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ORIGINAL RESEARCH

A new protection scheme for PV‑wind 
based DC‑ring microgrid by using modified 
multifractal detrended fluctuation analysis
Kanche Anjaiah1, Pradipta Kishore Dash2* and Mrutyunjaya Sahani3 

Abstract 

This paper presents fault detection, classification, and location for a PV-Wind-based DC ring microgrid in the MATLAB/
SIMULINK platform. Initially, DC fault signals are collected from local measurements to examine the outcomes of the 
proposed system. Accurate detection is carried out for all faults, (i.e., cable and arc faults) under two cases of fault 
resistance and distance variation, with the assistance of primary and secondary detection techniques, i.e. second-
order differential current derivative 

(

d
2
I3

dt2

)

 and sliding mode window-based Pearson’s correlation coefficient. For fault 

classification a novel approach using modified multifractal detrended fluctuation analysis (M-MFDFA) is presented. 
The advantage of this method is its ability to estimate the local trends of any order polynomial function with the help 
of polynomial and trigonometric functions. It also doesn’t require any signal processing algorithm for decomposition 
resulting and this results in a reduction of computational burden. The detected fault signals are directly passed 
through the M-MFDFA classifier for fault type classification. To enhance the performance of the proposed classifier, 
statistical data is obtained from the M-MFDFA feature vectors, and the obtained data is plotted in 2-D and 3-D scatter 
plots for better visualization. Accurate fault distance estimation is carried out for all types of faults in the DC ring bus 
microgrid with the assistance of recursive least squares with a forgetting factor (FF-RLS). To verify the performance and 
superiority of the proposed classifier, it is compared with existing classifiers in terms of features, classification accuracy 
(CA), and relative computational time (RCT).

Keywords:  DC ring microgrid, Differential current, Fault resistance, Detection, Classification, Fault location estimation, 
Multifractal detrended fluctuation analysis
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1  Introduction
In recent years, there have been many studies on the 
integration of renewable energy sources (RESs), such as 
photovoltaic systems (PV), wind turbines (WT), tidal, 
hydro, etc. Among these RESs, PV and WT are the 
most preferred because of their abundant availability 
in nature [1, 2]. Many developed and developing coun-
tries in the world are increasing their power generation 
with the RESs. In power distribution networks, modern 

technologies in power electronic devices make the inte-
gration of RESs with microgrids more flexible. Based 
on the connection of equipment types, networks in the 
microgrid can be AC, DC, or both [3]. In the present 
era, DC microgrids have attracted significant attention 
because of their advantages compared to AC microgrids 
in terms of low transmission losses, active and reactive 
power control, reliability, economical operation, power 
transfer capacity, eco-friendliness, and simpler monitor-
ing [1–4].

The major challenges in the DC microgrid are fault 
protection (i.e., detection and isolation) and location. 
Different possibilities of faults in the DC distribution net-
work are Pole-Pole (P-P), Positive Pole-Ground (P-P-G), 

Open Access

Protection and Control of
Modern Power Systems

*Correspondence:  pkdash.india@gmail.com
2 Multidisciplinary Research Cell, Siksha ‘O’ Anusandhan Deemed to be 
University, Bhubaneswar, Odisha, India
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s41601-022-00232-3&domain=pdf


Page 2 of 24Anjaiah et al. Protection and Control of Modern Power Systems             (2022) 7:8 

Negative Pole-Ground (N-P-G), Series arc and Shunt arc 
faults [1]. Generally, DC cables offer low impedance in 
the fault scenario and as a result the rate of rise of the 
fault current is very high [3–5]. To protect the DC micro-
grid from these currents, different protection schemes 
have been introduced. Reference [6] discusses a differ-
ential protection scheme where a high bandwidth com-
munication channel to transmit the signals is required 
together with a backup protection scheme. In this sce-
nario the cost and complexity of the grid is increased. 
Other issues with the differential protection schemes 
are the effect of distributed capacitance, especially in 
high voltage DC microgrids, and change in the penetra-
tion level of RESs changing the threshold values and as 
a result making it unable to synchronize with the utility 
grid [2, 4]. To compensate for these issues, references 
[7–9] propose an improved threshold-based, modified 
and discrete time frame for the differential protection 
scheme, which is time–frequency based with the assis-
tance of variational mode (VMD) and HHT combination. 
An over-current protection scheme can easily detect the 
pole to ground fault at high resistance but itis unable to 
classify different fault types that occur in the DC micro-
grid. It also requires high-speed sensing devices [10, 11].

Line current derivative protection schemes have 
been discussed for different faulty sections of bus volt-
ages, wind speed variations and fault clearing time etc., 
but this method is unable to distinguish different kinds 
of faults and also needs communication devices [12]. 
In [13, 14], various faults in the DC microgrid are clas-
sified with the help of relay coordination. However, it 
requires adjacent relays for coordination of signals. Ref-
erences [15–17] discuss fault detection with oscillation 
frequency using inverse-time transient power, reliability 
index, and a poverty severity index method. The main 
issues with these indices are that they need a communi-
cation channel, it is diffcult to process the signals with 
low disturbance index [15], and they are unable to detect 
overcurrent and high resistance faults [16, 17]. In refer-
ence [18], a pseudo-voltage-based method is introduced 
to distinguish the different faults in the DC ring micro-
grid and this method purely depends on the local meas-
urements. A fast selective protection scheme can detect 
faults quickly and accurately using local measurements 
but it requires a backup protection scheme [19]. The 
parameters are estimated using the least-squares method 
and the classification of internal and external faults is 
proposed in [20]. However, it requires a communication 
channel and backup protection because of its instant 
de-energization in the adjacent cables under fault condi-
tions. Traveling wave and reflected wave-based protec-
tion schemes provide fast fault detection but they require 
high-speed measuring devices and are also limited to 

short-distance cables [21]. Renewable energy-based DC 
microgrids sometimes face a fault-ride-through problem 
during a fault scenario. In particular, a short duration P-P 
fault collapses the voltage and thus fault current limiters 
may be required to reduce the fault current [22]. Accord-
ing to National Electrical Codes (NEC) and Under Labo-
ratory (UL: 1699B), the detection and isolation of PV side 
arc faults are essential to protect from fire hazards [23].

In [24–28], the signal processing algorithms, i.e., Modi-
fied Wavelet Transform (MWT) [24], Ensemble Empiri-
cal Mode Decomposition (EEMD) [25], S-Transform 
(ST) [26], and Empirical Wavelet Transform with Sup-
port Vector Machine (EWT-SVM) [27] require more fea-
tures to analyze the faults. As a result, information will 
be lost due to mode mixing, reduction of dimensionality, 
and deterioration of classification accuracy. Fuzzy-based, 
artificial neural networks (ANN), and random vector 
function neural networks (RVFLN) have short comings 
such as needing data training, robustness and weight 
calculation [28]. In reference [29], an iterative technique 
is presented for the estimation of fault location estima-
tion in a DC microgrid. Another popular and widely used 
method for the non-stationary signals is fractal analysis, 
which is used to extract fractal characteristics from the 
hidden signals using Mono-fractal or detrended fluc-
tuation analysis (DFA) [30]. DFA is the transform tool to 
compress large data into fluctuation curves of low inten-
sity, and it is widely used in scientific research because 
of its long-range detection, and ability to remove the 
fluctuation trends from the signal. In reference [31], the 
electrical activity of the brain and movements of the right 
arm are diagnosed using DFA analysis. The shortcom-
ings of DFA are mono fractal components having variable 
characteristics and not having any information about its 
local fractal components. References [32, 33] introduce 
the compensation for DFA problems using multifrac-
tal analysis with the help of multifractal detrended fluc-
tuation analysis (MFDFA). It is a powerful and popular 
method. However, one of the concerns of MFDFA is that 
it is applicable only to fixed polynomial order but not for 
higher-order polynomials in the detrending process. This 
problem is solved by using M-MFDFA in the application 
of daily precipitation time series [34].

