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Abstract

Purpose: The increase in plug-in electric vehicles (PEVs) is likely to see a noteworthy impact on the distribution
system due to high electric power consumption during charging and uncertainty in charging behavior. To address
this problem, the present work mainly focuses on optimal integration of distributed generators (DG) into radial
distribution systems in the presence of PEV loads with their charging behavior under daily load pattern including
load models by considering the daily (24 h) power loss and voltage improvement of the system as objectives for
better system performance.

Design/methodology/approach: To achieve the desired outcomes, an efficient weighted factor multi-objective
function is modeled. Particle Swarm Optimization (PSO) and Butterfly Optimization (BO) algorithms are selected
and implemented to minimize the objectives of the system. A repetitive backward-forward sweep-based load flow
has been introduced to calculate the daily power loss and bus voltages of the radial distribution system. The
simulations are carried out using MATLAB software.

Findings: The simulation outcomes reveal that the proposed approach definitely improved the system performance in
all aspects. Among PSO and BO, BO is comparatively successful in achieving the desired objectives.

Originality/value: The main contribution of this paper is the formulation of the multi-objective function that can
address daily active power loss and voltage deviation under 24-h load pattern including grouping of residential,
industrial and commercial loads. Introduction of repetitive backward-forward sweep-based load flow and the modeling
of PEV load with two different charging scenarios.

Keywords: Plug-in electric vehicles (PEVs), Distributed generators (DGs), Repetitive distribution power flow, Particle
swarm optimization algorithm (PSO), Butterfly optimization (BO), Daily active power loss
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1 Introduction

DG (Distributed Generator) is characterized as a local
power source with a constrained size associated with the
distribution network. DGs Technology has turned into
the focal point of consideration for various researchers
because it is considered a proper answer for the shortage
of electric power supply. Moreover, proper installation
of DGs in the distribution system increases the efficiency
of the system, improves voltage profile and voltage sta-
bility of the system and release of line loading. However,
improvement in the above mentioned technical parame-
ters mostly depends on finding the right locations and
proper sizing of DGs which is termed as the optimal al-
location of DGs. Therefore, an optimal allocation of
DG@Gs in a distribution system aims to determine the opti-
mal locations and optimal sizes of DGs to meet active
power loss reduction, voltage profile improvement, etc.,
subject to various constraints such as power demand,
voltage limit, DGs size, Maximum power injection by
DGs, etc.

Some authors have presented a review of the optimal
allocation of DGs in the distribution system [1, 2]. Vari-
ous researchers have developed a variety of methods for
the optimal allocation of DGs in radial distribution net-
works [3-14]. Satish Kumar et al. proposed a simulated
annealing algorithm for the sizing of multiple DGs to re-
duce system active power loss. Loss sensitivity indexes
have been used for finding locations for DGs [3]. Abu-
Mount et al. proposed an artificial honey bee colony
technique for the optimal allocation of DGs for the
minimization of active power losses in the network [11].
Martin Garcia et al. proposed the optimal allocation of
DGs in the distribution network utilizing a modified
teaching learning-based optimization algorithm with a
goal of minimization of active power losses [8]. It has
been observed that finding locations and sizes of DGs
simultaneously yields good results rather than finds loca-
tions by sensitivity indices and then the size of DGs by
an optimization algorithm. Therefore, in this paper, the
simultaneous optimal allocation of DGs has been imple-
mented using two bio-inspired optimization algorithms.

Many researchers have developed a weighted factor
multi-objective function to gain multiple benefits due to
the optimal placement of DGs in the distribution system.
El-Zonkoly presented Particle Swarm Optimization for
the optimal sitting of various DGs in a distribution
network including voltage-dependent load models by
aggregated weighted multi-objective optimization ap-
proach [13]. Sultana et al. formulated a weighted factor
multi-objective function which addresses three benefits
of optimal placement of DGs: power loss reduction,
voltage profile improvement, and voltage stability im-
provement [12]. The quasi oppositional teaching
learning-based optimization algorithm has used for the
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minimization of multi-objective function. Mohamed
et al. presented a bacterial foraging optimization algo-
rithm for minimization of multi-objective function
which comprises power loss, voltage deviation and oper-
ating cost of the system [7]. Attia El-Fergany presented a
backtracking search algorithm based on the optimal allo-
cation of DGs in the distribution network. Aggregated
weight adaptive objective function is utilized to reduce
the system’s active power losses and upgrade the voltage
profile [9].SK Injeti, presented a Pareto optimization-
based improved differential search algorithm for optimal
allocation of DGs in radial distribution networks to
minimize total operating cost, bus voltage deviation, and
active power losses simultaneously [6]. In these papers,
the authors considered the optimal allocation of DGs
under peak load condition only. It has been observed
that the minimization of a multi-objective function gives
a trade-off solution between active power loss reduction,
voltage deviation minimization, and voltage stability
improvement. So, in this paper, we have formulated a
weighted factor multi-objective function which will ad-
dresses minimization of power loss and voltage deviation
for simultaneous optimal allocation of DGs under time
varying load pattern (with different load models) of the
distribution system.

