Nat Geosci. https://​
doi.​org/​10.​1038/​s41561-​020-​0582-5

Kalb E, Saade J, Atieh M, Ghanimeh S (2021) Modeling impact of climate change on surface water availability using SWAT 
model in a semi-arid basin. Hydrology 8:34

Kanwar K (2018) Improving Hadoop performance using yarn-based architecture with weather datasets. In: 2018 interna-
tional conference on automation and computational engineering (ICACE), IEEE. pp. 178–186

Karimi V, Karami E, Keshavarz M (2018) Climate change and agriculture: impacts and adaptive responses in Iran. J Integr 
Agric 17(1):1–15. https://​doi.​org/​10.​1016/​S2095-​3119(17)​61794-5

Kerr JR, Wilson MS (2018) Changes in perceived scientific consensus shift beliefs about climate change and gm food 
safety. PLoS ONE 13(7):1–17. https://​doi.​org/​10.​1371/​journ​al.​pone.​02002​95

Khan RS, Bhuiyan AE (2021) Artificial intelligence-based techniques for rainfall estimation integrating multisource precipi-
tation datasets. Atmosphere 12:1239

Knüsel B et al (2019) Applying big data beyond small problems in climate research. Nat Clim Change 9(3):196–202. 
https://​doi.​org/​10.​1038/​s41558-​019-​0404-1

Kurth et al (2019) Exascale deep learning for climate analytics. In: Proceedings—international conference for high per-
formance computing, networking, storage, and analysis, SC 2018, pp. 649–660. https://​doi.​org/​10.​1109/​SC.​2018.​
00054

https://doi.org/10.1038/s41598-018-29286-w
https://doi.org/10.1038/s41598-018-29286-w
https://doi.org/10.1016/j.envres.2020.109822
https://doi.org/10.1007/s10584-018-2309-9
https://doi.org/10.1007/s10584-018-2309-9
https://doi.org/10.1088/1742-6596/1651/1/012026
https://doi.org/10.1016/j.cliser.2017.06.014
https://doi.org/10.3390/bdcc3010012
https://doi.org/10.3390/bdcc3010012
https://doi.org/10.1016/j.accre.2015.09.007.This
https://doi.org/10.1016/j.scitotenv.2020.141875
https://doi.org/10.1088/1748-9326/ab4e55
https://doi.org/10.1088/1748-9326/ab4e55
https://doi.org/10.3390/su13105596
https://doi.org/10.1007/s10586-022-03568-5
https://doi.org/10.1007/s10586-022-03568-5
https://doi.org/10.1007/s42044-023-00158-5
https://doi.org/10.1038/s42256-021-00374-3
https://doi.org/10.1038/s42256-021-00374-3
https://doi.org/10.1016/j.scitotenv.2017.09.010
https://doi.org/10.1007/s00704-022-04289-w
https://doi.org/10.1007/s00704-022-04289-w
https://doi.org/10.35188/UNU-WIDER/2021/121-1
https://doi.org/10.1016/j.accre.2015.09.010
https://doi.org/10.1038/s41561-020-0582-5
https://doi.org/10.1038/s41561-020-0582-5
https://doi.org/10.1016/S2095-3119(17)61794-5
https://doi.org/10.1371/journal.pone.0200295
https://doi.org/10.1038/s41558-019-0404-1
https://doi.org/10.1109/SC.2018.00054
https://doi.org/10.1109/SC.2018.00054


Page 27 of 28Ikegwu et al. Energy Informatics             (2024) 7:6 	

Lee HS (2020) Analysis model evaluation based on IoT data and machine learning algorithm for prediction of acer 
mono sap liquid water. J Korea Multimed Soc 23(10):1286–1295

Li C, Fang H (2021) Catena assessment of climate change impacts on the streamflow for the Mun River in the 
Mekong Basin, Southeast Asia: using SWAT model. CATENA 201:105199. https://​doi.​org/​10.​1016/j.​catena.​2021.​
105199

Liu W (2021) Smart sensors, sensing mechanisms and platforms of sustainable smart agriculture realized through the 
big data analysis. Cluster Comput 26:1–15