To address the above-mentioned problems, this paper 
focuses on fault detection, classification, and distance 
estimation for the proposed model. For accurate fault 
detection, two protection schemes, i.e., primary and sec-
ondary, are proposed. The primary detection technique 
is based on the second-order derivative of the fault cur-
rent. The secondary detection technique is sliding mode 
window-based Pearson’s correlation coefficient (SMW-
PCC). The detected faults are input to the proposed 
M-MFDFA classifier. This classifier can compute the level 
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of multifractality of the faulty signal for finding a discrim-
inative set of features of any order polynomials with the 
help of polynomial and trigonometric functions. From 
M-MFDFA, multifractal features are extracted in terms 
of a kurtosis index (KI) to enhance the performance 
of the proposed classifier, and it is represented in2-D 
(two dimensional) and 3-D (three dimensional) scatter 
plots for better visualization. This paper also addresses 
the unknown parameters and fault distance estimation 
recursive least squares with forgetting factor (FF-RLS) 
algorithm.

The remainder of the paper is organized as follows. 
Section  2 illustrates the modeling and possibilities of 
faults in the proposed DC ring microgrid, while Sect.  3 
describes the DC cable and arc fault detection using 
the second-order derivative of fault current and SMW-
PCC. Brief details of M-MFDFA and its classification are 
illustrated in Sect. 4, while unknown parameter estima-
tion is described in Sect.  5. Results and discussions are 
illustrated in Sect.  6, to validate the superiority of the 
proposed PV-Wind based DC ring microgrid protection 
scheme compared to existing methods. Finally, Sect.  7 
concludes the paper.

2 � Fault analysis in PV‑wind‑based DC ring 
microgrid

The complete architecture of this paper for fault analysis 
of the DC ring microgrid is shown in Fig. 1.

A PV-Wind-based DC ring network is formed by 
six nodes, i.e., A, B, C, D, E, and F, and each node is 
connected with its adjacent nodes to form the ring 
network shown in Fig.  2. In this model node A is con-
nected to the utility grid through a VSC converter and 
voltage is stepped-down through a transformer from 
11 kV to 500 V. The VSC converter allows bidirectional 
power flow, so the utility grid is always ready to send or 
receive power to/from the DC microgrid [1, 18–20]. At 
node B, a 400 kW PV farm, which is obtained by paral-
lelling four PVs with each PV panel rated at 100  kW, is 
connected through a DC-DC converter. To obtain the 
maximum power from the PV array, a maximum power 
point tracker (MPPT) with a ‘perturb &observe’ (P&O) 
algorithm is used. In addition to the MPPT for the PV 
array, two more controllers, i.e., the voltage and current 
controllers are used to regulate and synchronize with the 
utility grid through the DC-DC converter. At node C, a 
DC-lamp load-1of 250 kW is connected, while at node D, 
90 kW of wind power is obtained with three permanent 
magnet synchronous generators (PMSGs) each rated at 
30 kW, and is connected through another VSC. Similar to 
the PV farm, the MPPT is used to obtain the maximum 
power from the PMSG, while a space vector PWM tech-
nique and proportional-integral (PI) controller is used in 

PMSG to control the rotor speed. Although wind energy 
fluctuates in nature, in this paper, wind speed is consid-
ered to be constant at 12 m/s. At node E, a150 kW battery 
is connected through a bidirectional DC-DC buck-boost 
converter, where the voltage is boosted from 96 to 550 V 
to synchronize with the microgrid DC voltage. The bat-
tery is used to maintain a stable power flow under uncer-
tain load conditions. Whenever the load is less than the 
generation, the battery is operated in the buck mode 
and is charged by consuming power from the DC bus. In 
contrast, the battery delivers power back to the DC bus 
in boost mode when the load is greater than the genera-
tion [15]. At node F, the 250 kW DC lamp load-2 is con-
nected. The detailed parameters of the DC ring network 
and faults classes are given in Tables 1 and 2, respectively.

2.1 � Fault analysis in the proposed model
The main issue in the DC ring microgrid is fault cur-
rent due to its rapid changes of magnitude and direction 
under fault conditions. The commonly occurring faults 
in the DC ring microgrid are cable faults and arc faults. 
Analyzing these faults, especially in the DC ring micro-
grid, is very difficult because of its bidirectional current 
flow. In this paper differential current is used to analyze 
the faults, because of its naturally being zero under nor-
mal operation and becoming non-zero under fault con-
ditions. The representation of various faults in the cable, 
i.e., P-P fault and P-P-G is shown in Fig.  3a, b, respec-
tively. From Fig. 3b, it is clear that under normal condi-
tions the differential current (I1- I2) flows through Rf, 
where as under fault conditions their additional current 
(I1 + I2) flows through Rf because the current direction 
changes towards the fault, as shown in Fig. 4. Similarly, 
there may be scope to analyze using the average current, 
though it has a higher magnitude under normal condi-
tions compared to fault conditions as shown in Fig.  5a. 
Thus, it is difficult to analyze high resistive faults in the 
microgrid, where average current versus differential cur-
rent is shown in Fig. 5b.

Whenever a fault occurs in the network there is a 
voltage drop, and at the same time the rate of current 
increases, as shown in Fig.  5c. Cable faults include P-P, 
P-P-G, and N-P-G types. A P-P fault may occur because 
of a lightning strike or fallen trees on the cables, while 
P-P-G and N-P-G faults occur because of physical con-
tact between the cable and the ground. This may happen 
because of heavy storms or aging of the cables. Arc faults 
may be of series or shunt type, and they occur because 
of insulation failure or improperly installed cables. Cable 
faults are created in the microgrid cables, i.e., between 
nodes A and B in the model. The representation of 
cable faults is shown in Fig. 3, and the variation of fault 
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Extract the features (i.e. Hq, Eq and Mq) from the M-MFDFA

Calculate KI of MqCalculate KI of EqCalculate KI of Hq 

Scatter plot between 
Hq and Eq in 2-D

Scatter plot between Hq , 
Eq and Mq  in 3-D

Scatter plot between 
Hq and Mq in 2-D

All the faults are distinctly classified which is observed in 2-D and 3-D scatter plots

Estimate the parameters from the P-P-G fault 
by using FF-RLS algorithm

Identify the fault location by using estimated parameters

Estimate the differential current from the 
local measurements (i.e. I3 = I1- I2)

Start

Obtain the fault data of differential current 
under variation of Rf and Fd

Faults are detected and 
consider the first peak 

SMW-PCC

Faults are detected and 
consider the first low peak

If I3= 0 Stop

If  ≠ 0
If CC < 0.98

No

Yes Yes

Primary Secondary  

No

Detected fault signals are passed through fault classifier i.e. M-MFDFA

No

Fig. 1  The complete architecture of the proposed protection scheme
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resistance (Rf) and distance (Fd) in the cable for different 
faults is shown in Figs. 6 and 7, respectively.

Arc faults are created in the PV arrays, i.e., series and 
shunt arcs are formed by connecting resistance in series 
and parallel between the PV arrays as shown in Fig. 8. By 
considering the variation of Rf and Fd, the corresponding 
fault currents are shown in Figs.  9 and 10, respectively. 
The fault duration time for all faults is considered to be 
from 1.3 to 1.55 s.

By observing all cable faults from Figs.  6 and 7, it is 
clear that if the fault and cable resistances are low, the 
fault current magnitude is high. Differential current-
based fault analysis has key advantages such as less 
detection time and easy detection in the cable with the 

help of its second-order derivative, as will be described 
in Sect. 3.

3 � Fault detection techniques
3.1 � Fault detection using second‑order differential 

derivative current
The proposed novel approach for fault detection using 
the second-order derivative of the differential current 
does not require a communicational channel to detect or 
clear the fault, while it only depends on the local-based 
network parameters, and smoothing of the signal and the 
processing time to detect the fault is very short. The mod-
ified circuit for the fault detection using the proposed 
method is shown in Fig. 11, where the source voltages of 

PV farm

AC-DC converter

DC-DC converter

Transformer
25KV/500V

Circuit breaker  

Utility gridVSC

I1

I3
I2

A

B

C

D

E

F

Lamp load-2

Battery

Lamp load -1

Wind energy
Fig. 2  PV-Wind based DC ring microgrid
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the cable Vdc1 and Vdc2appearacross the capacitor as Vc 
and are assumed to be constant.

Applying the KVL to Fig. 2b yields:

where Idc1 and Idc2 are the measured currents at buses A 
and B, respectively, as depicted in Fig.  3b. I1 and I2 are 
the fault currents, which are different to Idc2 and Idc2 as 
described in [18, 35–37]. During the fault, the sum of 
these currents flows through the fault resistance, because 
of the changing current direction towards the fault.

