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Sciences, Heinrich-MufBmann-Str. 1,

Jlich, Germany significant changes. Instead of only a few large-scale producers that serve aggregated

consumers, a shift towards regenerative energy sources is taking place. Energy systems
are increasingly being made more flexible by decentralised producers and storage
facilities, i.e. many consumers are also producers. The aggregation of producers form
another type of power plants: a virtual power plant.

On the basis of aggregated production and consumption, virtual power plants try to
make decisions under the conditions of the electricity market or the grid condition.
They are influenced by many different aspects. These include the current feed-in,
weather data, or the demands of the consumers. Clearly, a virtual power plant is
focusing on developing strategies to influence and optimise these factors. To
accomplish this, many data sets can and should be analysed in order to interpret and
create forecasts for energy systems. Time series based analytics are therefore of
particular interest for virtual power plants.

Classifying the different time series according to generators, consumers or customer
types simplifies processes. In this way, scalable solutions for forecasts can be found.
However, one has to first find the according clusters efficiently.

This paper presents a method for determining clusters of time series. Models are
adapted and model-based clustered using ARIMA parameters and an individual quality
measure. In this way, the analysis of generic time series can be simplified and additional
statements can be made with the help of graphical evaluations. To facilitate large scale
virtual power plants, the presented clustering workflow is prepared to be applied on
big data capable platforms, e.g. time series stored in Apache Cassandra, analysed
through an Apache Spark execution framework.

The procedure is shown here using the example of the Day-Ahead prices of the
electricity market for 2018.

Keywords: Virtual power plant, Time series, Model-based clustering, Arima,
Classification

Introduction

Energy transition is a highly discussed topic. It describes the shift from fossil energy
sources to renewable energy and is an important piece for a solution to the global warm-
ing problem. While carbon dioxide emissions shall be reduced, the energy supply must be
sustainably secured. Formerly, electrical power was generated by a rather small amount
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of power plants that adapted their production based on the aggregated demand of a large
amount of consumers. Now, energy is produced by many small power plants that were
geographically and, with respect to the grid, topologically dispersed. A new concept of
power plants is built among these decentralised resources, called virtual power plants
(VPP). To address the specific situation of small scale producers, some VPPs also integrate
consumers, or so-called prosumers into their model. Their goal is to gain new flexibili-
ties for either the business strategy on the energy stock exchange market or stable grid
operation.

The German Ordinance on Electricity Network Access stipulates that energy consump-
tion and production must be in balance at all times in an electricity grid (Stromnetz-
zugangsverordnung - StromNZV, section 4). Any inconsistency in the load generation
balance leads to a violation of the grid parameters (Latha et al. 2011). A VPP is also sub-
ject to these requirements. To this end, the grid is continuously monitored and generation
is adapted to consumption.

In order to obtain flexibility options, the adjustable control of power-consuming pro-
cesses, so-called demand side management (DSM), is necessary. For this purpose, the
demand for electricity is controlled by means of targeted addition and subtraction of loads
on the basis of the price level. (Deutsche Energie-Agentur GmbH (dena) 2016)

Demand side management is often realised with the help of storage elements. Storage
elements are a good example for the prosumer model since they can “consume” (store)
or “produce” (inject) energy. Also, various consumers can shift their load. Charging an
electrical car does not always have to be done as quick as possible. During their working
time, employees might rather accept a deadline charging approach in which the car is
charged by a specific time, i.e. 5pm.

The optimisation steps of a virtual power plant depends on many input values. The
power feed-in of all producers, current consumptions, the weather conditions and energy
prices are only a few examples for variables that all have to be forcasted.

Decisions on buying or selling energy can be made by knowing future prices or their
behaviour. A VPP makes the energy consumption and production more flexible to reduce
costs. For a profitable DSM future knowledge is indispensable.

To interpret the input parameters as time series, “a sequence of observations taken
sequentially in time” (Box et al. 1994, p. 1), is much more useful. Time series models can
be used for forecasting, model specification, process control and estimation.

An algorithm to analyse generic time series and cluster the results is of great interest.
To process multiple time series simultaneously, this algorithm can be applied to Apache
Spark as execution framework. Apache Cassandra could provide a distributed storage
infrastructure for the time series, as it is done in (Krome and Sander 2018).

A VPP needs multiple forecasts for its DSM. Among others energy prices and the actual
generation of different production types, i.e. offshore wind and hydro pumped storage,
are used.

Based on the result of a cluster analysis potential action strategies for virtual power
plants could be derived. A use case of VPPs may be clustering clients. Here, an algo-
rithm groups a set of objects in such a way, that the objects in the same group (cluster)
are more similar to each other than those in other groups (clusters). Based on his-
torical consumptions patterns might be found, which can be used to cluster different
clients. For example, some clients such as a bakery consume most energy in the morning,
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while other clients such as a dining restaurant have a high consumption in the evening.
Further analyses may get a better quotation for each customer, so that they have to
pay less for energy and the virtual power plant can predict the consumption more
precisely.

