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Abstract

COVID-19 is an infectious disease caused by the SARS-CoV-2 virus that can affect lung physiology encompassing a
wide spectrum of severities, ranging from asymptomatic and mild symptoms to severe and fatal cases; the latter
including massive neutrophil infiltration, stroke and multiple organ failure. Despite many recents findings, a clear
mechanistic description underlying symptomatology is lacking.
In this article, we thoroughly review the available data involving risk factors, age, gender, comorbidities, symptoms
of disease, cellular and molecular mechanisms and the details behind host/pathogen interaction that hints at the
existence of different pathophysiological mechanisms of disease. There is clear evidence that, by targeting the
angiotensin-converting enzyme II (ACE2) –its natural receptor–, SARS-CoV-2 would mainly affect the renin-
angiotensin-aldosterone system (RAAS), whose imbalance triggers diverse symptomatology-associated pathological
processes. Downstream actors of the RAAS cascade are identified, and their interaction with risk factors and
comorbidities are presented, rationalizing why a specific subgroup of individuals that present already lower ACE2
levels is particularly more susceptible to severe forms of disease. Finally, the notion of endotype discovery in the
context of COVID-19 is introduced.
We hypothesize that COVID-19, and its associated spectrum of severities, is an umbrella term covering different
pathophysiological mechanisms (endotypes). This approach should dramatically accelerate our understanding and
treatment of disease(s), enabling further discovery of pathophysiological mechanisms and leading to
the identification of specific groups of patients that may benefit from personalized treatments.
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Introduction
The recently described SARS-CoV-2 virus is the latest
addition into the group of pathogenic human corona-
viruses (HCoV). The Coronavirinae subfamily encom-
passes four different genera: alpha, beta, gamma and
deltacoronavirus. The genetic and serologic groups alfa-
and betacoronavirus includes pathogens that mainly infect
mammals (except pigs) [1]. The normally circulating 229E
and NL63 are alphacoronaviruses whereas OC43 and
HKU1 are betacoronaviruses. During the last twenty years,
three additional HCoVs from zoonotic origin have sur-
faced: SARS-CoV, MERS-CoV and SARS-CoV-2,all

belonging to the betacoronavirus genus. While the usual
HCoV are normally associated with common cold symp-
toms, these last pathogens may elicit infections that range
from asymptomatic carrier to severe pneumonia, leading
to acute respiratory distress syndrome (ARDS). A com-
mon feature of SARS-CoV and SARS-CoV-2 is that viral
attachment occurs via interaction of the viral spike (S)
protein —which is primed by the Transmembrane Serine
Protease 2 (TMPRSS2)— to the host angiotensin-
converting enzyme 2 (ACE2), allowing viral entry [2, 3].
Interestingly, this feature is shared with the NL63 HCoV,
while the other HCoVs employ different receptors such as
dipeptidyl peptidase 4 and aminopeptidase N [4]. The S/
ACE2 interaction gives place to a cross-talk point between
viral infection and the renin-angiotensin-aldosterone
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system (RAAS), and there is mounting evidence that this
interplay may crucially affect disease severity (see below).
SARS-CoV-2 causes COVID-19, a disease that pre-

sents a wide range of clinical manifestations, from
asymptomatic to severe ARDS and may result fatal due
to respiratory insufficiency, stroke, thrombotic complica-
tions [5] and, finally, multi organic failure [6]. Although
an accurate mechanistic description is lacking, it is pro-
posed that an uncontrolled and excessive release of pro-
inflammatory cytokines (called “cytokine storm”) may
cause some of the symptoms, including shock and tissue
damage, and massive neutrophil infiltration [7]. Current
consensus is that older people, immunocompromised or
patients with significant underlying conditions and co-
morbidities such as diabetes and hypertension are more
likely to experience severe COVID-19 symptoms [8].
Assessment of the mechanisms underlying SARS-

