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Abstract

The risk of many demographic events varies by both current state and duration in
that state. However, the use of such semi-Markov models has been substantially
constrained by data limitations. Here, a new specification of the semi-Markov
transition probability matrix in terms of the underlying rates is provided, and a
general procedure is developed to estimate semi-Markov probabilities and rates from
adjacent population data.
Multistate models recognizing marriage and divorce by duration in state are
constructed for United States Females, 1995. The results show that recognizing
duration in the married and divorced states adds significantly to the model’s
analytical value. Extending the constant-α method to semi-Markov models, 2000–
2005 U.S. population data and 1995 cross-product ratios are employed to estimate
2000–2005 duration-dependent transfer probabilities and rates.
The present analyses provide new relationships between probabilities and rates in
semi-Markov models. Extending the constant cross-product ratio estimation
approach opens new sources of data and expands the range of data susceptible to
state-duration analyses.

Keywords: Multistate models, Semi-Markov, Remarriage by duration since divorce,
Divorce by duration of marriage, Semi-Markov transition probability matrix, Cross-
product ratios

Introduction
Multistate models typically follow persons as they move from state to state over age

and/or time, using the Markov assumption that the risk of movement depends only on

a person’s current status. However, demographers have long known that, in many situ-

ations, the duration or length of time a person has been in their current state, can sub-

stantially affect the risk of an interstate movement.

Models that recognize both current state and duration in that state are known as

semi-Markov models, and a substantial body of statistical, actuarial, and demographic

literature has explored them. Life insurance actuaries have long used “Select and Ul-

timate” life tables, which are based on mortality by age, sex, and years since the policy

was purchased. In the USA, an ongoing Society of Actuaries mortality investigation

used a 15-year select period (Jordan Jr., 1975, p. 24–28). Actuarial experience showed
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that individuals at short policy durations had higher death rates than similar persons at

long durations. Schoen (1977) showed that the probability of divorce varied with both

age and duration of marriage, with duration having a greater effect than age.

The statistical properties of semi-Markov models were explored in depth beginning

in the 1950s (e.g., Smith 1955), and that work has since been extended (e.g., Cinlar,

1969; Feller 1968; Ginsberg, 1971; Grabski, 2016; and Hoem, 1972). With regard to

multistate models, the pioneering work of Wolf (1988) was the first to examine life

table construction with duration dependence. Other noteworthy contributions/applica-

tions were made by Cai et al., 2006; Cook and Lawless (2018); Hennessey (1980); Keil-

man and Gill (1986); Lynch and Brown (2010); and Rajulton (1985). The Appendix

section provides additional references and citations to implementing software.

Here, there are two objectives. First, to relate multistate semi-Markov rates to semi-

Markov probabilities and explore the implications of those relationships. Second, to ex-

tend the Constant-α approach to estimate semi-Markov probabilities and rates from

data on adjacent populations in the context of a never married/married/divorced multi-

state model that recognizes duration of marriage and duration since divorce.

Specifying the state-duration transition probability matrix
To develop the semi-Markov model, let there be S states, where state Si has j durations.

Each of the N state-duration categories is termed a cell. For simplicity, assume no mor-

tality or other source of attrition, and age/time intervals of n years. To be concrete, and

with little loss of generality, we emphasize the 2-state model where each state has 3

specified durations: 0, 1, and 2, the first two of n years, and the last duration category

open-ended.

The logical structure of an age-duration model means that the possible flows between

cells are restricted. Persons at each duration in each state can only move (that is move

between states, not advance to a higher duration) to duration category zero in one of

the other S−1 states. Accordingly, in the 2-state, 3-duration, model of Eq. (1), there are

2 (origin states) × 3 (durations) × 1 (destination state) = 6 possible transition rates.

Markov models are generally based on the underlying forces of transition or the cor-

responding rates of transfer from one state to another. In the semi-Markov context,

however, persons also advance to a higher duration in the same state, a status change

that is not directly captured by any occurrence/exposure transfer rate. Semi-Markov

probabilities reflect both interstate transfer and intrastate advancement. Specifically,

with N = 6, the 6 × 6 transition probability matrix of a 2-state, 3-duration model has

the form

A ¼

π10;10 π11;10 π12;10 π20;10 π21;10 π22;10

π10;11 0 0 0 0 0
0 π11;12 π12;12 0 0 0

π10;20 π11;20 π12;20 π20;20 π21;20 π22;20

0 0 0 π20;21 0 0
0 0 0 0 π21;22 π22;22

2
6666664

3
7777775

ð1Þ

where πhi,jk is the probability that a person in state h at duration i at the start of an

interval is in state j at duration k at the end of the interval. The rows of A represent

destination states, while the columns of A represent origin states. In the model we are
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considering, where there is no attrition, all columns sum to 1. Of the 36 cells of matrix

A, only 18 have non-zero probabilities. There are 3 non-zero probabilities in each col-

umn, as each person can, at the end of the interval, either advance to the next higher

duration (or stay at the highest duration) in the initial state or be at duration zero in

any state. Multiple moves (i.e., changes of state) in an interval are possible, and a per-

son can be at duration zero in the initial state by moving to another state and then

returning. All persons who move during an interval are at duration zero at the end of

the interval.