Some authors have addressed the optimal placement
of DGs by considering few load levels of the distribution
system. R. S Rao et al. presented a method for optimal
placement of DGs in different load levels under an opti-
mally reconfigured network for power loss minimization
[4]. B Poornazaryan et al. proposed a new index for opti-
mal allocation of DG units to minimize active power
losses and to enhance voltage stability margin by consid-
ering load variations. Linear load variations from 50% to
150% of base load with a step size of 1% and in each step
size optimal DGs sizes are obtained [10]. Neeraj K et al.
proposed an improved cat swarm optimization algorithm
for optimal placement of DG and distributed static com-
pensator under a multilevel load profile for power loss
minimization [15]. Neeraj Kanwar et al. proposed a new
methodology to provide an integrated solution for the
optimal allocation of distributed generators and network
reconfiguration considering load patterns of customers
for the maximization of annual energy loss reduction
[5]. In these papers, researchers have concentrated on
the optimal placement of DGs under few load levels or
linear load variations from 50% to 150% of base load.
But a practical distribution system consists of a combin-
ation of residential buses, commercial buses, and indus-
trial buses. Linear load variation is not possible for such
a distribution system. Because a particular hour in a day
if the residential bus load level is 0.8 p.u with respect to
peak level 1p.u, the commercial bus load level may be
other than 0.8 p.u. Due to uneven load level among the
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different types of buses, the optimal locations of DGs
may vary hour by hour or may not be the same, which
increases the complexity of the problem. Therefore, in
this paper, we have formulated a weighted multi-
objective function addresses daily active power loss
minimization; daily voltage profile improvement of a dis-
tribution system consists of residential, commercial and
industrial loads with 24-h load pattern.

The developing worries over CO, emissions and the
greenhouse effect have motivated the shift towards the
zero-emission plug-in battery fueled electric vehicles
(PEVs) which are expected to play a noteworthy part in
making the road transport system. Authors [16, 17] ad-
dressed dynamic economic dispatch problem by inte-
grating PEVs charging profiles into a 24-h load demand
in an economic and environmental dispatch problem. A
detailed review of electric vehicle technologies and the
impact of PEVs electric demand on load profiles were
given in [18]. Kejun Qian et al. proposed a methodology
for modeling of PEVs battery charging load and study
the impacts of PEVs on distribution system performance
under four charging scenarios [19]. Four charging sce-
narios are modeled and simulated based on the charging
behavior of the vehicles. LI Hui-ling et al. presented the
impacts of PEVs charging behavior on distribution grid
[20]. However few papers have addressed the mitigation
of impacts of PEVs load under different charging behav-
ior via optimal placement of DGs in the distribution
system.

In this paper, two PEVs charging scenarios, off-peak
charging scenario and peak charging scenarios that are
modeled using charging time probability distribution are
considered. These two charging time probability func-
tions are measured with a certain number of PEVs and
then integrated into the daily load pattern of the distri-
bution system which consists of residential, commercial
and industrial buses. Then a detailed analysis of the im-
pacts of the PEVs behavior under two charging scenarios
is addressed. As PEVs deteriorate distribution system
performance, in this paper DGs are considered to im-
prove the performance of the distribution system with
PEVs which requires optimal allocation of DGs. Like the
aforementioned, a weighted multi-objective function is
formulated for optimal allocation of multiple DGs
(power factor-based) in a distribution system with PEVs.
Two optimization algorithms PSO and BO are very
popular and efficient chosen for optimization of the pro-
posed objective function.

The remaining of the paper is organized as follows;
section 2 formulates a mathematical model for optimal
allocation of DGs in distribution system with PEVs char-
ging followed by section 3 the implementation of PSO
and BO algorithms to the proposed optimization prob-
lem has been presented. Section 4 gives the comparative

(2020) 5:3 Page 3 of 15

analysis between the distribution system without PEVs
and with PEVs charging scenarios and also presented
the comparison between without DGs and with DGs on
distribution system with PEVs.

