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from Rhizobium etli by integrated genome-
wide and transcriptome-based methods
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Abstract

Background: Small non-coding RNAs (sRNAs) are regulatory molecules, present in all forms of life, known to regulate
various biological processes in response to the different environmental signals. In recent years, deep sequencing and
various other computational prediction methods have been employed to identify and analyze sRNAs.

Results: In the present study, we have applied an improved sRNA scanner method to predict sRNAs from the genome
of Rhizobium etli, based on PWM matrix of conditional sigma factor 32. sRNAs predicted from the genome are
integrated with the available stress specific transcriptome data to predict putative conditional specific sRNAs. A total of
271 sRNAs from the genome and 173 sRNAs from the transcriptome are computationally predicted. Of these, 25 sRNAs
are found in both genome and transcriptome data. Putative targets for these sRNAs are predicted using TargetRNA2
and these targets are involved in a wide array of cellular functions such as cell division, transport and metabolism of
amino acids, carbohydrates, energy production and conversion, translation, cell wall/membrane biogenesis, post-
translation modification, protein turnover and chaperones. Predicted targets are functionally classified based on COG
analysis and GO annotations.

Conclusion: sRNAs predicted from the genome, using PWM matrices for conditional sigma factor 32 could be a better
method to identify the conditional specific sRNAs which expand the list of putative sRNAs from the intergenic regions
(IgRs) of R. etli and closely related α-proteobacteria. sRNAs identified in this study would be helpful to explore their
regulatory role in biological cellular process during the stress.
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Background
Small non-coding RNAs are bacterial regulatory mole-
cules, 50-500 nt (bp) in length and contain several stem
loops. sRNAs are often located in the intergenic regions,
transcribed from their own promoter or promoters of
nearby genes and contain rho-independent terminator.
sRNAs regulate the gene expression by perfect or imper-
fect base pairing with complementary sequence
stretches, generally located in 5′-UTR regions of trans-
encoded target mRNAs, resulting in altered target

mRNA translation and stability [1–3]. The regulation of
sRNAs are mediated with the help of chaperone Hfq, en-
hance RNA-RNA interaction, through the preferential
binding at single-stranded AU-rich regions of the non-
coding RNAs and their target mRNAs [4].
Several sRNAs have been identified by genome-wide pro-

filing and transcriptome-based methods. To date, many com-
putational techniques and experimental methods have been
used to predict sRNAs in both gram-negative and gram-
positive bacteria [5–11]. sRNAs regulate diverse cellular pro-
cesses and conditionally expressed during oxidative stress,
iron uptake, quorum sensing, virulence and heat shock [5,
12–14]. Sigma factors are transcription initiation factors that
enable specific binding of RNA polymerase (RNAP) to gene
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promoters. Bacteria contain different sigma factors, each cap-
able of directing the core polymerase to transcribe a specific
set of genes, depending on the environmental or develop-
mental signals [15]. However reports on screening the condi-
tional sRNAs are not yet available for the group of α-
proteobacteria, except sRNAs predicted from RNA sequence
analysis under heat shock and saline shock; and sRNAs pre-
dicted from the genome are integrated with the virulence
specific transcriptome data [14, 16]. In our previous work,
conditional sigma factor based-sRNAs were predicted from
the genome of Agrobacterium using an improved sRNA
scanner. This method was used to identify the sRNAs that
are regulated by several conditional sigma factors, such as,
24, 32 and 54. sRNA scanner identified the sRNAs resided in
intergenic regions of the genome, based on the transcrip-
tional signals. This bioinformatic tool uses PWM matrices of
sRNA promoter and rho-independent terminators signals,
through sliding window-based genome scans, using consen-
sus sequences of sigma factor promoter binding sites − 35
and− 10 and rho-independent transcription terminator se-
quences [16].
Rhizobium etli is a gram-negative bacterium that be-

longs to Rhizobials of α-proteobacteria, interacts symbi-
otically with the common beans Phaseolus vulgaris to
form nitrogen-fixing root nodules. Inside the nodules,
bacteria differentiate into bacteroids that are capable of
fixing the atmospheric N2 into NH3. The genome of R.
etli consists of one circular chromosome (6,530,228 bp)
and six plasmids: p42a (194,229 bp), p42b (184,338 bp),
p42c (250,948 bp), p42d (371,254 bp), p42e (505,334 bp)
and p42f (642,517 bp) with 6034 protein-coding genes
[17]. Two earlier studies were reported on the identifica-
tion of sRNA candidates in R.etli. Using tiling micro-
array analysis, 66 novel sRNA candidates comprising 17
putative sRNAs and 49 putative cis-regulatory ncRNAs
were computationally predicted and 4 of these were con-
firmed subsequently by wet-lab experiments [9]. Yet an-
other study, identified 13 differentially expressed
ncRNAs under heat shock and 9 under saline shock con-
ditions in R.etli [14]. However, there is scanty informa-
tion on stress conditional specific sRNAs in Rhizobium.
In the present study, we report the sRNAs predicted