Liu J, Yang L, Zhou H, Wang S (2021) Impact of climate change on hiking: quantitative evidence through big data 
mining. Curr Issues Tour 24(21):3040–3056. https://​doi.​org/​10.​1080/​13683​500.​2020.​18580​37

Lopez D, Sekaran G (2016) Climate change and disease dynamics—a big data perspective. Int J Infect Dis 45:23–24. 
https://​doi.​org/​10.​1016/j.​ijid.​2016.​02.​084

Lozo O, Onishchenko O (2021) The potential role of the artificial intelligence in combating climate change and natu-
ral resources management: political, legal and ethical challenges. J Nat Resour 4(3):111–131

Manley K, Egoh BN (2022) Mapping and modeling the impact of climate change on recreational ecosystem services 
using machine learning and big data. Environ Res Lett 17(5):054025

Manogaran G, Lopez D (2018) Spatial cumulative sum algorithm with big data analytics for climate change detec-
tion. Comput Electr Eng 65:207–221. https://​doi.​org/​10.​1016/j.​compe​leceng.​2017.​04.​006

Manuel L, Orcidia C, Gaby M, Faaiqa H (2021) Impact of climate change on the agriculture sector and household 
welfare in Mozambique: an analysis based on a dynamic computable general equilibrium model. Clim Change 
2100:1–18

Meier WN, Stewart JS, Windnagel A, Fetterer FM (2022) Comparison of hemispheric and regional sea ice extent and area 
trends from NOAA and NASA passive microwave-derived climate records. Remote Sens 14:619

Mirpour S, Savadi A, Toosi AN, Naghibzadeh M (2021) Cross-MapReduce: data transfer reduction in geo-distributed 
MapReduce. Futur Gener Comput Syst 115:188–200

More P, Nandgave S, Kadam M (2019) Climate change detection using Hadoop with MapReduce. Int J Innov Res Comput 
Commun Eng 7(3):1925–1932. https://​doi.​org/​10.​15680/​IJIRC​CE.​2019

Muhammad R, Andrea A, Kisi O (2020) Short term rainfall-runoff modelling using several machine learning methods and 
a conceptual event-based model. Stoch Environ Res Risk Assess. https://​doi.​org/​10.​1007/​s00477-​020-​01910-0

Nanda S, Perera MT (2019) Global climate change: effect on agriculture food sector in Sri Lanka in the year 2025
Narayan Y (2021) DeepWaste: instantaneous and ubiquitous waste classification using artificial intelligence for combat-

ing climate change. CJSJ
Ngoma H, Lupiya P, Kabisa M, Hartley F (2021) Impacts of climate change on agriculture and household welfare in Zam-

bia: an economy-wide analysis. Clim Change 167(3):1–20
Nikolaev A, Richter I, Sadowski P (2020) Deep learning for climate models of the Atlantic ocean. In: In AAAI spring sympo-

sium: MLPS. http://​chfps.​cima.​fcen.​uba.​ar/
Nowack P, Braesicke P, Haigh J, Abraham NL, Pyle J, Voulgarakis A (2018) Using machine learning to build temperature-

based ozone parameterizations for climate sensitivity simulations. Environ Res Lett 13(10):104016. https://​doi.​org/​
10.​1088/​1748-​9326/​aae2be

Núñez et al (2018) Assessing the impact of climate change on agriculture in Norte de Santander, Colombia. J Phys Conf 
Ser 1126:012045

O’Gorman PA, Dwyer JG (2018) Using machine learning to parameterize moist convection: potential for modeling of 
climate, climate change, and extreme events. J Adv Model Earth Syst 10(10):2548–2563

Ogunbode TO (2025) Climate change scenario in Nigeria: local perceptions and the way forward futuro scenario. Sustain 
Agric Food Environ Res (Ahead of Print)

Ornella AD (2020) Why nature won’t save us from climate change but technology will: creating a New Heaven and a new 
earth through carbon capture technologies. Immanente Relig Technol, pp 1–35

Pinkerton KE, Rom WN (2014) Global climate change and public health. Springer, New York, pp 1–406. https://​doi.​org/​10.​
1007/​978-1-​4614-​8417-2

