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Introduction
Electrical distribution networks have traditionally been built to accommodate large scale 
centrally located energy generation (Saboori et al. 2017). Markets that facilitate energy 
trading across these networks have therefore been designed with this physical struc-
ture in mind (Padmanaban et  al. 2022). These physical and economic conditions have 
resulted in energy consumers having minimal control over their cost of energy (Sayyad 
and Kazem 2020).

This situation is changing due to the rise of distributed energy resources (DER). DER 
has enabled energy consumers to actively participate in the electricity market, as they 
can both consume and produce electrical energy. However, existing market struc-
tures limit the effectiveness of decentralised energy production business models (Eid 
et al. 2016). Therefore, investigating new market structures to facilitate energy trading 
between decentralised market participants is essential to the future viability of DER 
(Guerrero et al. 2020).

The potential benefits of DER for consumers and the operation of energy distribu-
tion networks is significant and well documented by researchers (Gough et  al. 2020). 
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However, it is acknowledged that advanced control and optimisation techniques are 
required to achieve these benefits. As such, many operational techniques to control and 
co-ordinate the operation of DER have been proposed (Xu et al. 2022; Xia et al. 2023). 
Some proposed solutions focus on maximising the DER owners’ financial objectives 
(Pollitt 2018), while others prioritise community and utility objectives (Mahmud et al. 
2020).

One proposed solution to maximising a DER owners’ financial benefit while improv-
ing boarder social outcomes is via a transactive energy market (TEM) (Xia et al. 2022). 
A TEM facilitates financial transactions between decentralised energy market partici-
pants. Such a system has the ability to unlock additional value from DER by enabling 
demand side participation and energy trading between participants (Yang et al. 2021). 
A well-designed TEM can facilitate DER’s integration into the existing electrical energy 
system resulting in improved technical, economic and environmental outcomes (Kho-
rasany et al. 2020).

Although TEM’s can achieve significant financial benefits, they are subject to physical 
constraints of electrical infrastructure and the laws of physics (Kumar et al. 2022). A suc-
cessful TEM should therefore optimise market outcomes while accounting for physical 
limitations and effects arising from their transactions (Sabillon et al. 2021).

One physical limitation TEM’s must account for are energy losses incurred by the dis-
tribution system (Dudjak et al. 2021). These losses can be difficult to quantify. As such, 
any approximations of these losses should favour the distribution and energy market 
operators to ensure the financial market always clears. TEM’s also encounter challenges 
in quantifying distribution infrastructure utilisation required for energy transactions 
(Faqiry et al. 2020). This also requires the use of approximations that favour the distribu-
tion network operators.

These factors make it difficult to trade energy directly between two individual market 
participants (Zhou and Lund 2023). This is because physical laws govern where energy 
imported into the network travels, and losses between two network locations can be 
difficult to quantify (Zhou et al. 2022). As such, a TEM structure that facilitates trades 
between distributed energy users and producers while accounting for physical factors is 
required (Jiang et al. 2022).

This paper presents a centrally coordinated virtual power plant (VPP) implementation 
of a TEM to address these limitations by accurately quantifying and fairly allocating dis-
tribution losses among participants within a residential energy hub (REH). A REH in the 
context of this paper is a group of energy market participants connected to the same low 
voltage distribution network. This physical structure reduces the complexity in quanti-
fying distribution losses and network constraints. As such, it is possible for a REH sys-
tem operator to facilitate energy trades within this network that accurately account for 
energy losses. Excess energy required to clear the REH market can be purchased from, 
or sold to, the utility grid via a virtual meter. The proposed REH TEM will always exactly 
clear and ensure that DER within the REH is scheduled to ensure network physical con-
straints are not violated.

In this paper, a brief discussion of DER scheduling approaches and optimisation tech-
niques will be discussed to establish the current state of research in this space. The 
research gap and how this paper addresses it will then be discussed. Once the current 
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state of research and research gaps have been established, the research methodology will 
be explained relating to the proposed market structure, electrical model and optimisa-
tion technique used. A case study will then be analysed whereby results can be derived 
from applying the simulation model to a situation indicative of a real world application. 
These results allow the financial benefit of such a market and optimisation approach to 
be quantified. The proposed markets impact on individual agents based on their DER 
configuration and the total network DER will also be assessed.

Background
The research presented in this paper covers the scheduling of DER within a REH and 
the associated TEM required to facilitate energy trades. A DC equivalent optimal power 
flow (OPF) model of a three phase AC distribution network is used to approximate 
energy losses. The OPF model is an intrinsic part of the operation of the TEM as it is 
used to dynamically adjust network tariffs for each agent. As such, it is important to con-
sider the current state of DER scheduling and OPF modelling as applied to distributed 
energy trading systems.

DER scheduling approaches

There are three main approaches to consider when choosing a system to optimise DER 
operation, each with their own advantages and disadvantages. These are uncoordinated, 
centralised co-ordination and peer to peer approaches (Guerrero et al. 2020).

Uncoordinated approaches

An uncoordinated approach involves each DER operator making decisions to maxim-
ising their own benefit. Examples of this approach include home energy management 
systems. Their advantages include being simple to install and do not require services and 
costs associated with third party operators. However, they do not inherently account for 
factors impacting the energy distribution network or other market participants. This 
system provides no incentive to optimise social utility, thereby preventing any potential 
gains to the energy market or distribution system being realised.

Centrally coordinated

Centrally coordinated DER involves a third party operating DER assets of multiple 
agents. The aggregate sum of all DER is a VPP. A VPP operator schedules the opera-
tion of multiple DER within a network to collectively achieve an optimal outcome. This 
scheduling can account for distribution constraints and enable participation in energy 
market programs unavailable to individual DER operators. The additional benefits from 
such actions can be shared among all VPP participants.

A VPP can collectively achieve greater value than individual operators. However, such 
an approach favours collectively optimum outcomes over individually optimum out-
comes. It also requires individual operators to give up control over their assets. As such, 
there is no guarantee that a VPP operator will fairly allocate the gains of trade among 
participants. There are also third party costs associated with the VPP operator. There-
fore, any benefits achieved through central coordination must exceed third party costs 
and ensure fairness in the allocation of financial benefits.
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Peer to peer

Peer to peer (P2P) energy trading systems combine benefits from both uncoordinated 
and centrally coordinated systems. P2P trading ensures DER owners maintain full con-
trol over their assets and does not require a trusted third-party operator with their 
associated overheads. It is also possible to achieve benefits of aggregation such as partic-
ipation in ancillary energy markets. Achieving these aggregation benefits requires coor-
dination, but unlike a VPP, this coordination is achieved via decentralised mechanisms, 
as opposed to a centralised system.

P2P energy trading systems have significant potential to facilitate energy trading within 
an energy market. However, research into this technology using block chain based finan-
cial systems is still in its early stages. Decentralised coordination cannot guarantee the 
optimum dispatch outcomes for the energy market or network operation, as individual 
traders prioritise their own objectives. VPP’s also have the advantage of being easier 
for energy market operators to regulate and control. As such, P2P energy trading faces 
greater challenges to implement than VPP forms of DER aggregation.

Optimal power flow

OPF refers to the modelling and optimization of electricity transmission and distribu-
tion networks. Solving OPF models are fundamental to the operation of electric power 
grids to ensure their reliability and achieve an economically optimal dispatch of available 
energy. OPF modelling techniques can be broadly classified as either AC OPF or DC 
OPF. DC OPF models are usually simplified versions of AC OPF models with less vari-
ables and relaxed constraints.

This decision problem is classified as NP-hard and is commonly considered by 
researchers to be a difficult problem to solve (Shchetinin et al. 2018). Despite advances 
in Nonlinear Programming (NLP) techniques, locating a local optimum of the AC-OPF 
problem can still be challenging. This is primarily due to three factors (Capitanescu 
2016).

•	 OPF requires non-linear and non-convex constraints for modeling power flows
•	 Practical applications in electricity grids require many constraints and decision vari-

ables
•	 Computational time windows are relatively short due to the dynamic nature of gen-

eration and demand. This inherent complexity and computational time constraints 
requires some form of decomposition to solve.

A brief summary of common decomposition techniques used by researchers are listed 
below.

Benders decomposition

Bender’s decomposition is a classification of optimization techniques that utilizes a 
divide and conquer method by dividing the original problem into multiple subsets that 
are individually easier to solve. A master problem is initially defined that only requires a 
subset of all decision variables to be solved directly. Master problem solutions are then 
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supplied to sub problems that solve for the remaining decision variables. If a sub prob-
lem is provided with infeasible solution space, a Benders cut is initiated whereby infor-
mation is provided back to the master problem such that it can find a new solution. The 
optimization continues until no new cuts are required to solve the sub problem.

Textbook forms of Benders decomposition are not usually viable for solving OPF due 
to their poor performance for non-convex problems. It has also been noted that linear 
Benders cuts when applied to OPF often converge on sub optimal solutions (Capita-
nescu 2016). Therefore, solving OPF requires a modified form of Benders composition.

Proposed solutions include convex relaxation combined with network partitions 
(Yuan and Hesamzadeh 2017), nested sub problems (Giuntoli et al. 2021) and general-
ized Benders decomposition (GBD) approach using linearized sub problems (Jamalza-
deh and Hong 2018). These techniques improve the accuracy of Benders decomposition 
when applied to non-convex problems, but they still cannot guarantee optimal solutions 
(Jamalzadeh and Hong 2018).