In much life table construction, the transition probability matrix is found from a

matrix of underlying rates. Because a conventional rate matrix does not capture ad-

vancement, going from transfer rates to semi-Markov probabilities requires a cell by

cell rather than a matrix-to-matrix approach. Nonetheless, given a set of occurrence/

exposure transfer rates, every probability in A can be expressed in terms of those rates

using established multistate calculation procedures.

To do so, we follow the procedures in Schoen (Schoen, 1988, Chap.4; Schoen, 2006,

Chap.1). It is convenient to start with the (2,1) cell of A, where π10,11 is the probability

that a person initially in state 1 at duration 0 (i.e., years 0 through 4) will be in state 1

at duration 1 at the end of the interval. That probability of advancement to duration

category 1 is simply the probability of never leaving state 1, or

π10;11 ¼ 1 - n=2ð Þ m10;20
� �

= 1þ n=2ð Þ m10;20
� � ð2Þ

where mhi,j0 is the rate of movement from state h, duration i to state j, duration 0,

and the implicit survivorship function is assumed to be linear (see also Preston et al.,

2001, Chap. 3). This approach serves to specify all of the six π’s in rows 2, 3, 5, and 6

of A. For present purposes, we assume linear survivorship as that assumption is gener-

ally reasonable and yields explicit algebraic solutions. Alternative solution procedures,

such as those discussed in Schoen (1988), Chap. 4), are possible but would make little

substantive difference here. Should a large rate be encountered that makes the linear

assumption problematic when 5-year intervals are used, interval length can be reduced

to 1 year.

Continuing down the first column of A, π10,20 is the probability that a person initially

in state 1 at duration 0 ends the interval in state 2 at duration 0. To find that semi-

Markov probability, we need a multistate calculation. Consider a 2-state Markov model

that does not recognize duration but that has transfer rates from the initial state-

duration equal to those prevailing in the semi-Markov model. The other transfer rates

in this 2-state Markov model are considered equal to those at duration 0 in the semi-

Markov model. Then, π10,20 is the same as p12, the Markov model probability of start-

ing in state 1 and ending in state 2. Under the linear assumption, in a 2-state model

where mij is the occurrence/exposure rate of transfer from state i to state j, the matrix

of rates is of the form

M ¼ −m12 m21

m12 −m21

� �
ð3Þ

and the transition probability matrix is
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PP ¼ p11 p21
p12 p22

� �
ð4Þ

where pij is the probability that a person initially in state i will be in state j at the end

of the interval. As there is no attrition, each column of M sums to zero, with the diag-

onal element equal to minus the sum of the off-diagonal rates. Each column of PP

sums to one.

Under the linear assumption (Schoen, 2006, Section 1.6), Markov transition probabil-

ity matrix PP can be found from rate matrix M by

PP ¼ I - n=2ð Þ M½ �−1 I þ n=2ð Þ M½ � ð5Þ

where I is the N × N identity matrix (which has ones on the main diagonal and zeros

elsewhere). Thus π10,20 follows from p12 using rates from duration zero to duration

zero. The algebraic expression is

π10;20 ¼ 2n m10;20= 2þ n m10;20 þm20;10
� �� � ð6Þ

The values of π11,20 and π12,20 can also be obtained from the p12 element, but by

using rates from state 1 at durations 1 and 2, respectively. All first transfer rates take

persons to the other state at duration zero, while subsequent rates take those persons

from duration zero to duration zero.

To find π10,10, the remaining probability in the first column, we need only use the fact

that the sum of each column is one, hence

π10;10 ¼ 1−π10;11−π10;20 ð7Þ

Algebraically, the result is

π10;10 ¼ 2n2 m10;20 m20;10
� �

= 2þ n m10;20
� �

2þ n m10;20 þ n m20;10
� �� � ð8Þ

The same approach yields all of the remaining probabilities in A in terms of the set

of underlying rates. By straightforward extension, it takes any set of transition rates and

provides the elements of the associated semi-Markov transition probability matrix.

Table 1 provides the complete algebraic solution for the probability matrix of a 2-state,

3-duration model in terms of the underlying transition rates.