CoV-2-induced disease and severity has focused mainly
on the immunopathological features [7, 9, 10], and have
resulted in some unexpected findings: the unusual sero-
conversion processes involving IgM and IgG titers
among infected patients [11], the age-dependent cyto-
kine storm-induced reduction and functional exhaustion
of CD4+ and CD8+ T cells —both critical to eliminate
virus-infected cells and for achieving successful recovery
[12]—, and the possible link between severity and gen-
etic variations in chemokine receptors and blood group
loci [13], among others. These findings clearly hint at
the existence of distinct pathophysiological bases of dis-
ease in COVID-19. In addition, other actors have been
identified or proposed, such as endocrine and metabolic
pathways [14] and the role of infected endothelial cells
[15] in disease severity. However, a comprehensive and
cohesive evaluation of these factors is lacking. In the fol-
lowing sections, we present a detailed review attempting
to identify molecular bases of disease severity based on
the specifics of host/pathogen interplay, with an em-
phasis on the endocrine-immune interactions involved.
Finally, we speculate that COVID-19 is actually an um-
brella term that includes several pathophysiological
mechanisms, known as endotypes, originated in the
individual-specific host/pathogen interactions, which
simultaneously depend on the functional status of the
RAAS.

The entry point of SARS-CoV-2: ACE2 and TMPRSS2
ACE2 is a central component of the RAAS
The coronaviruses SARS-CoV, SARS-CoV-2 and NL63-
CoV rely on binding of their S protein to ACE2 [2, 16]
for attachment and cell entry, being able to infect many
of the organs where it is expressed [17–19]. Human
ACE2 is a transmembrane enzyme that contains differ-
ent functional domains: a C-terminal anchoring region,
a N-terminal signal peptide region, and an extracellular

HEXXH zinc-binding metalloprotease domain [20–22].
ACE2 is a member of the RAAS, that involves a var-
iety of hormones and enzymatic reactions whose pri-
mary role consists of regulating the homeostasis of
the cardiovascular and renal systems [23, 24], playing
also a critical function in inflammatory response [25].
This system consists of two main axes: the classic
angiotensin-converting enzyme (ACE)-angiotensin II-
AT1 receptor, and the ACE2-angiotensin-(1–7)-Mas
receptor axis, that was discovered rather recently
(Fig. 1).
Both ACE and ACE2 are found in the cytoplasmic

membrane of arterial and venous endothelial cells, and
arterial smooth muscle cells [26, 27]. ACE2 is expressed
in several organs such as the heart, kidney, lung and tes-
tes, among others [17, 19]. In particular, it is present in
human nasal epithelium, alveolar and small intestinal
cells [28]. ACE and ACE2 have been largely studied as
pivotal members of the RAAS. As shown in Fig. 1, they
play antagonistic roles by processing the renin-cleaved
decapeptide angiotensin both competitively or in an al-
ternate fashion. The main role of ACE2 is countering
ACE activity by reducing angiotensin 2 (AngII) —a po-
tent vasopressor and sodium-and-water retaining octa-
peptide— bioavailability and increasing angiotensin-(1–
7) (Ang-(1–7)) formation —a vasodilator and diuretic
peptide—, although alternative catalytic pathways exist
[29–31]. In this context, an imbalance in ACE2/Ang-(1–
7) and ACE/AngII axes may be critical in the develop-
ment of cardiovascular diseases [32]. Activation of the
ACE-mediated classic axis leads to deleterious effects:
vasoconstriction, fibrosis, migration, fluid retention,
thrombosis and inflammation; on the other hand, the
ACE2-centered via exerts protective vasodilation, and an-
tithrombotic, antiarrhythmic and anti-inflammatory ac-
tions [33, 34].

S induces downregulation of ACE2 after complex
formation
The extracellular domain of ACE2 can be cleaved from
the transmembrane domain by at least two different en-
zymes, ADAM metallopeptidase domain 17(ADAM17)
and TMPRSS2, and the resulting soluble protein is re-
leased into the bloodstream and ultimately excreted into
urine [3, 35]. TMPRSS2 is a type II transmembrane
serine protease expressed in the airway epithelial cells
and several tissues. It participates not only in SARS-
CoV-2 infection, but is also required by other respiratory
viruses such as human influenza and metapneumo-
viruses [36, 37]. TMPRSS2 increases the infective cap-
acity of both NL63 S- and SARS CoV S- pseudotyped
HIV as well as authentic SARS-CoV and SARS-CoV-2,
even in cells with low levels of ACE2 expression, indu-
cing ACE2 shedding and thereby loss of its physiological
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function [2, 37–39] (Fig. 1). The role of TMPRSS2 enab-
ling viral entry would consist of: i) ACE2 cleavage, pro-
moting viral uptake, and ii) S cleavage in two distinct
sites, allowing viral fusion to a host membrane [3, 37,
40]. In the case of SARS-CoV, both mechanisms are in-
dependent since ACE2 processing by TMPRSS2 is ne-
cessary to increase SARS-CoV S-driven entry but is
dispensable for SARS-CoV S activation [3]. In addition,
SARS-CoV S and, to a lesser extent, NL63-CoV S can
also induce ADAM-17 dependent cleavage of ACE2 in vi-
tro [38, 39].

