
GenusSchoen Genus  (2018) 74:1 
DOI 10.1186/s41118-018-0026-x
ORIGINAL ARTICLE Open Access
The time to decline: tracing a cohort’s
descendants in below replacement
populations

Robert Schoen
Correspondence:
rschoen309@att.net
Pennsylvania State University, San
Francisco, CA, USA
©
L
p
i

Abstract

A number of contemporary populations are exhibiting sustained fertility at levels
substantially below long-term replacement. Nonetheless, relatively few populations
are actually diminishing in size. Here, we approach that apparent paradox by analyzing
the time before the number in a birth cohort, and its descendants, falls below the initial
number in the cohort. First, models are examined with constant below replacement
fertility, cohort extinction at age 75 or 85, and no mortality below the highest age
attained. For a net reproduction rate (NRR) of 0.75, it takes 150 years for the cohort’s
descendants to be fewer than the cohort’s original size if persons live to age 85, and over
130 years if persons live to age 75. If the NRR is at least 0.60, it takes a century before the
descendants are fewer in number than the original cohort. Second, projections are done
for the USA 2012, Italy 2012, and Hong Kong 2011 assuming that fertility and mortality
remain constant. The results resemble the projections. For example, in Italy, with actual
mortality and an NRR of 0.70, it takes over 125 years before the descendants of a cohort
are fewer in number than the initial cohort. A relatively simple equation for the long term
“time to decline” is presented, showing that it depends primarily on the level of fertility,
secondarily on longevity, and only modestly on the mean age of fertility.

Keywords: Replacement level, Below replacement, Generational succession, Population
projection, Population decrease
Introduction
Replacement level is when, on average, every woman has one daughter. The net

reproduction rate (NRR), the average number of daughters a cohort of women

bears subject to a given set of fertility and mortality rates, is then 1. Over the

last three decades, below replacement fertility has spread to characterize most of

Europe, overseas Europe, and East Asia. For the 2010–2015 period, the United

Nations Population Division estimated that Europe had an NRR of 0.763, below

replacement since 1975–1980; Eastern Asia an NRR of 0.699, below replacement

since 1990–1995; and Northern America an NRR of 0.896, below replacement

since 1970–1975. The Chinese Autonomous Region of Macau has the lowest fer-

tility of any listed entity, with an NRR of 0.577 (UN Population Division 2015,

File FERT/5). In contrast, only Germany, Japan, and some countries in Southern

and Eastern Europe have a negative rate of natural increase (i.e., more deaths
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than births). The largest rate of natural decrease, in Bulgaria 2010–2015, was

only 0.57% per year, a rather slow rate of decline (UN Population Division 2015,

File POP/3).

The explanation for the broad prevalence of below replacement fertility and the

modest extent of negative natural increase is population momentum, an import-

ant concept introduced in Keyfitz (1971). Population momentum is the factor an

initial population will grow (or decline) after it has an immediate shift to replace-

ment level fertility. In general, growing populations tend to continue growing be-

cause they have large cohorts at the reproductive ages and small cohorts at older

ages. Preston (1986) examined growing populations that experienced a fall in fer-

tility to replacement level and found that, over the transition to zero growth, the

population under age 30 remained virtually constant, the population between the

ages of 30 and 60 increased by a factor approximately equal to the pre-shift

NRR, and the population 60 to 90 increased by a factor approximately equal to

the square of that NRR. An in-depth discussion of population momentum can be

found in Schoen (2006, Chap. 3).

Momentum, however, is a population level concept that does not provide a co-

hort level perspective or explicitly consider the descendants of a cohort. Here, we

do so, starting with a birth cohort and tracing its descendants over time. The

goal is to determine, in terms of a fixed level and pattern of below replacement

fertility, how many years pass before the sum of the surviving members of the

cohort, and the number of its living descendants, falls below the initial number

in the cohort.
Projecting a cohort and its descendants in a simplified model
The first approach used here projects a birth cohort and its descendants in the

usual interval-by-interval manner. We then derive an analytical procedure for

projecting the model population to any future point. The principal goal is to find

the time at which total population size falls below the number in the initial

cohort.
The simplified projection model

Let the initial population consist only of females in the first age group, and con-

sider only female births. Assume that age-specific fertility remains constant over

time and that the population is closed to migration. For simplicity, to focus on

fertility, and to recognize the low mortality prevailing in most contemporary

below replacement populations, assume that there is no mortality below the high-

est age attained, with the cohort becoming extinct on attaining that age. In separ-

ate calculations, we take that highest age to be 75 or 85 years.