2 Problem formulation

2.1 Modeling of DGs

For load flow studies, DGs can be model as either PV
mode or PQ mode [21]. In this paper, DG is modeled as
PQ mode. In this type of modeling, DG is modeled as a
generating source (negative load model) with constant
active power output (Ppg) and reactive power out-
put (Qpg)- In this type of modelling, active power and
power factor (PF) of the DG is mentioned. Reactive
power of the DG is calculated by using Eq. 1.

Qpg = Ppe*( tan( cos ' PF)) (1)

The effective load at any bus with the integration of
DG unit can be expressed as

(2)
(3)

Where Pjyu4 Qioaa active and reactive power demands
at the bus are, Py 1000, Qe 10aa are the effective active
and reactive power demands at the bus after the place-
ment of DG.

Pef 10ad = Proad—Ppc

erj‘,load = Qload _QDG

2.2 Objective function

In this paper, a weighted multi-objective function (OF)
is formulated which addresses daily active power loss re-
duction and voltage deviation index reduction.

(4)

Where, wi and w2 are weighting factors, PLRI- Power
loss reduction index and VDIRI- voltage deviation index
reduction index. The range of weighting factors is 0 to 1,
which are user-defined. The sum of the weighting fac-
tors should always be equal to one.

min{OF} = (w1*PLRI) + (w2+VDIRI)

2.2.1 Power loss reduction index (PLRI)

The daily power loss of the system can be reduced by
minimizing PLRI which is taken as the ratio of system
daily active power loss after placement of DGs (Pffs daily)

to the system daily active power loss before placement
Of DGS (Ploss, daily)'

G 24 G
Pgss,daily o Zj:lpj?oss

PLRI = =
Plossduily Z?ilpjloss

(5)

Where Pj, is the jth hour system active power loss
before placement of DGs [22], Pﬁgs is the /™ hour system
active power loss after placementhe t of DGs.
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2.2.2 Voltage deviation index reduction index (VDIRI)
Voltage profile through the day can be improved by
minimizing VDIRI which is the ratio of voltage deviation
index with DGs to the voltage deviation index without
DGs.

24 DG
DG Y i max(l—’U.‘- >
VDI ! Y= 1,2 b

VDIRI = =
VDI T (1[0

Where, |U; /| the voltage magnitude of i/ bus is during Jid
hour in p.u before placement of DGs |U/ f’ﬂ is the voltage mag-
nitude of i bus during j hour in p.u after placement of DGs.

2.2.3 Constraints

1. Active power and reactive power balance constraints.

Pjsub + P71 pG = Pjp + Pilogs (7)

Qjsur + Qrpe = Qjp + Q]ngs (8)
Where

Pjsup = |Ujsup|*|1j |* cos(£Ujsup—21 1) 9)

Qi = |Ujsun|*|Tja1|* cos(LUjap—21)1) (10)

Pip= Z:i (Ppus ji + Prev ) (11)

Qj,D = Z?:bl <Qbus j,i) (12)

Where P; g, is the jth hour active power demand sup-
plied by sub-station in kW, P; p is 7™ hour total active
power demand of the system with PEVs in kW, Q;, 4 is
the j hour reactive power supplied by sub-station in
kVAr, Q; p is the ™ hour total reactive power demand
of the system with PEVs in kVAr, |U; | is the sub-
station bus voltage during j/* hour in kV, || is the 1st
branch current in amps during j* hour, Py, j, i is the i
bus active power demand during jth hour, Ppgy ;, ; is the
i bus active power demand due to PEVs in j* hour.

2. The voltage magnitude of each bus should be
within the minimum and maximum voltage limits.

‘umin| < |uz| < |umax|l = 1,2 ........ nb

(13)

3. The sizes of DGs to be placed should be within
minimum and maximum kW limit.

(2020) 5:3 Page 4 of 15

PpGmin < Prpe < Ppemaxk =1,2....... ndg

4. Total active power compensation by DGs should be
less than or equal to the maximum total capacity of
DGs (P75;) which is the user-defined variable and
minimum total active power demand throughout
the day.