The interaction energies of different CoV S proteins
with ACE2 have been shown to follow a NL63-CoV < <
SARS-CoV < SARS-CoV-2 [41, 42] order due to overlap-
ping but not identical binding interfaces and amino acid
variations in the S protein among the different viruses
[42, 43]. Interestingly, although the interaction energy
between SARS-CoV-2 receptor binding domain (RBD)
and ACE2 is higher than that observed for SARS-CoV
RBD, SARS-CoV-2 RBD is less accessible, resulting in
similar apparent binding affinities [44]. The interplay be-
tween S and ACE2 complex formation and the

Fig. 1 a Key pivotal modulating and antagonistic roles of ACE and ACE2 in the RAAS, and SARS-Cov-2 binding to ACE2 and TMPRSS2. ACE
catalyzes the conversion of AngI into AngII, thereby inducing hypertensive and pro-inflammatory effects, while ACE2 mediates the formation of
angiotensin-(1–9) from AngI. ACE2 also counters ACE activity by reducing AngII bioavailability and increasing Ang-(1–7) formation, which acts as a
vasodilator and exerts antiinflammatory activities through Mas receptors. SARS-CoV-2 interacts and downregulates ACE-2. b In this context, an
imbalance in ACE2/Ang-(1–7) and ACE/AngII axes would be critical in the development of severe COVID-19 symptomatology
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activation of host proteases suggests that although the
viral entry mechanisms are similar between NL63-CoV,
SARS-CoV and SARS-CoV-2, ACE2 downregulation
levels might correlate with the binding affinities involved
in complex formation, which may play a key part in
COVID-19 symptomatology.

SARS-CoV-2-induced RAAS imbalance results in
inflammation and other severe COVID-19
symptoms
The role of unbalanced RAAS as a central player in
ARDS and acute lung injury is nowadays well established
[45]. ACE-generated AngII triggers inflammatory pro-
cesses, stimulating proliferation of mononuclear cells
and regulating the recruitment of proinflammatory cells
(by expressing vascular permeability factors and adhe-
sion molecules, among others) [46], rendering the
AngII-degrading ACE2 as an essential actor for homeo-
stasis. ACE2-deficient animals are significantly more sus-
ceptible to severe pulmonary damage in the context of
SARS coronavirus, Influenza H7N9 virus or bacteria in-
fections, as well as LPS inhalation [47–50]. These facts
hint at a counterintuitive role of ACE2 expression levels
in determining the severity of SARS-CoV-2 infection: al-
though SARS-CoV-2 entry is dependent on ACE2, it is
established that lower levels of this molecule can cause
exacerbated inflammation, at least to some extent. In
mice, during lung infection the initial reduction of pul-
monary ACE2 is crucial for recruiting the inflammatory
neutrophils to combat the infection, and the subsequent
recovery of pulmonary ACE2 is critical to prohibit ex-
uberant neutrophil accumulation. It was found that
ACE2 modulated neutrophil infiltration through IL-17-
mediated STAT3 signaling, which also recruits factors
from the inflamed microenvironment [48]. Confounding
factors that either prevent the ACE2 dynamics from
occurring or disrupt it are detrimental to the host,
resulting in either compromised host defense capabil-
ity or heightened inflammatory lung diseases [48].
Evidence shows that SARS-CoV S protein, which is
not infective, exerts proinflammatory effects: intraperi-
toneally inoculation with recombinant SARS-CoV S
worsens the severity of acid aspiration-induced acute
lung injury in wild-type mice [47], increasing AngII
levels in the lungs. Furthermore, when AngII receptor
type 1 (AT1R) was blocked, acute lung injury in S-
treated mice was attenuated [47]. Complement system
also plays a role: infection of C3 deficient mice with
mouse-adapted SARS-CoV exhibited less respiratory
dysfunction and fewer neutrophils, inflammatory
monocytes and lower cytokine levels in lungs than
wild-type mice [51].
Endothelial cells continuously express ACE2, consti-