Another application is the control of loads by energy prices and the actual gener-
ation. If a VPP knows the price trend of the electricity and can react to forecasted
price signals in short or medium term, the electricity costs can be reduced. Thus the
value of the additional or less consumed electricity can be estimated. This enables to
inform customers about potential savings. As storage option hydro pumped storages are
a highly used option (Latha et al. 2011; Béguin et al. 2014). The control of the stor-
ages depends on the current state of the power grid. General statements and predictions
are helpful to obtain an assessment of the storage behaviour. A VPP depends on such
knowledge.

Explanatory for the described problem, the Day-Ahead prices of the electricity market
for 2016 - 2018 are analysed. Every day represents one time series of 24 values. Addi-
tionally, the aggregated generation of hydro pumped storages are considered. One day is
reflected in 96 quarter h of this data. Each of these can be modelled with autoregressive-
integrated-moving average (ARIMA) methods. Afterwards, different quality measures are
considered to cluster time series. The different years are compared with each other and
searched for commonalities.

The paper is organised as follows. First, an overview to related work is presented.
Ensuing, a short introduction to time series analysis is given in “Time series analysis”
section. “Classification or clustering” section summarises the difference between clas-
sification and clustering and presents the used algorithm. In “Methodology” section an
exemplary clustering is carried out. The results of the clustering of 2018 are given in
“Empirical evaluation” section. Additionally, the Day-Ahead prices of 2016 and 2017 and
the daily net generation output of hydro pumped storages are analysed. A conclusion and
an outlook are provided in “Conclusion and future work” section.

Related work

Other researchers have presented techniques to cluster electricity price time series with
K-means or Fuzzy C-means (Martinez-Alvarez et al. 2007) or to forecast those time series
with GARCH models (Hirdle and Trueck 2010), an adaptive non-parametric regression
approach (Zareipour et al. 2006) or based on the Weighted Nearest Neighbours method
(Lora et al. 2007). In (Zhou and Chan 2014) a model-based multivariate time series clus-
tering algorithm is presented, where the clusters are created with K-means. However, the
approaches do not use ARIMA orders to group similar models. Consequently, it is nec-
essary to discover patterns in the electricity prices time series models to provide better
forecasting capabilities.

Time series analysis

By analysing time series the focus of the analysis is the dependence between adjacent
observations. A very important feature of time series is stationarity. The joint probability
function of a stationary model does not change when the stochastic process is shifted in
time. So, it is important to distinguish between stationary and non-stationary time series.
Former are adapted with autoregressive and moving average models or a mixture of both.
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A stationary behaviour of non-stationary time series can be obtained by analysing the dth
difference of the process. (Box et al. 1994)

Stationary time series
Stationarity means, that the process is not evolving over time. There are two main
stochastic models to analyse stationary time series: autoregressive (AR) and moving
average (MA) models.

AR models represent the current value of a process as a finite, linear combination of
previous values of the process and a random noise w. The AR model of order p, AR(p), is
indicated as in (Box et al. 1994):

p
X = Z Gixe—i + 0 = Prx,—1 + PoXe—2 + ...+ PpXep + @ 1)
i=1

where X; is the time series value, wy is the random noise and ¢; are the model coefficients.
A linear model relates a dependent variable or a set of independent variables and a ran-
dom error term. It is referred to as a regression model. This model is named autoregressive
because ¥ is regressed by previous values of itself.

While an AR model (1) relates & to its previous values as weighted sum, MA models
represent x linearly dependent on a finite number g of previous random noise w’s. They
consider the error of the process. The MA of order g, MA(g) is (Box et al. 1994):

q
Xy = Z Ojwy—j = wp + 6101 + ... + 0404 2)
j=0
where 0; are the model coefficients with 6 = 0.

With a mixof AR (1) and MA (2) more flexibility is achieved. This leads to autoregressive-

moving average (ARMA) models of order p and g, ARMA(p, q) (Box et al. 1994):

» q
X = Z Gixe—i + Z Ojwi—j
i=1 j=0
where ¢; are the model coefficients of the AR part and 6; are those of the MA part.

Non-stationary time series
To analyse non-stationary time series autoregressive-integrated-moving average (ARIMA)
models are used. Non-stationary time series can be transformed so that the new time
series is stationary.

The Box-Cox transformation stabilises the variance of the process, so that stationarity
is obtained. It is defined as in (Box and Cox 1964):

o [ oo ®
In(x; + ¢) foraA =0,

where c is constant. The parameter A may be estimated, i.e. with a maximum likelihood
estimation. For this paper, the method of (Guerrero 1993) is used, where A minimises the
coefficient of variation for subseries.