Alternating direction method of multipliers

Alternating direction method of multipliers (ADMM) combines dual decomposition and 
augmented Lagrangian methods for constraint optimization. ADMM’s ability to imple-
ment distributed convex optimization problems has made it one of the most widespread 
techniques used to solve OPF problems. The ADMM variants used by researchers differ 
based on the formulation of consensus algorithms used to co-ordinate sub problem vari-
ables (Biswas et al. 2022).

ADMM is applied to OPF problems by decomposing it into local subproblems, which 
are solved in parallel for each agent. The solver IPOPT is commonly used to solve the 
NLP in both global and subproblems. ADMM requires a centralized system to coordi-
nate variables in sub-problems, so it is not a completely parallel algorithm in its basic 
form Oh et al. (2022). To use ADMM as a fully parallel algorithm, a consensus algorithm 
is used to co-ordinate between local subproblem variables and their equivalents in the 
global problem (Nedic and Ozdaglar 2010).

Common ADMM algorithms proposed by researchers to solve OPF problems uti-
lise Second Order Cone Programming and Semi Definite Programming. These ADMM 
techniques have been demonstrated to provide a closer to optimal solution compared to 
adaptive Bender’s decomposition methods. However, adaptive Bender’s decomposition 
method generally offers faster execution times relative to ADMM (Capitanescu 2016).

Interior point methods

Interior point methods (IPM) have commonly been applied to the analysis of electrical 
power systems due to their ability to solve non-linear and non-convex problems. IPM 
algorithms search for the optimal solution by adopting a sequence of points that are con-
strained to the interior of the feasible set by using a barrier parameter (Delgado et al. 
2022). IPM has similarities to ADMM in that it can decompose the AC-OPF problem 
into a base case global problem and contingency case sub problems (Capitanescu 2016).

IPM’s advantages relative to ADMM is that it scales well and can solve all subproblems 
fully parallel to each other (Sundermann et al. 2023). These advantages allow for fully 
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decentralized applications of AC-OPF to be implemented with similar convergence per-
formance and accuracy to its centralized implementation (Lu et al. 2017).

IPM also has some limitations that are being addressed by researchers when applied to 
AC-OPF. These include improved techniques to update the barrier parameter and regu-
larizing the constraints. IPM also has a limited ability to implement infeasibility detec-
tion and the handling of discrete control variables (Delgado et al. 2022).

Research gap

There are two research gaps to be addressed in this paper. These are the use of an inter-
nal tariff structure within an REH that accounts for energy losses and ensures fairness in 
scheduling DER. The second research contribution is the derivation and implementation 
of an OPF model that does not require decomposition to solve.

Research contribution 1—dynamic energy loss tariffs

One research gap to be addressed in this research is that of clearing a REH’s TEM such 
that energy losses are fairly accounted for. All proposed REH TEM models cited in 
this paper use some version of OPF when scheduling DER. However, the impact these 
OPF models have on agents energy prices is inferred, but not explicitly quantified on 
an agent’s individual basis. Further research is needed to integrate the individual price 
agents pay for energy with losses they incur within a distribution network.

Improved loss allocation algorithms are required to account for energy losses incurred 
during electrical energy distribution, as opposed to simple approximation or equal shar-
ing-based approaches. These energy loss algorithms result in a dynamically priced, agent 
specific tariff on energy purchased and sold within the REH. Energy traded between 
agents is prices such that the selling agent receives their scaled spot price and the buying 
agent pays their scaled spot price. These agent specific spot prices include distribution 
cost reflective tariffs that result in the sum cost of all energy sold being equal to the sum 
cost of all energy purchased.

Agent specific energy loss tariffs have the added benefit of incentivising the reduction 
of distribution losses. This aligns the globally optimal solution with the individual opti-
mal solution for each agent, thereby justifying an agents requirement to relinquish con-
trol of their DER.

Research contribution 2—application specific OPF model

OPF modelling is computationally intensive when incorporating DER scheduling into 
the optimisation problem. Therefore, any reduction in computational complexity will 
assist the widespread adoption of centralised DER co-ordination. Distribution systems 
in REH’s only consist of a minimal subset of utility distribution network components. 
This allows the use of approximations that can achieve significant reductions in compu-
tational complexity, with minimal reductions in accuracy.

Within an REH, it can be assumed there are no transformers or significant sources of 
reactive impedance. This allows a DC approximation of the OPF problem to be used and 
eliminates the need for complex optimisation variables. It is also possible to schedule 
DER loads that are either on or off without considering energy losses. These loads are 
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less flexible than batteries and have less ability to respond to distribution loss price fluc-
tuations. This allows binary decision variables to be set outside of OPF calculations.

Using a DC OPF model and removing binary decision variables allows OPF calcula-
tions to be performed without decomposition and linearization. This is achieved by 
formulating all equations and constraints of OPF with a maximum polynomial order 
of 2. By restricting optimization equations to second order polynomials, it is possible 
to use solvers optimized for quadratics such as IPOPT. Non-linear optimization con-
straints that would usually require a mixture of decomposition and linearization can 
be reformulated into separate linear and quadratic constraints. This allows a solver to 
find a solution with a single solver call without the need for decomposition.

Methodology
Market structure

The market structure for this trading system involves all energy transactions being 
traded via a single common market. The market has a single spot price that is applied 
to all energy purchased and sold. This spot price is scaled at each individual agents 
location to ensure the financial market always clears. Excess energy can either be 
bought or sold to the grid via a virtual common meter that is responsible for setting 
the market price. This market structure is graphically shown in Fig. 1.

This market can be implemented via P2P trading or via an aggregator. In P2P con-
figuration, the selling agent decides how much energy to export and can choose to trade 
directly with another agent. A selling agent will receive the market price scaled by their 
loss factor and the buying agent will pay the market price scaled by their loss factor. As 
both agents know their voltage, they can calculate their respective loss factor without 
third party intervention. Although some of the traded energy will be lost in distribution, 
the discrepancy between the buying and selling price will compensate for the energy 
shortfall needed from the utility grid. Excess funds required for each transaction will be 
paid to the utility grid by whichever agent has the highest price scaling factor.

Operating the market in aggregator configuration requires all energy transaction to 
occur between each agent and the aggregator. Agents are assigned the market price 
scaled by their loss factor by the aggregator, which constitutes a centrally cleared 
tariff. The aggregator’s central coordination ensures energy trades are optimised to 
minimise energy losses. As such, the centrally coordinated application of this market 
structure will be analysed in this research.

Fig. 1  High level TEM structure
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In Fig.  1, at time interval t the market price Ct
market is set by the marginal cost of 

importing extra energy into the REH via the virtual grid meter. If energy is being 
imported from the grid into the REH, this marginal cost will be the grid buy price 
Ct
grid,buy , otherwise the marginal cost will be the grid sell price Ct

grid,sell . This relationship 
is mathematically described in (1) where µt,exp

grid  is a Boolean variable that equals 1 if the 
grid is exporting energy into the REH during time interval t.

Each agent will trade energy with the REH energy market at a buy and sell price of Ct
a 

where a is the agent number. This price is the market price that has been scaled by a loss 
factor Pt

a to ensure the sum of all financial transactions is zero as described by (2).

Equation  2 describes the variable agent pricing that is the key innovation of the pro-
posed TEM. A variable energy price at each agent is used to ensure the fair allocation of 
costs incurred by distribution energy losses. When distribution losses to transfer energy 
to an agent are high, the price at the agent will increase. This will create incentives for 
the agent to reduce load or to supply energy to the network. Both options will result in 
lower distribution losses with the benefit provided to the agent that adjusts it operation 
to reduce network losses.

All DER within the energy market will be operated via a third party VPP operator that 
will be optimising to achieve the lowest total grid energy costs. This optimisation strat-
egy favours global rather than individual optimal outcomes. It is therefore necessary for 
individual agents to relinquish control of their individual DER assets. This loss of control 
can be justified as the TEM pricing structure rewards agents contributing to improved 
global outcomes. It will therefore be demonstrated in this paper that relinquishing con-
trol over DER assets in order to participate in the REH will provide a greater benefit to 
all agents irrespective of their DER configuration.

Loss factor derivation

The value of Pt
a from (2) requires knowledge of the electrical infrastructure and a simula-

tion model to compute distribution losses. This would traditionally be achieved using an 
AC OPF electrical model. However, implementing such a model would require detailed 
knowledge of existing infrastructure and may be infeasible to to incorporate into a solver 
that also optimises the value of energy trades. Much of this complexity can be avoided 
by using a simplified electrical distribution system model that can produce sufficiently 
accurate results while being incorporated into a solver that is optimising energy trades. 
Such an outcome is possible as the local level distribution network incorporates less 
complexity than the entire utility grid.

It can be assumed that interconnecting cables have a mostly resistive impedance that 
can be estimated based on geographical meter locations and commonly used cable 
gauges. Based on these interconnection resistance estimates and energy metering data, it 
is possible to build an electrical model to approximate energy losses.

(1)Ct
market = Ct

grid,buyµ
t,exp
grid + Ct

grid,sell 1− µ
t,exp
grid

(2)Ct
a = Pt

aC
t
market
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To develop an electrical model that would be valid under these conditions, consider 
a simple DC circuit in which energy is transferred from a source to a load as depicted 
in Fig. 2.

Figure 2 depicts a simple electrical circuit where energy is transferred from a source 
to a load with resistive losses due to the interconnecting resistance. The source volt-
age is V t

s  , load voltage is V t
l  and a current of I t passes through the source and load via 

a resistor of resistance R at time index t. Over time interval �t , the energy supplied by 
the source Et

s  and load Et
l  to this simple distribution network is given by (3) and (4).