PTA,DG SP?%G < min(P,-ﬁD) (15)

2.3 PEVs charging scenario

Based on the charging behavior of PEVs various re-
searches modeled different types of charging scenarios
[19]. They are peak charging scenario (PCS), off-peak
charging scenario (OPCS) and stochastic charging sce-
nario (SCS). In the peak charging scenario case, all the
PEVs come home after working hours and go for char-
ging as soon as they return from the working place. This
charging behavior of PEVs leads to an increase in peak
demand of the system because the load on the system is
already peaky during those hours. In the case of OPCS,
due to electricity prices implemented by the system op-
erator the active power demand due to PEVs shift to-
wards the light demand hours generally at midnight. In
SCS, PEVs go for charging at any time in a day. In this
paper, PCS and OPCS are considered for the inclusion
of PEVs electric demand in the system. The charging
time probability distribution of PCS and OPCS are taken
from [17] and given in Fig. 1. These two charging time
probability functions are measured with a certain num-
ber of PEVs to obtain Ppry j, ; and then integrated into
daily load pattern of the distribution system which con-
sists of residential, commercial and industrial buses.

3 Implemented optimization algorithms

PSO and BO bio-inspired algorithms are chosen for the
optimization of the proposed objective function. From
the literature, it has been observed that PSO was very
old (1995) and well-proven optimization algorithm for
solving engineering optimization problems because its
advantages like easy to understand and implementation
had driven the authors to choose this algorithm. In order
to check whether the PSO had given a better solution or
not, a comparative analysis has been made based on the
latest (2018) optimization algorithm BO. BO algorithm
is a newly developed optimization algorithm that has ad-
vantages like the new way of information propagation
about the agent’s fitness in the form of fragrance, no
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Fig. 1 PEVs probability distribution of PCS and OPCS scenarios

memory requirement ie. no need to remember of
agent’s individual best positions reached so far.

3.1 Particle swarm optimization

The majority of heuristic and meta-heuristic algorithms
have been derived from the behavior of biological
systems and/or physical systems in nature. Kennedy and
Eberhart introduced the concept of Particle swarm
optimization (PSO) firstly in 1995for solving continuous
optimization problems [23]. The Particle Swarm
optimization algorithm is a biologically-inspired algo-
rithm motivated by the social analogy of fish or birds.
The PSO algorithm starts by generating random posi-
tions for the particles, within an initialization region.
Velocities are usually initialized within but they can also
be initialized to zero or to small random values to pre-
vent particles from leaving the search space during the
first iterations. During the main loop of the algorithm,
the velocities and positions of the particles are iteratively
updated using Eq.16 and Eq.17 until a stopping criterion
is met [24].

1 1

+ C2 R2 (Gli)est,k _X_}()

VET — wiVE 4 OiR, (xbe“vk_@
(16)

XK = xk gyt

i

(17)

—k . . ] . .
Where V; is the velocity vector of i particle at & it-
eration and each value of the vector should between

Vimin < fo < Vimaw X is the current position vector of

i particle at k™ iteration, x;’m‘k

is the best position vec-

tor of i particle up to k" iteration, GP*"* is the best
position vector among all the particles up to K" iter-
ation, W is the weighing function or inertia weight fac-
tor, W is the weighing function or inertia weight factor,
C; and C, are the acceleration constant, R; and R, is the
random number between 0 and 1.

3.2 Butterfly optimization

Butterfly Optimization is based on the ability of the
butterflies to locate the source of fragrance accurately.
They can also differentiate various fragrances and sense
their intensities. In BO algorithm butterflies are the
searching agents. Fitness is correlated with the intensity
of fragrance that can be generated by a butterfly. The
movement of butterflies in search space will change its
fitness. The sharing of information between butterflies is
established through the propagation of fragrance. The
searching ability of a butterfly depends on the sensing
capability of the fragrance. This property will decide the
movement of the butterfly towards a global search or
local search (random). In BOA, the fragrance is formu-
lated as a function of the physical intensity of stimulus
as follows:

f=cP (18)

Where f is the perceived magnitude of the fragrance,
i.e., fragrance receiving property by other butterflies, c is
the sensory modality, I is the stimulus intensity and a is
the power exponent dependent on modality, which
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accounts the varying degree of absorption. Most of the
cases a& c€ [0, 1]. If a=1, means there is no absorption
of fragrance, i.e., the amount of fragrance emitted by a
particular butterfly is sensed in the same capacity by the
other butterflies (fragrance propagation in an idealized
environment). Thus, a butterfly emitting fragrance can
be sensed from anywhere in the domain which in turn
helps to reach the global optimum easily. On the other
hand, if a = 0, it means that the fragrance emitted by any
butterfly cannot be sensed by the other butterflies at all.
Another important parameter c € [0, «] determines the
convergence speed. The values of a4 and ¢ are crucially
affecting the convergence speed of the algorithm. For
the maximization problem, the intensity can be propor-
tional to the objective function [25].