tuting an optimal infection target for SARS-CoV and

SARS-CoV-2 [52, 53]. This allows infection spreading
and affects the RAAS ecosystem of each organ, and en-
tails direct injury in the endothelium leading to endothe-
liitis [53], higher vascular permeability and hemostatic
dysfunction [54]. In addition, such constitutive expres-
sion would explain the significant thrombotic disorders
recently reported in the autopsies of COVID-19 patients
[55]. In addition, many of the observed severe symptoms
or causes of death are represented over different organs.
The major complications observed are ARDS [56–60],
acute cardiac injury [56, 58, 60], heart failure [56, 61],
shock [56, 58, 60], acute kidney injury [56, 58–60], hyp-
oxic encephalopathy [56], lymphopenia [60] and acute
pulmonary embolism [62], which could all be at least
partially ascribed to disbalancing of the RAAS.
Recent studies have shown a high incidence of neuro-

logical symptoms in COVID-19 cases. Although most of
them are minor (like headache, nausea, and a loss of sense
of smell and taste), more complicated symptomatology,
such as convulsions, stroke and thrombotic complications
have been also reported [63–65]. There is a strong possi-
bility that these complications arise, at least in part, from
downregulation of ACE2. It is now heavily documented
that one of the important effects of ACE2 /Ang-(1–7)/mas
receptor axis is on the brain and cerebral blood vessels
[66], exerting protection against stroke [67] and there is
evidence supporting the overall concept that the aging in-
creases the sucseptivility of the cerebrovasculature to the
effects of RAAS disbalance [68].
Taking into account the results obtained in mice

models and SARS-CoV, and its similarities with SARS-
CoV-2, there is strong evidence that differences in ex-
pression levels of ACE2 in the context of SARS-CoV-2
infection may constitute a molecular basis of exacer-
bated inflammation (Fig. 2). This is further supported by
the observation that patients with severe COVID-19
show an increase in neutrophil count and in the
neutrophil-to lymphocyte ratio and elevated levels of
proinflammatory cytokines [7], consistent with in vivo
results of neutrophil infiltration after ACE2 downregula-
tion [48]. Moreover, a correlation between the ratio of
pro- and anti-inflammatory cytokine concentrations and
symptom severity has been observed [69]. It can be spec-
ulated that only a few cases of HCoV-NL63-
induced severe cases have been reported due to the
lower S/ACE2 complex affinity that results in milder
dysregulation of ACE2 levels. However, patients with a
subgenotype of HCoV-NL63 were hospitalized with se-
vere lower tract infection in 2018. That subgenotype
presented one mutation in its RBD that enhances viral
entry into host cells, hinting at ACE2 downregulation
underlying the severe symptomatology [70]. Further-
more, another few cases of HCoV-NL63-positive pa-
tients (82 yo median age) emerged, showing distress
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syndrome, with symptoms including pneumonia, mul-
tiple organ failure and death, although the subgenotype
is unknown [71, 72].
Crucially, the RAAS presents a complex interplay with

cyclooxygenase-2 (COX-2 [73, 74]) which is rapidly in-
ducible in several cell types in response to growth fac-
tors, cytokines, and pro-inflammatory molecules. It is
largely responsible for the onset of inflammation, partici-
pating in the synthesis of proinflammatory prostaglan-
dins and triggers production of other proinflammatory
chemokines and cytokines, and playing a role in hyper-
tension [75]. Interestingly, while inhibition of COX-2 ex-
pression exerts a suppressive effect on lung
inflammation [76], it has been shown that both S and
the nucleoprotein (N) of SARS-CoV upregulate COX-2
[77] through different molecular mechanisms. Consider-
ing the high identity sequence of S and N proteins be-
tween both viruses (75 and 90%, respectively [78]),
SARS-CoV-2 may also elicit upregulation of COX-2, fur-
ther exacerbating inflammation.
Finally, ACE genotypes may affect the SARS-CoV-2/

RAAS interplay. A critical ACE polymorphism consists
of the presence (insertion, I) or absence (deletion, D) of
a 287-bp Alu sequence in intron 16 [79], being the D al-
lele associated with increased activity [80]. Intensive unit
care patients bearing the D allele or DD genotype are
more susceptible not only to develop ARDS, but also to

present a less favourable outcome [81], with a higher
risk of mechanical ventilation [82–84]. Interestingly, the
D allele was in a higher frequency in those patients who
developed the most severe symptoms of SARS-CoV in-
fection [82]. In addition, a recent analysis of the preva-
lence of ACE (I/D) genotype in different countries
showed that as the I/D allele frequency ratio increases,
the COVID-19 recovery rate in each country also in-
creases [85].