While Table 1 gives the 18 probabilities in A in terms of the underlying 6 rates, we

can also take those 18 equations and solve for the 6 rates and for 12 probabilities in

terms of the other 6 probabilities. In the case of probability matrix A of Eq. (1), Table 2

gives explicit solutions for the 6 rates and for 12 probabilities in terms of the other 6

πs. The implications of doing so are substantial and give rise to what may be termed a

rate principle: the number of independent probabilities in a semi-Markov model is

given by the number of independent rates underlying that model. Matrix A, like its

underlying rate matrix, has only 6 independent elements. It follows that an arbitrary

probability matrix of the form of A is likely to have no underlying set of semi-

Markovian rates because its elements would not be constrained by the relationships in

Table 2. In other words, that probability matrix is not “embedded” in a Markovian

process (cf. Singer & Spilerman, 1976). The problem of finding rates from such prob-

abilities is addressed in a later section.
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Table 1 Elements of the 2-state, 3-duration transition probability matrix

The 2-state, 3-duration transition probability matrix of Eq(1) is

A ¼

π10;10 π11;10 π12;10 π20;10 π21;10 π22;10
π10;11 0 0 0 0 0
0 π11;12 π12;12 0 0 0

π10;20 π11;20 π12;20 π20;20 π21;20 π22;20
0 0 0 π20;21 0 0
0 0 0 0 π21;22 π22;22

2
6666664

3
7777775
(A.1)

To conveniently express the elements of A in terms of the underlying occurrence / exposure rates of interstate
transfer, separate matrices, A13 and A46, are shown below for the first 3 and the second 3 columns of A. We
then have

A13 ¼

2 n2m10;20m20;10=ðD0E0Þ 2 n2m11;20m20;10=ðD1E1Þ 2 n2m12;20m20;10=ðD2E2Þ
ð2−n m10;20Þ=ðD0Þ 0 0

0 ð2−n m11;20Þ=ðD1Þ ð2−n m12;20Þ==ðD2Þ
2 n m10;20=ðE0Þ 2 n m11;20=ðE1Þ 2 n m12;20=ðE2Þ

0 0 0
0 0 0

2
6666664

3
7777775
(A.2a)

where for j = 0, 1, and 2, Dj = 2 + n m1j,20 and Ej = 2 + n m1j,20 + n m20,10; and

A46 ¼

2 n m20;10=ðG0Þ 2 n m21;10=ðG1Þ 2 n m22;10=ðG2Þ
0 0 0
0 0 0

2 n2m10;20m20;10=ðF0G0Þ 2n2m10;20m21;10=ðF1G1Þ 2n2m10;20m22;10=ðF2G2Þ
ð2−n m20;10Þ=ðF0Þ 0 0

0 ð2−n m21;10Þ=ðF1Þ ð2−n m22;10Þ=ðF2Þ

2
6666664

3
7777775
(A.2b)

where for j = 0, 1, and 2, Fj = 2 + n m2j,10 and Gj = 2 + n m2j,10 + n m10,20.

Table 2 Expressions for 6 rates and 12 probabilities in a 2-state, 3-duration semi-Markov model in
terms of the other 6 probabilities.

In a model like that of Eq. (1), expressing the 6 underlying rates and 12 probabilities in terms of the
probabilities πm0v0, πm1m2, πm2v0, πv0m0, πv1m0, and πv2v2, yields

mm0v0 = 2 πm0v0/[n (2 − πm0v0 – πv0m0)]

mm1v0 = 2 (1 − πm1m2 )/[n (1 + πm1m2)]

mm2v0 = 2 πm2v0 (2 – πm0v0 )/[n (2 − πm0v0 – πv0m0) (2 – πm2v0)]

mv0m0 = 2 πv0m0/[n (2 − πm0v0 – πv0m0)]

mv1m0 = 2 πv1m0 (2 – πv0m0)/[n (2 − πm0v0 – πv0m0 ) (2 – πv1m0)]

mv2m0 = 2 (1 – πv2v2 )/[n(1 + πv2v2)]

πm0m0 = πm0v0 πv0m0/(2 − πv0m0)]

πm0m1 = (2 − 2 πm0v0 − πv0m0)/(2 – πv0m0)

πm1m0 = πv0m0 (1 – [πm1m2 ]
2)/[(4 – 2 πm0v0 – πv0m0 + πv0m0 πm1m2)]

πm1v0 = 2(2 − 2 πm1m2 − πm0v0 − πv0m0 + πv0m0 πm1m2 + πm0v0 πm1m2)/
[(4 – 2 πm0v0 – πv0m0 + πv0m0 πm1m2)]

πm2m0 = πv0m0 πm2v0 (2 – πm2v0)/[(4 – 2 πm0v0 – 2 πv0m0 + πm2v0 πv0m0)]

πm2m2 = (4 − 4 πm2v0 − 2 πm0v0 − 2 πv0m0 + 2 πm2v0 πm0v0 + πm2v0 πv0m0)/
[(4 – 2 πm0v0 – 2 πv0m0 + πv0m0 πm2v0)]

πv0v0 = πm0v0 πv0m0/(2 – πm0v0)]

πv0v1 = (2 − 2 πv0m0 − πm0v0)/(2 – πm0v0)

πv1v0 = πv1m0 πm0v0 (2 – πv1m0)/[(4 – 2 πm0v0 – 2 πv0m0 + πm0v0 πv1m0)]

πv1v2 = (4 − 4 πv1m0 − 2 πm0v0 − 2 πv0m0 + 2 πv1m0 πv0m0 + πv1m0 πm0v0)/
[(4 – 2 πm0v0 – 2 πv0m0 + πv1m0 πm0v0)]

πv2m0 = 2 (2 − 2 πv2v2 − πm0v0 − πv0m0 + πv2v2 πv0m0 + πv2v2 πm0v0)/
[(4 – 2 πv0m0 – πm0v0 + πv2v2 πm0v0)]

πv2v0 = πm0v0 (1 – [πv2v2 ]2)/[(4 – 2 πv0m0 – πm0v0 + πm0v0 πv2v2)]
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The situation where duration effects are implicit
Duration effects are not explicitly recognized in Markovian analyses. Nonetheless, the

states of a Markov model do have an implicit duration composition. The objective of

this section is to determine that distribution in multistate models. Implicit durations in

fertility models are examined in Schoen (2019).