The standard cohort-component approach to population projection advances an ini-

tial population using a Leslie matrix, i.e., a projection matrix that has fertility values in

its first row and survival probabilities on its subdiagonal (Preston et al. 2001, Chap. 6).

While projections have become quite sophisticated (cf. Sevcikova et al. 2016), here, we

use a basic approach that proceeds using 5-year age and time intervals and continues
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past the point where the total number in the population is less than the initial number

in the cohort.

The model population projection procedure

Projections were carried out for NRR levels from 0.50 to 1.0 and for fertility pat-

terns with a mean age of 25, 29, and 33 years. Those bounds span the range of

fertility levels and patterns in most below replacement fertility populations.

A base fertility pattern, roughly following patterns in the USA during the late

20th century, was created for each mean age of fertility, and those patterns are

shown in Appendix Table 4. In each base pattern, the sum of the fertility values

is one.

To facilitate the analytical model, the base age-specific fertility rates were adjusted to

the desired NRR by a Sykes transformation (Sykes 1973), an approach that was also

employed to adjust fertility values in the Coale and Trussell (1974) model fertility

schedules. If the base fertility value for the jth age group is fj, then the Sykes trans-

formed fertility value, Fj, is

Fj ¼ f j exp 5rjð Þ ð1Þ

where the time interval is 5 years and r is the intrinsic annual rate of natural increase

associated with the Fj. Index j reflects the sequence of the 5-year age groups, with j = 1

for ages 0–4, j = 2 for ages 5–9, and so on. The NRR and r are related by Lotka’s equa-

tion (Schoen 2006, p. 11)

NRR ¼ exp 5rTð Þ ð2Þ

where T is Lotka’s mean length of generation in units of 5 years. The value of T is close

to the mean age of fertility, μ, also in units of 5 years, which is given by

μ ¼ Σjj f j ð3Þ

where the sum over age categories j spans all ages of fertility. Equation (3) indicates

that the value associated with an age group is the age at the end of the age interval.

Keyfitz (1977, p. 126) expressed T in terms of a series in the moments of the fj. In

low fertility populations, the mean and variance of fertility are often roughly equal, and

that approximate relationship is appropriate here as it simplifies the equations while

having little effect on the results. Up to second moments, the Keyfitz series can then be

written

T ¼ μ 1–r=2ð Þ ð4Þ

Using Eqs. (2)–(4), the modified version of Lotka’s solution for r in terms of the NRR

and μ (in 5-year units) can be written

r ¼ 1– 1–2 ln NRR= 5μð Þ½ �1=2 ð5Þ

where ln designates the natural logarithm (Schoen 2006). Equations (1)–(5) allow the

Sykes transformation to be implemented for all μ and NRR values.
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An analytical alternative to interval-by-interval projection

In the model described above, long-term projections can be made analytically, as well

as interval by interval. To do so, we now derive an expression for total population size

at any time point based on two parameters, μ and r.

Let the constant population projection (Leslie) matrix that takes the population from

any time t − 1 to time t be denoted by A. Here, with a life expectancy at birth [e(0)] of

85 years, A is a 17 × 17 matrix that reflects the age groups (0,5) through (80,5). Then,

under the Sykes transformation, A can be expressed as

A ¼ exp 5rð ÞUd FVd ð6Þ

where F is a row stochastic Leslie-form matrix with ones on the subdiagonal and the fj
of Eqs. (1) and (3) as the elements of the first row (Schoen 2006, Chap. 7). At ages

below 15 and over 50, the fj are zero. The matrix Ud is a 17 × 17 diagonal matrix whose

jth diagonal element is exp(− 5r[j − 1]), and Vd is the inverse of Ud.

The 17 × 17 product matrix P(0,t) that takes the initial (time 0) population to time t

can then be written

P 0; tð Þ ¼ At ¼ exp 5rtð ÞUd Ft Vd ð7Þ

For a sufficiently large t, an interval whose length is examined below, matrix Ft be-
comes a rank one matrix, i.e., it can be represented as the product of a column vector,

u, and a row vector, v' (Schoen 2006, p. 28). Here, e(0) = 85, there is no mortality dur-

ing the first 17 age intervals, and F is consistent with zero growth. Hence 17 × 1 col-

umn vector u is a vector of ones. The 1 × 17 row vector v' has first element 1/μ and jth

element Σi = j fi/μ (Schoen 2006, p. 157, #2b).

If the initial population has one female in the first age group, the initial population

vector, x0, is a 17 × 1 column vector with first element 1 and all other elements zero.