The equations for the fault currents obtained from Fig. 11 
are:

(1)Vdc1 = Idc1R1 + L1
dIdc1

dt
+ Rf (I3)

(2)I1 =
Vc(0)

L1eqωd1
e−α1t sin (ωd1t)

Table 1  Parameters of the proposed model

System voltage 550 V

PV parameters
Sun power
SPR-315E-WHT-D PV module

PVOC = 64.7 V, PVSC = 6.13 A, VMP = 54.8, IMP = 5.77A, Maximum 
power = 315.072 W, Series strings = 5, Parallel strings = 64, Active power 
at 1000 (W/m2) = 100 kW

PV 1 4 × 100 kW (Each panel) = 400 kW

PV 1 DC-DC (Buck type) converter 4 × 108 kW (+ 8% IEC 6210); 550 V (DC)

Battery parameters
Battery Lithium-Ion, 96 V, 0.4 kAh

Battery DC-DC Buck-Boost converter 150 kW, 550 V

Grid parameters
Grid rating 20MVA, 11 kV

VSC connecting to the utility grid 250 kW

DC-link capacitor 100μF

Wind turbine parameters
Wind speed 12 m/s

Wind turbine Three PMSGs of 30 kW, 90 kW

Load and cable parameters
Load 1 and 2 DC lamp load-1 → 250 kW& lamp load-2 → 250 kW

Cable length 2 km

Resistance, inductance, capacitance 0.6251 Ω/km, 0.245 mH/km, 0.514 μF/km

Filter capacitance 30 mF

Table 2  Type of Faults and classes

Fault type Class name

Pole–Pole (P-P) F1

Positive Pole-Ground (P-P-G) F2

Negative Pole-ground (N-P-G) F3

Series arc F4

Shunt arc F5

R22L22

R1 L1 R2 L2

C1 C2

Vdc1 Vdc2
I1 I2

R11 L11

I3

A B

(a)

Vdc1 Vdc2

R1 L1 R2 L2

C1 C2I1 I2

A B

I3

(b)
Fig. 3  Fault analysis a P-P fault and b P-P-G fault
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(a) (b) (c)
Fig. 4  Cable currents under fault condition a I2 current, b I1 current, c differential current

(a) (b) (c)
Fig. 5  Cable currents under fault condition a average current, b average versus differential current, c current versus voltage

(a)  (b) (c)
Fig. 6  DC cable faults under faultresistance variation a P-P fault, b P-P-G fault, and c N-P-G fault

(a) (b) (c)
Fig. 7  DC cable faults under fault distance variation a P-P fault, b P-P-G fault, and c N-P-G fault
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whereR1eq and R2eq are the equivalent resistances, and 
L1eq and L2eq are the equivalent inductances up to the 

(3)I2 =
Vc(0)

L2eqωd2
e−α2t sin (ωd2t)

fault which are obtained from [35, 36]. The attenuation 
constants α1 and α2, and the damping frequencies ωd1 
and ωd2 are given as:

Blocking diode

Ground 

String 2 String 3
String 1

X arc series                                      

X arc parallel                                      

DC-DC

X arc Ground

Fig. 8  Series and shunt arc faults in PV arrays

(a) (b)
Fig. 9  Arc faults under fault resistance variation a series arc fault, b shunt arc fault

(a) (b)
Fig. 10  Series and shunt arc faults in PV arrays a series arc fault, b shunt arc fault
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where ωn1 and ωn2 are the natural frequencies which are 
obtained from:

The differential current is obtained from (2) and (3) as:

Under normal conditions, L1eq = L2eq and R1eq = R2eq . 
However, under fault conditions, 
L1eq  = L2eq and R1eq  = R2eq , and there are:

I3 > 0 indicates positive fault current magnitude
I3 < 0 indicates negative fault current magnitude.

Based on the above conditions, different faults in 
various case studies under fault resistance variation and 
fault distance variation in the faulty cable are identified 
with the maximum and minimum peak amplitudes of 

∝1=
R1eq + Rf

2L1eq
, ∝2=

R2eq + Rf

2L2eq
and

ωd1 =

√

ω2
n1 − α2

1,ωd2 =

√

ω2
n2 − α2

2

ωn1 =
1

√

L1eqC1
,ωn2 =

1
√

L2eqC2

(4)
I3 = I1 − I2 =

Vc(0)

L1eqωd1
e−α1t sin (ωd1t)

−
Vc(0)

L2eqωd2
e−α2t sin (ωd2t)

each fault current as observed from Figs. 6, 7, 9 and 10. 
These fault current magnitudes are reported in Table 3.

Applying the derivative with respect to time for the 
differential current in (4) yields:

After the occurrence of the fault at t = 0+, the differential 
current derivative magnitude is:

Applying the derivative to (5) to obtain the double deriv-
ative equation for the differential current, which is used 
to detect the fault, yields:

After the occurrence of the fault at t = 0+, the double 
derivative of differential current magnitude is:

Substituting α1 and α2 values to (8) leads to:

From (6) and (9), it is seen that the second-order 
derivative of differential current magnitude in (9) 
depends on the fault and equivalent resistances of the 
faulty cable. However, in the case of differential cur-
rent, the derivative magnitude in (6) is independent of 
the fault and equivalent resistances of the faulty cable. 
In the first-order derivative, during a fault scenario, 
the magnitude of fault current is very high due to the 
independence of Rf and cable resistance and it is also 
sensitive to external noise, where as the second-order 
derivative differential current depends on the fault and 
cable resistances during the fault scenario as seen from 
(9). Thus it is easy to protect and isolate the DC micro-
grid quickly once fault and cable resistances are known. 
From the above discussion, it is clear that the first-order 
derivative has higher magnitude than the second-order 

(5)

dI3

dt
=

Vc(0)

L1eqωd1

(

−α1e
−α1t sin (ωd1t)+ ωd1e

−α2t cos (ωd2t)
)

−
Vc(0)

L2eqωd2

(

−α2e
−α2t sin (ωd2t)+ ωd2e

−α2t cos (ωd2t)
)

(6)
dI3

dt
=

Vc(0)

L1eq
−

Vc(0)

L2eq

(7)

d2I3

dt2
=

Vc(0)

L1eqωd1

(

e
−α1t sin (ωd1t)

(

α2
1 − ωd21

)

−2ωd1α1e
−α1t cos (ωd1t)

)

−
Vc(0)

L2eqωd2

(

e
−α2t sin (ωd2t)

(

α2
2 − ωd22

)

−2ωd2α2e
−α2t cos (ωd2t)

)

(8)

d2I3

dt2
=

Vc(0)

L1eqωd1
(−2ωd1α1)+

Vc(0)

L2eqωd2
(2ωd2α2)

(9)
d2I3

dt2
= −

Vc(0)

L21eq

(

R1eq + Rf

)

+
Vc(0)

L22eq

(

R2eq + Rf

)

VcVc

R1eq L1eq R2eq L2eq

I1 I2

I

Fig. 11  Modified circuit for P-P-G fault

Table 3  Different DC faults current threshold range under fault 
resistance and distance variations

Different faults under Rf variation Different faults 
under Fd variation

Type of fault Fault range (A) Fault range (A)

Min Max Min Max

P-P 789 2151 518 1012

P-P-G 280 568 374 415

N-P-G − 280 − 568 − 374 − 415

Series arc 11.4 20.8 13.8 16.7

Shunt arc − 1.89 − 4.05 − 2.72 − 3.25
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differential current derivative [37]. For this reason, the 
second-order derivative current is used in this paper 
for fault detection with the variety of case studies.

3.1.1 � Case 1: Under fault resistance variation
In the proposed model, the fault resistance variation from 
0.1 to 2  Ω is considered based on the nominal voltage 
and short circuit current [38, 39] in the grid-connected 
mode to analyze behavior of different faults with the 
fault switching time varying from 1.3 to 1.55 s. It is seen 
from Figs.  6 and 9 where different fault resistance vari-
ations are considered, while keeping the fault distance 
constant at 20%, that the magnitude of the fault current 
decreases with the increase of fault resistance while its 
shape remains the same. Among these variations, 0.5 Ω 
fault resistance is considered in this paper to analyze the 
fault detection with a first peak magnitude of d

2I3
dt2

 tech-
nique for DC short circuit and arc faults, as depicted in 

Fig. 12. In this method, the fault is detected in the case 
of non-zero differential current. The fault detection times 
for the fault resistance variations for different types of 
faults using the proposed method are listed in Table 4.