As energy is lost in the distribution network, more energy will be supplied to the net-
work by the source than received by the load as Es > −EL . To ensure this energy market 
balances, the load will need to pay a higher price for energy than that received by the 
source. If Ct

s  is the energy price at the source and Ct
l  is the energy price at the load, the 

market will clear provided (5) is satisfied.

Substituting (3) and (4) into (5) results in the (6) price required at the load to clear this 
energy market.

Therefore, operating this energy market requires a reference price and voltage (in this 
case Ct

s  and V t
s  ) to be determined. Equation 6 is solved at the load location using the load 

voltage V t
l  to determine its energy price. Although (6) was derived using a simple case, 

it is valid for any DC distribution network. This can be proved by considering a multi 
agent energy network with an unknown interconnection structure and electrical proper-
ties as shown in Fig. 3.

The energy market in Fig. 3 will balance if the sum of all energy trades as described 
by (7) equals zero. In (7), Xa is the set of all agents in the network and Ct

a is the energy 
price at agent a.

(3)Et
s = V t

s I
t�t

(4)Et
l = −V t

l I
t�t

(5)Et
l C

t
l = Et

sC
t
s

(6)Ct
l = Ct

s

V t
s

V t
l

Fig. 2  Simple DC circuit
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The (6) energy price Ct
l  can be substituted into the (7) energy price Ct

a . Simplifying the 
result of this substitution allows (8) to be derived as the reference voltage V t

s  , reference 
energy price Ct

s  and time interval �t are constants for all time intervals.

Equation 8 describes Kirchhoff’s current law. This result demonstrates that if Kirchhoff’s 
current law is valid for the entire distribution network, (6) can be used to set the energy 
price at each agent. It also means that any agent can provide the reference voltage and 
price, provided that both values are derived from the same agent. For the model simu-
lated in this paper, the value of V t

s  will be set as the grid connection voltage where the 
virtual meter is connected to the distribution network.

Although this section only demonstrated the proposed pricing technique as valid for 
DC distribution networks, it will be used for a three phase AC network. The DC network 
model is a close approximation of an AC three phase network as a balanced phase load 
will result in no neutral current. It will also be assumed that reactive power is a minimal 
component of the total agent power requirements. Using these assumptions, it is pos-
sible to estimate network losses using a DC equivalent circuit and interval energy meter 
data.

OPF simplifications

OPF is a common example of a non-linear optimization problem. Due to its non-convex 
nature, there is no efficient method to locate its optimal solution. Finding a global opti-
mum for this type of optimization problem in acceptable computational time is a major 
challenge under investigation by optimization theory researchers (Asghari et al. 2022). 
One reason for the inherent non-linear nature of OPF is the requirement to multiply 
decision variables. This occurs as energy traded is the product of voltage and current, 
both of which are decision variables subject to constraints. The per unit cost of energy 
and energy traded are also decision variables that must be multiplied, thereby resulting 
in even greater complexity.

As stated in Background section of this paper, some form of decomposition and line-
arization of the OPF problem is required to find a solution in acceptable times. However, 

(7)
∑

a∈Xa

Ct
aV

t
aI

t
a�

t = 0

(8)
∑

a∈Xa

I ta = 0

Fig. 3  Generalised DC distribution network
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if all binary decision variables can be removed from the OPF problem and decision vari-
able multiplication is replaced by quadratic constraints, it is possible to solve the OPF 
problem in a single stage using a quadratic programming solver.

To represent the product of two decision variables as a quadratic constraint, consider 
the expansion of (9) that contains two decision variables A and B and a scalar term D. 
The scalar term D is required such that A and the product BD have the same units.

Rearranging (9) results in a quadratic expression for the product of A and B as described 
by (10).

The scalar term D is only required to ensure quantities of the same units are added 
together. As such, it can be set to any real number. Choosing a value of D = 1 allows (10) 
to be simplified. Applying this substitution allows the product of decision variables A 
and B to be expressed as (11) subject to the (12) constraint.

Substituting all decision variable products with quadratic equations as per (11) allows 
quadratic programming solvers to find the optimal solution of the OPF problem without 
decomposition. This technique, combined with a simplified DC distribution model is the 
key innovation presented in this research to solve the OPF problem.

Optimisation model description

Scheduling DER within the REH requires two optimisation stages due to the computa-
tional complexity in implementing the electrical model. As such, two stage decompo-
sition with constraint relaxation will be used to schedule DER and compute the value 
of energy trades. The first optimisation stage involves scheduling the DER while not 
accounting for energy losses. The second optimisation stage will calculate prices and 
energy transfers between agents accounting for losses. During the first optimisation 
stage, all DER operation states will be dependant variables. The first optimisation stage 
values of schedulable loads and net grid imported energy will then be passed to the sec-
ond optimisation stage as constants. During the second optimisation stage, all battery 
parameters will be set accounting for distribution losses and constraints. Agent prices 
will also be determined during the second optimisation stage.

Scheduling DER during the first optimisation stage will be achieved using a discrete time, 
model predictive control simulation with a finite time horizon. This simulation will deter-
mine the optimum DER operational state for the first time slot. The second optimisation 
stage will then determine energy prices and trades during this first time slot. This process 

(9)1

D

(

A+ BD
)2

=
A2

D
+ B2D + 2AB

(10)AB =
1

2

( 1

D

(

A+ BD
)2

−
A2

D
− B2D

)

(11)AB =
1

2

(

C2 − A2 − B2
)

(12)C = A+ B
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will then be repeated for the second time slot by incrementing the time horizon by one time 
slot.

Optimisation stage 1

The objective of the first optimisation stage is to determine a close to optimal solution for 
all DER scheduling decision variables. This approximation is achieved by not accounting for 
distribution losses within the network. Ignoring distribution losses allows DER to be sched-
uled without the need for quadratic constrained decision variables. As such, a mixed inte-
ger programming solver can be used to schedule DER. In optimisation stage 1, the solver to 
be used is the GLPK solver.

Electrical distribution is implemented using three AC phases, with each agent connected 
to a single phase. Agents will be grouped together based on their connected phase dur-
ing the first optimisation stage. This prevents agents on different phases trading with each 
other. Agents on different phases can affect each other’s price as the market price is set at 
the marginal cost of net imported energy from the grid. Therefore, the market price in the 
REH could be set at the grid buy price even if one phase is exporting energy to the grid, pro-
vided that the REH has a net import of energy.

Figure 4 shows a single phase of the grid connection and the energy flows associated with 
each agent.

Each grid phase will have a net amount of energy imported into the REH given by the 
variable Xt

grid,phase , where the variable phase is the phase number. Grid energy must be sep-
arated into two components, one for imported and another for exported energy to compute 
energy costs as described by (13).

The (13) values must also be bound by physical limits as described by (14). In (14), the γ 
variables are maximum energy transfers per time interval. A Boolean variable µt,imp

grid,phase 
is also used to prevent energy being imported and exported simultaneously and will 
equal 1 when grid energy is being imported into the REH.

(13)Xt
grid,phase = X

t,imp
grid,phase − X

t,exp
grid,phase

(14)
0 ≤ X

t,imp
grid,phase ≤ γ

imp
grid,phase µ

t,imp
grid,phase

0 ≤ X
t,exp
grid,phase ≤ γ

exp
grid,phase (1− µ

t,imp
grid,phase)

Fig. 4  High level model of a single grid phase



Page 13 of 40Kidd ﻿Energy Informatics            (2023) 6:29 	

Xt
a from Fig. 4 can be positive or negative depending on whether the agent is import-

ing or exporting energy. This variable must be separated into two components, one for 
energy imported and another for energy exported as described by (15).

Energy import and export variables from (15) are bounded by a maximum limit as repre-
sented by the γ variable in (16). A boolean variable µt,imp

a  is used to ensure an agent does 
not simultaneously import and export energy and will be set to equal 1 when the agent is 
importing energy.

Each agent is comprised of a fixed load that is not a function of any decision variables 
and a schedulable load. The schedulable load is modelled on a hot water service that is 
either turned on or off during each time interval. An agent can also contain a battery and 
a solar photovoltaic system. These agent components and their associated discrete time 
energy flows are depicted in Fig. 5.

Energy imported into each agent Xt
a is the sum of all internal energy transfers as described 

by (17).

Energy flows required for the solar Xt
a,pv and fixed loads Xt

a,load_f  are predetermined con-
stants and are therefore not functions of decision variables. The only decision variables 
from Fig. 5 are battery and schedulable load energy flows.

Battery charging and discharging variables are bound by a limiting constraint represented 
by the γ variables in (18). A boolean variable µt,ch

a,batt is used to ensure a battery does not 
simultaneously import and export energy and will equal 1 when the battery is charging.

(15)Xt
a = X

t,imp
a − X

t,exp
a

(16)
0 ≤ X

t,imp
a ≤ γ

imp
a,max µ

t,imp
a

0 ≤ X
t,exp
a ≤ γ

exp
a,max (1− µ

t,imp
a )

(17)Xt
a = Xt,ch

a,batt − Xt,dis
a,batt + Xt

a,load_f + Xt
a,load_s − Xt

a,pv

(18)
0 ≤ Xt,ch

a,batt ≤ γ
max,ch
a,batt µ

t,ch
a,batt

0 ≤ Xt,dis
a,batt ≤ γ

max,dis
a,batt (1− µ

t,ch
a,batt)

Fig. 5  Internal components and energy flows of each agent
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Energy stored in the battery must be updated after each discrete time step as described 
by (19). This update must account for charging and discharging efficiency factors repre-
sented by the η labelled variables.