Then, an ARIMA model can be adapted. In particular, if there are d unit roots, the ARIMA
model of parameters p, d and g, ARIMA(p, d, ), is indicated as in (Box et al. 1994):

¢ (B)(1 — B)%x; = 6By,
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where B is the backward shift operator, which is defined as Bx; = x;_;. The functions ¢
and 0 of B are defined as

¢(B)=1—¢p1B— B> —...— B’ and 6(B)=1-0,B— 0,8 —...—6,B".

¢ (B) represents the AR part and 6(B) the MA part of the model.

Interpretation of model parameters

The predicted value of a time series Y is composed of a weighted sum (or constant term)
of recent values of Y and a weighted sum (or constant term) of recent values of errors.
The parameters of an ARIMA (p, d, q) model have the following meaning:

p: number of lagged autoregressive terms,
d: number of non-seasonal differences needed for stationarity, and
q: number of lagged forecast errors in prediction equation.

The interpretation of ARIMA models depends on the concrete values of the model
parameters p, d and q. Looking at the number of differences (d) subsequent remarks can
be made, letting y be the dt# difference of Y, y = Y(@:

d=0: Yt = }/t:
dzll _)/t = Yt — Yt—l:
d=2: yr=(Y; = Y1) = Y1 = Yr2) = YV: = 2Yi 1 + Yio.

The value of p describes the order of the autoregressive model. With an ARIMA(1, 0, 0)
model Y is regressed on itself lagged by one period, e.g. the stock price of the hour before.
For p = 2 it is regressed on itself lagged by two periods andsoon. If p =g =0andd = 1
(ARIMA(0, 1, 0)) the model describes a non-stationary random walk. ARIMA and ARMA
models are related. By d-fold integration of the ARMA(p, q) process an ARIMA(p,d, q)
model is achieved.

Model selection

A fitted model is satisfactory, if the model residuals are uncorrelated and resemble white
noise. Whether a model is appropriate pertaining the randomness of the time series can
be tested with the Ljung-Box test (Ljung and Box 1978):

Hy: The data are uncorrelated.
Hi: The data are correlated.

The test statistic is defined as:

h /3/%
an(n+2);n_/,
where # is the sample size, / is the number of tested lags and py is the autocorrelation at
lag k. The test is applied to the residuals of a model.

There exist multiple algorithms to fit ARIMA and ARMA models. For example, the
algorithm auto.arima (Hyndman and Khandakar 2008) chooses the model order d by a
unit root test in the beginning. Afterwards, different ARIMA (p, d, ) models are fitted to
the given time series.

As d represents the number of differences used to get stationarity, only p and ¢ need
to be selected for a good fit. It is suggested to use the Akaike information criterion (AIC)
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(Akaike 1973) as prime criterion for model selection (Brockwell and Davis 2006). The AIC
statistic is defined as:

AICy 4 := —2In(maximum likelihood) + 2(p + g + 1),

where p + g + 1 denotes the number of parameters estimated in the model. The last part,
2(p 4+ g + 1), is a penalty factor for inclusion of additional parameters. (Box et al. 1994)

The algorithm auto.arima iterates p and g and selects the model with the lowest AIC as
best fit.

Classification or clustering
The goal of classification and clustering is to organise and categorise large data sets. The
big difference between both methods is their a priori knowledge. A short clarification of

terminology is given based on (Ceri et al. 2013).

Classification

Classification algorithms assign an object or observation to one or more categories. Each
observation is characterised by quantifiable properties or features. Based on human anno-
tated data the supervised learner is trained initially, where it assigns a class to each data

item. Some example for classification methods are

e Naive Bayes,

® Regression Classifiers,

® Decision Trees, and

e Support Vector Machines.

Clustering
A clustering algorithm is an unsupervised learner. No a priori knowledge is needed
to group observations into categories. The groups are a measure of inherent similarity
between the including instances. The objects within one cluster are very similar to each
other (compactness property) and are very different to observations in other clusters
(separateness property).

The steps of a cluster analysis are as follows:

1. Process the input data and characterise each observation with descriptors, so called
features.
Select a similarity function and calculate the distance matrix.
Analyse the data set for clusters with the chosen similarity function to get clusters
with best possible compactness and separateness properties.
Validate the clusters by so called validity indexes.