Preteek M, Anupama R, Rischa M (2020) Big data in climate change research: opportunities and challenges. In: 2020 
international conference on intelligent engineering and management (ICIEM)

Pundru CSR, Yadala S, Goddumarri SN (2022) Development of rainfall forecasting model using machine learning with 
singluar spectrum analysis. IIUM Eng J 23(1):172–186

Rasheed J, Hameed AA, Djeddi C, Jamil A, Al-Turjman F (2021) A machine learning-based framework for diagnosis of 
COVID-19 from chest X-ray images. Interdiscip Sci Comput Life Sci 13(1):103–117

Rehman A, Ma H, Ozturk I, Ahmad MI (2022) Examining the carbon emissions and climate impacts on main agricultural 
crops production and land use: updated evidence from Pakistan. Environ Sci Pollut Res 29(1):868–882

Rolnick D et al (2019) Tackling climate change with machine learning. arXiv Prepr. arXiv, no. 1906.05433. http://​arxiv.​org/​
abs/​1906.​05433

Rolnick D et al (2022) Tackling climate change with machine learning. ACM Comput Surv 55(2):1–96
Saba T, Abunadi I, Shahzad MN, Khan AR (2020) Machine learning techniques to detect and forecast the daily total 

COVID-19 infected and deaths cases under different lockdown types. Microsc Res Tech 84:1–13. https://​doi.​org/​10.​
1002/​jemt.​23702

Schnase JL et al (2017) MERRA analytic services: meeting the big data challenges of climate science through cloud-
enabled climate analytics-as-a-service. Comput Environ Urban Syst 61:198–211. https://​doi.​org/​10.​1016/j.​compe​
nvurb​sys.​2013.​12.​003

Schwartz SEO, Benoit L, Clayton S, Parnes MF, Swenson L, Lowe SR (2023) Climate change anxiety and mental health: 
environmental activism as buffer. Curr Psychol 42:16708–16721. https://​doi.​org/​10.​1007/​s12144-​022-​02735-6

Sebestyén V, Czvetkó T, Abonyi J (2021) The applicability of big data in climate change research: the importance of 
system of systems thinking. Front Environ Sci 9(March):1–26. https://​doi.​org/​10.​3389/​fenvs.​2021.​619092

Semieniuk G, Taylor L, Rezai A, Foley DK (2021) Plausible energy demand patterns in a growing global economy with 
climate policy. Nat Clim Change 11(4):313–318

https://doi.org/10.1016/j.catena.2021.105199
https://doi.org/10.1016/j.catena.2021.105199
https://doi.org/10.1080/13683500.2020.1858037
https://doi.org/10.1016/j.ijid.2016.02.084
https://doi.org/10.1016/j.compeleceng.2017.04.006
https://doi.org/10.15680/IJIRCCE.2019
https://doi.org/10.1007/s00477-020-01910-0
http://chfps.cima.fcen.uba.ar/
https://doi.org/10.1088/1748-9326/aae2be
https://doi.org/10.1088/1748-9326/aae2be
https://doi.org/10.1007/978-1-4614-8417-2
https://doi.org/10.1007/978-1-4614-8417-2
http://arxiv.org/abs/1906.05433
http://arxiv.org/abs/1906.05433
https://doi.org/10.1002/jemt.23702
https://doi.org/10.1002/jemt.23702
https://doi.org/10.1016/j.compenvurbsys.2013.12.003
https://doi.org/10.1016/j.compenvurbsys.2013.12.003
https://doi.org/10.1007/s12144-022-02735-6
https://doi.org/10.3389/fenvs.2021.619092


Page 28 of 28Ikegwu et al. Energy Informatics             (2024) 7:6 

Seo BC, Keem M, Hammond R, Demir I, Krajewski WF (2019) A pilot infrastructure for searching rainfall metadata and 
generating rainfall product using the big data of NEXRAD. Environ Model Softw 117:69–75. https://​doi.​org/​10.​
1016/j.​envso​ft.​2019.​03.​008

Shahpari G, Sadeghi H, Ashena M, García D (2021) Drought effects on the Iranian economy: a computable general equi-
librium approach. Environ Dev Sustain. https://​doi.​org/​10.​1007/​s10668-​021-​01607-6