The battery state of charge variable et,SoCa,batt is also subject to constraints. These constraints 
are that it must be greater than or equal to zero and cannot exceed a maximum value. It 
must also be set such that its value at the end of the time horizon is equal to or greater 
than its initial value. These constraints are described by (20).

The schedulable load requires a fixed amount of energy during the optimisation window 
and is either on or off at any individual time interval. When the schedulable load is on, 
its energy consumption for that time interval will be γmax

a,load_s , otherwise its energy con-
sumption will be zero. This can be achieved by using the (21) constraint where µt

a,load_s is 
a boolean variable.

The total amount of energy required by the schedulable load over the finite horizon is 
defined by γ total

a,load_s . This value will be set as an integer multiple of γmax
a,load_s , thereby allow-

ing the (22) constraint to set the total energy used by the schedulable load.

The cost of energy imported from the grid is Ct
grid,buy and the cost of energy sold to the 

grid is Ct
grid,sell . Therefore, the total cost of energy over the finite horizon is determined 

by (23).

The objective function is to minimise the total cost of imported energy as described by 
(24) for all agents and time slots.

Solving for (24) over the finite horizon window allows the schedulable loads and battery 
operation variables to be optimally set to minimise grid energy costs.

Optimisation stage 2

In the second optimisation stage, all electrical parameters are determined based on 
first optimisation stage results. This will require quadratic decision variable terms in the 

(19)et,SoCa,batt = et−�t ,SoC
a,batt + ηcha Xch

a,batt −
Xdis
a,batt

ηdisa

(20)
0 ≤ et,SoCa,batt ≤ eSoC ,max

a,batt

estart,SoCa,batt ≤ e
final,SoC
a,batt

(21)Xt
a,load_s = γmax

a,load_sµ
t
a,load_s

(22)
∑

t∈T

Xt
a,load_s = γ total

a,load_s

(23)Ctotal =
∑

phase∈Xp

∑

t∈T

(

Ct
grid,buyX

t,imp
grid,phase − Ct

grid,sellX
t,exp
grid,phase

)

(24)Minimise Ctotal , ∀t ∈ T ∀phase ∈ Xp
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objective function that were not possible to implement in the first optimisation stage. As 
such, the IPOPT solver will be used to solve for the second optimisation stage. The IPOPT 
solver cannot solve for binary decision variables. Therefore, the schedulable load states as 
determined by the stage 1 optimisation will be passed to the stage 2 optimisation as con-
stants. Batteries are the only DER to be scheduled during the second optimisation stage.

The electrical network in the second optimisation stage is modelled as an interconnected 
mesh of resistance elements subject to basic circuit laws. Figure 6 illustrates this network 
with labelled nodes and current flows.

In the second optimisation stage electrical model, agents are connected to one of three 
phases. All agents are connected to the neutral conductor that will be simulated as having a 
voltage of 0 V. Solving electrical rules around this model will allow voltages and currents to 
be determined. These values will in turn will be used to compute energy trades and nodal 
prices.

Modelling electrical parameters is achieved by solving Kirchhoff’s current law at each 
node and solving Ohm’s law for currents between each node. Each node in Fig. 6 as rep-
resented by a dot on the conductor will have a set of connected nodes given by the set X c

n  
where n is the node number. The sum of these currents must equal zero for the set of all 
nodes Xn as per (25) where x is the currents destination node number.

Electric current in each conductor is also constrained by a maximum limit. This limit for 
each conductor between nodes n and nodes x is given by the parameter Imax

n,x  . Defining 
this parameter allows the (26) constraint to be defined.

(25)
∑

x∈X c
n

In,x = 0 ∀n ∈ Xn

(26)−Imax
n,x ≤ In,x ≤ Imax

n,x

Fig. 6  Second stage optimisation electrical model
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Each node on the active conductors also has an associated voltage given by the variable 
Vn where n is the node number. Solving Ohms law at each node is achieved as per (27) 
where X a

n  is the set of all nodes on active conductors, Rn,x is the resistance between 
node n and x and In,x is the current flowing from node n to x.

Active voltages must also be constrained within a certain range as defined by utility reg-
ulations. This will result in a maximum and minimum allowable voltage defined to be 
the variables Vmax

n  and Vmin
n  respectively. Applying these constraints to all active node 

voltages is achieved using the (28) constraint.

For the purposes of this simulation it will be assumed the voltage on the neutral conduc-
tor will be zero. This will be the case for a balanced three phase circuit and will therefore 
be a close approximation in the network as shown in Fig 6. Therefore, the agent energy 
consumption will be the product of Va , Ia and the time interval. As the time interval is 
a constant, only the product of voltage and current is required to be set by the solver. 
Calculating the product of voltage and current can be achieved using the decision vari-
able multiplication technique referred to in section OPF simplifications. Using this tech-
nique, the product of Va and Ia can be expressed as the (29) and (30) constraints.

Over a discrete time interval of �t , the energy received by agent a will be �tVaIa . Setting 
this value to equal the net imported energy into an agent allows the agent power con-
straint to be set as per (31). In (31), Va is agent a voltage, Ia is current flowing into agent a 
and C is defined in (30).

The electrical model is only required for the second optimisation stage, which is 
restricted to the finite horizon’s first interval. Therefore, only Xt=1

a  is required to be com-
puted using voltages and currents.

All currents entering agents on a phase must also equal the current supplied by the grid 
to that phase. This is achieved by the (32) constraint where Xp is the set of all phases and 
Xphase is the set of all agents connected to the phase specified by the subscript variable 
phase.

(27)Vn − Vx = Rn,xIn,x ∀n ∈ X
a
n ∀x ∈ X

c
n

(28)Vmin
n ≤ Vn ≤ Vmax

n ∀n ∈ X
a
n

(29)VaIa =
1

2

(

C2 − V 2
a − I2a

)

(30)C = Va + Ia

(31)Xt=1
a =

�t

2
(C2 − V 2

a − I2a ) ∀a ∈ Xa

(32)Igrid,phase =
∑

a∈Xphase

Ia ∀phase ∈ Xp
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It is also necessary to equate the grid imported energy to the grid currents and volt-
ages. Grid imported energy during the second optimisation stage for each phase is rep-
resented by the variable Xgrid,phase as described by the (33) constraint.

It can be assumed that the grid connected node voltage is known and represented by the 
variable Vgrid,phase in (33), where phase is the respective phase number. Therefore, (33) is 
a linear constraint with the only decision variables being Xgrid,phase and Igrid,phase.

The value of grid imported energy as described by Xgrid,phase in (33) was determined 
during the first optimisation stage to be X1

grid,phase . Due to the inflexible nature of the 
schedulable loads, their optimisation stage 1 values will be used for stage 2 optimisa-
tion. That leaves the battery charge and discharge variables Xt=1,ch

a,batt  and Xt=1,dis
a,batt  for 

time interval 1 from (17) as optimisation stage 2 decision variables.
The values of battery charge and discharge decision variables can be set by the second 

optimisation stage solver to ensure no internal distribution constraints are violated. 
However, an unfeasible solution space can be provided to the second optimisation stage 
via the total grid import or export energy as determined by the first optimisation stage. 
This may arise as the first optimisation stage does not account for energy losses and can 
therefore overestimate the maximum amount of energy that can be imported or 
exported from the grid. Therefore, the (33) value of total grid imported energy Xgrid,phase 
can be set using the first optimisation stage value of X1

grid,phase and two fine tuning varia-
bles Xextra_in

grid,phase and Xextra_out
grid,phase as described by (34).

The value of grid imported energy as determined by the second stage variable Xgrid,phase 
is bound by the (35) constraints.

To ensure the (35) constraint is not violated, the values of Xextra_in
grid,phase and Xextra_out

grid,phase are 
bound by the (36) constraints.

It is important that the variables Xextra_in
grid,phase and Xextra_out

grid,phase are only assigned non-zero val-
ues when no other solution is available. Therefore, these values will be multiplied by a 
penalty cost Cp in the objective function that is sufficiently high enough to achieve this 
outcome.

The objective function for the second optimisation stage is required to determine 
all network voltages such that each agents energy price can be calculated as per (6). 
This is achieved by finding the minimal distribution network loss subject to all agent 
energy requirements and electrical parameter constraints. Distribution losses are 

(33)Xgrid,phase = Vgrid,phaseIgrid,phase�
t ∀phase ∈ Xp

(34)Xgrid,phase = X1
grid,phase + X

extra_in
grid,phase − X

extra_out
grid,phase

(35)−γ
exp
grid,phase ≤ Xgrid,phase ≤ γ

imp
grid,phase

(36)
0 ≤ X

extra_in
grid,phase ≤ γ

imp
grid,phase

0 ≤ X
extra_out
grid,phase ≤ γ

exp
grid,phase
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calculated using basic electrical circuit laws whereby the energy loss of each conduc-
tor is its current squared multiplied by its resistance.

The stage 2 optimisation objective function can therefore be derived as (37). In (37), 
all node currents and voltages variables and battery charge and discharge variables 
are optimisation variables.

Solving for (37) allows the final value of battery charging and discharging parameters to 
be set and all agent energy prices to be determined. Once a valid second stage optimisa-
tion has been achieved, all parameters are recorded and the first stage optimisation is 
repeated with the finite horizon window incremented by one.