5. Label the clusters.

Description of the algorithm

The steps of the algorithm are visualised in Fig. 1. The Day-Ahead prices of the electricity
market for 2018 are loaded from (ENTSO-E Transparency Platform) and each day gets
transformed to a time series of 24 observations. The time series are the input data for the
algorithm.
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Fig. 1 Workflow of the algorithm
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First, all time series are tested for stationarity. If the augmented Dickey-Fuller test (Said
and Dickey 1984) declines stationarity, a Box-Cox transformation (Box and Cox 1964),
using (3), is performed. Afterwards, multiple ARIMA models are fitted with auto.arima
(Hyndman and Khandakar 2008). The parameters of each model serve as features of the
time series. The values are saved as featured data.

The similarity function for the ARIMA models is the corresponding AIC. A small mod-
ification can be used to put more weight on the complexity of the model, represented by
p and ¢ (see (4)).

Using AIC as similarity function and the ARIMA parameters as features of the time
series, the main algorithm detects clusters within the vector of assigned models. A cluster
is valid if there is at least one time series, which is properly described by the model corre-
sponding to the cluster. This is tested with a Ljung-Box test (Ljung and Box 1978), which
analyses the autocorrelation of the model residuals.

The valid clusters get labeled by their group name in form of triplets of (p,d, g), the
ARIMA orders of the associated models.

Categorisation of the algorithm

The developed algorithm groups time series based on features without a priori knowl-
edge. A training phase with human annotated observations is not necessary. Instead
of statistical classification methods the AIC serves as similarity function. The detected
groups get validated and labeled. Overall, the algorithm performs a model-based cluster-
ing approach as described in (Warren Liao 2005), where the time series are modelled and
coefficients or residuals get clustered (Warren Liao 2005, Fig. 1). While a priori knowl-
edge is not necessary, the interpretation of the clusters should rely on domain specific
features.

Methodology

This section explores the data and summarises the methods used for analysis. The algo-
rithm described here has been implemented in R and evaluated for the Day-Ahead prices.
The aim is to analyse clusters identified by the algorithm.

Data

For analysis, three sets of Day-Ahead prices have been used, collected by ENTSO-
E Transparency Platform (ENTSO-E Transparency Platform). These are the electricity
prices for an hour per day for the years 2016, 2017 and 2018. In the following sections a
detailed analysis of the data of 2018 are given. The data for 2016 and 2017 will be evalu-
ated later. The results will be compared with those of 2018. Furthermore, the aggregated
generation of hydro pumped storages for 2018 are clustered.
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The energy price relies on many aspects and has a very special behaviour (Hérdle and
Trueck 2010). Scarcity and abundance have high impacts. Additionally, the price is related
to performance. Supply and demand have to coincide at every point in time at every place
in Germany (Stromnetzzugangsverordnung - StromNZV, “Classification or clustering”
section). So, shortages can not be equalised by profusion at another place or time.
(Borchert et al. 2006) As displayed in Fig. 2a the Day-Ahead price is as volatile as stocks.

Having a look at the prices throughout a year, some conspicuous features arise. Every
day has to be analysed separately and holidays vary greatly from normal weekdays. The
mean price within a week is mostly constant. A systematic decrease at weekends can
be observed. (Borchert et al. 2006) In Fig. 2b one exemplary week (calender week 2) is
displayed. The mentioned effects can be recognised.

There is a high demand fluctuation that is originated by business hours at a daily level as
seen in Fig. 2b or changing climate conditions. Consequently, energy prices have a strong
seasonal component (Hérdle and Trueck 2010). There are big differences between winter
and summer. In summer the energy around noon is more expensive. In winter there is a
peak in the evening. (Borchert et al. 2006) This phenomenon can be seen in Fig. 3.

The Day-Ahead price on January 30, 2018 increases into the evening hours, where a
peak is reached around 7pm. The plot of the Day-Ahead prices of July 21, 2018 peaks
around noon. April 1, 2018 was Easter Sunday. The Day-Ahead prices differ greatly from
those of normal weekdays. So, holidays need to be analysed separately. While clustering
can be handled without a priori knowledge, domain specific knowledge is either used to
filter the data before clustering or during the interpretation process.

Fitting models
The loaded Day-Ahead prices from (ENTSO-E Transparency Platform) are converted
into n = 365 time series with 24 knots each. In effect, the vector

ts := (ts1,...,L8y)

is considered. The bold font indicates vectors. Before models can be adapted stationar-
ity must be checked and if necessary be transformed with the Box-Cox transformation
(Box and Cox 1964), (3). One example for a non-stationary time series are the values for
December 23. The variance differs throughout the day. The variance-stabilisation trans-
formation is applied to the time series to bring the non-normal dependent variables into

Day-Ahead prices in 2018 Day-Ahead prices of one week

Fig. 2 Volatility of energy prices. a Day-Ahead prices in 2018. b Day-Ahead prices of one week
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Day-Ahead prices for January 30, 2018 Day-Ahead prices for July 21, 2018
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Fig. 3 Two examples for Day-Ahead prices 2018

normal shape. Since the logarithm is applied to the data, the new values differ greatly from
the original ones in magnitude.

