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Abstract

Background: Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) is an important biocontrol agent in native region
of Asia, while its high propensity for cannibalism causes great obstacles in mass production. Provisioning obstructs
in rearing containers could decrease the cannibalism of ladybird beetles. In this study, three different patterns of
obstructs (Con-A, Con-B, and Con-C) were designed and equipped in plastic Petri dishes (95.38 cm?) as rearing
units, and their efficiency for H. axyridis larval survival was tested. The potential of the high-density rearing was then
evaluated using the optimal units with 16, 24, or 32 larvae per unit (named 16-L, 24-L, or 32-L, respectively).

Results: Larval survivals in obstructs-equipped units were generally higher than those in control, and significantly
increased with the Con-C units (39.8% versus 74.2% at adult stage). With the Con-C units, the survivals were
significantly higher at 16-L density (82.5%) than those at 24-L density (62.5%), but both were non-significantly
different from those at 32-L density (70.0%). The weights of newly emerged adults (fit with the expected sex ratio
of 1:1) at the higher densities were lower than those at 16-L density.

Conclusions: The results demonstrate that H. axyridis can be reared at a higher density (= 0.336 larvae/cm?) in a
constrained unit and highlight the effects of obstructs in reducing cannibalism and improving insect survivals.
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Background

Biological control approaches are well-established meth-
odologies for the control of pest population in some
agricultural systems (Mills and Heimpel 2018). Among
them, the augmentative type is shown to play a great
role in reducing pesticide use (van Lenteren and Bueno
2003), and its typical feature is the mass releasing of nat-
ural enemies into infested field to obtain an immediate
control of pests (van Lenteren 2012). In this type of pest
management system, space-saving in rearing natural
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enemies and maximizing of rearing density are vital to
meet the quantity demand (Riddick and Wu 2015). More
importantly, optimal rearing density in suitable units can
decrease the maintenance cost (Mamay and Mutlu
2019). This is more crucial for the natural enemies that
have cannibalism behaviors. Cannibalism, a common be-
havior in Coccinellidae (Osawa 2002), has been identi-
fied as a key factor for the population dynamics, and a
major problem in the mass-rearing of coccinellid species
(Obrycki and Kring 1998).

The multicolored Asian ladybird beetle, Harmonia
axyridis (Pallas) (Coleoptera: Coccinellidae), a notorious
aggressive invasive species (Roy et al. 2016), is an im-
portant augmentation biological control agent in the na-
tive distribution region of Asia (Brown et al. 2008).
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Earlier studies demonstrated that H. axyridis larvae had a
stronger cannibalism behavior than many other aphido-
phagous ladybirds and was independent from prey abun-
dance (Reznik et al. 2017) but increased with larval
density (Michaud 2003). In field, the mortality of 4th in-
star larvae (93.30%) was higher than those of the other
stages (less than 50.51%) due to the food storage and can-
nibalism (Osawa 1992a). Taken together, increasing rear-
ing density without decreasing pre-imaginal development
appeared to be very difficult for the mass rearing of cocci-
nellids larvae, like H. axyridis (Omkar and Pathak 2009).
In addition, H. axyridis larvae, especially the 4th instar, are
highly voracious (Paul et al. 2015) and take a long period
to complete their development. For example, fed on the
pea aphid, Acyrthosiphon pisum (Harris) (Hemiptera:
Aphididae), the mean duration of each stage of H. axyridis
at 26 °C was 2.5 days for the 1st instar, 1.5 days for the
2nd instar, 1.8 days for the 3rd instar, and 4.4 days for the
4th instar (LaMana and Miller 1998).

It has been shown that rearing density of several cocci-
nellid species could be increased with the units that pro-
vide refuges (i.e., hiding places) (Riddick and Wu 2015).
Thus, mass rearing of H. axyridis larvae, with a high
density, would be achieved by designed obstructs in
rearing units that can decrease larval-larval or larval-
pupal encounter frequency.

In this study, three types of obstructs were first de-
signed and used in plastic Petri dishes rearing units. The
rearing efficiencies were evaluated by mix populations of
the cowpea aphid, Aphis craccivora Koch and the pea
aphid, A. pisum (Hemiptera: Aphididae). After that, the
optimal type was selected out and used for determining
the potential for a high-density rearing of H. axyridis.