In BO algorithm, the characteristics of butterflies are
idealized as follows:

1. Every butterfly is supposed to emit some fragrance
which enables the butterflies to attract each other
(propagation of information).

2. Every butterfly will move randomly or toward the
best butterfly emitting more fragrance.

3. The stimulus intensity of a butterfly is affected or
determined by the topography of the objective
function.

3.3 Implementation of PSO and BO algorithms to a
proposed problem

Step 1: Initialization of problem
parameters.

In the first step, the algorithm parameters such as
population size (POP), dimension of the problem (d), the
maximum number of iterations (itermax) and for PSO
algorithm acceleration constants c1, c2 for BO algorithm
probability switch P, power exponent & and sensor mo-
dality care initialized. Initialize the problem parameters
such as maximum total capacity of DGs injection (P77

and algorithm

), minimum and maximum bus voltage limits (|U,,;,|,
|Upax]), DGs minimum and maximum active power
limits (PpGmin PpGmax), DGs location limits.

Step 2: Read the Test system Bus and Branch data, p.u
demand of different types of buses for a.

day with respect to peak demand, read the probability
distribution of PEVs charging scenarios PCS and OPCS.
From the p.u demand of the buses and probability distri-
bution of PEVs, kW and kVAr demand of each bus for
every hour are obtained.

Step 3: Run the repetitive backward-forward sweep
load flow. Calculate the daily active power.

Loss of the system without DGs (P, 4airy), voltage de-
viation index of the system without DGs (VDIV?P%) of
the system.
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Step 4: Random generation of locations for DGs place-
ment, DGs sizes within the specified.

limits.
[ x X thi 1
1 2 d
DGLOC — X3 ’fz X2 (19)
1 2 d
L Xpop  Xpop Xpop
o ]
1 2
DGSIZE= | > P P (20)
1 2 d
L Ypop Ypop Ypop |
x{ = % mini + (% maz—% mini) % rand() (21)
yz] =Y min,i + <J/ max,i~V min,i)* mnd() (22)

Where, xl’ , y{ represents locations and DGs sizes, i.e.,
j™ population i DG location and size respectively,
which is generated randomly in between the limits as
Xpmax, : a0d X, ; are the i DG location limits, YVinax,
; and Y, ; are the i DG size limits and rand() is a ran-

dom number in between 0 and 1.

Soln = [DGLOCDGSIZE] (23)

In the PSO algorithm, Soln represents a group of parti-
cles or swarms. Each particle is a solution that contains
DGs locations and sizes. In BO, Soln represents a group
of agents.

For the PSO algorithm along with DGs locations and
sizes, generate initial velocities of particles between the
minimum and maximum velocity limits.

Step 5: Fitness evaluation (Objective function).

Run the repetitive backward-forward sweep based load
flow and calculate the fitness value for each initial solu-
tion using Eq. 4, Eq.5 and Eq.6 and record the gbest

solution in case of BO algorithm, x**"*, GP*** for the
PSO algorithm.

Step 6: Set iteration count = 0.

Step 7: The evolution procedure of PSO and BO algo-
rithms starts from this step.

Update iteration count by 1.

Step 8: For PSO algorithm, update the velocities of
particles using Eq.16 and then update DGs.

locations and DGs size position using Eq.17.

For BO algorithm, calculate the fragrance fy for each
agent or butterfly using Eq. 18 and then perform a global
search and local search as follows.

If rand < probability P perform global search using
Eq. 24
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Fig. 2 Single line diagram of 33 bus test system
soln% (t + 1) = soln’(t)
+ (r*xgbest-solny(t))«f y (24)

If rand > probability P perform a local search using
Eq. 25

soln% (t + 1) = soln’(t)

+ (rz*soln;i (t) —SOlﬂZ(t)) *f (25)

Where soln?(t) and soln{(t) are / and K butterflies
from the solution space which belongs to the same
swarm and r is a random number in [0, 1].

Step 9: Fitness evaluation (Objective function).

Run the repetitive backward-forward sweep load flow
and calculate the fitness value for each new solution
using Eq. 4, Eq. 5 and Eq. 6.

Step 10: Update the gbest vector in case of BO algo-

rithm, x**, GP*“¥ in case of PSO.

algorithm.

Step 11: Stopping criterion.