The population at sufficiently large time t ≥ 17, xt, is then given by

xt ¼ P 0; tð Þx0 ¼ exp 5rtð ÞUd Ft Vd x0 ¼ exp 5rtð ÞUd uv
0
Vd x0 ð8Þ

Using the relationships noted above, (v' Vd x0) is the scalar (1/μ), and Eq. (8) simpli-
fies to

xt ¼ exp 5rtð Þw=μ ð9Þ

where 17 × 1 column vector w = (Ud u) has first element 1 and jth element exp(− 5r[j − 1]).

Using Eq. (9), the total population at time t, PT(t), can be expressed as
PT tð Þ ¼ 1

0
xt ¼ 1

0
w exp 5rtð Þ=μ ¼ c exp 5rtð Þ=μ ð10Þ

where 1' is a 1 × 17 row vector of ones and c = 1' w. Scalar c is the sum of a 17-term

geometric series with initial value one and fixed ratio exp(− 5r). The constant sum of

that series can be written (r ≠ 0) as

c ¼ 1
0
w ¼ 1– exp –85rð Þð Þ= 1– exp –5rð Þð Þ ð11Þ

Combining Eqs. (10) and (11), the total population at time t is given by
PT tð Þ ¼ 1– exp –85rð Þð Þ= 1– exp –5rð Þð Þ½ � exp 5rtð Þ=μ½ � ð12Þ

Thus, in the long term, Eq. (12) shows that total population size at time t is a con-
stant factor, c/μ, times a decreasing exponential term in negative r. The constant factor
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represents the size of the implicit initial stable population divided by the mean age of

fertility (approximately the length of a generation).

Of particular interest here is the time t*, when PT(t*) = 1. If the initial cohort lives

85 years, t* must be at least 85 years. To find an expression for t*, note that Eqs. (10)

and (11) yield

PT t�ð Þ ¼ 1 ¼ c exp 5rt�ð Þ=μ ð13Þ

which gives, with t* and μ in units of 5 years,

t� ¼ ln μ=cð Þ= 5rð Þ ð14Þ

Thus, in the long term, time to decline t* can be expressed in terms of two parame-

ters, the mean age of fertility, μ, and the intrinsic growth rate, r, with Eq. (5) relating r

to μ and the NRR.

The results for the simplified projection model
The interval-by-interval projection results

Table 1 shows the results for the time to decline (t*) projections for NRRs of 0.50

to 1, separately for mean ages of fertility of 25, 29, and 33 years and for life ex-

pectancies of 75 and 85 years. For times greater than e(0) years, linear

interpolation was used to determine t* within the 5-year projection intervals.

There are huge differences in the time to decline by NRR level. The higher the

NRR, the larger t*. For NRRs of 0.65, t* is a century or more; for NRRs of 0.75,

t* is 133 or more years; and for NRRs of 0.95, t* is well over five centuries. Dif-

ferences by mean age of fertility are present, but relatively small. There are no

“tempo” effects, as fertility is held constant.

As to be expected, the time to decline is less when life expectancy is 75 than when

it is 85 years. Proportionally, however, the effect of a 10-year smaller e(0) is not all

that large relative to t*. When the NRR is 0.95, the difference in t* is some 65 to
Table 1 Time to decline (t*) values, in single years, by level and mean age of fertility

NRR μ = 25 years μ = 29 years μ = 33 years

e(0) = 75 years e(0) = 85 years e(0) = 75 years e(0) = 85 years e(0) = 75 years e(0) = 85 years

Projection Projection Eq. (14) Projection Projection Eq. (14) Projection Projection Eq. (14)

1.00 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

0.95 571.5 637.7 637.7 573.1 649.1 649.0 564.0 649.6 649.6

0.90 297.2 332.3 332.2 297.9 337.6 337.6 293.3 337.8 337.8

0.85 206.4 230.5 230.1 206.3 234.1 234.1 203.9 233.9 234.1

0.80 161.8 179.7 180.4 160.8 182.6 182.6 158.5 182.9 182.4

0.75 135.5 151.4 150.4 133.4 152.0 151.9 134.6 151.3 151.6

0.70 117.7 130.2 130.6 116.4 132.1 131.6 110.2 127.1 131.2

0.65 99.2 112.5 116.7 101.4 114.7 117.3 103.9 116.7 116.8

0.60 95.6 106.6 106.4 96.4 108.0 106.7 97.8 110.8 106.1

0.55 91.8 102.7 98.6 75 102.7 98.7 75 85 98.0

0.50 75 85 92.6 75 85 92.4 75 85 91.6

Note: The time to decline is the time point when the total number in the population is less than the size of the
initial cohort. Mean age of fertility μ is calculated from Eq. (3)
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85 years (10–13%), while when the NRR is 0.75, differences are about 15 to 20 years

(again 10–12%).