Methods

Insects

The ladybird beetle, H. axyridis was obtained from con-
tinuous rearing colony in the laboratory and reared on the
mix population of A. craccivora and A. pisum. The two
co-infested aphids were collected from field and main-
tained on the broad bean seedlings. All insects were main-
tained in an insectary (25 + 1°C, 60% RH, and 16:8 L:D).
Three pairs of newly emerged adults were reared in a plas-
tic Petri dish unit (9 cm in diameter, 1.5 cm high;
BKMAM, China) and supplied with sufficient aphids as
food and 2 broad bean leaves for oviposition. The daily
eggs produced were incubated in a new Petri dish for 3
days with an immersed cotton ball for keeping moisture.
Egg hatching was monitored with an interval of 12 h, and
the neonate larvae were collected for subsequent rearing.

Design of obstructs
It was assumed that the larval movement and the larva-
larva encounter of H. axyridis could be restricted at

Page 2 of 8

different degrees with obstructs so that the cannibalism
could be reduced. In order to evaluate their efficiency in
reducing cannibalism, in this study, three different pat-
terns of obstructs (polyvinyl chloride) were designed
(Con-A, Con-B, and Con-C, Fig. 1) and equipped in
transparent plastic Petri dishes (polystyrene, 9 c¢cm in
diameter and 1.5 cm high with the total volume of 95.38
cm?®) as rearing units (Fig. 1). The obstructs were made
from pieces of transparent plastic strips (1.5 cm in
width, 8.9 cm in length, and 0.05 cm in thickness). The
design of the Con-A obstruct was from the inspiration
of maze which provides many refuge spaces. The Con-B
obstruct provided many quadrate divisions (1.5 x 1.5
cm). The Con-C obstruct had 16 divisions with radial
strips connected with another strip on the central sec-
tion, and it had less restriction for larval movement than
the Con-B obstruct. The Con-B and Con-C obstructs
had insect passing holes (equilateral triangle in shape
with 0.5 cm in length of side) on each side. The ob-
structs were glued together by a hot melt adhesive and
each placed into a plastic Petri dish as a complete rear-
ing unit. The surface area of Con-A, Con-B, and Con-C
units was approximately 291 cm?, 495 cm?, 312 cm?, re-
spectively, and the surface area of the empty plastic Petri
dish (control) was approximate 106 cm>.

Larval rearing with different units

Sixteen newly hatched H. axyridis first instar larvae were
gently transferred into one rearing unit and supplied with
sufficient A. craccivora and A. pisum. The aphids were
daily refreshed with an approximate weight of 180, 240,
400, and 1000 mg for 1st, 2nd, 3rd and 4th instar larvae,
respectively. Number of survived individuals as well as
their development stages were checked and recorded daily
until all adults emerged. Percentage of survived individuals
in each unit was calculated against the total number of
beetles in the unit. After feeding and recording, the unit
was sealed by a parafilm (1.2 cm in width) to avoid insect
escaping. After pupation (all pupation finished on day 13
after rearing), the distribution of pupae on each surface of
the unit (bottom, lid, and wall of the Petri dish and on ob-
structs) was recorded. Eight replicates were conducted for
each type of the rearing unit.

Evaluation of the potential for high-density rearing

In this experiment, 16, 24, or 32 neonate larvae were re-
spectively transferred to one Con-C equipped unit with
the density of 0.168, 0.252, and 0.336 larvae/cm?, re-
spectively (abbreviated as 16-L, 24-L, and 32-L density,
respectively). At 16-L density, similar number of aphids
was provided as described above, while approximate 1.5
and 2 times more aphids were respectively provided to
24-L and 32-L density. The above number of aphids
would be sufficient for high-density rearing of H.
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Fig. 1 The schematic diagrams of obstructs and rearing units. The units consist of a plastic Petri dish and one of three obstructs with different
patterns Con-A, Con-B, and Con-C. The obstructs were made from pieces of transparent plastic strip (polyvinyl chloride, 1.5 cm in width, 89 cm in
length, and 0.05 cm thickness). Control: the empty Petri dish (polystyrene, 9 cm in diameter, 1.5 cm high). Con-A, Con-B, and Con-C: the units of
Petri dish equipped with Con-A, Con-B, and Con-C obstructs, respectively
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axyridis as that the predation rates of aphids showed to
be decreased with rearing density (Gao et al. 2020).
Once adult emergence started, the number of adults
emerged in each day was recorded and calculated as per-
centage relative to the total number larvae tested with
the following equation: (number of adults emerged)/
(total number of adults obtained) x 100). The weight
of newly emerged adults (24-36 h old) was measured
using an AE224C electronic balance (SDPTOP, China)
with an accuracy of 0.1 mg, and the female and male ra-
tio was recorded. Ten replicates were conducted for
each rearing density.