Here, let all rates from every given state to another given state be the same at all du-

rations. In the context of our 2-state, 3-duration model, there are only 2 distinct rates,

m12 and m21. Using the approach of the preceding section, we can write all of the ele-

ments of the semi-Markov transition probability matrix in terms of those two rates.

The dominant right eigenvector of that probability matrix provides the long-term

(stable population) state-duration composition (Schoen, 2006). That eigenvector, u, can

readily be found from A using mathematical software such as Maple or Mathematica.

Here, the 6 × 1 state-duration composition vector u reflects the relative number in

each state-duration, beginning with state 1 at durations 0, 1, and 2, and following with

state 2 at durations 0, 1, and 2. That vector can be written as

u ¼

1
π10;11

π2
10;11 2−π20;10

� �
= 2π10;20
� �

2−π20;10
� �

= 2−π10;20
� �

π20;21 2−π20;10
� �

= 2−π10;20
� �

π2
20;21 2−π20;10

� �
= 2π20;10
� �

2
6666664

3
7777775

ð9Þ

where the number in state 1 at duration 0 is scaled to one. The relative size of the 2

states is given by the ratio (2 − π20,10)/(2 − π10,20). The larger π20,10 is to π10,20, the

smaller the proportion in state 2. Within each state, the proportion decreases with dur-

ation, by a factor of π10,11 in state 1 and π20,21 in state 2. The highest, open-ended dur-

ation has an additional factor representing all of the fractions at (unrecognized) higher

5-year durations.

Estimating transition probabilities from adjacent populations under
constant-α
There are a number of situations where population figures by state and duration at

both the beginning and end of an age/time interval are known, but there is no informa-

tion on the transitions during that interval. The constant-α approach, presented in

Schoen (2020), can be extended to the semi-Markov case and allow interstate probabil-

ities to be estimated. This section describes how to do so.

The constant-α approach is based on the assumption that the cross-product ratios

(α’s) of the multistate transition probability matrix are fixed. Cross-product ratios are

analogous to odds ratios, can be formed from any rectangular set of 4 non-zero matrix

elements, and equal the product of the upper left and lower right elements divided by

the product of the lower left and upper right elements. For example, in A, we can

define

α1142 ¼ π10;10 π11;20= π10;20 π11;10
� � ð10Þ
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which is one of the 7 distinct α’s in A. The subscripts “1142” represent the upper-left

(1,1) and lower right (4,2) elements of the ratio. A distinct cross-product ratio includes

at least one cell that is not included in any other cross-product ratio.

If the transition probability matrix is viewed as a contingency table, the constant α’s

can be interpreted as the fixed interaction effects of a saturated log linear model. Pre-

serving α’s can provide maximum likelihood estimates that maximize entropy, as they

find the pattern of interstate flows that can arise in the greatest number of ways. In

multistate Markov models, Schoen (2020) described how to estimate transition prob-

abilities from a variety of data sources and found that the approach provided good esti-

mates of movements between poverty states in the USA.

Here, we seek to implement the constant-α approach in the semi-Markov context

where data are available on adjacent populations. Let xjk represent the start of interval

population in state j at duration k, and let yjk represent the end of interval population

in state j at duration k. Then

y¼P x ð11Þ

where P, which has the form of A, is the transition probability matrix and vectors x

and y contain the xjk and yjk population values, respectively.

In the no-mortality semi-Markov case, let us rewrite Eq. (11), using a base transition

probability matrix, B, whose elements imply the set of cross-product ratios that are be-

ing held constant. Matrix B should be chosen with care and needs to reflect a popula-

tion with the same state-duration structure and the same interstate movements as the

population whose probabilities are to be estimated.

To satisfy the projection relationship, matrix B is pre-multiplied by a diagonal matrix

R of row factors and post-multiplied by a diagonal matrix, C, of column factors. The i-

th diagonal element of R is ri, with r1 = 1, and the j-th diagonal element of C is cj.