3.1.2 � Case 2: under fault distance variation
Analyzing different types of faults with the fault distance 
variation is very difficult because the local measurements 
are unable to detect the fault if it happens far from the 
measurement bus. Here the proposed model is simulated 
by varying the fault distance from 20 to 100% for differ-
ent faults while keeping the fault resistance constant at 
1Ω, and the simulation results are shown in Table 3, and 
Figs. 7 and 10. Among these variations, 40% of the fault 
distances for different types of faults are considered, and 
the fault is detected with the first peak magnitude of the 
second-order derivative of differential current for all 

(a) (b) (c)

(d) (e)

Fig. 12  Faults detection using d
2
I3

dt2
  under fault resistance variation a P-P fault, b P-P-G fault, c N-P-G fault, d series arc, e shunt arc

Table 4  DC faults detection using second-order differential derivative current

DC faults detection with d2 I3/dt2 DC faults detection with SMW-PCC

Type of fault Under Rf = 0.5 Ω Under Fd = 40% Under Rf = 2.0 Ω Under Fd = 40%

Time (ms) Fault peak Magnitude Time (ms) Fault peak Magnitude Time (ms) Fault peak 
Magnitude

Time (ms) Fault peak 
Magnitude

P-P 0.48 1.675E+06 2.41 1.159E+06 5.73 − 0.025 4.4 0.6875

P-P-G 0.51 4.718E+05 5.2 2.870E+05 4.1 0.3214 3.5 0.7862

N-P-G 0.89 4.721E+04 7.4 6.255E+03 8.7 0.3214 5.6 0.8411

Series arc 1.4 1.045E+03 8.41 7.095E+02 7.2 0.832 7.2 0.8973

Shunt arc 1.81 4.136E+02 9.2 2.305E+02 10.4 0.7894 8.7 0.9179
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types of faults, as depicted in Fig. 13. The detection times 
are illustrated in Table 4.

From the above discussions and results, it is clear that 
the proposed d

2I3
dt2

 method is more accurate and faster 
in terms of fault detection than others. However, this 
method has low accuracy and a delayed fault detection 
time when the system is subjected to high impedance 
loads and in the presence of noise. Because of this, a sec-
ondary protection scheme, i.e., sliding mode window-
based Pearson’s correlation coefficient, is proposed in 
this paper.

3.2 � Sliding mode window‑based Pearson’s correlation 
coefficient

Pearson’s correlation coefficient (PCC) is widely used to 
estimate the behavior of a non-linear signal [40]. How-
ever, with PCC it is impossible to achieve a fast and accu-
rate fault detection time especially when there is large 
number of samples in the non-linear signal [41]. The 
performance can be improved by the proposed method 
using sliding mode window-based PCC (SMW-PCC). In 
this paper, SMW-PCC can be obtained by the correlation 
coefficient (CC) of the current window to the previous 
window of the differential fault signal, expressed as:

(10)R
(

Xprev , Xcurrent

)

=

∑m
k=2(xk−1+n − xk−1+n)

(

(xk+n − xk+n

)

√

∑m
k=2(xk−1+n − xk−1+n)

2
√

∑m
k=2(xk+n − xk+n)

2

where k is the sampling instant, n is the number of sam-
ples in the window, which is always n ≥ k, and in this 
paper, n is considered to be 10 samples for accurate 
detection. If n is very large it diminishes the sensitiv-
ity and accuracy. xk−1+n and xk+n are the mean values 
of the previous and current windows, respectively. m 
is the length of the fault signal and R

(

Xprev , Xcurrent

)

 is 
the Pearson’s correlation coefficient of previous and cur-
rent windows of the differential fault signal. The range 
of R varies between -1 and + 1. If R

(

Xprev , Xcurrent

)

= 0 
it indicates that there is no correlation between the pre-
vious window and the current window of a fault signal, 
whereas R

(

Xprev , Xcurrent

)

= +1 and− 1 indicate a 
strong positive and strong negative correlation between 
the previous window and current window of a fault sig-
nal, respectively.

SMW-PCC can be obtained for every instant using (10). 
If the current and previous samples have the same mag-
nitude the resultant CC is large because the correlation 
between the same signals is obviously high [40]. In this 
method, windows are moving by correlating the current 
window with its previous one until the length of the sig-
nal m is covered. During this moving process, if any win-
dow samples contain abrupt changes in their magnitude 

(a) (b) (c)

(d) (e)

Fig. 13  Faults detection by using d
2
I3

dt2
 under fault distance variation a P-P fault, b P-P-G fault, c N-P-G fault, (d) series arc, e shunt arc
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correlation, the coefficient will be immediately changed. 
Based on the sudden change in the correlation coefficient 
magnitude it is easy to detect the fault instant in the signal. 
Therefore, this method is proposed in the paper for fault 
detection, even if the system is subjected to large load, high 
fault resistance, and presence of noise.

3.2.1 � Case 1: under fault resistance variation
In this scenario, the fault resistance is varied from 0.1  to 
2 Ω while the fault distance is kept constant. The differ-
ential fault currents of both cable and arc faults under 
these variations can be seen in Figs. 6 and 9, respectively. 
Among these variations, Rf = 2.0 Ω is considered to iden-
tify the fault detection for all the DC faults using the 
SMW-PCC method.

From Fig. 14 it is clear that if the system is healthy, i.e., 
previous and current window magnitudes are the same, 
the correlation coefficient is the highest. When an abrupt 
change occurs in either current or previous windows, the 
correlation coefficient value is changed immediately. This 
effect can be observed from 1.3 to 1.5 s in Fig. 14, where 
the threshold is considered at 0.98. If the correlation 
coefficient of any signal is less than the threshold it indi-
cates a fault in the signal. In this paper, the first low peak 
magnitude is considered as the fault instant to trip and 
isolate the microgrid from the fault zone. The low peak 
magnitudes of all the faults are reported in Table 4.

3.2.2 � Case 2: under fault distance variation
In this scenario, the fault distance is varied from 20 to 
100% of the cable length while keeping the fault resist-
ance Rf constant at 1  Ω. The differential fault currents 
for all the faults under these variations are illustrated in 

Figs. 7 and 10. Among these variations, the fault distance 
(Fd) is fixed at 40% of the cable length to consider the 
fault detection in the DC fault signals using the SMW-
PCC method.

From Fig.  15 it is seen that the system is in healthy 
condition when there is no change in the magnitude of 
the current and previous windows, while the correla-
tion coefficient is at a maximum. Whenever the system 
is unhealthy there are, abrupt changes in the signal cor-
relation coefficient and it is decreased from maximum 
to minimum, as can be seen in Fig. 15 during 1.3–1.55 s. 
The threshold is 0.98 and below the threshold it is consid-
ered as a faulty section. In this paper, the first low peak 
magnitude is considered as the fault instant to trip the 
relay for microgrid protection, and the magnitudes of dif-
ferent faults are reported in Table 4.

4 � DC fault classification using M‑MFDFA
4.1 � Basic MFDFA
Using detrended fluctuation analysis (DFA), monofrac-
tal components can be analyzed for long-range but not 
forlocal fractal components. MFDFA is the extension 
of DFA which can successfully rectify the drawbacks of 
DFA [42]. Originally, MFDFA was proposed to analyze 
the non-stationary time series signals which can also sig-
nificantly eliminate the characteristics data [32]. In this 
paper, the proposed algorithm is used to classify the dif-
ferent non-stationary fault signals collected from bus B, 
and five steps are taken to illustrate the classification of 
different fault signals.

Step 1. Initially the differential current (i.e., I3 = I1–I2) 
signal is passed through MFDFA, which contains the 
vanished components of the non-linear time series. Such 

(a) (b) (c)

(d)                (e)
Fig. 14  Fault detection by using SMW-PCC at Rf = 2. 0Ω a P-P fault, b P-P-G fault, c N-P-G fault, d series arc, e shunt arc
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components can be eliminated by subtracting the mean 
from the input signal and expressed as:

where Y (m) is the obtained signal that represents the 
profile of MFDFA, I(m) is the input signal, and I(m) is the 
mean of I(m) . n is the length of the input signal and var-
ies from 1 to N.

Step 2. Divide the profile Y (m) into Ns, where Ns =
N
s  

is the non-overlapping uninterrupted segment (v) with 
an equal length of scales. The symbol ⌊⌋ ⌊a⌋ refers to 
only considering the integer part because sometimes the 
length of the differential current signal is not multiples of 
the time scale (s). Given this, there may be a small part 
of the truncated data leftover from the end of the signal 
and not used. In order to use this data the same process is 
repeated from the opposite end of Y(m), and as a result of 
such process, 2Ns components are obtained.