In Fig. 4 the time series before and after transformation is displayed. While the original
prices wobble between 10e and 70e, the transformed prices wobble between 30e and 270e.
The transformation is necessary for a model adaption, but the values are not relevant for
the ARIMA parameters. Those values would be important for prediction, in which case
the inverse Box-Cox transformation should be applied.

After transformation, multiple ARIMA models are fitted with auto.arima (Hyndman
and Khandakar 2008). To get all tested models, the option trace is set to TRUE and
stepwise to FALSE. A drift is not allowed. The trace of auto.arima yields all models. Those
with an infinite AIC are eliminated and a validation with the Ljung-Box test (Ljung and
Box 1978) is performed. Models, whose AIC is greater than the median of all AICs, are
discarded.

On average, the median AIC of the different models per time series is greater than
52% of all AICs. It is also about 7% larger than the minimum AIC per time series. The
restriction of the models to all those whose AIC is smaller than the median corresponds
to a confidence interval with a flexible confidence level for each time series (day). On
average, the level is beneath 10%.

The resulting models represent a set of m “proper models” Here m can differ for each
day, because of the elimination process described above. The model parameters, as well
as the AIC for each model, are saved in vectors p, q and AIC, where

p=[pi.,pml’, a:=[q1,....qgul,and AIC:=[AIC,,...,AIC,]T.

Day-Ahead prices for December 23, 2017 Transformed Day-Ahead prices
~ =
) T
a9 4 g
F g~
k. &
2 T T
5 10 15 20 5 10 15 20
Hour Hour
Fig. 4 Day-Ahead prices of December 23, 2018 and transformed time series
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Cluster analysis
After all time series have been analysed, the data sets are scrutinised for clusters. The
different time series are categorised by the ARIMA parameter d. An algorithm is per-
formed which selects the amount of clusters so that every time series can be adapted to
one model. The resulting clusters for 2018 are listed in Table 1, grouped by the value of d.
While there are five or six clusters for d = 0 and d = 1 there exists only one cluster for
d = 2. Only five time series were adapted by an ARIMA(p, 2,q) model. After the above
clusters are determined, every time series is mapped to a cluster by a similarity function.
The first approach is, to use the AIC as similarity function to select the best model. So,
any fixed day k is classified as ARIMA (py, dy, q;), where

[ := argmin(AIC),
where argmin(x) for any vector x € R™ is defined as
{l:x; = min(x)}.

The above index is assumed to be unique.

As stated by (Ruppert et al. 2003), “all models with reasonably small [...] AIC values
should be considered as potentially appropriate and evaluated according to their simplic-
ity[...]” Hence, one might rather want select a less complex model over the one with the
lowest AIC to gain more stability.

The ARIMA orders p and g indicate the complexity of a model. In order to reduce the
model complexity, another similarity function is contemplated, namely the mAIC. First,
define for any vector x =[x1,. .. ,xm]T the map

X; — min(x)

x:R">x — e {RN[0,1]}Y",Vie{1,...,m}.

max(x) — min(x)

Now, the mAIC is defined by a linear combination of the normalised versions of AIC
and the model complexity as

mAIC=(1—-«a)-AIC+a-p+q. (4)

As a result of the elimination process the AIC of all models tend to be very similar.
The average standard deviation is approximately two. Additionally, the AIC involves the
logarithm of the likelihood function. Thus, the parameters p and g might be undervalued,
because of their low valence. Only models with low AIC (smaller than the median) are
included in the analysis. The attention is already focused on good approximations. The
results are stable for « > 0.75. For this consideration « = 0.9 was chosen. It puts the
complexity of the models in foreground, but the measure still includes the AIC in the
rating.

Here, ARIMA (p+, dy, qr+) is assigned to time series k, where

I* ;= arg min(mAIC).

Table 1 Clusters grouped by d

d amount of cluster associated models as (p,d,q)

0 5 (2,00), (3,0,0), (4,0,0), (1,0,1),(2,0,1)

1 6 (1,1,0),(2,1,0), (3,1,0), (0,1,1), (1,1,1), (0,1,2)
2 1 (1,20
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Next, the resulting models are saved as triplets

model; := (p,di,q)) and model} := (pj, di, q1+).

This way, two vectors for the assigned models are obtained

model :=[model;, ..., model,]” and model* :=[model], ... ,model’,",]T.

The modification in 4 allows to trade small increases in AIC for the selection of less
complex models.

Empirical evaluation
The labeled clusters are returned and are displayed for further analyses. This section

elucidates these plots and analyses and compares the different clusterings.