Hence, we can write

y¼R B C x ð12Þ

where the desired transition probability matrix, P, is given by

P¼R B C ð13Þ

and

z ¼

z10
z11
z12
z20
z21
z22

2
6666664

3
7777775

ð14Þ

where z can be either x or y. By the definition of α, matrix P has the same cross-

product ratios as matrix B. However, the elements of P generally do not satisfy the con-

straints of Table 2 even when the elements of B do.
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With N state-durations, Eq. (12) has (2N − 1) unknowns, the N diagonal elements of

C and (N − 1) diagonal elements of R. Those (2N − 1) unknowns can be found from

the (N − 1) independent scalar projection equations contained in Eq. (12) and the N

equations that require that the N columns of P sum to 1. An iterative solution can be

found, but here we proceed by solving the (2N − 1) equations. That approach has the

advantage of finding all of the possible solutions. There can be more than one valid

(i.e., real and non-negative) demographic solution, while there may be no valid solu-

tions at all. The latter can arise if the cross-product ratios are incompatible with the

given populations, the most obvious case being when a large ending population at one

duration arises solely from a small initial population at the previous duration.

When the probabilities and rates are known, they can be used in life tables or other

demographic models. For example, the life course of a cohort can be traced by a multi-

state life table, and all of the life table summary measures calculated. We now turn to

applying the approaches presented here, first to use rates to calculate a state-duration

life table, and second to estimate interstate transfer probabilities and rates using the

constant-α method.

Calculating a state-duration model from duration-specific rates
Here, we calculate a semi-Markov model by starting with a Markovian multistate

model and extending it through the introduction of duration-specific rates. Marital sta-

tus models are particularly appropriate for such extensions, as both divorce and remar-

riage after divorce are known to vary by duration in state.

We begin with the age-state-specific rates used in the construction of the marital sta-

tus life table for United States Females, 1995 (cf. Schoen & Standish, 2001). To simplify

matters, the semi-Markov calculations proceed from age 15 to age 50, ignoring mortal-

ity. That yields a 3-state model with states never married (s), married (m), and divorced

(v).

We extend the 1995 life table by adding 5-year duration categories 0 and 1, and

open-ended duration category 2, to both the married and divorced states. Data on sec-

ond marriages by duration of first divorce and age at divorce are available for 1995

from Bramlett and Mosher (Bramlett & Mosher, 2001, Table 7) and provide the basis

for allocating age-specific remarriage rates (mvm) to the three duration categories. Age-

duration-specific divorce rates (mmv) for first marriages in California, 1969, are pro-

vided in Schoen (Schoen, 1975, Table 2). While somewhat old, they appear to be the

most suitable values available. The relative sizes of those published duration-specific

rates were then weighted by the initial state composition at each age interval in the ex-

tended life table. The weighted differential values, by duration, were multiplicatively ad-

justed to reproduce the all-durations rate in the 1995 life table. Those adjusted

duration-specific rates were the inputs used to calculate the extended multistate life

table.

The construction of the extended life table proceeded age by age, beginning with

100,000 persons in the never married state at exact age 15. The state-duration compos-

ition of the extended table at the end of each age interval is generated from the initial

state-duration composition survived, per Eq. (11), by a 7 × 7 state-duration transition

probability matrix. That transition matrix is the 6 × 6 matrix of Eq. (1), with a top row

and left-most column added to reflect the never married state. The expressions for the
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marriage and divorce cells of the matrix are shown in Table 1. There is no re-entry to

the never married state, and the probabilities that a never married person ends the

interval never married (πss), married at duration 0 (πs,m0), and divorced at duration 0

(πs,v0) are

πss ¼ 2 - nms;m0
� �

= 2þ nms;m0
� �

πs;m0 ¼ 2nms;m0 2þ nmv0;m0
� �

= 2þ nms;m0
� �

2þ nmm0;v0 þ nmv0;m0
� �� �

πs;v0 ¼ 2n2ms;m0mm0;v0= 2þ nms;m0
� �

2þ nmm0;v0 þ nmv0;m0
� �� � ð15Þ

The linear assumption is used throughout.

Persons moving between states always begin the next interval at duration 0. The ex-

tended life table terminates at exact age 50, after which mortality is more salient and

there are fewer marital status transitions. The source 1995 rates and the extended life

table functions are given in Table 3.

Selected extended marital status life table measures are presented in Table 4. Panel A

shows that over the 15 to 50 age interval, the ratio of divorces to all marriages was

0.438 in the state-duration life table and 0.403 in the 1995 life table. The ratio of

remarriages to divorces was 0.586 in the extended life table and 0.655 in the 1995 no-

durations table. Thus, there is more divorce and less remarriage in the extended life

table. At the same time, the extended life table has a longer average duration of mar-

riage and a shorter average duration of divorce.

Those results may seem inconsistent at first, but the figures in Table 4, panel B

and the first panel of Table 3 offer an explanation. Divorces are rather evenly dis-

tributed over the three duration categories, but remarriages are heavily (71%) con-

centrated at duration 0. Divorce rates decline gradually over age, while remarriage

rates drop sharply after age 35. Thus, the 3-duration extended life table has faster

and earlier remarriage, which shortens the average duration of a divorce and

lengthens the average duration of a marriage. Recognizing duration does make a

difference.