Sharma S, Gupta YK (2021) Predictive analysis and survey of COVID-19 using machine learning and big data. J Interdiscip 
Math 24(1):175–195. https://​doi.​org/​10.​1080/​09720​502.​2020.​18334​45

Shelestov A, Lavreniuk M, Kussul N, Novikov A, Skakun S (2017) Exploring Google earth engine platform for big data 
processing: classification of multi-temporal satellite imagery for crop mapping. Front Earth Sci 5(February):1–10. 
https://​doi.​org/​10.​3389/​feart.​2017.​00017

Shih Y (2018) MASS HDFS: multi-agent spatial simulation hadoop distributed file system. In: MS capstone final report, MS 
in Computer Science & Software Engineering, Univ. of Washington Bothell

Shykhmat A, Verses Z (2023) Selection of databases to store geospatial-temporal data. Meas Comput Dev Technol Pro-
cess 4:7–12. https://​doi.​org/​10.​31891/​2219-​9365-​2023-​76-1

Siddiqua A, Anwar A, Anwar MM (2021) Cotton yield and climate change adaptation in Pakistan: application of multino-
mial endogenous switching regression model. J Bus Soc Rev Emerg Econ 7(3):491–502

Solomon R, Simane B, Zaitchik BF (2021) The impact of climate change on agriculture production in Ethiopia: application 
of a dynamic computable general equilibrium model. Am J Clim Change 10:32–50. https://​doi.​org/​10.​4236/​ajcc.​
2021.​101003

Sweeney J, Salter-Townshend M, Edwards T, Buck CE, Parnell AC (2018) Statistical challenges in estimating past climate 
changes. Wiley Interdiscip Rev Comput Stat 10(5):e1437. https://​doi.​org/​10.​1002/​wics.​1437

Tantalaki N, Souravlas S, Roumeliotis M (2019) Data-driven decision making in precision agriculture: the rise of big data in 
agricultural systems. J Agric Food Inf. https://​doi.​org/​10.​1080/​10496​505.​2019.​16382​64

Tao Z, Tian J, Pei Y, Yuan M, Zhang Y, Dai F (2020) A new coronavirus associated with human respiratory disease in China. 
Nature 579(7798):265–269. https://​doi.​org/​10.​1038/​s41586-​020-​2008-3

Tariq N et al (2019) The security of big data in fog-enabled iot applications including blockchain: a survey. Sensors 
19(8):1–33. https://​doi.​org/​10.​3390/​s1908​1788

Tol RSJ (2024) A meta-analysis of the total economic impact of climate change. Energy Policy 185(2023):113922. https://​
doi.​org/​10.​1016/j.​enpol.​2023.​113922

Türkeli S (2020) Complexity and the sustainable development goals: a computational intelligence approach to support 
policy mix designs. J Sustain Res. https://​doi.​org/​10.​20900/​jsr20​200006

Van Der Linden S (2021) The gateway belief model (GBM): a review and research agenda for communicating the scien-
tific consensus on climate change. Curr Opin Psychol 42:7–12. https://​doi.​org/​10.​1016/j.​copsyc.​2021.​01.​005

Van Der Linden S, Leiserowitz A, Maibach E (2019) The gateway belief model: a large-scale replication. J Environ Psychol. 
https://​doi.​org/​10.​1016/j.​jenvp.​2019.​01.​009

Vicedo-Cabrera AM et al (2021) The burden of heat-related mortality attributable to recent human-induced climate 
change. Nat Clim Change 11(6):492–500

Volvach A, Kurbasova G, Volvach L (2023) Analysis and numerical simulation of temperature measurements made on 
earth and from space. Heliyon 9(2):e12999. https://​doi.​org/​10.​1016/j.​heliy​on.​2023.​e12999

Wang F, Tian D (2022) On deep learning-based bias correction and downscaling of multiple climate models simulations. 
Clim Dyn 59:1–18

Wang G, Hao X, Yao X, Wang J, Li H, Chen R (2023) Simulations of snowmelt runoff in a high-altitude mountainous area 
based on big data and machine learning models: taking the Xiying river basin as an example. Remote Sens 
15:1118