Step 3. Local trends of each 2Ns segment can be cal-
culated using the least squares fitting approach, and then 
the variance of each segment can be calculated as:

(11)Y(m) =

n
∑

m=1

(I(m)− I(m)), n = 1, 2, 3, . . .N

(12)F2(v, s) =

{

1

s

s
∑

m=1

{

Y ((v − 1)s +m)− ynv (m)}2 for v = 1, 2, 3 . . .Ns

(13)F2(v, s) =

{

1

s

s
∑

m=1

{

Y (N − (v − Ns)s +m)− ynv (m)}2 for v = Ns + 1, 2, . . . 2Ns

Here ynv (m) indicates the polynomial trend function by 
sections familiar inevery segment v. In the least squares 
fitting procedure, if n = 1, it is linear, if n = 2 quadratic 
and if n = 3cubic polynomials are used.

Step 4. Average overall segments to achieve the fluctua-
tion function (Fq) or average fluctuation of the qth order, 
defined as:

From (14) it is clear that for q = 2, Fq(s) belongs to DFA 
analysis. To discover how Fq(s) relies on the scales s for 
other values of q, it is necessary to repeat the steps from 2 
to 4 for unlike time scales (s). In this paper, q is restricted 
within the interval − 5 ≤ q ≤ 5.

Step 5. Finally the scalar behavior of Fq(s) employ-
ing log–log graphs against s for each value of q 
is observed and the range of time series scales is 

(14)Fq(s) =























exp

�

1
4Ns

2Ns
�

v=1

lnF2(v, s)

�

if q = 0

�

1
2Ns

2Ns
�

v=1

[F2(v, s)]0.5q

�2

if q �= 0

(a) (b) (c)

(d) (e)
Fig. 15  Fault detection using SMW-PCC at Fd = 40% a P-P fault, b P-P-G fault, c N-P-G fault, c series arc, d shunt arc
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m+ 2 = smin ≤ s ≤ smax =
N
4  in a given order q ≠ 0, 

for which the following relation can be established:

If q = 0, the above equation becomes:

where H (q) is the Hurst exponent. If both q and H(q) are 
independent of each other, H(q) has stable values and the 
resultant of variance F2(v, s) is the same for all the local 
fractal segments.

4.1.1 � Multifractal spectrum analysis
The relation can be established between the generalized 
Hurst exponent H(q) and mass exponent E(q) as:

The relation between E(q) and q is linear when q and E(q) 
are independent of each other and is monofractal data. 
Otherwise, it is a multifractal series data due to the non-
linear nature, and has a strong non-linear relation. By 
using the Legendre transform [32], the relation between 
the singularity spectrum (Mq) and mass exponent (Eq) 
can be established as:

where λ represents the singularity exponent or Holder 
exponent, and Mq represents the fractal dimension of 
the time series with distinct values of λ. The graph plot 
between Mq and λq is termed a multifractal or singular-
ity spectrum, and Mq reaches the maximum value when 
q = 0. The obtained graph is an inverted parabola, where 
the width indicates the measure of the multifractal spec-
trum, with a larger value signifying a higher degree of 
multifractality. In the case that it shows zero-degree then 
it is a monofractal time series data because Hq is inde-
pendent of q.

4.2 � Modified MFDFA algorithm (M‑MFDFA)
In the basic MFDFA method, local fractal trends are con-
sidered to take the fixed polynomial order which was 
discussed in step 3, (12) and (13). It is not the best way 
for estimating the local trends, because n will not be sta-
ble throughout the time series data, but varies for differ-
ent time intervals. Basic MFDFA is difficult to apply for 
measuring the trends in real-time series data with the 
unknown trend and unknown functional form because 

(15)Fq(s) ∝ sH(q)

(16)F0(s) ∝ sH(0)

(17)E(q) = qH(q)− 1

(18)�q =
dEq

dq

(19)Mq = q�q − Eq

it is very difficult to find the best polynomial for elimi-
nating the local trends [34]. To avoid these shortcomings 
in the basic MFDFA, this paper proposes the M-MFDFA 
method, where a set of polynomials and trigonometric 
functions of possible linear combinations are considered 
as depicted in Table 5.

Set of polynomials and trigonometric functions 
U = {A1,A2, . . . .A12} to estimate the local trends are:

where a, b, c, K1, K2, K3, and K4 are real constants, which 
come from the DFA analysis for local trends.

The proposed M-MFDFA method only changes step 
3 of the basic MFDFA without affecting the other steps. 
Thus the modified step 3 is as follows:

Step 3. Local fractal trends are calculated for each 
of the 2Ns segments with the help of the trigonometric 
functions set fi for i = 1, 2, . . . .12 that belong to the set 
U. According to the method kurtosis of each of the seg-
ments will take only one function from the function set 
U and is then subtracted from the profile. This optimal 
mode is obtained to estimate the local trend by the selec-
tion of one which has the lowest kurtosis, and variance of 
each segment can then be calculated as:

A1 = a,

A2 = ax + b,

A3 = ax
2
+ bx + a,

A4 = a+ K1 sin (x)+ K2 cos (x),

A5 = ax + b+ K1 sin (x)+ K2 cos (x),

A6 = ax
2
+ bx + c + K1 sin (x)+ K2 cos (x),

A7 = a+ K3 sin (2x)+ K4 cos (2x),

A8 = ax + b+ K3 sin (2x)+ K4 cos (2x),

A9 = ax
2
+ bx + c + K3 sin (2x)+ K4 cos (2x),

A10 = a+ K1 sin (x)+ K2 cos (x)

+ K3 sin (2x)+ K4 cos (2x),

A11 = ax + b+ K1 sin (x)+ K2 cos (x)

+ K3 sin (2x)+ K4 cos (2x), and

A12 = ax
2
+ bx + c + K1 sin (x)+ K2 cos (x)

+ K3 sin (2x)+ K4 cos (2x)

Table 5  Local trends estimation for each segment (v) with the 
functions set U

Trigonometric functions Polynomial functions

a ax + b ax
2
+ bx + c

0 … … …

K1sin(x)+ K2cos(x) … ax + b+ K1sin(x)+ K2cos(x)…

K3sin(2x)+ K4cos(2x) … … …

K1sin(x)+ K2cos(x)+

K3sin(2x)+ K4cos(2x)

… … …
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Compared with (12) and (13), using the modified (20) 
and (21) makes it easier to minimize the local trends of 
any order of polynomial function f set belonging to U. 
This method is also suitable for cases whoseresponse is 
curvilinear.

4.3 � Analysis of M‑MFDFA multifractal features
From M-MFDFA various feature vectors are produced. 
These can be usedto classify the different fault types. 
Proper selection of features plays a vital role in classifying 
the faults distinctively, while the selection of features can 
be done by trial and error or prior knowledge of various 
literature surveys on classification.

•	 Hurst exponent (Hq)
•	 Mass exponent or scaling exponent (Eq)
•	 Multifractality spectrum or singularity spectrum 

(Mq)
•	 Extreme right of the multifractal spectrum (λqmax)
•	 The peak value of the multifractal spectrum (λpeak)
•	 Width of the singularity spectrum (Δλq)

From the aforementioned features, the three main vec-
tors, i.e., Hurst exponent, Mass exponent, and Singular-
ity spectrum, that effect the non-linear characteristics of 
signals are identified from the various kinds of literature 
[32]. The impact of these vectors in the proposed model 
is discussed in Sect. 6.

4.4 � Statistical analysis for the selected feature vectors
From the above discussion, the chosen feature vectors are 
used for fault classification. For accurate classification of 
DC faults, 2-Dimensional (2-D) and 3-Dimensional (3-D)
scatter plots are used. Since the extracted features are in 
vector form it is compulsory to convert them into statis-
tical measurement data, and then it is simple to visualize 
the distinctly classified faults in 2-D and 3-D plots. The 
statistical measurements are numerically-based repre-
sentations, which give important information for ease of 
interpretation. Among the various statistical measure-
ments, kurtosis is found to be more sensitive for non-
linear characteristics, and thus the kurtosis index is used 

(20)F2(v, s) =

{

1

s

s
∑

m=1

{

Y ((v − 1)s +m)− fi(m)}2 for v = 1, 2, 3 . . .Ns

(21)F2(v, s) =

{

1

s

s
∑

m=1

{

Y (N − (v − Ns)s +m)− fi(m)}2 for v = Ns + 1, 2, . . . 2Ns

in this paper [32, 43]. From the statistics, kurtosis can be 
defined as the combination of a weight distribution’s tail 
relative to the center of the distribution represented as:

where Y is the fault signal and Y is its mean value, N is 
the length of the signal, and σ is the standard deviation. 
The KI data set is obtained from the feature vectors, i.e., 
Eq, Mq, and Hq of each DC fault under fault resistance 
and distance variation. The obtained data set is used to 
enhance the performance of the proposed classifier in 
terms of classification accuracy. For better visualization, 
the data is represented in 2-D and 3-D scatter plots in the 
form of clusters and its results are discussed in Sect. 6.