Estimating probabilities from adjacent populations using constant-α
The approach here uses the cross-product ratios from the 1995 extended life table of

the previous section to estimate duration-specific probabilities from marital status life

table populations for United States Females, 2000–2005, at ages 30 to 35. The input

values are the 1995 table state-duration population distributions at ages 30 and 35, and

the 7 × 7 array of 1995 probabilities, which have the form of Eq. (1) augmented by a

first row and left-most column to reflect the never married (s) state. The 2000-2005 life

table populations are based on Schoen (2016). Following the procedure described after

the presentation of Eqs. (11)–(13), the (2N − 1) = 13 equations were solved for the row

and column adjustment factors to the 1995 base probabilities. There were multiple so-

lutions, but only one was demographically appropriate (i.e., with all rates between 0

and 1; though rates can exceed one, such a rate would be unrealistic here). All of the

adjustment factors were fairly close to 1, varying only from 0.70 to 1.61. The 2000–

2005 estimated matrix of probabilities, P, for ages 30 to 35 was then calculated using

Eq. (13). The result is
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Table 3 Values from the source and extended marital status life tables for United States Females,
1995

Age

Item 15–20 20–25 25–30 30–35 35–39 40–45 45–50

I. Rates from the source 1995 marital status life table

1. Msm .0200 .0923 .1268 .0861 .0531 .0324 .0166

2. Mmv .0528 .0404 .0388 .0316 .0258 .0216 .0152

3. Mvm .0629 .2263 .1824 .1521 .1017 .0720 .0586

II. Values from the extended life table

A. Persons (ℓ) by state at the end of the age interval

1. ℓs 90476 56341 29219 18868 14446 12281 11302

2. ℓm0 8549 33261 29822 16307 10170 7280 5667

3. ℓm1 0 6980 28339 26045 14228 8872 6590

4. ℓm2 0 0 4853 27754 47383 55564 59879

5. ℓv0 975 3147 6487 7532 7211 6395 4609

6. ℓv1 0 270 1154 2954 4294 4563 4270

7. ℓv2 0 0 127 540 2268 5045 7684

B. Person-years lived (L) by state during the age interval

1. Ls 476190 367043 213900 120217 83284 66816 58957

2. Lm0 21372 121975 157707 115323 66194 43626 32367

3. Lm1 0 0 100431 135961 100684 57751 38654

4. Lm2 0 0 0 81516 187841 257366 288607

5. Lv0 2438 10982 24085 35045 36856 34016 27510

6. Lv1 0 0 3878 10270 18120 22143 22084

7. Lv2 0 0 0 1668 7020 18282 31821

C. Interstate transfers (d) during the age interval

1. ds,m0 9524 34135 27122 10351 4422 2165 979

2. dm0,v0 1128 4928 5040 3118 1803 1190 645

3. dm1,v0 0 0 7222 4512 2549 1465 716

4. dm2,v0 0 0 0 4150 4773 4954 4056

5. dv0,m0 153 2485 4465 5245 4036 3060 2192

6. dv1,m0 0 0 561 1722 1600 1245 1100

7. dv2,m0 0 0 0 201 481 822 1268

8. All divorces 1128 4928 12262 11780 9125 7609 5417

10 All remarriages 153 2485 5026 7168 6117 5127 4560

Notes: The model states are never married (s), married (m), and divorced (v), with 5-year duration categories 0, 1, and 2.
The initial population, ℓs(15), is 100,000. All entries are rounded independently. Cross-product ratio αhijk equals the
product of the (h,i) and (j,k) elements of the matrix divided by the product of the (h,k) and (i,j) elements
Source: See text and Schoen and Standish (2001); access was provided to unpublished tabulations
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P ¼

:7211 0 0 0 0 0 0
:2629 :0264 :0236 :0345 :4214 :3655 :2580
0 :8803 0 0 0 0 0
0 0 :8921 :8367 0 0 0

:0160 :0933 :0843 :1288 :0256 :0216 :0166
0 0 0 0 :5530 0 0
0 0 0 0 0 :6129 :7254

2
666666664

3
777777775

ð16Þ

with all columns summing to 1. The largest interstate movement probabilities are

from the divorced states to state m0. Married persons have probabilities of remaining

married of greater than 80%.

In sum, the calculation of an estimated transition probability matrix from a base

probability matrix and adjacent populations is straightforward. However, the calculation

of the interstate movement rates (and decrements) from the adjacent populations and

matrix P probabilities is more complicated and is examined next.

Calculating the non-Markovian marriage and divorce rates and decrements
Estimated transition probability matrix P is non-Markovian because constraints such as

those given in Table 2 generally do not hold. Finding appropriate rates consistent with

the input populations and estimated probabilities is a non-trivial problem that, to the

best of my knowledge, has not been carefully examined in the demographic literature.

In order to find occurrence/exposure rates satisfying Eqs. (12) and (16), more than 7

distinct rates are needed, and there is no unique solution. Here, a 2-step approach is

proposed. Step 1 distinguishes between rates that describe a person’s first interstate

movement and those that relate to a subsequent movement. Let Mf denote a first move

rate, and M a subsequent move rate. To introduce decrements, let dfjk be the number

of first moves from persons in state-duration j at the start of the interval who move to

state k during the interval.