Data analysis

All data analysis was performed using SPSS 19.0 statis-
tical software. The differences among different treat-
ments were analyzed with one-way analysis of variance
(ANOVA) for the data that met the assumptions of nor-
mality (Levene’s test). For the data that failed to meet
the assumptions of normality, the non-parametric
Kruskal-Wallis analysis of variance (K-W ANOVA) was
used. Means were separated with Tukey HSD test (P <
0.05). The comparison between the observed sex ratio
and the expected one (1:1) was conducted by the chi-
square test. For 24-L and 32-L densities, the difference

of the percentage of adults emerged at day 5 were com-
pared with independent sample ¢ test (P < 0.05).

Results
Screening of obstructs
Under the density of 16 larvae per unit, the survival of
the larvae that reared in the units with either the Con-A
or the Con-B obstruct was non-significantly different
from that reared in the control unit (Petri dish without
any obstructs), while it was significantly higher with the
Con-C unit from day 5 (3rd and 4th day: y* = 1.8 and
3.4, P = 0.332 and 0.621; the remaining days: y* = 10.2—
13.9, P = 0.003-0.017) (Fig. 2A). The larval survivals
tended to be stable from day 8 in the units with ob-
structs. However, the larval survivals in the control unit
decreased sharply throughout the whole rearing periods
and also decreased faster than those in the units with
obstructs (Fig. 2A). Consequently, the percentage of lar-
vae that survived to adult in the Con-C units (74.2% of
16 neonate larvae) was significantly higher than the con-
trol (39.8% of 16 neonate larvae) ()f = 13.2, P = 0.004)
and also relatively higher than those in the Con-A and
Con-B units (Fig. 2B).

In the control units, more than 80% pupae were dis-
tributed on the bottom of the Petri dish. However, in
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Fig. 2 Larval survival rate throughout the rearing periods until pupation (A) and to adulthood (B). Individual pupation started at the 8th day after
rearing and all larvae entered pupal stages at the 13th day after rearing. Different letters indicated significant differences of the percentage of
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significant differences of the percentage of larvae survived to adult among the four types of rearing units (B)
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the Con-A, Con-B, and Con-C units, significantly more
larvae selected obstructs as pupation sites than those se-
lected the bottom, lid, and wall of the Petri dish (y* =
13.6-26.2, P < 0.001) (Fig. 3A). The typical distribution
of pupae in the Con-C unit was shown in Fig. 3B, with
an average of 58.92% on obstructs and 41.08% (sum of
the data from bottom, wall, and lid) on the Petri dish.

Evaluation of density-dependent rearing efficiency

When 16, 24, and 32 neonate larvae per unit were reared
in the Con-C units, which produced the best larval sur-
vival (Fig. 2), non-significant difference in the survival
percentage was detected during the first 7 days (Fy, 27 =
1. 5-3.4, P = 0.050-0.250). Until pupation is finished,

the larval survivals at the 16-L density were significantly
higher than those at the 24-L density (y* = 6.7-8.7, P =
0.013-0.035), and the larval survivals at the 32-L density
were non-significantly different from either. Finally,
average number of pupae were observed as 13.2 (82.5%
of 16 neonate larvae), 15.0 (62.5% of 24 neonate larvae),
and 22.4 (70.0% of 32 neonate larvae) at the 16-L, 24-L,
and 32-L density, respectively, on the 13th day. In
addition, the survival percentages decreased sharply dur-
ing the first 8 days, and stabilized afterward at all dens-
ities (Fig. 4A). At the rearing density of 32-L, the typical
distribution of pupae was shown in Fig. 4B with an aver-
age of 82.2% on obstructs and 17.8% on Petri dish (sum
of the data from bottom, wall, and lid). Almost all pupae
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Fig. 3 Distribution of pupae in the four types of rearing units (A) and the typical distribution pattern of pupae in the Con-C unit (B). Different
letters indicated significant differences among the four sites (bottom, wall, and lid of Petri dish, on obstructs) of each type of rearing unit
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successfully developed to adult, so adult emergence rate
was not separately recorded again and assumed that all
pupae developed to adults.