5 � Parameter estimation
The estimation of cable parameters plays a key role in 
determining the fault instant during a fault in the pro-
posed microgrid model. Thus, in the current section, DC 
cable parameters are estimated to modify the cable net-
work (i.e., π-section network) as shown in Fig. 3b, to an 
equivalent fault network. If the fault happens in the cable 
at a particular point, the part from that point to the rest 
of the section is disconnected in the modified circuit, 
which is shown in Fig. 16. To obtain the unknown param-
eters, the ‘forgetting factor-based recursive least squares’ 
(FF-RLS)method is used.

From (1), there is:

(22)Kurtosis index (KI) =
1

N

N
∑

i=1

(( Yi − Y)4)/σ4

Vc

R1 L1

I1

Fig. 16  Equivalent circuit for Pole–Ground fault
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5.1 � Recursive least squares with forgetting factor
In this paper, a novel approach of recursive least 
squares method with variable forgetting factor [43] 
is used to locate the fault distance by estimating the 
unknown parameters of the DC ring microgrid cable. 
The FF-RLS method is used in various applications 
such as estimation ofO2 gas–liquid mass-transfer in 
the chemical industry, in financial studies, biomedical 
applications for estimating the ECG signals, predict-
ing the torque and speed parameters in mechanical 
studies as well as recent application of RLS to estimate 
unknown parameters such as resistance, inductance, 
and capacitance in electrical circuits. The proposed 
method is more accurate and stable than others, with 
low computational time and high robustness which is 
proven in [43–46].

Equation (23) can be modified as:

From the above equations, the known parameters are 
the current and voltage matrices which are represented 
for n samples as Idc ∈ Rn×3 = [I1(n);

�I1(n)
�t ; I3(n)]n×3 

and Vdc ∈ Rn×1 = [Vc(n)]n×1 , respectively, and the 
unknown parameters are Zdc ∈ R3×1 =

[

R1; L1;Rf

]

.

The above equation is illustrated during the period of 
tmandtm+1 as:

where m represents each iteration cycle.
Assuming:

where Ac,Bc , and Cc are the cable resistance, inductance 
and fault resistance respectively. By using (25), (26) can 
be modified as follows:

(23)Vc = I1R1 + L1
dI1

dt
+ Rf (I3)

where Vdc1 = Vdc2 = Vc =
1

C
∫ I1dt.

(24)Vdc = Idc × Zdc

(25)where



























Idc =
�

I1
�I1
�t I3

�

Vdc = [Vc]

Zdc =





R1

L1
Rf





(26)Vdc(m) = Idc(m)Zdc







Ac = [R1]
Bc = [L1]
Cc =

�

Rf

�

where ϕ(m) is the regression vector and contains the 
data of the DC cable current, and E(m) represents the 
prediction error. θ̂ (m) is the estimated state vectorand is 
updated using FF-RLS to find the unknown parameters, 
and can be obtained by:

State vector update estimation is developed by:

where G(m) is the Kalman gain matrix, given as:

where P is the error covariance matrix and it is obtained 
as:

Equations (26) to (31) are performed recursively with the 
initial values of the invertible matrix P(0) and an initial 
state vector θ(0). The forgetting factor for the RLS is λ, 
and its range is 0 < λ <  = 1. In this paper, λ is varied from 
0.78 to 0.997. In the steady-state, the computation speed 
of the proposed algorithm can be estimated by:

where Ts is the sampling period, and αR is the bandwidth 
of the estimator and must be greater than zero.

From (32) it is clear that a lower value of λ increases 
the computation speed, reduces the noise rejection and 
selectivity, where as a higher � value reduces the estima-
tion speed but increases selectivity and stability. Thus, a 
low value is used in the transient state value. Location of 
fault distance is estimated using estimated parameters 
and is briefly discussed in Sect. 6. The overall summary of 
the FF-RLS algorithm is illustrated in Table 6.

6 � Results and discussion
Initially, various faults are simulated in the MATLAB/ 
SIMULINK platform for the proposed PV-Wind-based 
DC ring microgrid model under different fault resistances 

(27)
Vdc(m) =





I1(m− 1)
�I1(m−1)

�t
I3(m− 1)





T



Ac

Bc

Cc





= ϕT(m)θ̂ (m− 1)+ E(m)

(28)where















θ̂ (m) =





Ac

Bc

Cc



 =





a1
b1
c1





E(m) = Vdc(m)− ϕT(m)θ̂(m− 1)

(29)θ̂ (m) = θ̂(m− 1)+ G(m) · E(m)

(30)G(m) =
P(m− 1)ϕ(m)

� + ϕT(m)P(m− 1)ϕ(m)

(31)P(m) =
P(m− 1)

�

(

I− G(m)ϕT(m)

)

(32)αR =
1− �

Ts
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and distances. Signals are collected from bus B, and the 
fault range of the differential current signals is shown 
in Table 3. For every fault, it is necessary to identify the 
fault occurring time, and for that purpose two protection 
schemes are proposed. The primary protection scheme is 
a second-order derivative of the differential fault current 
and SMW-PCC is the secondary protection technique. 
The primary protection technique is more suitable for 
low impedance and fault resistance conditions. However, 
in noisy and high impedance fault conditions, d

2I3
dt2

 leads 
to false detection. Therefore, the secondary protection 
technique (i.e. SMW-PCC) is introduced in this paper 
to protect the grid from all aspects. This detection tech-
nique works on the basis of the correlation coefficient 
between the current and the previous windows, and the 
correlation coefficient threshold is selected as 0.98. By 
using these techniques all the faults are detected in less 
than 11 ms, where as the detection time is less than 2 ms 
in the case of fault resistance variation (Rf = 0.5  Ω) and 
less than 10  ms in the case of fault distance variation 
(Fd = 40%) with the d

2I3
dt2

 technique. By using the SMW-
PCC technique the detection time is less than 9  ms in 
the case of fault resistance variation (Rf = 2.0  Ω) and 

less than 11  ms in the case of fault distance variation 
(Fd = 40%). Compared to the arc faults (i.e., series arc and 
shunt arc), cable faults are detected very quickly by these 
approaches, as can be clearly seen from Table 4.

After fault detection, it is necessary to classify the dif-
ferent types of DC faults. In this paper a novel M-MFDFA 
approach is used to classify the different faults, where 
a total of five different types of fault signals (i.e., differ-
ential current signals) are directly passed through the 
M-MFDFA classifier. This classifier initially calculates 
the profile by subtracting the mean from the input, and 
it then calculates the 2Ns components of each fault seg-
ment. The time scale parameters (s) considered from 
16 to 1024 have a logarithmic scale of 19 between them 
and are equally divided by N (i.e., length of the signal) 
segments.

Thus variance of these segments is calculated for any 
order of polynomial functions. Under two scenarios, i.e., 
fault resistance and distance variations, the fluctuation 
component Fq with the order q is evaluated. Among the 
three vectors (i.e., Hq, Eq, and Mq), the Hurst exponent 
(Hq) is identified as the best feature vector to analyze the 
dynamic characteristics of the non-linear signal based on 

Table 6  Stepwise execution of FF-RLS algorithm
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the literature. Whenever the Hurst exponent Hq shows 
long-term correlation, the log-linear fluctuation function 
shows the power-law correlations in that time, and the 
Hurst exponent Hq and q values are varied from -5 to 5 
for the differential fault current signals.