Case study
To assess the proposed optimisation models ability to schedule DER and facilitate 
financial transactions within a REH, a model has been built using the equations and 
constraints described in the previous section. Energy transactions with the grid are 
priced using 2022 NEM energy spot prices and tariffs based on energy purchased in 
the Australian state of Victoria. Network tariffs will be set to their City Power 2022-
2023 values while environmental and market charges will be set to their average resi-
dential rates for 2022. Peak time network tariffs are applied from 7 AM to 11 PM 
weekdays with all other times being off peak tariffs. Table 1 breaks down the prices 
used for grid energy imports and exports.

A discrete time interval �t will equal 5 min and the finite horizon will be set to 24 h. 
This is due to metering interval data being recorded in 5 min intervals. The set of all 
discrete time intervals will therefore be T = {1, 2, . . . , 288}.

This model will include 24 residential houses connected to a three-phase electri-
cal distribution system participating in a REH enabled TEM. All houses contain fixed 
loads and a single schedulable load that represents a hot water system. A select group 
of houses will also have a solar PV and some will have batteries. The internal REH 
distribution network is comprised of nodes where individual agents connect to. This 
REH distribution network is shown below in Fig. 7.

(37)Minimise
∑

n∈X a
n

(

In,x
)2
Rn,x + Cp

(

X
extra_in
grid,phase + X

extra_out
grid,phase

)

Table 1  Energy import and export charges

REH prices Individual 
trading 
prices

Import charges Energy Price NEM Spot NEM Spot

Environmental charges 2.5c/kWh 2.5c/kWh

Market charges 0.25c/kWh 0.25c/kWh

Network peak tariff 3.55c/kWh 14.7c/kWh

Network off peak tariff 2.57c/kWh 3.67c/kWh

Export charges Energy Price NEM Spot NEM Spot
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All agents have a schedulable load that requires 10 kWh per day with a power rating 
of 2.5 kW. The network is also configured such that each phase contains two agents with 
batteries. Each agent connected battery has the following properties.

•	 Battery Size: 10 kWh
•	 Battery maximum charging power: 4.8 kW
•	 Battery maximum discharge power: 4.8 kW
•	 Battery charge efficiency: 96%
•	 Battery discharge efficiency: 94%

Network nodes and interconnections have the following properties.

•	 Grid connection voltage: 230 V
•	 Maximum node voltage: 253 V
•	 Minimum node voltage: 207 V
•	 Node to node maximum current: 320 A
•	 Node to agent maximum current: 50 A
•	 Node to node resistance: 12.5 m�

•	 Node to agent resistance: 12.5 m�

The REH distribution network consists of interconnected nodes as depicted by blue dots 
in Fig. 7. A three-phase connection exists between each node and a single-phase con-
nection exists between an agent and a node. Table 2 lists each agents’ specific properties 
as only some agents have solar and batteries and each agent can only be connected to a 
single phase.

Agents with solar are simulated with solar energy generation taken from the 
National Renewable Energy Laboratory database for a solar installation in Melbourne. 
This data is scaled to match the output of a DC rated solar PV system with a size 
specified in Table 2. All agents have fixed loads with seasonal variation based on data 

Fig. 7  Simulated REH distribution network
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taken from the CSIRO report “The Evaluation of the 5-Star Energy Efficiency Stand-
ard for Residential Buildings”, for households in Victoria. This data was scaled such 
that it has a standard deviation of 10% of its mean value between agents.

To quantify the economic benefits of participating in the REH, two DER optimisa-
tions models were used. The first model requires each agent to schedules its own DER 
and purchases energy as a single agent from the utility grid. Agents will therefore pay 
the residential network tariff to purchase energy and energy exported from each agent 
will be sold at the NEM spot price.

The second model implements the two stage decomposition optimisation described 
previously, with all agents participating in the REH. Energy can be traded between 
agents at a reference price determined by the marginal cost of purchasing more 
energy from the grid. Excess energy required to be purchased from the grid is pur-
chased via a virtual meter. Surplus energy from the REH is sold to the grid at the 
NEM energy spot price.

The REH consists of 12 agents that have only fixed and schedulable loads, 6 agents 
have fixed loads, schedulable loads and solar while 6 agents have fixed loads, schedu-
lable loads, solar and batteries. Quantifying the average agent energy price based on 
its DER configuration allows the economic benefit of DER to be determined.

Table 2  Agent specific properties

Agent number Connected phase Solar DC size (kW) Battery 
capacity 
(kWh)

1 1 0 0

2 2 5 10

3 3 8 10

4 1 6.5 0

5 2 0 0

6 3 0 0

7 1 0 0

8 2 7 0

9 3 0 0

10 1 5.5 10

11 2 0 0

12 3 6 0

13 1 5.5 10

14 2 7.3 0

15 3 0 0

16 1 0 0

17 2 0 0

18 3 0 0

19 1 6.1 0

20 2 5.2 10

21 3 6.8 10

22 1 0 0

23 2 0 0

24 3 6.3 0



Page 21 of 40Kidd ﻿Energy Informatics            (2023) 6:29 	

DER will also be excluded from some simulations. This will allow the marginal benefit 
of including DER within the network to be determined. The following list describes the 
DER modelled states.

•	 No DER: In this state, all DER for all agents will be disabled. All schedulable loads 
will operate from 12:00 AM until they reach their maximum daily energy transfer

•	 Only Schedulable Load: In this state, schedulable loads will be set for their lowest 
operational cost time. All solar and batteries in the network will be disabled.

•	 Schedulable Load + Solar: In this state, schedulable loads will be set for their lowest 
operational cost time and all solar systems will be enabled. Only batteries in the net-
work will be disabled.

•	 All DER: In this state, all DER including schedulable loads, solar and batteries will be 
enabled.

A total of 8 optimisation models will be used to quantify energy costs based on the above 
list of DER states. For each DER state, all agents costs will be recorded when participat-
ing in the REH and when trading individually. In each DER state, agent energy costs will 
be averaged and grouped into three categories. These are agents without solar and bat-
teries, agents with only solar, and agents with both solar and batteries.

Results
DER parameter analysis

A simulation was conducted using the model parameters stated in Case study section. 
Based on these results the yearly average energy cost for each agent category for all 
states is listed in Table 3.

Table  3 lists the average yearly energy cost for agents without solar and batter-
ies, agents with only solar and agents with both solar and batteries. REH results were 
achieved using the two stage decomposition method described in the preceding two 
sections for 1 year of operation. Individual results are average values achieved by agents 
when optimising their DER individually without any peer to peer trading or being net-
work aware.

The first row of Table  3 is the average cost of energy for these three agents’ groups 
when no agent has solar or batteries and when all schedulable load turn on at 12:00 AM. 
This row sets the benchmark against which other DER configurations can be assessed 
against. It can be seen form this first row that there is a benefit of establishing the REH 
even without DER due to the changes in network tariffs.

Table 3  Average energy costs ($/year/agent)

Enabled DER No solar or battery Solar only Solar and battery

REH Individual REH Individual REH Individual

No DER 1929.83 2244.43 1901.50 2206.42 1870.63 2172.22

Only Schedulable Load 1652.83 2065.43 1623.84 2027.42 1593.73 1993.22

Schedulable Load + Solar 1584.60 2065.43 758.07 1053.64 795.23 1078.89

All DER 1588.95 2065.43 668.96 1053.64 − 339.66 8.82
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The second row of Table 3 are energy costs when the schedulable load is optimally set. 
Optimising the schedulable load benefits agents within the REH or operating individu-
ally. However, it is still advantageous for agents with schedulable loads to participate in 
the REH.

Row 3 of Table 3 are agents energy cost when some agents have solar. It can be seen 
from the first column that agents without solar will receive no benefit from other agents 
solar when trading individually. However, when participating in the REH, the aver-
age energy cost for agents without solar decreases from $1652.83 to $1584.60. This is 
because these agents have the ability to purchase solar at a lower rate than grid energy. 
However, most of the financial benefit of solar is achieved by agents with the solar 
generation.

The final row in Table 3 is the average energy cost when all DER, including batteries, 
are operating. Most of the financial benefit of batteries is obtained by the agents with 
solar and batteries. However, agents with only solar also receive a financial benefit from 
other agents’ batteries. This is because batteries have the ability to increase the REH 
energy price to the grid purchase price when it would have otherwise been set at the grid 
sell price. This has a small financial penalty on agents without solar or batteries, however 
these agents are still incentivised to participate in the REH.

It can be observed from Table  3 that all DER configurations result in lower energy 
prices for agents participating within the REH. Even agents with no solar or batteries 
have an absolute advantage of participating in the REH relative to individually trading.

Another way to quantify the benefit of participating in the REH is to quantify the aver-
age price each agent pays to import energy. This value is calculated by dividing the total 
imported energy cost by the total imported energy per agent and is listed in Table 4.

Table  4 demonstrates that agents will always pay a lower average price to import 
energy when participating in the REH relative to trading individually. The average 
import energy price for agents with solar increases compared to when they only had a 
schedulable load. However, this is due to a reduction in energy imports during the mid-
dle of the day when the NEM spot price is low.