Visual analysis

For visualisation purposes, the time series are displayed according to their weekday. Each
graph shows one specific weekday. An extra plot shows the adapted models for German
public holidays:

e (01/01/18 - New Year’s Day

e 03/30/18 - Good Friday

e 04/01-02/18 - Easter Sunday and Monday
e 05/01/18 - Labor Day

e 05/10/18 - Ascension

® (5/20-21/18 - Whit Sunday and Monday
e 10/03/18 - German Unification Day
e 10/31/18 - Reformation Day

e 11/01/18 - All Saints’ Day

e 12/24/18 - Christmas Eve

e 12/25-26/18 - Christmas Days

e 12/21/18 - New Year’s Eve

Those groupings are made for presentation and optical analysis. This a priori knowledge
is not required for the algorithm.

Each time series is represented by an item in the plot. Their coordinate is a triplet of
their cluster, labeled by (p,d, q), and the date. In addition, there is a binary property of
the models: zero mean or non-zero mean. Accordingly, the time series is represented as a
point or a triangle.

A tick on the main y-axis (left) marks the first day of each month. The German school
holidays (see Table 2) are marked by horizontal lines and are named on the right y-axis:

Table 2 Earliest start and latest end of school holidays in Germany 2018

Start End Holidays

01/07/18 Christmas holidays
03/24/18 04/07/18 Easter holidays
06/30/18 09/17/18 Summer holidays
09/29/18 10/28/18 Autumn holidays

12/20/18 Christmas holidays
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As only five days are adapted with d = 2 the cluster (1,2, 0) is not shown for clarity
reasons. It is interesting that those are winter days. The vertical line between clusters
(2,0,1) and (1, 1, 0) splits the plot into models with d = 0 on the left and d = 1 on the
right.

Generally spoken, time series that are adapted with a model with 4 = 0 have con-
stant mean over time. Models with d = 1 include a linear increase (decrease) as trend in
the process. That could be an indicator for low (high) prices in the morning and rising
(plummeting) levels throughout the day.

In a model the mean is a constant term. When differentiating a function, a constant term
is omitted and the mean is zero. This is how it behaves with ARIMA models with d > 0.
As a result, time series adapted to models with d > 0 are plotted as dot (zero mean). Only
time series with an ARMA(p, q) or ARIMA(p, 0, q) can have a non-zero mean. Those are
displayed as triangle. The color of each item represents the corresponding cluster.

Clustering with AIC
In Fig. 5 the Day-Ahead prices clustered with AIC as similarity function are displayed.
Overall, twelve clusters were discovered.

The amount of corresponding time series per cluster and day is presented in Fig. 6.
Four main clusters can be found: ARIMA(2,0,0), ARIMA(1,1,0), ARIMA(0,1,1) and
ARIMA(0, 1,2).

For each day the distribution of the clusters differ. But some similarities can be found.

For Mondays and Sundays many time series are adapted by models withd = 1. If d = 0
then the time series are mostly modelled with ARIMA(2,0,0). This is more likely in

summer months.
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Amount of time series
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Tue » Wed mThu Fri mSat mSun ® Holidays

Fig. 6 Amount of time series per cluster (AIC) per weekday

For Tuesdays through Saturdays most time series are adapted with an ARIMA (2,0, 0)
model. Tuesdays are evenly divided between ARIMA(2,0,0) and models with d = 1.
On Wednesdays ARIMA(2,0,0) is very dominant as well, but during summer some days
are adapted by d = 1-models. For Thursdays ARIMA(1,1,0) models are very likely, too.
Fridays appear to be very similar to Tuesdays. So, in summer months many time series
are adapted with d = 1 models. This does not apply to Saturdays. There are nearly no
observations with d = 1.

For public holidays models with d = 1 are dominant in winter. During summer all time
series are adapted by models with d = 0.

Clustering with mAIC

The second clustering uses the mAIC (4) as similarity function, where the model com-
plexity receives greater attention, than in AIC itself. The new clusters are presented in
Fig. 7.

Three groups attract attention: ARIMA(2,0,0), ARIMA(1,1,0) and ARIMA (0,1,1)
(see Fig. 8). They are simpler than those of AIC-clustering. Overall, 337 days are modelled
with one of these. Half of the year (185 days) are modelled with an ARIMA(p, 0, q).

As seen in the previous part, the distributions of clusters differ for each day (see Fig. 7).
There are some main differences, compared to Section 1. For all days simpler models are
chosen more often. In this clustering Fridays attract attention. A shift from models with
d =1 at the beginning of the year to models with d = 0 in the end can be observed.

Comparison of similarity measures
An overall comparison between both clusterings by the amount of time series per cluster
is given in Table 3. A distinction is made between the two similarity functions (AIC and
mAIC).