When q = 2, all the considered DC faults of Hq show 
the discriminative characteristics, while when q = 0.4, Hq 
shows the undiscriminating non-correlated and overlap-
ping characteristics. If q and Hq are positive, the fluctua-
tion of segments scaling properties are large, whilethey are 
small when Hq and q are negative, as shown in Figs. 17a 
and 18a. The plot between the scaling exponent (Eq) andq 
shows the clear relation between Eq and q. Itis non-linear 
and similar to a convex shaped curve observed in both 
Figs. 17b and 18b. From the results, the degree of non-lin-
earity is observed, and is more significant for the P-Pfault 
signal than the fluctuations of other faults. Figures 17c and 
18c show the multifractal spectrum and the shapes look 
like an inverted parabola. These results show the truncated 
right tail characteristics for both arc and cable faults, and 

(a) (b) (c)
Fig. 17  Analysis of M-MFDFA features under fault resistance variation: a Hurst exponent, b Mass exponent and c Multifractal spectrum

(a) (b) (c)
Fig. 18  Analysis ofM-MFDFA features under fault distance variation: a Hurst exponent, b Mass exponent and c Multifractal spectrum

Table 7  Kurtosis index (KI) data for multifractal feature vectors

Type of fault Class name Hurst 
exponent 
(Hq)

Mass 
exponent 
(Eq)

Multifractal 
component 
(Mq)

P-P-G F1 1.08134 2.16532 1.14624

1.08526 2.17866 1.17465

1.09891 2.19561 1.20573

P-P F2 1.16732 2.20840 3.62411

1.18043 2.25482 3.78423

1.19461 2.28290 3.92311

N-P-G F3 1.06245 1.81722 2.53841

1.06952 1.87255 2.69722

1.07211 1.91352 2.92833

Shunt arc F4 1.12280 1.47612 1.60413

1.13079 1.51628 1.65817

1.14550 1.55743 1.68150

Series arc F5 1.01753 1.23744 1.81861

1.02935 1.28657 1.87533

1.04910 1.39131 1.92372
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their properties indicate high magnitude and insensitivity 
to local fluctuations. In this spectrum, all the faults are seen 
to be different from one another. For better classification 
and to enhance the performance of the proposed classifier, 
the chosen multifractal feature vectors are converted into 
statistical measurement data using the kurtosis index, as 
shown in Table 7. The data is represented in 2-D and 3-D 
scatter plots in Fig. 19 to give the proper DC fault classifica-
tion in the form of clusters. From Fig. 19 it is clear that all 
the faults are distinctly classified.

6.1 � Performance evaluation
The performance of the proposed method can be verified 
with the assistance of classification accuracy (CA), rela-
tive computational time (RCT), and percentage of relative 
error. CA and RCT of M-MFDFA are given as:

(33)CA% =
Truly classifiedKI data samples

Randomly chosenKI data samples fromwhole data set
× 100100

(34)Relative computational time (RCT ) =
particularmethod computational time

low computational time among all themethods

For classification, five kinds of DC faults are taken 
under two cases of fault resistance (Rf) variation and 
fault distance (Fd) variation for the PV-Wind-based DC 
ring network. In the case of fault resistance variation, Rf 
is varied from 0.2 to 2  Ω, with total 20 variations con-
sidered for each fault. For fault distance variation, Fd is 
varied from 10 to 100% in the cable, also resulting in 20 
variations for each fault. From these two cases, the total 
variations are 40 and from each variation of DC faults, KI 
values are extracted from the chosen multifractal feature 
vectors. Three variations of KI values for each fault are 
represented in Table  7. From all the considered faults a 
total of 200 sample data is obtained, while 180 samples 
are randomly chosen to perform the classification of dif-
ferent faults. Among the 180 samples, 179 are exactly 
classified, while misclassification happens between 

(a) (b) (c)
Fig. 19  M- MFDFA scatter plots for different faults in terms of KI data a scatter plot between Hq and Mq, b scatter plot between Hq and Eq, c 3-D 
scatter plot among Hq, Eq, and Mq

Table 8  Comparison between the proposed classifier and the existing classifiers

Classifier Extracted features CA (%) Computational time (ms) RCT (p. u.)

Without noise With noise (30 dB)

EEMD [25] 13 91.58 86.78 56.228 2.03

ST [26] 11 90.57 85.78 71.651 2.60

MWT [24] 10 94.67 91.16 47.269 1.71

EWT-SVM [27] 8 96.54 93.58 51.86 1.87

MFDFA [32] 3 99.16 97.5 36.81 1.33

M-MFDFA 3 99.44 98.16 27.65 1
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N-P-G fault (F3) and Shunt arc fault (F4) as can be seen 
in Fig.  19. The classification accuracy of the proposed 
method can be obtained using (33).

The proposed classifier is compared with existing clas-
sifiers, i.e., EEMD, ST, WT, EWT-SVD, and MFDFA in 
terms of extracted features and classification accuracy for 
both without and with noise (30 dB noise is intentionally 
added to the signal), and with the assistance of (34). The 
relative computational time is calculated for each method 
and listed in Table 8. From Table 8, it is clear that the pro-
posed M-MFDFA classifier shows dominance in terms of 
extracted features, classification accuracy, and RCT when 
compared to the existing classifiers which are shown in 
bar graphs in Fig. 20. Even though the extracted features 
are the same in MFDFA and M-MFDFA, M-MFDFA 

shows superiority in terms of CA, CT, and RCT. Hence 
it is clear that the proposed classifier is validated for the 
PV-Wind-based DC ring network.

After classification, it is necessary to estimate fault 
location. Thus, FF-RLS is used to estimate the unknown 
parameters using (29), while among the different 
unknown parameters this paper focuses on the cable 
resistance. Fault distance can be obtained by the ratio 
of estimated to the actual resistance, and using the esti-
mated fault distance relative error can be obtained as:

(35)

Percentage of Relative error (%ε)

=

∣

∣

∣

∣

∣

estimated fault distance
(

defd

)
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(
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)
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∣
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Fig. 20  Classification accuracy for the proposed method

Table 9  P-P-G fault distance estimation by the FF-RLS algorithm

P-P-G fault

Fault resistance Rf = 0.5 Ω Fault resistance Rf = 1 Ω Fault resistance Rf = 1.5 Ω Fault resistance Rf = 2 Ω

Actual fault 
distance 
(

dafd

)

Estimated 
fault distance 
(

defd

)

Relative error 
(%ε)

Estimated 
fault distance  
(

defd

)

Relative error 
(%ε)

Estimated 
fault distance  
(

defd

)

Relative error 
(%ε)

Estimated 
fault distance  
(

defd

)

Relative error 
(%ε)

0.2 0.1952 2.4250 0.2032 1.6050 0.2049 2.4360 0.2072 3.5750

0.4 0.3951 1.2330 0.3897 2.5700 0.3899 2.5173 0.3798 5.0475

0.6 0.6131 2.1770 0.6143 2.3790 0.6160 2.6608 0.6313 5.2116

0.8 0.7812 2.3490 0.8132 1.6450 0.7795 2.5673 0.7684 3.9468

1 0.9858 1.4220 0.9813 1.8750 0.9792 2.0803 0.9579 4.2140

1.2 1.1823 1.4770 1.2147 1.2270 1.2292 2.4372 1.2577 4.8093

1.4 1.4371 2.6510 1.3802 1.4160 1.3591 2.9197 1.4596 4.2586

1.6 1.5713 1.9690 1.5680 1.9990 1.6538 3.3613 1.5315 4.2798

1.8 1.8484 2.6870 1.8192 1.0690 1.7419 3.2258 1.7301 3.8818

2 1.9517 2.4140 2.0283 1.4160 1.9315 3.4234 1.8975 5.1235
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The proposed FF-RLS algorithm estimates all the loca-
tions of all faults accurately using (35) which are listed 
in Tables 9, 10, 11, 12 and 13. Unknown parameters can 
be obtained for the concerned fault by updating the fault 
data along with the variation of the forgetting factor (λ) in 
the proposed algorithm. After the recursive performance 
from (31) unknown parameters are obtained.

To represent fault location effectively, random data 
has been taken from the P-P-G fault among all the faults 
at Rf = 1 Ω, and its corresponding plot is represented in 
Fig. 21. As seen, it is evident that the proposed FF-RLS 

algorithm can successfully estimate the fault distance at 
Rf = 1 Ω.