Table 4  Average energy import price (c/kWh)

Enabled DER No solar or battery Solar only Solar and battery

REH Individual REH Individual REH Individual

No DER 19.57 22.74 19.58 22.71 19.54 22.69

Only Schedulable Load 16.70 20.88 16.69 20.85 16.63 20.81

Schedulable Load + Solar 16.02 20.88 20.86 21.95 20.61 21.85

All DER 16.06 20.88 20.56 21.95 14.14 15.67

Table 5  Average energy export price (c/kWh)

Enabled DER No solar or battery Solar only Solar and battery

REH Individual REH Individual REH Individual

Schedulable Load + Solar 0.00 0.00 8.08 6.10 8.07 6.13

All DER 0.00 0.00 9.73 6.10 21.25 23.24
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The average price received for exported energy can also be quantified using the same 
technique. This results in Table 5 value of average energy export prices. As only agents 
with solar or batteries can export, Table 5 contains results when these DER are enabled.

Agents without solar or batteries do not export energy and therefore have no export 
energy price. Table 5 demonstrates that agents with only solar have an absolute advan-
tage in export price received when participating in the REH. Agents with batteries 
receive a higher energy export price compared to agents with only solar. However, they 
receive a lower average export price in the REH relative to if they were trading indi-
vidually. This result is influenced by the increased energy traded by agents with batter-
ies participating in the REH. When all DER are enabled, agents with batteries import 
on average 9892 kWh per agent per year when trading in a REH, but only 4851 kWh 
when trading individually. This 103.9% increase in exported energy agents with batteries 
achieve when trading in the REH results in higher battery utilisation and greater finan-
cial returns.

The marginal benefit of the schedulable load relative to a simple fixed operational time 
load is quantified in Table 6 on a per kWh basis.

Table  6 states that for every 1 kWh of additional schedulable load, the net benefit 
across all agents is $27.71 when participating in the REH and $17.90 when trading indi-
vidually. This marginal benefit is approximately the same for all agent DER configura-
tions, which indicates most of the schedulable load marginal benefit is obtained by the 
agent with the schedulable load.

The marginal cost of installing solar can also be derived from the same simulation 
results and is displayed in Table 7.

Table 7 states that for every 1 kW of solar capacity added to an agent, the marginal 
benefit to all agents is $143.67 when participating in the REH and $150.65 when trading 
individually. This confirms that a greater solar marginal benefit is achieved when trading 
individually. The cause of this reduction in marginal benefit is likely the lower average 
energy price in the REH relative to directly purchasing from the grid. It is also notewor-
thy that for each 1 kW of solar added to an agent, a $10.90 marginal benefit is achieved 
by agents without solar. This incentivises agents to participate in the REH even if they 
cannot afford solar, or are unable to install solar due to being tenants.

Based on an average installed solar cost of $925.38/kW, the simple payback time for 
agents with solar participating in the REH or trading individually is listed below.

Table 6  Marginal benefit of schedulable load ($/kWh/year)

No solar or battery Solar only Solar and battery Total

REH Individual REH Individual REH Individual REH Individual

27.70 17.90 27.77 17.90 27.69 17.90 27.71 17.90

Table 7  Marginal benefit of solar ($/kW/year)

No solar or battery Solar only Solar and battery Total

 REH Individual REH Individual REH Individual REH Individual

10.90 0.00 132.58 149.12 133.08 152.39 143.67 150.65
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•	 REH solar payback time: 6.44 years
•	 Individual solar payback time: 6.14 years.

Although participating in the REH results in a longer payback time for solar, this 
increase is only 0.3 years and should have minimal impact on the decision to install solar.

The marginal benefit of installing batteries on a per kWh basis can also be quanti-
fied and is stated in Table 8.

Table 8 states that for every 1 kWh increase in battery capacity, the total marginal ben-
efit to all agents is $121.53 when participating in a REH or $107.01 when trading individ-
ually. Of the additional value achieved from batteries in the REH, most is allocated to the 
agent with the battery with some additional financial benefit to agents with only solar. 
There is a slight decrease in marginal benefit for agents without solar or batteries when 
increasing energy storage capacity in the REH. As agents with batteries have a higher 
marginal benefit from their batteries from participating in the REH, they have incentives 
to remain in the REH and increase their energy storage capacity.

Based on a subsidised installed battery cost of $1260/kWh, the simple payback time 
for a battery trading in the REH or individually is listed below.

•	 REH battery payback time: 10.37 years
•	 Individual battery payback time: 11.77 years.

Both options have a simple payback time greater than 10 years, which does not make 
this an attractive investment. However, a reduction of 1.4 years in payback time will 
bring forward the future date at when batteries become a viable investment relative to 
alternatives.

Based on the optimisation results, energy traded in the REH can be summarised as 
per the following data.

•	 Total grid imported energy: 165,272 kWh
•	 Total grid exported energy: 21,611 kWh
•	 Total agent imported energy: 224,792 kWh
•	 Total agent exports: 85,878 kWh
•	 Energy Sold into Market: 251,150 kWh
•	 Energy purchased from market: 246,403 kWh
•	 Energy Losses: 4747 kWh
•	 Energy losses %: 1.93%.

When agents were trading individually, they collectively had the following energy 
imports and exports.

Table 8  Marginal benefit of Batteries ($/kWh/year)

No solar or battery Solar only Solar and battery Total

 REH Individual REH Individual REH Individual REH Individual

− 0.43 0.00 8.91 0.00 113.49 107.01 121.53 107.01
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•	 Total grid imported energy: 198,108 kWh
•	 Total grid exported energy: 61,215 kWh.

Therefore, by participating in the REH, the net energy imported and exported to the grid 
was reduced by the quantity listed below.

•	 REH reduction in grid imported energy: 16.57%
•	 REH reduction in grid exported energy: 64.70%.

The significant reduction in grid export energy was due to energy exported from agents 
being consumed locally. This feature, combined with tariff reductions due to bulk energy 
purchases results in the net energy savings as described in this section.

Internal distribution tariff analysis

The optimisation model demonstrated that agents trading energy within the REH have 
an absolute advantage compared to agents trading energy directly with the utility grid. 
One significant factor for this advantage is the lower network tariff paid to the electricity 
distributor for grid energy imported into the REH relative to an individual agent pur-
chasing directly from the grid. The underlying reason for lower network tariffs for larger 
energy consumers is due to the economies of scale of electricity distribution. It is more 
expensive to build a distribution network for a large number of small consumers than for 
a small number of large consumers. A REH operator may therefore be required to pay an 
additional tariff to the electricity distributor to account for this.

There are two possible REH distribution network configurations that must be consid-
ered when deciding an additional tariff to be paid by agents when trading in an REH. The 
first situation is where all agents share the same connection to the utility grid and the 
REH distribution network is on private property. This occurs if all trading agents exist 
within a group of units or flats on the same property title. This situation is depicted in 
Fig. 8 where four units are on the same property title.

Figure 8 depicts 4 units on a single property title. In this configuration, the distribu-
tion network built on private property is paid for, and maintained by the property owner 
despite not being on the consumer side of the electricity meter. This private distribution 

Fig. 8  Units with a privately build distribution network
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network is connected to the utility grid at a service pit for an underground connection 
or at a mains box for an overhead supply. Therefore, if the virtual meter is set to the ser-
vice pit location in Fig. 8, all internally traded energy uses the privately funded and oper-
ated distribution network.

In this configuration it should be possible to trade within the REH with no additional 
distribution tariff as internally traded energy does not require the utility network. The 
utility distributor is only required to build a network up to the service pit location shown 
in Fig. 8. At this location the utility network sees the combined load of all units and is 
therefore the same as a connection to a large energy consumer. This justifies the use of 
large costumer tariffs at the virtual meter location. Another situation can arise where 
energy can be traded in a REH. This involves agents on different properties trading 
energy via the utility distribution network as shown in Fig. 9.

In Fig. 9, four houses are connected to each other via the utility distribution network. 
The utility distribution network is shown in black and enclosed by the dotted red lines. 
This distribution network is not on private property and is built and maintained by the 
utility electricity distributor. Therefore, a REH incorporating parts of the utility distribu-
tion network will require some form of financial compensation to this third party for the 
use of their assets.

The residential network tariff used in this analysis has a peak time charge of 14.7c/
kWh and an off-peak charge of 3.67c/kWh. The large low voltage tariff used to purchase 
energy for the REH via the virtual meter has a peak time charge of 3.55c/kWh and an 
off-peak charge of 2.57c/kWh. The difference in tariff prices is only 1.1c/kWh for off 
peak times, but 11.15c/kWh for peak times. One reason for this discrepancy is that a 
distribution network capacity must be capable of supplying the maximum demand of all 
connected agents. The high degree of correlation between residential maximum demand 
times and the large amount of cables required relative to load size for residential distri-
bution results in high peak time tariff.

A REH has the ability to schedule loads and batteries to maximise the utilisation of the 
available infrastructure. This reduces the cost of building a residential distribution net-
work. As such, a tariff for energy traded internally within the REH should be close to the 
network off peak tariff.

To determine the maximum viable tariff on internally traded energy within an REH, 
a new optimisation model was built based on the network used in this section. In this 
model, a network tariff to be paid as compensation to the utility distributor is charged 

Fig. 9  Houses connected via the utility distribution network
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for energy imported into each agent. The average yearly energy cost per agent based on 
their DER configuration was recorded as a function of network tariff. This data is dis-
played in Fig. 10, where the dot on each line is the break even price compared to each 
agent trading individually.

Based on the data displayed in Fig. 10, the maximum REH internal distribution tariff 
that can be charged before it becomes more financially viable to trade individually are 
listed Table 9.