Worku G, Teferi E, Bantider A, Dile YT (2020) Statistical bias correction of regional climate model simulations for climate 
change projection in the Jemma sub-basin, upper Blue Nile Basin of Ethiopia. Theor Appl Climatol 139(3–4):1569–
1588. https://​doi.​org/​10.​1007/​s00704-​019-​03053-x

Xiang Z, Yan J, Demir I (2020) A rainfall-runoff model with LSTM-based sequence-to-sequence learning water resources 
research. Water Resour Res. https://​doi.​org/​10.​1029/​2019W​R0253​26

Xu Y, Liu H, Long Z (2020) A distributed computing framework for wind speed big data forecasting on Apache Spark. 
Sustain Energy Technol Assess 37:100582. https://​doi.​org/​10.​1016/j.​seta.​2019.​100582

Yang R, Yu L, Zhao Y, Yu H, Xu G, Wu Y (2020) Big data analytics for financial market volatility forecast based on support 
vector machine. Int J Inf Manage 50:452–462. https://​doi.​org/​10.​1016/j.​ijinf​omgt.​2006.​01.​003

Yang B, Wu S, Yan Z (2022) Effects of climate change on corn yields: spatiotemporal evidence from geographically and 
temporally weighted regression model. Int J Geo-Inf 11:1–23

Yariyan P et al (2020) Flood susceptibility mapping using an improved analytic network process with statistical models. 
Geomat Nat Hazards Risk 11(1):2282–2314. https://​doi.​org/​10.​1080/​19475​705.​2020.​18360​36

Zhang Z, Li J (2020) Big data mining for climate change. Elsevier, Amsterdam
Zhu XX et al (2017) Deep learning in remote sensing: a review. IEEE Geosci Remote Sens Mag Press 41501462:1–60. 

https://​doi.​org/​10.​1109/​MGRS.​2017.​27623​07
Zia S (2021) Climate change forecasting using machine learning SARIMA model. iRASD J Comput Sci Inf Technol 

2(1):01–12

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.envsoft.2019.03.008
https://doi.org/10.1016/j.envsoft.2019.03.008
https://doi.org/10.1007/s10668-021-01607-6
https://doi.org/10.1080/09720502.2020.1833445
https://doi.org/10.3389/feart.2017.00017
https://doi.org/10.31891/2219-9365-2023-76-1
https://doi.org/10.4236/ajcc.2021.101003
https://doi.org/10.4236/ajcc.2021.101003
https://doi.org/10.1002/wics.1437
https://doi.org/10.1080/10496505.2019.1638264
https://doi.org/10.1038/s41586-020-2008-3
https://doi.org/10.3390/s19081788
https://doi.org/10.1016/j.enpol.2023.113922
https://doi.org/10.1016/j.enpol.2023.113922
https://doi.org/10.20900/jsr20200006
https://doi.org/10.1016/j.copsyc.2021.01.005
https://doi.org/10.1016/j.jenvp.2019.01.009
https://doi.org/10.1016/j.heliyon.2023.e12999
https://doi.org/10.1007/s00704-019-03053-x
https://doi.org/10.1029/2019WR025326
https://doi.org/10.1016/j.seta.2019.100582
https://doi.org/10.1016/j.ijinfomgt.2006.01.003
https://doi.org/10.1080/19475705.2020.1836036
https://doi.org/10.1109/MGRS.2017.2762307

	Recently emerging trends in big data analytic methods for modeling and combating climate change effects
	Abstract 
	Introduction
	The impact of climate changes
	Health
	Economy
	Agriculture

	The methods for modeling and combating climate change
	The conventional methods
	Computable general equilibrium (CGE)
	Statistical model
	Gateway belief model (GBM)
	Soil and water assessment tool model (SWAT)

	The big data analytic methods
	Machine learning
	Deep learning
	Artificial intelligence

	Purpose for analysing big climate data using big data analytic methods

	The common datasets for modeling and combating climate change effects
	Data types and sources
	The datasets, differences, and similarities for modeling and combating climate change effects

	Implementation frameworks for climate change modeling using big data analytics
	Open research directions
	Conclusion
	References