At the 16-L density, the adult emergence lasted for 4
days and nearly equally distributed in each day (relatively
lower at day 4) (F3, 36 = 1.7, P = 0.178). However, at ei-
ther the 24-L or the 32-L density, the adult emergences
lasted for 5 days. In addition, at the 2 higher densities,
relatively higher proportions of adults emerged during
the first 3 days, which were significantly higher than
those on the 5th day (24-L: F, 45 = 6.5, P < 0.001; 32-L:
X* = 23.4, P < 0.001) (Table 1). On day 14, the adult

emergence percentages at the 3 rearing densities were
similar (F,, ,; = 0.026-0.571, P = 0.571-0.974). On day
5, non-significant difference in adults’ emergence was
detected between the rearing densities of 24-L and 32-L
(t=-0.077,df = 18, P = 0.939) (Table 1).

For the newly emerged adults, the weights of both fe-
males and males were significantly higher at the 16-L
density than those at the 24-L and the 32-L density (fe-
male F, 195 = 85, P < 0.001; male F, 150 = 6.1, P =
0.003), but there was non-significant difference in the
adults’ weights between the latter 2 densities (Fig. 5). In
addition, at the densities of 16-L and 24-L, relatively

Table 1 Percentage of adults emerged at different periods and the ratio of females and males, with an expected ratio of 1:1

Adult emergence Rearing densities

period

16-L 24-L 32-L
Percentage of adults emerged (%)
Day 1 29.84 + 64 Aa 3231 +£5.78 Aab 2839 + 620 Aab
Day 2 31.22 £ 69 Aa 33.69 + 545 Aa 2943 + 495 Aa
Day 3 2800 + 6.39 Aa 1860 + 5.84 Aabc 25.77 + 298 Aab
Day 4 13.73 £ 405 Aa 12.30 £+ 5.70 Abc 13.15 £+ 3.26 Abc
Day 5 311 +£1.30 Ac 3.26 + 143 Ac
Female and male ratio
Number of females 57 63 79
Number of males 43 52 87
I 1960 1.052 0.386
P 0.162 0.305 0.535

Different lowercase letters indicate significant differences in the percentages of adults emerged at different days; same uppercase letters indicate no significant
difference among different rearing densities at each adult emergence period (P < 0.05)
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more females were harvested than males, but more
males were harvested than females at the 32-L density.
Even so, at the three rearing densities, the female and
male ratio was non-significantly different from the ex-
pected ratio of 1:1 (Table 1).

Discussion

As expected, providing obstructs as a part of rearing units
can effectively improve the survival of H. axyridis larvae,
which have genetic inheritance for the propensity of canni-
balism (Wagner et al. 1999). Survival rate decreased sharply
with time in the rearing unit without any obstruct, but it de-
creased moderately in the unit equipped with obstructs, indi-
cating a decrease of the cannibalism of H. axyridis by using
the obstructs. Specially, throughout the whole rearing pe-
riods, the larval survivals in the unit equipped with Con-C
obstruct (312 cm?) were relatively higher than those in the
units with either decreasing the surface area to 291 cm” by
the Con-A obstruct or increasing the surface area to 495
cm? by the Con-B, demonstrating the efficiency of obstructs
was a pattern-dependent rather than surface area (Mamay
and Mutlu 2019). Such results might be caused by some un-
revealed behaviors of H. axyridis larvae, and more studies,
e.g., video monitoring, need to be conducted to fully reveal
the mechanism. Finally, the rate of individuals reaching to
adult increased from 39.8% in empty Petri dish (control unit
without any obstructs) to 74.0% in the unit equipped with
the Con-C obstruct, when the initial larval density was 16. In
this study, the adult survival rate without any obstructs
(39.8% at 0.168 larvae/cm®) was lower than 46.7—53.8% that
reported by Sun et al. (2019) under similar densities (0.15

larvae/cm®), where H. axyridis larvae were fed on the eggs of
the Mediterranean flour moth, Ephestia kuehniella Zeller
(Lepidoptera: Pyralidae). For H. axyridis, Reznik et al. (2017)
reported that the green peach aphid, Myzus persicae (Sulzer)
(Hemiptera: Aphididae) was more easily to cause density-
dependent effects than the eggs of the grain moth, Sitotroga
cerealella (Olivier) (Lepidoptera: Gelechiidae). Thus, prey
type might be also an important factor affecting rearing effi-
ciency, and in the future, optimal prey should be considered
to further improve the efficiency of high-density rearing with
the Con-C unit.