7 � Conclusion
In this paper a novel approach is presented for fault 
detection, classification, and distance estimation to 
obtain reliable operation of a PV-Wind-based DC-ring 
microgrid. Initially, five kinds of faults are collected 
from local measurements for two cases, i.e., fault resist-
ance variation (Rf) and fault distance variation (Fd). 
Differential current is estimated from the collected 

Table 10  N-P-G fault distance estimation by the FF-RLS algorithm

N-P-G fault

Fault resistance Rf = 0.5 Ω Fault resistance Rf = 1 Ω Fault resistance Rf = 1.5 Ω Fault resistance Rf = 2 Ω

Actual fault 
distance 
(

dafd

)

Estimated fault 
distance  

(

defd

)

Relative 
error 
(%ε)

Estimated fault 
distance  

(

defd

)

Relative 
error 
(%ε)

Estimated fault 
distance  

(

defd

)

Relative error 
(%ε)

Estimated fault 
distance  

(

defd

)

Relative error 
(%ε)

0.2 0.2019 0.950 0.196 2.000 0.2021 1.055 0.1955 2.25

0.4 0.3904 2.400 0.4065 1.625 0.3897 2.575 0.4102 2.55

0.6 0.5931 1.150 0.6122 2.033 0.5917 1.3833 0.6205 3.4167

0.8 0.8112 1.400 0.8164 2.050 0.8201 2.5125 0.8202 2.525

1 1.0188 1.880 0.9806 1.940 0.9802 1.98 1.0278 2.78

1.2 1.2183 1.525 1.1785 1.792 1.1825 1.4583 1.1853 1.225

1.4 1.3846 1.100 1.4157 1.121 1.4199 1.4214 1.4396 2.8286

1.6 1.6155 0.970 1.6168 1.050 1.5838 1.0125 1.6547 3.4188

1.8 1.7791 1.161 1.7805 1.083 1.7649 1.95 1.7741 1.4278

2 2.0247 1.235 1.9603 1.985 1.9601 1.995 2.0647 3.235

Table 11  P-P fault distance estimation using FF-RLS algorithm

P-P fault

Fault resistance Rf = 0.5 Ω Fault resistance Rf = 1 Ω Fault resistance Rf = 1.5 Ω Fault resistance Rf = 2 Ω

Actual fault 
distance 

(

dafd

)

Estimated fault 
distance  

(

defd

)

Relative 
error (%ε)

Estimated fault 
distance  

(

defd

)

Relative 
error (%ε)

Estimated fault 
distance  

(

defd

)

Relative 
error (%ε)

Estimated fault 
distance  

(

defd

)

Relative 
error (%ε)

0.2 0.2019 0.950 0.1974 1.300 0.2039 1.950 0.2072 3.600

0.4 0.4051 1.275 0.4027 0.675 0.4119 2.975 0.3817 4.575

0.6 0.5971 0.483 0.5897 1.717 0.6096 1.600 0.5813 3.117

0.8 0.8116 1.450 0.7852 1.850 0.7789 2.638 0.8284 3.550

1 0.9874 1.260 0.9853 1.470 1.0192 1.920 1.0379 3.790

1.2 1.2093 0.775 1.1847 1.275 1.2375 3.125 1.2277 2.308

1.4 1.3871 0.921 1.4152 1.086 1.4156 1.114 1.3506 3.529

1.6 1.6019 0.119 1.6147 0.919 1.6342 2.137 1.5315 4.282

1.8 1.8184 1.022 1.772 1.555 1.7886 0.633 1.7301 3.883

2 2.0217 1.085 2.0283 1.415 1.9743 1.285 1.9182 4.090
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Table 12  Series arc fault distance estimation using FF-RLS algorithm

Series arc fault

Fault resistance Rf = 0.5 Ω Fault resistance Rf = 1 Ω Fault resistance Rf = 1.5 Ω Fault resistance Rf = 2 Ω

Actual fault 
distance 

(

dafd

)

Estimated fault 
distance  

(

defd

)

Relative 
error (%ε)

Estimated fault 
distance  

(

defd

)

Relative 
error (%ε)

Estimated fault 
distance  

(

defd

)

Relative 
error (%ε)

Estimated fault 
distance  

(

defd

)

Relative 
error (%ε)

0.2 0.2028 1.400 0.2048 2.400 0.1958 2.100 0.2041 2.050

0.4 0.3928 1.800 0.4097 2.425 0.4101 2.525 0.3788 5.300

0.6 0.5913 1.450 0.5843 2.617 0.6087 1.450 0.6273 4.550

0.8 0.8117 1.463 0.7832 2.100 0.7814 2.325 0.8441 5.513

1 0.9784 2.160 1.0243 2.430 1.0261 2.610 1.0519 5.190

1.2 1.2185 1.542 1.1801 1.658 1.2325 2.708 1.2707 5.892

1.4 1.4291 2.079 1.3608 2.800 1.4408 2.914 1.4781 5.579

1.6 1.6244 1.525 1.6327 2.044 1.5583 2.606 1.6542 3.388

1.8 1.7814 1.033 1.8385 2.139 1.7412 3.267 1.8991 5.506

2 2.0474 2.370 2.0428 2.140 1.9452 2.740 2.137 6.850

Table 13  Shunt arc fault distance estimation using FF-RLS algorithm

Shunt arc fault

Fault resistance Rf = 0.5 Ω Fault resistance Rf = 1 Ω Fault resistance Rf = 1.5 Ω Fault resistance Rf = 2 Ω

Actual fault 
distance 

(

dafd

)

Estimated fault 
distance  

(

defd

)

Relative 
error (%ε)

Estimated fault 
distance  

(

defd

)

Relative 
error (%ε)

Estimated fault 
distance  

(

defd

)

Relative 
error (%ε)

Estimated fault 
distance  

(

defd

)

Relative 
error (%ε)

0.2 0.2042 2.100 0.1937 3.150 0.2064 3.200 0.1914 4.300

0.4 0.4151 3.775 0.3911 2.225 0.42072 5.180 0.3844 3.900

0.6 0.5931 1.150 0.6203 3.383 0.63571 5.952 0.6275 4.583

0.8 0.7901 1.238 0.7807 2.413 0.83075 3.844 0.8584 7.300

1 0.9758 2.420 0.9673 3.270 0.93847 6.153 0.9201 7.990

1.2 1.1793 1.725 1.2324 2.700 1.26971 5.809 1.1245 6.292

1.4 1.4282 2.014 1.3704 2.114 1.44593 3.281 1.30577 6.731

1.6 1.5561 2.744 1.5547 2.831 1.52325 4.797 1.715 7.188

1.8 1.8324 1.800 1.8472 2.622 1.90279 5.711 1.8791 4.394

2 2.0517 2.585 2.0483 2.415 2.11086 5.543 1.8556 7.220

Fig. 21  Fault locations for P-P-G fault
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signals and its fault data is obtained with the help of 
the maximum and minimum values under different 
variations of Rf and Fd. The second-order derivative and 
SMW-PCC are applied to the differential fault current 
(i.e., the current passing through Rf) for DC fault detec-
tion. The fault detection is carried out using d

2I3
dt2

 with 
the first peak magnitude. Below the threshold (0.98 in 
this paper) is a fault zone where an especially low peak 
is considered for detection using SMW-PCC. Detected 
fault signals are passed through the M-MFDFA clas-
sifier for classification. The M-MFDFA multifractal 
features (i.e., Hq, Mq, and Eq) are in vector form, and 
are converted to statistical measurement data with the 
assistance of KI and plotted in 2-Dimensional and 3-D 
dimensional scatter plots for effective visualization. 
Scatter plots reveal that all the faults are accurately 
classified. Finally, fault distance estimation is achieved 
through the unknown parameters using the FF-RLS 
method. The novelties of this paper are:

•	 Modeling of the ring microgrid with the combination 
of PV array, wind turbine, battery, utility grid, and 
loads;

•	 The combination of primary and secondary detection 
techniques, i.e., d

2I3
dt2

 and sliding mode window-based 
Pearson’s correlation coefficient (SMW-PCC), is used 
to protect the microgrid in uncertain conditions.

M-MFDFA has been proposed for fault classifica-
tion and its main advantages are that it can estimate 
the local trends of any order polynomial function and 
it does not t require any signal processing algorithm to 
decompose the signals. M-MFDFA reduces the compu-
tational burden, RCT, extracted features, and increases 
the robustness of the system.

•	 M-MFDFA exhibits higher classification accuracy 
(99.44%) as compared to the existing techniques of 
EEMD, ST, MWT, EWT-SVM, and MFDFA, etc.

•	 Accurate fault location and very low relative errors 
are achieved by varying the forgetting factor from 
0.78 to 0.997 in FF-RLS.

It is concluded that the proposed method is suitable 
for the fault diagnosis of the PV-Wind-based DC ring 
microgrid.
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