from the genome and transcriptome of Rhizobium etli.
Further, sRNAs predicted from the genome are inte-
grated with the stress-specific transcriptome to identify
putative conditional specific sRNAs. The mRNA targets
for these sRNAs were identified and data are presented
on the functional categorization and regulatory network
analysis for the predicted mRNA targets.

Results
Genome-wide sRNA prediction by improved sRNAscanner
Prediction of sRNAs from the nitrogen-fixing Rhizobium
was performed by genome-wide computational analysis,

based on the PWM matrices of conditional sigma factor
32 (Heat shock sigma factor) using improved sRNA
Scanner program [16]. sRNA scanner demarks the tran-
scription units (TUs) using consensus sequences of
sigma factor binding sites (− 35 and − 10 (Supplementary
file 3)) and rho-independent transcription terminator se-
quences. An earlier version of sRNA Scanner uses PWM
matrix; only for housekeeping sigma factor 70 and rho-
independent transcription termination in which limited
numbers of training sequences were used. The total
number of sRNAs predicted from each replicons of Rhi-
zobium etli is graphically represented in Fig. 1.
The majority of the sRNA candidates identified varied

in length between 50 and 500 nt. GC content for most of
the sRNAs of Rhizobium found to have 50 to 70%. A total
of 247 sRNAs were predicted from the genome of R. etli
known to be conditionally regulated by sigma factor 32.
To find the novel putative sRNAs, predicted sRNAs were
searched against Rfam database and BSRD database to
eliminate the conserved homologs (Table 1). Seventeen
and four sRNA candidates have shown homology with
already identified sRNAs in Rfam and BSRD database, re-
spectively (Table 1). The sRNAs predicted from the gen-
ome were compared with previously reported sRNAs.
Eight sRNA candidates were conserved with the earlier re-
ported sRNAs by Vercruysse et al. 2010 [9] and one sRNA
with the López-Leal et al. 2015 [14].

Transcriptome based sRNAs prediction
The high-quality RNAseq reads of R. etli under control,
heat and saline shock were aligned to the genome of R. etli
using Rockhopper. After alignment, transcripts from the
intergenic regions and antisense regions from the comple-
mentary strand of the protein-coding genes were identi-
fied. The intergenic sRNAs having a length of 50-500 nt
were taken for further analysis. A total of 68 trans-
encoded sRNAs under the heat shock and 105 under the
saline shock were identified. A relatively larger number of
sRNAs were found to be expressed from the chromo-
somes, has a length of 50 to 150 nt (Fig. 1). Further, pre-
dicted sRNA candidates were searched against Rfam and
BSRD databases. To find the novel putative sRNA candi-
dates, the above-screened sRNAs were compared with
previously reported sRNAs (supplementary file 4). Eight
sRNAs from heat shock and fourteen sRNAs from saline
shock showed homology with already reported sRNAs by
Vercruysse et al. 2010 [9]; five sRNAs from heat shock
and two sRNAs from saline shock with sRNAs reported
by López-Leal et al. 2015 [14].

sRNA conservation and comparative analysis
sRNAs are known to be conserved in nature, in order to
study the sRNA conservation in the present study, the
sRNA conservation analysis was performed between the
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rhizobium strains, interestingly the sRNAs of Rhizobium
etli were highly conserved with identities ranging from
80 to 100% with Rhizobium leguminosarum. From the
analysis, it was found that 21 sRNAs from the genome-
based search (18 sRNAs from chromosome and 1 sRNA
from 2nd, 6th and 7th replicons) and in the case of the
transcriptome (saline shock), 2 sRNAs (chromosomally
encoded) were conserved with the sigma factor 32

regulated sRNAs of R. leguminosarum (unpublished
data). Three chromosomally encoded sRNAs of R. etli
were found to be conserved with one specific sRNA of
R. leguminosarum (94–95% identity), which was further
selected for the quantification analysis in R. legumino-
sarum (Table 2). The identified novel sRNAs candidates
of the genome and transcriptome were correlated to
identify the common sRNAs between conditional