If the iteration count reaches the maximum number of
iterations, computation is terminated and prints the re-
sults. Otherwise, repeat Step 7 to Step 11.

4 Results and discussion

An IEEE 33 bus system has been taken for the ana-
lysis of the proposed method. The base values of the
system are 100 MVA and 12.66kV. The single line
diagram of the 33-bus system is shown in Fig. 2. Out
of the 33 buses: 17 buses are residential buses; 5
buses are commercial buses and 9 buses are industrial
buses. The data of the grouping of buses is given in
Table 1. The line data and bus data of the system are
taken from [26]. Active and reactive power demands
of the buses taken from bus data are considered as
peak demands of the respective buses. Hourly active
and reactive power demands for a day for each bus is
obtained from typical daily load pattern of different
types of buses in p.u with respect to peak demand 1
p.u is shown in Fig. 3 [27]. From Fig. 3 it has been
observed that for a residential bus load demand re-
quirement is high during the period 15.00-20.00 h.

L1

4.1 Analysis of the system without PEVs load and without
DGs

Backward/forward sweep based load flow has been used
for load flow studies [22]. The entire simulation has
been developed in MATLAB R2017a platform using
Core i5 7200U, 3.10 GHz, 8GB RAM. After the initial
load flow run i.e. before load due to electric vehicles
the following points have been observed. Daily active
power demand from all the buses is 64,510 kW. The
daily active power loss of the system is 3053 kW, the
voltage deviation of the system is 1.6984 p.u. The
voltage profile of the system for the base case is
shown in Fig. 4. From Fig. 4, it has been observed
that the lowest voltage of the system is 0.8945 p. u
at the 18th bus occurred during the 17th hour of
the day.

4.2 Analysis of the system with PEV load and without DGs
To study the effect of additional electric power de-
mand due to PEVs in the electric distribution sys-
tem, it has been assumed that 50 PEVs per
residential bus with a total of 17*50 =850 PEVs have
been considered, where 45% of these PEVs are low
hybrid vehicles equipped with 15 kWh batteries, 25%
PEVs are medium hybrid vehicles with 25kwh batter-
ies and 30% PEVs are pure battery vehicles with 40
kWh batteries [17]. It is also assumed that all the
electric vehicles return to the home with an SOC of
50%. Therefore, total electric demand due to PEVs
per residential bus per day is 50*(15*45% + 25*25% +
40*30%) *0.5=625kW and total electric demand
needed per day due to PEVs is 625*17 = 10,625 kW.

Table 1 Grouping of Buses data

Bus Numbers
2,3,56,789,10,13,14,15,16,17,20,21,23,24
411,12,18,19

22,26,27,28,29,30,31,32,33

Bus Type

Residential buses
Commercial buses

Industrial buses
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Fig. 3 Daily load pattern of different types of buses

4.2.1 Analysis of the system with PEVs peak charging and scenarios PCS and OPCS Fig. 1. The reason for not tak-
off-peak charging scenarios ing SCS charging scenario is that according to SCS char-
The electric demand 625kW due to 50 PEVs for each  ging scenario all the PEVs go for charging during any
residential bus has been consumed from the slack bus time in the day which means their power demand will
(bus-1) as per the probability distribution of charging be there on any type (residential, commercial, industrial)
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Fig. 5 Hourly active power demand of the system without and with PEVs load

of the bus, but in the paper authors considered PEVs
load modeled under Residential buses only. Figure 5
shows the hourly active power demand of the distribu-
tion system for a day without PEVs and with PEVs
under PCS and OPCS cases obtained from the daily load
pattern of buses and charging scenarios.

Table 2 shows the comparison between various pa-
rameters between without PEVs load and with PEVs
load on the distribution system and also a comparison
between PCS and OPCS. From Fig. 5, it has been ob-
served that peak active power demand of the distribution
system without PEVs load, with PEVs, load charging
under PCS and OPCS charging scenario is 4061 kW
(16th hour), 5770 kW (15th hour) and 4541 kW (22nd
hour) respectively. Therefore, it has been observed that

Table 2 Comparison between without and with PEVs load on
test system

Parameters Without PEV  With PEV load
load PCS OPCS
Daily Active power loss 3053 4346 3756
of the system in kWhr
Voltage deviation index 1.6984 2.0443 1.9743
in p.u
Lowest voltage magnitude ~ 0.8945 0.8398 0.8729
in p.u (18th bus, (18th bus, (18th bus,
17th hour) 16th hour) 23rd hour)
Active power demand 64,510 75,135 75,135

from the buses for a day
in KWhr

the peak active power demand of the system is increased
by 42.08% and 11.81% in the case of PCS and OPCS
charging scenarios respectively. Therefore, it is observed
that the percentage increase in peak active power de-
mand of the system is very less in the case of the OPCS
charging scenario which is noteworthy.