Pathophysiological contributions of COVID-19 risk
factors
Hypertension and diabetes
Despite the large number of SARS-CoV-2 positive pa-
tients, understanding COVID-19 pathogenesis remains
elusive. Available reports indicate that the most frequent
comorbidity in severe COVID-19 is hypertension,
followed by diabetes and coronary heart disease [86]. Re-
ports on the clinical characteristics of patients with
COVID-19 show that 2.5 to 14.5% of SARS-CoV-2 posi-
tive patients present cardiovascular diseases, 12,8 to
56.6% of patients present hypertension and 5.3 to 33.8%
patients have diabetes [87].
Ang-(1–7) has multiple beneficial cardiovascular ef-

fects: protection against heart failure, natriuretic and an-
tithrombotic, among others [88]. In a mice model of ang
II-dependent hypertension, blood pressures were higher

Fig. 2 The effect of ACE2 expression levels on COVID-19 disease and severity. Age, genetics, and different comorbidities affect the pre-infection
ACE2 expression levels in a subset of individuals (left), rendering them susceptible to severe forms of disease. During infection (right), upon
interaction of SARS-CoV-2 S protein with ACE2 and TMPRSS2, ACE2 levels are downregulated. Those individuals with low pre-infection ACE2 levels
reach a threshold critical value corresponding to the onset of severe symptomathologies due to RAAS imbalance
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in the ACE2-deficient mice than in wild-type specimens
[89]. ACE2 expression in heart is also necessary for
structural and functional regulation. After a myocardial
infarction, ACE2-deficient mice presented an enhanced
susceptibility to a second event, with increased mortality,
infarct expansion and adverse ventricular remodeling.
Loss of ACE2 also led to increased neutrophil infiltration
in the infarct and peri infarct regions, resulting in upreg-
ulation of inflammatory cytokines [90].
The kidney is highly sensitive to RAAS perturbation.

Several studies demonstrated an increased activity of this
system involved in the development and progression of
diabetic renal damage [91]. In mice models of either type
1 and type 2 diabetes mellitus, ACE2 expression is ele-
vated in early stages of diabetic nephropathy while de-
creasing in the late phase of the disease, suggesting that
ACE2 may participate in a compensatory mechanism in
the diabetic kidney prior to illness onset [92]. Moreover,
in a murine model of diabetic nephropathy, recombinant
ACE2 administration improves kidney function and
structure [93]. In agreement with these results, it was
shown that ACE2 expression is decreased in the tubules
in human diabetic nephropathy [94]. The imbalance of
the RAAS system in favor of AngII in the context of dia-
betes results in a more severe kidney damage in males
than in females, which is even increased if ACE2 is
downregulated [95, 96].

Age
Age is a major factor affecting the severity of COVID-19
disease, correlating with both susceptibility to infection
and manifestation of clinical symptoms. Therefore, inci-
dence of clinical cases in countries with younger popula-
tions is expected to be lower than older population
countries, despite the prevalence of other comorbidities
[97]. It has been proposed that AT1R-mediated signaling
is involved in the aging process per se by promoting sev-
eral age-related pathologies, such as cardiovascular dis-
eases, diabetes, chronic kidney failure, dementia,
osteoporosis and even cancer [98, 99]. Increased AngII
bioavailability due to reduced catabolism may result in
overactivation of these receptors. In line with this, sev-
eral authors have observed that ACE2 expression levels
are reduced with age [26, 100, 101].
ACE and ACE2 exert catalytic effects on several pro-

teins beyond the RAAS. This apparent promiscuity con-
fers these enzymes enough plasticity to reach the same
physiological effects through alternative pathways,
thereby producing quicker, more intense and coordi-
nated responses. Thus, age-related alteration in the
ACE/ACE2 activity does not only affect the physiology
of the RAAS, but also another particular system in
which both proteins have a prominent role: the
kininogen-kinin-kallikrein (KKK). As shown in Fig. 3a,