Table 9 reveals that different agent configurations result in different break even REH 
internal distribution tariffs. Agents with both solar and batteries are impacted the most 
be REH internal distribution tariffs. This is because batteries in agents trading individu-
ally can charge on network off peak times at a price of only 1.1c/kWh more than import-
ing energy into the REH at off peak times. The REH internal network tariff will decrease 
the batteries profitability, resulting in less energy traded and lower returns for battery 
operators. Agents with solar have the highest break even internal distribution tariff 
price. This is due to the additional value received by selling excess energy to other agents 
instead of the grid.

It is also possible to compute the average energy purchase price for agents in the REH 
as a function of internal distribution tariff. This is shown in Fig. 11 based on agents DER 
configuration.

Figure  11 shows that agents with no solar or batteries and agents with only solar 
experience similar changes to their energy purchase price due to increases in the REH 
internal distribution tariff. However, agents with batteries and solar experience a 

Fig. 10  Yearly agent energy cost vs internal distribution tariff

Table 9  Break even distribution tariffs

DER Configuration Internal 
Distribution 
Tariff (c/kWh)

No Solar or Batteries 4.8

Solar Only 6.1

Solar and Batteries 2.0
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greater increase in energy purchase price. This results in agents with solar and batter-
ies to have a higher average energy purchase price compared to agents with only solar 
at an internal distribution tariff above 2.8c/kWh.

Another useful metric to consider is that of total energy traded per agent. Agents 
without batteries have a fixed total energy consumption. However, agents with bat-
teries will change their total energy imports and exports based on battery cycling. 
As the internal distribution tariff increases, battery cycling should decrease due to 
reduced returns from energy trading. This effect can be quantified using this section’s 
model. The total yearly average energy imports per agent with a battery and solar in 
this model is shown in Fig. 12.

Figure  12 demonstrates that energy imports and exports of agents with batteries 
decrease as the internal distribution tariff increases. It can also be stated that the 
rate of change of energy transfers decreases with increasing internal distribution 
tariff. Therefore, battery operation is most sensitive to changes in internal distribu-
tion tariffs when these tariff values are low. The difference between the energy import 
and export curve is the total energy consumed by the agent. This value should be a 
constant.

Fig. 11  Yearly agent energy price vs internal distribution tariff

Fig. 12  Agent with battery and solar yearly energy transfers vs internal distribution tariff
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Energy storage variations

It was determined in Table  8 that batteries result in a greater marginal benefit when 
agents participate in the REH relative to trading individually with the grid. Therefore, 
establishing REH trading systems could be an effective way to incentivise the greater 
uptake of distributed energy storage. Achieving this would require the changes in finan-
cial outcomes when agent’s energy storage characteristics are varied to be analysed in 
greater detail.

To quantify the effect of changing the network energy storage, a new DER optimisation 
model was used where the number of agents with batteries was varied between 0 and 21. 
Each agent with a battery had 10 kWh of energy storage as per the previous model. All 
battery properties will be the same as previously analysed. When the network has 12 or 
less batteries, each battery will be allocated to agents with solar, as these agents benefit 
the most from batteries. When there are between 13 and 21 batteries in the network, the 
number of batteries that exceeds 12 will be allocated to agents without solar. Each agent 
will be allocated a maximum of one battery. When there are 21 batteries in the network, 
there will be one agent per phase without a battery.

Optimising DER operation within the network with different numbers of batteries 
over 1 year results in the Fig. 13 value of total grid energy costs.

Fig. 13  Total yearly REH energy cost vs number of batteries

Fig. 14  Total yearly REH energy marginal cost vs number of batteries
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Figure 13 demonstrates that a net reduction in energy costs is achieved when the 
number of batteries in the REH increases. It is also discernible that the relationship 
between total energy cost and the number of batteries is not linear. Figure 13 demon-
strates a diminishing marginal return of increasing the number of batteries based on 
the existing number of batteries. This relationship can be seen from the REH marginal 
cost of energy shown in Fig. 14.

Figure 14 shows that the marginal cost of energy decreases less with each additional 
battery added to the REH. The addition of the first battery to the REH results in a 
$1350 reduction in total energy costs, while the 21st battery reduces total energy costs 
by $684 . The marginal benefit of a 10 kWh battery for an agent trading individually 
according to Table 8 is $1070.1 , which falls between the marginal cost of 6 and 7 bat-
teries in Fig. 14. It is therefore optimal to install 6, 10 kWh batteries in the REH mod-
elled in this analysis.

Figure 14 demonstrates that participating in the REH can result in greater returns 
for agents investing in batteries compared to trading individually. However, these 
benefits reduce with increasing energy storage within the REH. The diminishing mar-
ginal benefit of energy storage does not effect agents trading individually with the 
grid. This is because standard residential tariffs are not dynamically priced to reflect 
the true cost of network access at specific instances in time. Such a dichotomy will 
always result in an upper limit to maximum viable energy storage within a REH, as 
REH prices dynamically reflect network congestion and constraints.

It would also be beneficial to gain insights into the effect of varying the total energy 
storage capacity at each agent. This allows the difference to be observed between add-
ing more distributed storage vs having storage at only a few locations. To achieve this 
comparison, the REH model with 6 agents with batteries will be used. However, the 
storage capacity of these 6 agents will be scaled such that the total network storage 
varies between 0 kWh and 210 kWh. This is the same variation in total REH storage as 
depicted in Fig. 13, although the storage is only at 6 locations within the REH. Each of 
the 6 agents with batteries will have the same amount of storage.

Simulating the REH over 1 year and recording the total REH grid imported energy 
cost as a function of total REH storage results in the “Fixed Number of Batteries” data 

Fig. 15  Total yearly REH energy cost vs number of batteries
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in Fig.  15. Figure  15 compares this new data to that achieved previously with fixed 
battery sizes.

The benefits of distributing storage in the network can be observed from Fig.  15. 
For network energy storage values less than 60 kWh, the fixed battery size network 
will contain less batteries than the fixed number of batteries network. In this region, 
the network with the greater number of batteries will result in a lower total energy 
cost. Above 60 kWh of REH energy storage, the fixed battery size network will have 
the greater number of batteries. In this region the network with the greater number 
of batteries also has the lowest total energy costs. Therefore, Fig.  15 demonstrates 
that for a given amount of energy storage, the lowest total cost is always achieved by 
the network with the greater number of batteries. This difference can be attributed to 
more distributed batteries having a greater ability to minimise distribution losses and 
are less impacted by localised network constraints.

Advantages of distributed storage can also be observed by analysing the marginal 
cost of energy due to changes in network energy storage. Figure 16 shows the mar-
ginal cost of grid energy imported into the REH as a function of network storage.

Fig. 16  Total yearly REH energy marginal cost vs number of batteries

Fig. 17  Aggregate agent yearly imported energy vs network energy storage
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Figure  16 demonstrates that a fixed number of batteries results in a lower marginal 
reduction in energy costs compared to fixed battery sizes distributed throughout the 
network for total energy storage values of 20 kWh and above. The beneficial effect of 
distributing storage throughout the network can also be observed through the aggregate 
sum of all energy imported by agents in the REH. This value is shown in Fig. 17 for one 
year of simulated data.

For network storage of less than 60 kWh, the fixed battery size model will have less 
than 6 batteries. Above 60 kWh, the number of batteries in the fixed battery size model 
will be greater than the 6 batteries in the fixed number of batteries model. Therefore, 
Fig. 17 demonstrates that the network configuration with the greatest number of batter-
ies results in the largest total amount of imported energy into each agent.

A similar trend can be observed with aggregate agent energy exported energy as 
shown in Fig. 18.

As was observed with aggregate agent energy imported energy, the REH with the most 
batteries results in the largest amount of aggregate agent energy exported energy for 
a given total network energy storage. Any differences in agent imported and exported 
energy between simulations with the same total network energy storage can only be 
explained through differences in battery cycling. This is because total energy consump-
tion and generation was constant for all simulations. Therefore, the more distributed 
batteries are within the network, the more cycling they are subject to. As demonstrated 
by Fig. 15, this greater battery cycling results in lower yearly grid energy import costs.

Solar capacity variations

The previous section demonstrated how a batteries impact on the REH depends on the 
total storage and distribution of batteries within the network. As total solar generation 
is also a factor that impacts energy prices within the REH, quantifying these effects on a 
per agent basis would also have merit.

Variations in solar generation should exhibit a different impact on grid imported 
energy compared to variations in network energy storage. This is because the amount 
of solar generation is not an optimisation decision variable. Therefore, fluctuations in 
energy prices within the REH will not change solar generation. However, greater solar 

Fig. 18  Aggregate agent yearly exported energy vs network energy storage
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generation will result in more energy exported to the utility grid, thereby lowering 
energy prices within the REH.

To quantify the effect of solar generation variations, a new DER optimisation model 
was used where the number of agents with solar was varied between 0 and 24 agents. 
Each agent with a solar installation had a peak DC solar generation capacity of 6.25 kW. 
This configuration results in changing the network solar generation capacity between 
0 kWh and 150 kW.

Optimising DER operation within the network with different numbers of solar instal-
lations over 1 year results in Fig. 19 value of total grid energy costs.

Figure 19 shows a net reduction in energy costs occurs when the total number of solar 
installations within the REH is increased. A diminishing marginal return is also discern-
ible from Fig. 19 as the relationship between energy costs and solar installations is non-
linear. REH marginal costs from the data displayed in Fig. 19 can be quantified and are 
depicted in Fig. 20.