Fig. 1 a The total number of sRNAs predicted from the heat shock, saline shock and sigma factor 32; b Total number of sRNA distribution in the
replicons of Rhizobium etli. Sigma factor 32 based genome-wide prediction represented in red color and transcriptome-based heat shock specific
sRNAs in blue color and saline shock in green color; c length distribution and d GC% content

Table 1 sRNAs identified from the genome and transcriptome of Rhizobium etli

S. No. No. of sRNAs predicted Homologous identified in Rfam Homologous identified in BSRD Reported sRNAs Total identified sRNAs

Transcriptome

1. Heat shock 68 5 2 10 51

2.Saline shock 105 5 4 19 77

Genome

Sigma 32 271 17 4 9 241
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specific sigma factor 32 derived sRNAs with the stress-
specific sRNA transcripts. A total of 271 sRNAs identi-
fied from the genome, of which 241 were novel. Simi-
larly, 173 sRNAs from the transcriptome were identified
(Supplementary file 1), of which 128 sRNAs were novel.
Based on comparative analysis, 25 novel sRNAs were
found to be common between the genome-wide and
transcriptome data of R.etli.

Target identification
The sRNAs regulate diverse cellular processes by inter-
acting with complementary sequence stretches of trans-
encoded mRNAs. The target mRNAs were predicted for
the sRNAs identified from genome-wide and transcrip-
tome data by using TargetRNA2. Based on the thermo-
dynamic interaction energy (kcal/mol) of hybridization
between the sRNA and mRNA targets and significant p-
value (< 0.05), 30 sRNA candidates were selected from
the transcriptome of heat and saline shock for further
analysis (Table 3). Target mRNAs for the 25 common
sRNAs predicted from the genome of R. etli are pro-
vided in supplementary file 6. Fifty-five sRNAs were
taken for further analysis.

Functional categorization of sRNA target genes
To study the role of target mRNAs, selected target
mRNAs of thirty sRNA candidates from the transcrip-
tome of heat and saline shock conditions were function-
ally annotated by COG and GO analysis. Under heat and
saline shock conditions, mRNA targets were enriched in
COG categories of transport and metabolism of amino
acids, carbohydrates, lipids, energy production, and con-
version, post-translation modification, protein turn over
and chaperons, cell wall/membrane biogenesis and
translation (Fig. 2). Enriched GO terms for the target
mRNAs were widely distributed about their respective
biological cellular processes. The target genes were an-
notated in 3 classes, viz., biological processes, molecular
functions and cellular components. The targets catego-
rized under biological processes include the genes in-
volved in metabolic and cellular processes, molecular
function, catalytic activity and binding, such as trans-
porter activity, DNA binding, RNA binding and ion
binding (Fig. 3).

GO regulatory network
GO regulatory network (GRN) was constructed for the
sRNA target genes for the sRNAs predicted from the
transcriptome profiled under conditions of heat and sa-
line. The GO network of mRNA targets of heat shock
sRNAs is shown in Fig. 4. The regulation of cell shape
was the central node in the GRN. Regulation of cell
shape protein MviN (RHE_CH0386) showed interaction
with many other GO terms such as regulation of DNA
replication, signal transduction, protein folding, cellular
amino acid metabolic process, carbohydrate metabolic
process, fatty acid biosynthetic process, nitrogen meta-
bolic process, and cell division. In the case of mRNA tar-
gets of saline shock sRNAs, phosphorelay signal
transduction system was the central node in the network
(Fig. 5) governed by feuP (RHE_CH01286) which
showed interaction with other GO terms, such as, posi-
tive regulation of transcription, regulation of cell shape,
metabolic process, transmembrane transport, translation,
nucleotide catabolic process, cell wall organization, ni-
trate assimilation and cell cycle.

Promoter, terminator, secondary structure prediction
Promoter and rho-independent terminator sequences
were predicted for the identified putative novel sRNAs
(Table 4 and Supplementary file 6). Secondary structure
was predicted for the selected sRNAs using RNAfold
server. The predicted minimum free energy for the ma-
jority of the sRNAs ranges from − 20 to − 70 kcal/mol.