ACE has been demonstrated to be one of the primary
proteases responsible for the hydrolysis of the kinin
bradykinin and, to a lesser extent, its derivative des-
Arg9-bradykinin. It is worth remarking that ACE is con-
sidered first a kininase, being known as kininase II [102],
and then an angiotensinase, due to its »80-fold higher
affinity for bradykinin with respect to AngI (4). In fact,
the cough presented by some patients treated with ACE
inhibitors has been attributed to the blockade of the
bradykinin metabolism [103]. ACE2, on the other hand,
degrades des-Arg9-bradykinin but no other forms of
bradykinin (4). There are two types of kinin receptors:
BR1, selectively sensitive to kinins lacking the C-
terminal Arg residue like des-Arg9-bradykinin; and BR2,
optimally stimulated by the full sequence of bradykinin.
While BR2 is constitutive and widely expressed in differ-
ent tissues and mediates vasodilator and anti-
inflammatory effects, the gene encoding BR1 is regulated
by a promoter region with binding sites for transcription
factors such as the activator protein-1 and the nuclear
factor kappa B (NFkB), which are up-regulated during
inflammation [104]. By acting on BR1 receptors, des-
Arg9-bradykinin induces vasocontraction and pro-
inflammatory actions [104]. Thus, SARS-CoV-2 infection
would favor the overactivation of the BR1 with deleteri-
ous effects in the affected tissue (Fig. 3b). In agreement
with this, recent works point out to des-Arg9-bradykinin
as a key mediator of lung injury caused by LPS [104,
105]. By employing ACE2-deficient mice, Sodhi and col-
laborators found that this enzyme is crucial in counter-
acting such mechanism giving its ability to inactivate
des-Arg9-bradykinin, and thus the BR1 signaling [105].
Moreover, these authors reported that LPS-mediated in-
flammation downregulated ACE2 bioavailability by a
NFkB-involved mechanism. Of note, AngII induces
NFkB expression through AT1R [45].
Aging does not only affect the KKK system through

the ACE/ACE2 balance, but also directly altering the
pharmacology of BR1 and BR2. It has been observed that
although the serum levels of kinins increase with age,
the responsiveness of target cells is limited or altered
[106]. In this respect, bradykinin-induced vasorelaxation
is actually affected by the BR1/BR2 ratio in the vascula-
ture [107]. In older subjects, the density of BR2 is re-
duced whereas that of pro-inflammatory BR1 seems to
be elevated, thereby changing the balance towards a
vasoconstrictor response [108] that could result more
deleterious in the context of SARS-CoV-2 infection.
Most tellingly, both aging and kinins up-regulate the ex-
pression of pro-inflammatory COX-2 in several tissues
[109–111].
In summary, the aging-related re-adaptation of the

RAAS, KKK and COX-2 pathways may put older people
in a new equilibrium situation much more sensitive to
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minor fluctuations and with a limited margin of re-
sponse, rendering them more susceptible to inflamma-
tory processes. These mechanisms and the ACE isoform
D are summarized in Fig. 3c as crucial factors increasing
COVID-19 severity.

Conclusions: towards endotypification of COVID-19
We are experiencing the first global pandemic since the
dawn of precision medicine: an approach that leaves out
a “one-drug-fits-all” model, in favor of customization of

healthcare. In this context, identifying different endo-
types —subtypes of a condition with different underlying
pathophysiological mechanisms— should become central
for clinical research because it helps to rationalize ex-
perimental results and enhances reproducibility: hetero-
geneous groups of patients consisting of varying
unidentified endotypes are prone to obfuscate statistical
analysis of clinical trials for potential vaccine candidates
and therapeutic treatments and hinder the identification
of different factors that modulate disease severity, among