Figure 20 shows that the marginal grid energy costs decreases with each additional 
solar installation. The first solar installation results in a $1002 reduction in total 
energy costs. At a price of $925.38/kW , the simple payback time for the first 6.25 kW 

Fig. 19  Total yearly REH energy cost vs number of solar installations

Fig. 20  Total yearly REH energy marginal cost vs number of solar installations
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solar installation is 5.77 years. The last solar installation has a yearly marginal benefit 
of $636/kW which equates to a simple payback time of 9.09 years.

As the lifetime of a solar installation is usually considered to be 25 years, these pay-
back times should result in the investment being cash flow positive within its opera-
tional life. However, some investors require a simple payback time of 7 years or below. 
In this case, the maximum number of solar installations would be limited to 12.

Another useful metric to consider when planning solar installations is the effect of 
distributing the generation capacity throughout the network relative to more concen-
trated generation locations. The data displayed in Fig. 19 was the result of distributing 
new generation capacity throughout the network. This result can be compared to that 
obtained by fixing the number of agents with solar and adjusting their solar capac-
ity to change total network solar generation capacity. To achieve this, the number of 
agents with solar will be fixed at 12. These 12 agents will all have the same solar gen-
eration capacity that will be scaled with each successive simulation.

Optimising DER operation within the network with a fixed number of solar instal-
lations, but varying total solar capacity over 1 year results in Fig. 21 value of total grid 
energy costs. This data is also shown with the Fig.  19 values obtained by fixing the 
solar system size and varying the number of agents with solar.

Figure 21 reveals that there is no significant effect on total energy costs within the 
REH due to the distribution of solar generation within the network. This result could 
be due to the inability to control solar generation as it is not an optimisation decision 
variable. Total solar generation is also less that total energy consumption. As such, it 
is unlikely that any network constraints will result in solar generation curtailment.

Changing the solar generation capacity will also impact the energy imported into 
each agent per year. The aggregate sum of all energy imported into each agent when 
the number of agents with solar is fixed is shown in Fig. 22.

Total agent imported energy is approximately linear with solar generation capac-
ity. The square of the linear regression correlation coefficient is 0.9975 for the data in 
Fig. 22. This indicates that almost all of the variations in total agent imported energy 
are due to changes in solar generation capacity. Therefore, distribution losses and 

Fig. 21  Total yearly REH energy cost vs network solar capacity
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network constraints have minimal impact on the solar hosting capacity of this net-
work for all realistic amounts of solar generation capacity.

Discussion
Results obtained from analysing the case study used in this paper revealed that financial 
savings could be achieved through load aggregation and active network management. 
This can be achieved using dynamic and cost reflective tariffs to incentivise distribution 
loss reduction and maximise network utilisation. However, as shown in Fig. 10, there is 
a point where existing flat rate energy market tariffs prevent the proposed market struc-
ture being viable. This is because existing flat rate tariffs do not reflect the dynamic costs 
of consuming energy on the distribution network. It is therefore advisable to increase 
the time and network traffic dependence of current energy market tariffs.

It was also observed that lowering energy prices within a REH has the effect of increas-
ing the payback time of energy generation systems. However, it was also noted that solar 
generation does not result in any significant energy loss reductions when evenly distrib-
uted throughout the network. It is therefore possible to benefit from economies of scale 
by building larger shared solar generation assets as opposed to many agent based solar 
installations.

Batteries were found to result in significant cost savings and reductions in energy 
losses. However, they were also very sensitive to internal distribution tariffs. This sug-
gests that battery specific tariffs would be required to ensure the benefit they provide to 
other agents and the distribution network is sufficiently compensated for.

Results in this paper are unique among current literature in the assessment and alloca-
tion of distribution energy losses. Most research reviewed and cited in this paper men-
tions the use of OPF in scheduling DER, although the effect that energy losses derived 
using OPF have on agent energy costs are implied, but not quantified. This is because 
OPF and its associated losses rarely contain the key research contributions when dis-
cussing REH and TEM. The authors of Faqiry et al. (2020) provide the closest research 
into quantifying distribution energy losses to the model in this paper. However, even this 
level of detail is insufficient to make a direct compression to the research findings in 
this paper. The distribution model described in Jiang et al. (2022) provides a similar level 

Fig. 22  Aggregate agent yearly imported energy vs network solar capacity
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of complexity and quantifying of distribution losses. However, the model used works at 
48V and incorporates features specific to this small scale application. As such, its find-
ings are not directly comparable to those presented in this papers. Due to these factors, 
more research is required to make OPF a key feature and source of innovation in REH 
models.

Conclusion
Results presented in this paper demonstrated that savings can be achieved by energy 
consumers in a VPP utilising existing tariff structures and DER configurations. These 
financial benefits exceed those achievable by agents with DER trading individually with 
the utility grid. Agents must relinquish control of their DER assets to achieve these ben-
efits, but unlock greater value from their energy flexibility. This is evident by their higher 
average energy selling prices within the REH. Agents without DER also achieve financial 
benefits through aggregated energy purchasing.

Energy savings of the proposed business model varied based on DER configuration. 
When all DER within the REH was enabled, agents without solar or batteries reduced 
their energy costs by 29.2% compared to having no DER enabled and purchasing energy 
individually. Agents with DER also achieved energy cost reductions by participating in 
the REH relative to trading individually. In the REH, agents with solar achieved a energy 
cost reduction of 64.8% and agents with batteries and solar achieved a cost reduction of 
118.2% relative to having no DER.

It was also observed that including an internal distribution tariff within the REH had 
a significant impact on financial outcomes. These internal tariffs may be necessary to 
compensate electricity distributors for the use of their network and to pay for DER 
aggregation and control services. Agents with batteries were especially sensitive to these 
internal distribution tariffs. As such, further research may be needed into internal tariff 
structures to incentivise battery participation.

It was also observed that VPP implementations accounting for distribution losses and 
constraints can achieve savings relative to agents trading individually with the utility 
grid. However, there is a point where fixed rate tariffs incentivise agents to leave the VPP. 
This is due to existing distribution tariffs not accurately reflecting time specific distribu-
tion costs in high DER penetration networks.

The model presented in this paper contrasts with existing research relating to REH’s as 
the OPF model became a key feature of agent specific energy pricing. Using this meth-
odology, pricing systems can be used to incentivise and reward agents for minimising 
distribution losses. The OPF model presented does not require decomposition or line-
arization to solve. As such, computational time constraints were not required to be con-
sidered in this research.

Overall, results presented in this paper demonstrated that load aggregation and 
centralised DER coordination can result in financial savings in the current regulatory 
environment.
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Appendix
See Tables 10, 11.

Table 10  Nomenclature

Sets

T Set of time slots

X
c
n Set of all nodes connected to node n

Xn Set of all nodes

Xa Set of all agents

Xp Set of all phases

Xphase Set of all agents connected to phase

Parameters

�t Time step resolution

γ
imp
grid,phase

Maximum grid import energy

γ
exp
grid,phase

Maximum grid export energy

γ
imp
a,max

Maximum energy import of agent a

γ
exp
a,max Maximum energy export of agent a

γ
max ,ch
a,batt

Maximum charge energy of agent a battery

γ
max ,dis
a,batt

Maximum discharge energy of agent a battery

γ total
a,load_s

Total daily energy consumed by agent a schedulable load

γmax
a,load_s Maximum energy per time slot of agent a schedulable load

ηcha Charge efficiency of agent a battery

ηdisa Discharge efficiency of agent a battery

eSoc,max
a,batt

Maximum energy of agent a battery

Continuous variables

Xtgrid,phase Grid imported minus exported energy during time t

X
t ,imp
grid,phase

Grid imported energy during time t

X
t ,exp
grid,phase

Grid exported energy during time t

Xextra_ingrid,phase
Additional 2nd stage grid imported energy

Xextra_outgrid,phase
Additional 2nd stage grid exported energy

Xta Agent a imported minus exported energy during time t

X
t ,imp
a

Agent a imported energy during time t

X
t ,exp
a

Agent a exported energy during time t

Xt ,cha,batt
Agent a battery charge energy during time t

Xt ,disa,batt
Agent a battery discharge energy during time t

Xta,load_s Agent a schedulable load energy during time t

Xta,load_f Agent a fixed load energy during time t

Xta,pv Agent a solar energy generation during time t

et ,SoCa,batt
Agent a battery stored energy at time t
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Table 11  Nomenclature

Binary variables

µ
t ,exp
grid

True if energy is exported to the grid during time t

µ
t ,imp
grid,phase

True if energy is imported on phase during time t

µ
t ,imp
a

True if agent a imports energy during time t

µ
t ,ch
a,batt

True if agent a battery is charging during time t

µt
a,load_s

True if agent a schedulable load is on during time t

Electrical model variables

Ct
market

Market price at time t

Ct
grid,buy

Grid purchase price at time t

Ct
grid,sell

Grid sell price at time t

Cp Penalty price for changing 1st stage grid import/export

Ct
a Agent a energy price at time t

Ct
s Voltage source energy price at time t

Ct
l

Load energy price at time t

Ets Source energy transfer during time t

Etl Load energy transfer during time t

In,x Current flowing from node n to x

Ia Current flowing into agent a

Igrid,phase Grid phase current

It Source to load current at time t

Pta Agent a price scalar during time t

Rn,x Resistance between node n and x

Ra Resistance between agent a and connected node

Va Agent a voltage

Vr ,a Node voltage of agent a connected resistor voltage

Vn Node n voltage

Vx Node x voltage

V t
s Source voltage at time t

V t
l

Load voltage at time t
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