When using the AIC as similarity function there is a lot of variation between clusters
and complex models are chosen more often. The modified version uses simple models
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Fig. 7 Cluster of the Day-Ahead prices with mAIC as similarity function

instead. This shift can be seen in Table 3 and Fig. 9. An arrow symbolises the change from
one model to another. A dot represents no change.

For d = 0 clustering with the AIC reveals 136 days in cluster (2,0,0), 19in (3,0,0), 16 in
(2,0,1) and 91in (1,0, 1). With the mAIC as similarity function two days are displaced into
cluster (1,0, 1), one from (3,0, 0) and one from (4,0, 0). These are strong simplifications.
Additionally, 35 days are shifted into group (2,0, 0), which is much easier than the others.
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Fig. 8 Amount of time series per cluster (mAIC) per weekday
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Table 3 Amount of time series per cluster

Model AlC mAIC
(2,00 136 171
(3,0,0) 19 2
(4,0,0) 5 0
(1,01 9 1
(20,1 16 1
(1,1,0 86 106
(2,1,0 1
(3,1,0) 4
(AR 49 60
(1,1,1) 1 1
0,1,2 24 2
(1,20) 5 5

Now, no day is clustered into (4, 0,0). Only two days are adapted by an ARIMA(3,0,0)

and one with (2,0, 1).

An analogous behaviour can be seen for d = 1. Originally, three clusters were chosen.
With mAIC only two groups are favoured: (1,1,0) and (0, 1,1). Eleven days are shifted
into group (0, 1, 1) and 20 days into (1, 1, 0).

In clusters with d = 2 no change has happened, because there is only one cluster. In

general, the higher d must be chosen, the lower p and g are. Accordingly, the models for

higher ds become simpler.
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So, there is a higher concentration on clusters (2,0, 0), (1,1,0) and (0, 1, 1). 337 days are
grouped into those clusters. This amounts to 92% of all days in a year. The order of those
models is lower and an analysis easier.

While the clustering results achieved by mAIC lead to models with a significant reduc-
tion in complexity, their deviation to the originally used similarity function (AIC) is less
than 0.2% increase on average. If the models are assessed to be similar, mAIC helps on
finding simpler models.

Using the domain specific knowledge, the presented results can be used to formulate
statements that can be of significant use for specifying a business strategy: many Saturdays
are adjusted with an ARIMA(2,0,0) model. Thus, the next hour can be predicted from
the previous two hours. The error terms are not considered in the model. On Sundays it is
noticeable that also the ARIMA(2,0,0) model is frequently used. In winter months, how-
ever, a trend is found in the data. The use of an ARIMA(p, 1, ) model is suggested. Many
Mondays are adapted to models with a trend (d = 1). No general statements can be made
for Thursdays and public holidays. The Day-Ahead prices of these days are approximated
quite differently.

Analysis of Day-Ahead prices for 2016 and 2017
To review the algorithm, the Day-Ahead prices for 2016 and 2017 are analysed. Of course,
the holidays and vacation periods were adjusted for both years.

For both years similar observations can be made. As in 2018 most days in 2016 (82%)
can be modelled by ARIMA(2,0,0), ARIMA(1,1,0) and ARIMA(0,1,1). All days are
grouped into ten clusters. As seen be before, clustering with AIC results in more groups
with complex models than with mAIC, where simpler models are preferred (see Table 4).
The distribution of clusters per weekday is similar to 2018, too (compare Fig. 10). Most
Saturdays are adjusted with ARIMA (2,0, 0). On Sundays models with parameters (2,0, 0)

Table 4 Amount of time series per cluster 2016 and 2017

Model AlC mAIC
(2,0,0) 159 172
(3,0,0) 17 12
(4,0,0) 5 2
(1,0,1) 9 9
(2,0,1) 9 4
(1,1,0) 82 89
(21,0) 18 15
©,1,1) 40 42
0,1,2) 23 17
(1,2,0) 4

(2,0,0) 148 171
(3.0,0) 20 5
(4,00 8 0
(1,01 11 1M
(1,1,0) 153 167
(2,1,0) 21 7
(2,2,0) 4 4
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are used, but a trend is often found in the data. The use of a model with d = 1 is suggested.
As in 2018, the days mapped with ARIMA(1, 2, 0) are only during winter.

Looking at the clusters for 2017 only seven of them can be found. This also results in
less favoured models: only two models are preferred: ARIMA(2,0,0) and ARIMA(1,1,0)
(see Table 4 and Fig. 11). However, similar statements as for 2018 and 2016 can be
made regarding parameter d. Saturdays are often modelled without a trend and an
ARIMA(2,0,0) should be chosen. As in the other years, the values on Sundays include a
trend. An ARIMA(1, 1, 0) is suggested. Approximately 93% days of 2017 can be expressed
with one of the most favoured models. As in 2016 and 2018, the days corresponding to a
model with 4 = 2 are only during winter.