From Table 2 it has been observed that due to PEVs
electric active power demand 10,625 kW, the distribu-
tion system is overload by 16.47% with respect to daily
active power demand requirement. In case of PCS due
to extra PEVs active power demand, daily active power
loss of the system is increased to 4346 kW from 3053
kW which shows 42.35% increase in daily active power

Table 3 Parameters description of PSO and BO algorithms

Parameters for PSO

Population (pop) 150
Dimension (dim) 6 (3 DG sizes+ 3 locations)
Maximum number of iterations (maxit) 150
C1 1
Q 2
Parameters for BO
Population (pop) 150

Dimension (dim) 6 (3 DG sizes+ 3 locations)

Maximum number of iterations (masxit) 150
Modular modality ‘¢’ 0.01
Power exponent ‘a’ 0.11t003
Probability switch ‘P’ 0.5
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Table 4 Result analysis for optimal allocation of DGs at upf

Parameters BO PSO

DG (upf) size (kW)/ 309 (10) 200 (12)

Bus number 493 (16) 500 (16)
699 (31) 776 (31)

Daily active Power 1563 1590

Loss in kw

% Daily active power 5839 57.66

loss reduction

Voltage deviation 0.8063 0.8091

Index In p.u

Lowest voltage of 0.9353 0933

the system in p.u (18th bus, (18th bus,
23rd hour) 23rd hour)

OF 04139 04193

PLRI 04161 04233

VDIR 04087 04098

Time in sec 3059 376.56

loss whereas in case of OPCS daily active power loss of
the system is increased to 3756 kW from 3053 kW which
shows 23.02% increase in daily active power loss. Also in
the case of PCS, the voltage deviation index is increased
to 2.0443p.u and in the case of OPCS, it has increased to
1.9743 p.u. In fact, in both the scenarios (PCS & OPCS)
there is an increase in a daily active power loss of the
system and voltage profile deterioration. But in the com-
parison between two charging scenarios, an increase in

(2020) 5:3 Page 10 of 15

daily active power loss is 19.33% more in PCS when
compared with OPCS and also the difference between
voltage deviation indexes of OPCS and PCS is 0.07p.u.
From the above observations, it has been concluded that
the shifting of PEVs active power demand to light elec-
tric demand hours by implementing different electricity
pricing on consumers ie. in case of OPCS shows a
greater impact on improvement in reduction in peak ac-
tive power demand, daily active power loss, and im-
provement of the voltage profile.

4.3 Optimal placement of DGs in the distribution system
with consideration of PEVs

As concluded in the previous section the charging of
PEVs through OPCS is far better when compared to
PCS, we had considered the optimal placement of
DGs in the distribution system with PEVs electric de-
mand charging under OPCS only. It has been ob-
served that there is much change in power flows
(responsible for the improvement in technical param-
eters) in distribution lines with DGs are placed at
more than two buses. It has been also observed that
there was no significant change in technical parame-
ters improvement between DGs placed at 3 buses and
4 buses and the reason might be we had chosen 33
bus systems as our test system. Therefore it is as-
sumed that the number of DGs to be placed is fixed
3. The tuned parameters of PSO and BO algorithms
are given in Table 3. From Fig. 5 it is also observed
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Fig. 6 Voltage profile of the test system after optima placement of DGs at upf by BO
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that the lowest active power demand with PEVs load
under OPCS case is 1527 kW occurred during the 7th
hour of the day, therefore maximum active power in-
jection by DGs into the distribution system is fixed to
1500 kW. Coming to weighting factor values in the
objective function, importance is given for power loss
reduction because it affects economic parameters.

Therefore, weighting factors are considered as wl =
0.7 and w2 =0.3.