Discussion
sRNAs are known to regulate diverse cellular processes
in prokaryotes [2, 18, 19]. To date, many computational
based methods have been used to identify small regula-
tory RNAs in bacteria, but there are only a few reports
available on the functional roles of sRNAs in Rhizobium.
In 2016 Borella et al. have reported that the small RNA
gene mmgR is controlled by nitrogen source in Sinorhi-
zobium meliloti [20]. Recently, the function and mechan-
ism of Sinorhizobium meliloti trans-sRNA NfeR1
(Nodule formation efficiency RNA) was experimentally
studied on the effect of osmoadaptation and symbiotic
efficiency in Alfa alfa [21]. In the present study, we have
combined genome-wide and transcriptome based

Table 2 sRNA candidates having homologs with Rhizobium leguminosarum

S. No. Rhizobium etli Rhizobium leguminosarum

Genome Start Stop Length of the sRNA Identity Start Stop Length of the sRNA

1. 3,324,460 3,324,583 124 100% 3,807,013 3,807,136 124

2. 3,086,939 3,087,101 158 95.57%

3. 3,086,838 3,087,151 158 95.57% 3,578,887 3,579,049 163

Transcriptome

4. (saline shock) 3,086,972 3,087,084 113 94.69%
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computational methods to identify the novel putative
sRNA candidates in R. etli. Particularly, we have focused
on the identification of sRNAs that are differentially
expressed during heat and saline shock and its regula-
tory role. Genome-wide sigma factor 34 based sRNA
predictions provided a total of 271 sRNA candidates.
While comparing with the transcriptome based data,
many sRNAs were predicted from the genome-wide pre-
diction. A higher number of sRNA candidates were
expressed from the chromosome than other replicons.
One hundred sixty-nine sRNAs were predicted in the
chromosome and 31 sRNAs were found in symbiotic
plasmid p42d. A total of 128 novel sRNAs were pre-
dicted from the transcriptome data and we found num-
ber of sRNAs expressed under saline shock is more than
the heat shock condition (Table 1). Although Lopez-Leal
et al. 2015 have already reported novel sRNA in the pre-
viously published transcriptomic analysis, however only
a small number of sRNAs have been reported in their
study [14]. Our out of interest has led to the identification
of more than 100 new sRNAs from RNA sequence data
analysis. Besides, we have compared the identified sRNA
candidates with previously reported sRNA data of R. etli
[14], a total of 9 sRNAs from the sigma 32 genome-based
method, 10 from the heat shock and 19 from the saline
shock were conserved with the already reported sRNAs.
While performing sRNA conservation analysis, 21 sRNAs
were found to be overlapped with the R. leguminosarum,
in which 3 sRNAs of R. etli were conserved (share 94–
95% homology) with a single sRNA candidate and inter-
estingly another chromosomally encoded sRNA (124 nt)
share 100% homology with the sRNA of R.
leguminosarum.
sRNAs regulate the gene expression by perfect or im-

perfect base pairing with the target mRNA. Single sRNA
is known to regulate multiple mRNA targets, either it
upregulates or downregulates based on the binding sites
of a set of genes. Earlier findings have shown that sRNAs
regulate diverse biological and cellular processes, such as
energy metabolism, quorum sensing (QS) and biofilm
formation, stress responses and adaptation to adverse
growth conditions, and pathogenesis [19, 22, 23]. In the
present study, we have identified potential targets of
sRNAs and analyzed its role using different computa-
tional methods. Target prediction method revealed that
15 sRNAs of heat shock sRNAs have complementary
binding sites with heat shock specific genes such as
groES, groESch3, groEL, ibpA, serine proteases- degPch1,
degPch2 and also with the virulence factor coding gene
MviN which codes for a transmembrane protein. Among
the 15 selected sRNAs of the saline shock group, a few
sRNAs have a significant binding site on serine proteases
(degPch1, degPch2) and mviN. Besides, we could infer
that the identified sRNAs might regulate several

hypothetical proteins. In 2014 López-Leal et al. reported,
groESch2, groEL, and ibpA heat shock genes were up-
regulated in R. etli during heat shock and two serine
proteases, viz., degPch1 and degPch2 were significantly
over-expressed during saline shock [14]. Based on the
results of the present study, we suggest these newly
identified sRNAs might regulate the expression of heat
and saline shock specific genes. Further, the target
mRNAs of these sRNAs were taken for the functional
categorization using COG and GO analysis.
In the GO enrichment analysis, most of the target

genes were associated with cellular, metabolic and trans-
port processes. COG analysis revealed that most of the
target mRNAs of sRNAs of this study were involved in
amino acid transport and metabolism, energy production
and conversion, post-translational modification, protein
turnover, chaperones and cell wall/membrane biogen-
esis. Particularly, heat shock sRNAs are firmly catego-
rized in post-translational modification, protein turnover
and chaperones in COG analysis. Further, we have con-
structed the GRN of predicted target mRNAs using the
biological process GO terms. The transmembrane pro-
tein MviN constitutes the central node in the regulatory
network in the heat shock condition. It is well