If a VPP knows the price trend of the electricity and can react to forecasted price sig-
nals in the short or medium term, the electricity costs can be reduced. Thus the value
of the additional or less consumed electricity can be estimated. This enables to inform

customers about potential savings.

Generation of hydro Pumped Storage

A VPP does not only use price data for DSM. Generation data is also included in the
analysis. One example is the daily net generation output (MW) per market time unit and
per generation unit of 100 MW or more installed generation capacity of hydro pumped
storages (aggregated by (ENTSO-E Transparency Platform)). The daily generation can be
analysed with the introduced algorithm. Since this behaviour differs from that of Day-
Ahead prices, other models are chosen for approximation and other statements are made.
As outlined in Fig. 12 there are three main models: with ARIMA(3,0,0), ARIMA(1,1,0)
and ARIMA(1,1,1) 264 days (more than 70% of a year) can be described.

In contrast to Day-Ahead prices, models with d = 0 are much less frequently
selected than models with d = 1. Almost no Saturday or Sunday is modelled with an
ARIMA(p,0,q). Almost all days are adjusted with an ARIMA(p, 1,q). This can also be
observed for Mondays and Thursdays. Only on a few days in summer a model withd = 0

is recommended.

Conclusion and future work

This paper presents a clustering workflow of time series that is targeting the operation of
virtual power plants in which optimisation strategies for multivariate problems have to
be developed. The paper provides a model-based clustering approach based on ARIMA.

y

M- | 2 ﬂ!%v#

AIC mAIC
Fig. 10 Amount of time series per cluster per weekday 2016.a AIC. b mAIC
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AlIC mAIC
Fig. 11 Amount of time series per cluster per weekday 2017.a AIC. b mAIC

The first step computes ARIMA models for each time series. The second step computes
the clusters based on two different similarity measures, AIC and mAIC. Each cluster is
represented by global parameters (p, d, q) for fitted ARIMA models.

However, instead of purely following an auto.arima-approach based on AIC, the model
selection is optionally done based on an adapted AIC measure: mAIC. The proposal is,
however, to not fully replace AIC as indicator, instead, the mAIC approach is introduced,
based on AIC, for selecting between models that are assessed to be nearly equivalent
in terms of AIC, i.e. to models with a reasonably small AIC. mAIC basically prioritises
simpler models for the clustering.

A first analysis of the Day-Ahead prices of the energy market in Germany 2018 resulted
in three main clusters. The paper presented a full walk through of the clustering workflow,
including transformation of time series to achieve stationarity and the consideration of
specific constraints, i.e. assumptions about Saturdays, Sundays and holidays. With those,
over 90% of a year can be modelled. Following the proposed mAIC-approach, significantly
simpler models were selected during the clustering, with a mean deviation of 0.2% with
respect to the original similarity function (AIC).

Comparing the results from 2018 with 2016 and 2017 data, similar observations
can be made. The same models were favoured: ARIMA(2,0,0), ARIMA(1,1,0) and
ARIMA(0,1,1). In all years it is evident that Day-Ahead prices on Saturdays do not
include a trend. That’s why Saturdays are usually approximated with an ARIMA(2, 0, 0).
On Sundays, in contrast to Saturdays, a trend is noticeable. Therefore, these days are

a b
"4 s = -
p '-]‘ s - L4 g
Pl ; & = e
AIC mAIC
Fig. 12 Amount of time series per cluster for hydro pumped storage a AIC. b mAIC
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mostly modelled with ARIMA(1,1,0). With regard to the seasons, similarities can also
be identified. Winter days are more often adjusted with models with d = 0. On summer
days, the time series are often based on a trend, which is why models with d = 1 are more
likely to be used.

With the introduced algorithm simpler clustering models can now be transformed to
business strategies for operating virtual power plants. In order to obtain more meaning-
ful results, the composition of the mAIC will be researched in the future. The current
heuristic value for o will be checked for mathematical correlations. Especially for gener-
ation data a consideration of other time intervals, e.g. day/night, makes sense. Similarly,
the price analysis will be performed on different time scales, i.e. weekly intervals.

The analysis of aggregated generation of hydro pumped storages demonstrated that
the algorithm is not only applicable for Day-Ahead prices. In addition to the applica-
tions presented it is intended to apply the described workflow to the energy management
data of clients of a virtual power plant, to consumption, renewable generation and other
market data. Here, the related work (Krome and Sander 2018) on a scalable analytics plat-
form based on Apache Spark and Cassandra will come into place. Apache Cassandra is a
database designed to store and handle large amounts of time series data, while the lapply-
function of Spark will allow an efficient and scalable execution of the presented analysis
workflow.
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