The studies on coccinellids showed that motionless
larvae when molting or partially immobile late 4th instar
larvae were most easily attacked by the siblings (Riddick
and Wu 2015). However, H. axyridis 4th instar larvae
were reported to exhibit an avoidance behavior for can-
nibalism as they tend to avoid conspecific larvae in the
olfactometer choice experiments (Rasekh and Osawa
2020). Here, the larval-larval or larval-pupal encounter
frequency would be greatly decreased by provisioning
the obstructs (pattern-dependent) that can provide more
suitable habitats for both ladybird beetle and aphids
crawling and roosting, as well as more pupation sites.
Significantly more proportion of pupae distributed on
the obstructs than on the Petri dishes partially supports
the speculations. Osawa (1992b) reported that 14.4% of
newly molted H. axyridis pupae would be cannibalized
at the pupal stage. The larvae of H. axyridis, especially
the 4th instar were voracious predators. Under high-
density conditions, a high-intraspecific competition
would be occurred when the larvae reached to 4th instar
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due to their voracious behaviors (Paul et al. 2015). Thus,
provisioning of obstructs, ie., increasing the inner sur-
face area and acting as the refuges for larvae and newly
molted pupae, would be particularly important for redu-
cing cannibalism in H. axyridis.

In addition, with the Con-C obstruct, significantly
higher larval survival rates were detected at the 16-L
density (0.168 larvae/cm®) than at the 24-L density
(0.252 larvae/cm?), while at the 32-L density (0.336 lar-
vae/cm?), the survival rate was between those two and
not significantly different from them. More importantly,
under the 2 higher densities, a high proportion of indi-
viduals survived to adult stage (62.5 and 70.0% for 24-L
and 32-L, respectively). These results showed that, even
under extreme high-rearing density, there was no clear
density-dependent efficiency for larval survival of H.
axyridis with the rearing unit equipped with Con-C ob-
struct. This phenomenon might be caused by the fact
that 16-L density was very high for the rearing unit with
approximate 95.38 cm?®,

Increasing population density in mass production of
H. axyridis might also cause some non-lethal negative
effects as the adults need more days for emergence at
the 24-L or 32-L densities than those at the 16-L density,
and both females and males were also significantly
lighter. It was speculated that these negative effects
under higher rearing densities might be caused by the
disturbance of normal metabolism. For Coccinella unde-
cimpunctata L. and C. novemnotata Herbst (Coleoptera:
Coccinellidae), their adult weights were also generally
decreased by increasing of population density (Turnip-
seed et al. 2014). In addition, decreased weights under
high-rearing density might be caused by the changes in
feeding regime (feeding intensity) (Reznik et al. 2017)
and by the more frequent mechanical interactions,
resulting in the stimulation of defense reactions
(hemolymph losses) (Sato et al. 2008) and then the nega-
tive effects (Bayoumy et al. 2019). Here, the sex ratios of
newly emerged adults under all rearing densities were
met with the expected ratio (1:1), which was similar to
that reported in the three striped ladybird beetle, Bru-
moides suturalis (Fabricius) (Coleoptera: Coccinellidae)
(Bista et al. 2012) and in the pink spotted ladybird bee-
tle, C. maculata (Riddick and Wu 2015).

Conclusions

The obtained results demonstrated the principle of using
purposely designed obstructs in reducing insect cannibal-
ism and highlighted the effects of such obstructs on the
improvement of the larval and pupal survival rates of the
ladybird beetle H. axyridis. Similar rearing unit equipped
with obstructs like the Con-C pattern could have great po-
tential in mass-rearing of other natural enemies.
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Con-A, Con-B and Con-C: the units of Petri dish with Con-A, Con-B and Con-
C obstructs built-in, respectively; 16-L, 24-L, and 32-L: The rearing density of
16, 24, and 32 larvae in each Con-C unit, respectively
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