There are 7 first decrement rates, one from each state-duration, and every first move

has to be to duration zero in the other state. These rates are related to the probability

Table 4 State-duration life table summary measures of marriage and divorce, United States
Females, 1995

A. Events over the 15 to 50 age interval

Extended life table 1995 life table

1. Ratio of divorces/marriages .438 .403

2. Ratio of remarriages/divorces .586 .655

3. Average duration of a marriage 15.15 14.69

4. Average duration of a divorce 5.86 6.33

B. Events by duration in state, extended life table

Duration: 0 1 2

1. Fraction of divorces, ages 15–50 .342 .315 .343

2. Fraction of remarriages, ages 15–50 .706 .203 .091

Notes: The average duration of a marriage is the number of person-years lived in the married state by persons aged 15–
50 divided by the number of marriages between the ages of 15 and 50.
The average duration of a divorce is the number of person-years lived in the divorced state by persons aged 15–50
divided by the number of divorces between the ages of 15 and 50
Source: See text
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of a first decrement, and in the linear case can be described by an expression like Eq.

(2). Rewriting Eq. (2) to solve for Mf in terms of π yields

Mfjk ¼ 2=nð Þ 1 - πjh
� �

=
1þ πjh
� � ð17Þ

where h is the state-duration where persons initially in state-duration j would be at

the end of the interval, absent a move. Eq. (17) provides all 7 first transfer rates. Again

using established linear life table relationships, the 7 first decrements produced by

those rates are of the form

dfjk ¼ x j 2 n Mfjk
� �

= 2þ n Mfjk
� � ð18Þ

where xj is the beginning of interval population in the initial state-duration.

To find the subsequent rates and decrements, it is helpful to set out the 7 state-

duration model algebraically by writing 7 equations that describe all of the interstate

flows. Those 7 flow equations are

ys ¼ xs - dfs;m0

ym1 ¼ xm0 - dfm0;v0

ym2 ¼ xm1 - dfm1;v0 þ xm2 - dfm2;v0

yv1 ¼ xv0 - dfv0;m0

yv2 ¼ xv1 - dfv1;m0 þ xv2 - dfv2;m0

ym0 ¼ dfs;m0 þ dfv0;m0 þ dfv1;m0 þ dfv2;m0 þ n=2ð Þyv0Mv0;m0− n=2ð Þym0Mm0;v0

yv0 ¼ dfm0;v0 þ dfm1;v0 þ dfm2;v0− n=2ð Þyv0Mv0;m0 þ n=2ð Þym0Mm0;v0

ð19Þ

The first five flow equations follow from the first decrements as defined above, that is

the first movements based on the person’s initial state-duration. The move of a person

initially in state-duration m0 who advances to state-duration m1 and then moves to

state-duration v0 during the interval is included in dfm0,v0, and hence in Mfm0,v0. Since

there is no attrition, summing all of the seven flow equations confirms that the total

ending population equals the total initial population. Thus, there are only six independ-

ent flow equations.

The last two flow equations are conceptually different and include subsequent moves

between state-durations m0 and v0. Those two equations do not include terms for xm0

and xv0 because those persons, absent a move, would be in state-durations m1 and v1,

respectively at the end of the interval. All subsequent moves from state-durations m0

and v0 must come from entrants during the interval, i.e., the df terms in those flow

equations. Under the linear assumption, those entries are, on average, at mid-interval.

It follows that (n/2) times the ending (ym0 or yv0) population reflects the number of

person-years lived in state-duration m0 or v0 during the interval. Multiplying those

person-years by the Mm0v0 or Mv0m0 rate of subsequent movement provides the num-

ber of subsequent moves between state-durations m0 and v0.

In general, the first and subsequent rates for the same transition differ. Assuming M

= Mf produces values that do not satisfy the flow equations. Furthermore, those last

two flow equations reveal a further difficulty: they only determine net subsequent dec-

rements, that is the difference [(n/2) уv0 Mv0,m0 − (n/2) уm0 Mm0,v0].

To surmount that difficulty and calculate the subsequent rates and decrements, we

go to Step 2. Borrowing from Schoen and Jonsson (2003), we assume that the product

of the rates of divorce and remarriage remains constant. The heuristic argument is one
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of “attractiveness”: if (re)marriage becomes more (or less) attractive, one of the rates is

likely to rise and the other to fall, so their product can remain unchanged. Thus, we

can write

Mfm0;v0 Mfv0;m0 ¼ Mm0;v0 Mv0;m0 ð20Þ

Using Eq. (20) with one of the last two flow equations in Eq. (19) allows the calcula-

tion of the two subsequent (M) rates and decrements.

The results of the 2-step calculations for the rates and decrements values are shown

in Table 5, along with the beginning and ending populations by state-duration. First

move divorces occur in roughly equal numbers in the three duration groups, while first

move remarriages are concentrated at duration zero.

Table 6 summarizes the seven state-duration model. At ages 30 to 35, the cohort of

100,000 women have a total of 13,471 marriages and 8726 divorces. First decrement di-

vorces were 76% of all divorces, while first decrement remarriages were only 59% of all

remarriages, a reflection of the high remarriage rates in the years immediately following

a divorce.