Fig. 2 COG classification of the target genes of R. etli. The COG
(cluster of orthologous groups) categories are coded as follows: C-
energy production and conversion; D- cell division and chromosome
partitioning; E- amino acid transport and metabolism; F- nucleotide
transport and metabolism; G- carbohydrate transport and
metabolism; H- coenzyme metabolism; I- lipid metabolism; J-
translation; K- transcription; L- DNA replication, recombination, and
repair; M- cell wall/membrane biogenesis; N- cell motility; O- post-
translational modification, protein turnover, and chaperones; P-
inorganic ion transport and metabolism; Q- secondary metabolite
biosynthesis, transport, and catabolism; S- function-unassigned
conserved proteins; T- signal transduction; U- intracellular trafficking,
secretion, and vesicular transport; and V- defense mechanisms
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Fig. 3 Gene Ontology analysis of predicted target genes for sRNAs of Rhizobium etli. GO analysis of target genes that are predicted to be
involved in a biological processes, b molecular functions and c Cellular components of heat shock derived sRNAs; d biological processes, e
molecular functions and f Cellular components of saline shock derived sRNAs

Fig. 4 GO regulatory network based on the mRNA targets of sRNAs predicted from heat shock condition
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documented that subjecting the cells to heat shock can
disrupt the cell membrane integrity. Regulation of cell
shape protein MviN was shown to be up-regulated
under heat shock condition as compared to control be-
sides the down-regulation of DNA replication proteins
dnaA and dnaB [14]. sRNAs identified in the present
study have complementary binding sites with these tar-
get proteins, which might down or up-regulate the target
proteins. Network analysis revealed that many target
genes mainly involved in protein folding, cellular amino
acid, carbohydrate metabolic processes, signal transduc-
tion, cell division, cell cycle and cell wall organization.
Under saline shock conditions, many target mRNAs
were found to be involved in the metabolic process,
transmembrane transport, cell organization, translation
and regulation of transcription.

Conclusion
In this study, for the first time, we reported novel sRNAs
expressed differentially under stress conditions. The
mRNA targets of these sRNAs were identified, function-
ally classified and found that these sRNAs are involved
in different cellular metabolic processes including pro-
tein folding. GO network analysis of Rhizobium revealed
a new biological role of sRNAs. Several reports are avail-
able regarding the sRNA identification but the reports
on the biological roles of sRNAs in Rhizobium are quite
limited. This work begins to address the new biological
insights in sRNAs function and its roles in a bacterial

system. It’s possible that the above applied genome-wide
computational methods can be used to identify the con-
ditional specific sRNAs in other Rhizobium or closely re-
lated α-proteobacteria. However, the precise role of
sRNAs reported in the preset study needs to be validated
experimentally in future studies.

Materials and methods
Genome-wide prediction of sRNAs from Rhizobium etli by
using improved sRNAscanner
Rhizobium etli complete genome sequence and annota-
tion files were retrieved from the National Centre for
Biotechnology Information (NCBI) ftp site. Genome se-
quences and annotation files were downloaded in Fasta
nucleic acid (.fna) and protein data file (.ptt) formats, re-
spectively. Accession numbers of Rhizobium etli with
their respective replicons used in our study are listed in
the supplementary file 1. In the present study, we
employed the improved version of the sRNA scanner to
predict conditional sigma factor 32 specific sRNAs. This
bioinformatic tool uses PWM matrices of sRNA pro-
moter and rho-independent terminators signals (Supple-
mentary file 2), through sliding window- based genome
scans, using consensus sequences of sigma factor pro-
moter binding sites − 35 and − 10 and rho-independent
transcription terminator sequences.
Sigma factor 32 specific Position weigh matrices were

used for identifying sRNAs from the complete bacterial
genome using sRNA Scanner [8, 16, 24]. sRNA Scanner