4.3.1 Optimal placement of DGs (upf)

Table 4 shows the optimal locations, optimal DGs (upf)
sizes and various technical parameters yielded by BO
and PSO algorithms respectively. From Table 4 it is
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Fig. 8 Convergence graphs of BO and PSO algorithms for optimal placement of DGs at upf
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Table 5 Result analysis for optimal allocation of DGs at 0.9 pf

Parameters BO PSO

DG (0.9 pf) size (kW)/ 628 (15) 452 (17)

Bus number 459 (30) 200 (10)
413 (32) 828 (31)

Daily active Power 870 916

Loss in kw

% Daily active power 76.84 7561

loss reduction

Voltage deviation 0.5238 0.5404

Index In p.u

Lowest voltage of 0.9498 0.9496

the system in p.u (18th bus, (14th bus,
23rd hour) 23rd hour)

OF 0.2417 0.2528

PLRI 02316 0.2439

VDIRI 0.2653 0.2737

Time in sec 309.8 410

observed that among the two algorithms, BO gives the
best result i.e. objective function value is 0.4139. BO
yield to reduce the daily active power loss of the system
to 1563 kW accounts for 58.39% daily active power loss
reduction and the voltage deviation index is reduced to
0.8063 p. u approximately. Whereas with PSO the ob-
jective function value obtained is 0.4193 with a reduced
active power loss of 1590 kW which accounts for a re-
duction in 57.66% daily active power loss and reduction
of voltage deviation index 0.8091 p.u.
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That is the lowest system voltage without DGs is
0.8729p.u at the 18th bus during the 23rd hour and with
optimally located DGs it is improved to 0.9353 p.u at
the 18th bus during the 23rd hour. Voltage profile
characteristics of the system with DGs for BO and
PSO algorithms are shown in Fig. 6 & Fig. 7 respect-
ively. From Fig. 6 and Fig. 7, it is observed that ob-
tained optimal locations and sizes of DGs result in
fairly good voltage improvement at each and every
bus of the system. Convergence graphs of the pro-
posed algorithms are shown in Fig. 8. From Fig. 8 it
has been observed that objective function reaches the
global solution in 38th iteration for BO algorithm and
129th iteration for the PSO algorithm. Whereas simu-
lation time for the evolution process for the BO algo-
rithm is less than that of PSO.

4.3.2 Optimal placement of DGs at 0.9pf

Table 5 shows the optimal locations, optimal DGs at
0.9pf sizes and various technical parameters yielded by
BO and PSO algorithms respectively. The power factor
of the DGs is considered as 0.9 pf. From Table 5 it is ob-
served that the objective function values of BO and PSO
are 0.2417 and 0.2528 respectively. The percentage of
daily active power loss reduction of the system is 76%
with BO and 75% with PSO. The voltage deviation
index is reduced to 0.5238 p.u and 0.5404 from
1.9743p.u by BO and PSO algorithms respectively.
Voltage profile characteristics of the system with DGs
compensation for BO and PSO algorithms are shown
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Fig. 10 Voltage profile of the test system after optimal placement of DGs at 0.9pf by PSO

in Fig. 9 and Fig. 10 respectively. Convergence graphs
of the proposed algorithms are shown in Fig. 11.
From Fig. 11, it has been observed that objective
function reaches a global solution in 39th iteration
for the BO algorithm and 27th iteration for the PSO
algorithm. The computation time for the evolution
process for BO is less than that of PSO.

5 Conclusions

In this paper, a 33-bus radial distribution test system
consists of a residential, commercial, and an industrial
bus is considered. A 24-h load pattern of the whole test
system is obtained from the load pattern of different
types of buses. Two charging scenarios PCS and OPCS
had taken for the inclusion of PEVs load demand on the
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Fig. 11 Convergence graphs of BO and PSO algorithms for optimal placement of DGs at 0.9pf
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system. The impact of PEVs load demand on the system
has been analyzed through technical parameters. Among
the two charging scenarios PCS and OPCS, the impact
of PEVs load with the OPCS charging scenario had less
impact on the system technical parameters. A combined
24-h load pattern of the system including PEVs load de-
mand with OPCS charging scenario has been considered
for the optimal placement of the DGs in the system. A
weighted objective function has designed to reduce the
Daily active power loss and Voltage deviation index
using repetitive backward/forward sweep load flow. Two
algorithms BO and PSO have been selected and imple-
mented for the minimization of the proposed objective
function. From the obtained results it can be concluded
that the radial distribution system performance (reduc-
tion in daily active power loss and system voltage pro-
file) in the presence of PEVs loads including daily load
pattern has improved with the optimal integration of
DGs by the proposed approach. Among PSO and BO
based approaches, BO performs better in terms of solu-
tion quality and convergence. Most of the practical/en-
gineering optimization problems are multi-objective in
nature which is found to be difficult by solving using
traditional approaches. In this context, optimization al-
gorithms will pave a way to solve the most of the non-
linear engineering optimization problems.
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