The 2-step approach presented in this section permits the calculation of rates and

decrements from estimated non-Markovian transition probability matrices, such as the

one in Eq. (16). While the solution is not unique because there is insufficient informa-

tion to fully identify the model’s non-Markovian aspects, a reasonable, demographically

sound solution is presented. These procedures extend the constant-α approach to fully

provide semi-Markov probabilities, rates, and decrements from a base probability

matrix and adjacent population values.

Summary and conclusion
Semi-Markov multistate models, which recognize both current state and duration in

that state, are frequently useful in demographic analyses. The risk of many vital and

health events, such as marriage, divorce, and recovery from disability, can vary greatly

by duration in state, and that differential risk is often worth examining.

Table 5 First (Mf) and subsequent (M) movement rates and decrements (df and d) in the 7 state-
duration model, United States Females, 2000–2005, ages 30 to 35

Origin population First move Subsequent moves

Initial (x) Ending (y) Rate (Mf) Decrement (df) Rate (M) Decrement (d)

Move

s − > m0 29055 20952 .06481 8103 0 0

m0 − > v0 21794 12632 .02547 2609 .02658 839

m1 − > v0 25626 19185 .02281 2765 0 0

m2 − > v0 15387 35735 .03557 2513 0 0

v0 − > m0 6071 6840 .11515 2714 .11032 1886

v1 − > m0 1782 3357 .09599 690 0 0

v2 − > m0 285 1299 .06366 78 0 0

Note: Model states are never married (s), married 0–5 years (m0), married 5–10 years (m1), Married 10 or more years (m2),
divorced 0–5 years (v0), divorced 5–10 years (v1), and divorced 10 or more years (v2)
Source: See text
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A new procedure for writing a semi-Markov transition probability matrix in terms of

underlying occurrence/exposure rates of interstate transfer is presented. A rate

principle is propounded, which equates the number of independent probabilities in a

transition matrix to the number of independent rates in the underlying multistate

model.

Standard Markov models, such as conventional multistate life tables, have an implicit

duration composition that can be worth examining. Procedures for doing so, in both

the long and short term, are described, and the duration structure of a 2-state, 3-

duration model is provided.

Using data-derived rates of transfer by duration of marriage and divorce, a 3-state, 7-

rate marital status life table is calculated for United States Females, 1995. The results

indicate that recognizing duration in state not only provides finer detail, but also en-

hances the analytical value of the table.

The constant-α approach to estimating multistate transition rates from data on adja-

cent populations and known cross-product ratios is then extended to semi-Markov

models, and applied to estimating duration-specific probabilities in a marital status

model for United States Females, 2000–2005. The calculation of the probabilities is

straightforward, and a demographically valid 2-step procedure is presented to calculate

a consistent set of transfer rates and decrements.

The use of semi-Markov models in demography has been limited, not primarily for sub-

stantive reasons, but because of data limitations. The procedures described here facilitate

the construction of duration-dependent models from data on both transfer rates and the

composition of adjacent populations. The application of semi-Markov models to a broader

range of data can give researchers greater descriptive detail and enhanced analytical power.

Appendix
Most of the analytical work on semi-Markov models has been done by statisticians,

with some significant applied work by actuaries. Jordan (Jordan Jr., 1975, p. 24–28)

Table 6 A summary of rates and decrements in the 7 state-duration model, United States Females,
2000–2005, ages 30 to 35

First
decrements

Subsequent
decrements

Total
decrements

Overall
rate

m0 − > v0 2609 839 3448 .02573

v0 − > m0 2714 1886 4600 .11311

Over all durations:

Total number of marriages: 13,471

First marriages 8,103

Remarriages 5,368

Total number of divorces: 8,726

Ratio divorces/all marriages: .648

Ratio remarriages/all
marriages:

.398

Notes: Subsequent decrements are calculated by assuming that the product of duration zero divorce and remarriage
rates is constant
The overall rate is all duration zero decrements divided by the appropriate total person-years of exposure. The person-
years for first move divorces is (n/2)*(xm0 + ym1) = 102,447.5 and for subsequent divorces is (n/2)*ym0 = 31,580, totaling
134,027.5. The person-years for first move remarriages is (n/2)*(xv0 + yv1) = 23,570 and for subsequent remarriages is
(n/2)*yv0 = 17,100, totaling 40,670
Source: See text
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provides a brief, non-technical introduction from an actuarial perspective. Hoem (1972)

and Cook and Lawless (2018) are more statistical, but provide good introductory treat-

ments. More advanced treatments can be found in Cai et al. (2006) and Barbu et al.

(2017).

The computer programs in this paper were written using Maple software, and other

mathematical packages, such as Mathematica, can also be used. The computer package

R has the most developed semi-Markov software. Willekens and Putter (2014) give an

excellent discussion of multistate software in general, with some useful information for

semi-Markov modeling. Some specific semi-Markov packages in R are examined in

Alvares et al. (2018) and in Krol and Saint-Pierre (2015).
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