Fig. 3 a Action of ACE and ACE2 enzymes in the KKK system. ACE degrades bradykinin, a vasodilator peptide acting mainly through BR2
receptors. This kinin can be also converted by kininase I into des-Arg9-bradykinin, which promotes vasoconstriction and pro-inflammatory effects
upon interaction with BR1 receptors. ACE2 participates in the degradation of des-Arg9-bradykinin, a process eventually inhibited by SARS-CoV-2-
induced ACE2 downregulation. b SARS-CoV-2-mediated imbalance in the KKK system with predominant pro-inflammatory effect of des-Arg9-
bradykinin. c Age-related variations in the RAAS, KKK system and COX-2 and ACE D isoform as enhancers of the susceptibility of older adults to
present severe COVID-19 symptoms
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others. Endotype discovery has been particularly success-
ful in the treatment of other respiratory illnesses, such
as asthma [112] and bronchiolitis [113, 114] usually
combining trajectory analysis of meaningful variables
along time, cytokine profiles and multi-omics analysis.
We speculate there is mounting evidence showing that
COVID-19, with its associated degrees of severity and
heterogeneous symptomatology, is actually an umbrella
term that may include several endotypes (Fig. 4). The
available data about age, gender, genotypes, polymor-
phisms, comorbidities and symptoms of disease points
to the existence of different endotypes, with a probable
central role of the RAAS involved in severe cases. Most
SARS-CoV-2 cases are asymptomatic, with reports ran-
ging between 50 to 70% of total cases [103]. The
remaining occurrences are further split between mild,
presenting cold-like symptoms, and severe cases. Con-
sidering the current lack of absolute numbers regarding
total infections, it is likely that the percentages of severe
cases are overestimated, and these may be further subdi-
vided between i) those with other underlying factors, ii)
others that are aggravated by comorbidities, and iii)
those that are specifically affected by imbalance of the
RAAS throughout the infection process. We hypothesize
that there is a strong possibility that this particular sub-
set of individuals are thrown off-balance by SARS-CoV-
2 infection, constituting a distinctive endotype. For these

patients, personalized treatments should address critical
open questions such as how to manage ACE inhibitors
[115] that are used in clinical practice for treating hyper-
tension and other cardiovascular diseases: Although
ACE inhibitors do not interfere directly with ACE2 ac-
tivity [17], discrepancies exist regarding their effects on
ACE2 expression levels in different tissues [116–118]
raising the question of whether these drugs would be
harmful for COVID-19 patients. Despite this, current
consensus is to continue treatment until conclusive data
emerge [119–121].
A constellation of factors may underlie the particular

susceptibility of a RAAS-imbalanced endotype. Single
nucleotide polymorphism (SNP) present in ACE2 can be
classified as harmful or protective, depending on their
effect on the binding affinity of the S/ACE2 complex
[122], rendering them as possible factor underlying se-
verity across different populations [123]. Aging may pre-
dispose to an exacerbated inflammatory response by
downregulation of ACE2 and upregulation of COX-2,
and gender, genotypes, SNPs and hypertension may play
similar roles. Differences in the prevalence of comorbidi-
ties among sex -males are more likely to present comor-
bidities than females- may also partially explain the
increased incidence (44 to 76% in males vs 24 to 56% in
females) and mortality (55 to 64% in males vs 36 to 45%
in females) observed in COVID-19 male patients
[124]. These factors are expected to intersect at the
regulation of ACE2: low expression levels render individ-
uals particularly vulnerable to SARS-CoV-2, that in turn
further downregulates ACE2 levels through shedding,
critically affecting RAAS, bradykinin and COX-2 func-
tion. In particular, COX-2 may directly be affected by
the interaction with N and S proteins. This is expected
to onset proinflammatory mechanisms that are likely to
establish a positive feedback with the ongoing viral in-
fection, thus resulting in pneumonia and the observed
cytokine storm, prothrombotic activity, and many of the
severe symptoms detected in COVID-19. Although
lower levels of ACE2 expression may seem protective as
it would hinder viral entry, they appear to play a key role
in the onset of severe symptomatology.
Other identified or proposed key factors that must

be considered to identify different underlying endo-
types include antibody-dependent enhancement [125],
the role of previous infections with other corona-
viruses, immunological profiles and genetic variations
[9, 11–13]. A critical discussion of risk factors, co-
morbidities, pathophysiological basis of disease and
their translational applications within the appropriate
theoretical framework is prone to enable better un-
derstanding of the molecular basis of disease and,
therefore, the design of successful strategies for per-
sonalized treatments.

Fig. 4 COVID-19, with its associated degrees of severity, is likely an
umbrella term encompassing multiple pathophysiological bases of
disease. Endotype discovery should dramatically accelerate our
understanding and treatment of disease(s), enable further discovery
of pathophysiological mechanisms and lead to identification of
specific groups of patients that may benefit from
personalized treatments
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