Fig. 5 GO regulatory network based on the mRNA target of sRNAs predicted from saline shock condition
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was used with CSS of 12 and search length with 50–500 nt.
To ensure the non-coding nature of the sRNA, the protein-
coding potentials of the transcripts were assessed based on
coding potential score (CPS) using the coding potential cal-
culator (http://cpc.cbi.pku.edu.cn/server). Accordingly, CPS
score − 1 represents weak non-coding and + 1 means weak
coding of the transcript [25]. Transcripts with a true non-
coding nature were considered for further annotation of
sRNA. Length and GC content of the putative non-coding
transcripts were analyzed using customized PERL script.
To refine the data, every sRNA was checked in Rfam data-
base and Bacterial small Small Regulatory RNA Database
(BSRD) [26] to identify the already reported sRNAs. The
sRNAs were also compared with previous reports to assess
and confirm their novelty. Filtered putative non-coding
RNAs (sRNAs) were used for further analysis.

Identification of sRNAs from transcriptome
The RNA-seq dataset was obtained from the NCBI Gene
Expression Omnibus (GEO) (Accession No: GSM1212456)
[14]. The raw reads of R. etli CE3 under three different con-
ditions (control, heat shock, and saline shock) downloaded
from the sequence read archive (SRA) database (Accession
No.: SRP028924). The SRA tool kit was used for extracting
the transcriptome reads from SRA files in FASTQ format
[27]. PolyA, polyT and Illumina adapters were removed with
cutadapt tool [28]. Sequence quality was analyzed using
FastQC. Sequence reads having phred score > 20 were used
for further analysis. Trimmed reads were aligned to the gen-
ome of R. etli by using Rockhopper tools for transcriptome
read counting [29, 30]. Based on the alignment data, non-
coding transcripts are considered as sRNA. The RPKM
(reads per kilobase of transcript per million mapped reads)
values of experimental conditions (heat and saline shock)
were compared with control for calculating the fold change.
Reads of the coding and non-coding transcripts were sepa-
rated and aligned to the reference genome. The sRNA se-
quence was aligned to the genome and visualized using the
Integrative genome viewer (IGV). Genomic coordinates of
predicted sRNA were extracted from the genome using ei-
ther Samtools or bedtools. Genomic coordinates of these
predicted RNAs are provided in the Rockhopper output file.

Target and secondary structure prediction for sRNAs
TargetRNA2 Software was used to predict the mRNA tar-
gets for the predicted trans-encoded sRNAs (http://cs.
wellesley.edu/~btjaden/TargetRNA2/). TargetRNA2 is a
web server that identifies mRNA targets of sRNA regula-
tory action in bacteria. As input, TargetRNA2 takes the
sequence of an sRNA and the name of a sequenced bac-
terial replicon and it uses a variety of features, including
conservation of the sRNA in other bacteria, the secondary
structure of the sRNA, the secondary structure of each

Table 4 Promoter, terminator and secondary structure of sRNAs
identified from the transcriptome data
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candidate mRNA target and the hybridization energy be-
tween the sRNA and mRNA targets [31].
RNAfold web server (http://rna.tbi.univie.ac.at/cgi-bin/

RNAfold.cgi) was used to predict the secondary struc-
ture of sRNAs. sRNA FASTA sequences were used for
calculating minimum free energy (ΔG) based on the par-
tition function (default parameter) [32].

Functional enrichment analysis of novel putative sRNAs
Novel putative sRNAs were screened by the integration of
the sRNAs predicted from the genome and transcriptome.
Sigma factor 32 based sRNAs predicted from the genome
were blasted against the sRNAs identified from the tran-
scriptome data of shock conditions [14]. Further, selected
sRNAs from genome and transcriptome were functionally
annotated based on the target of these sRNAs.
Functional categorization of the predicted target

mRNAs was done by clusters of orthologous group
(COG) analysis using the Eggnog database [R]. Gene
ontology (GO) annotations and regulatory relationships
among the biological processes were analyzed through
the GO regulatory network by using the comparative
GO web server [33].

Prediction of promoter and terminator
The promoter and rho-independent terminator regions
of sRNAs were analyzed from the region upstream of
the transcription start site (TSS) and downstream of the
transcription end site (TES), respectively. Genomic coor-
dinates of 150-nt sequences upstream of TSS and 150-nt
sequences downstream of TES were extracted using
‘Bedtools’ [34]. Further, ‘BPROM’ was used to identify
the binding sites of σ70 [35] and ‘Arnold’ for rho-inde-
pendent terminators [36].
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