Equation (14) suggests that a higher mean age of fertility is associated with a longer

time to decline. However, parameter c is a function of r, which in turn is a function of

μ; hence, a change in μ can introduce offsetting changes in r and c. Table 1 shows that

while there is a tendency for t* to increase when the mean age of fertility rises, there

are many exceptions to that pattern.

With a life expectancy of 85 years, when the NRRs are 0.50 (or 0.55 when μ = 33),

t* is at its minimum, i.e., 85 years. By iterating on Eq. (13), we can find NRR*, the

fertility level at which the total population at time 85 years is one. The results

indicate:
μ (in years)
 NRR*
 TFR*
25
 0.534
 1.09
29
 0.555
 1.14
33
 0.591
 1.21
where TFR* is the corresponding total fertility rate (TFR). The TFR is set equal

to 2.05 times the NRR, using the customary sex ratio at birth of 105 males per

100 females. A TFR of 1.3, that is women having an average of 1.3 children, is

considered very low fertility, but even sustained fertility at that level implies a

time to decline of about 110 years.
The analytical results

Analytical projections using Eq. (14) are also presented in Table 1 for e(0) = 85.

The equation-based values implicitly assume that the population is approximately

stable, which initially is far from the case. Stability takes several generations to

arise, even more when one begins with a single cohort, and is slower for higher

mean ages of fertility.

For NRRs of 0.70 or above (0.75 when μ = 33 years), the equation-based t* values are

quite close to the projections. For NRRs less than 0.60, the Eq. (14) values are poor.
The trajectory of a cohort

For observed populations, a rough rule of thumb is that the population becomes

approximately stable up to age x after about (60 + x) years (Schoen 2006). Here,

we begin with a single cohort age 0, and Table 1 suggests that total population

size is not roughly stable for up to 150 years. At the 150-year time point, growth

is approximately stable (i.e., equal to exp(5r)), though projected and stable values

still differ by 1½–3% when μ = 33 years.

To get a fuller sense of the trajectory of the total size of a cohort and its

descendants, one can project total population size over time and compare it to

the analytical trajectory provided by Eq. (10). For e(0) = 85, Fig. 1 and Table 2

show such a comparison for NRR = 0.75 and μ = 29 years, values that are in the

middle of the ranges considered here. The equation-based trajectory begins at

time 85 years, as that is the first post initial cohort time point.
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Fig. 1 The total size of a cohort and its descendants, by projection and by Eq. (10), for NRR = 0.75 and mean
age of fertility of 29 years
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Column (2) of Table 2 shows that for the first three time periods, before the

cohort reaches age 15, the projected total population remains at 1. Between times

15 and 80 years, population size steadily increases, as the cohort and its offspring

reproduce. At time 85 years, when the initial cohort has just died, total

population size drops by nearly 1. After that point, Fig. 1 shows how total

population size fluctuates in waves of diminishing amplitude around the stable

population size given by the Eq. (10)-based decreasing exponential [the plotted

values are shown in column (4) of Table 2].

Column (3) presents the interval by interval population growth rates. After

some 130 years, the growth rate of the projected population becomes quite close

to the ultimate stable population growth rate of 0.9518. Column (5) compares the

Leslie and analytical projections, showing the proportional error in the Eq. (10)

projection. The direction of the error varies because of the fluctuations in the

growth rate of the projected population. After 120 years, the two trajectories are

within 1% of each other, with the difference inconsequential after 145 years.

Projecting three observed populations
It is worth exploring the time to decline using the vital rates observed in

contemporary below replacement populations. Table 3 shows the results of such

projections for the USA 2012, Italy 2012 (with the death rates of 2015), and

Hong Kong 2011, geographically dispersed populations with a range of low

fertility rates and high life expectancies.

The USA 2012, with an NRR of 0.92, requires over 340 years before the

descendants of a cohort are fewer than the original number in the cohort. Even

at time 200, the descendants of the initial cohort are 62% more numerous. Hong

Kong 2011, with an NRR of 0.76, has a time to decline over 155 years, but at

time 200, the descendants of the initial cohort number only about two thirds the

size of the initial cohort. Italy 2012, with an NRR of 0.70, has a time to decline

of just over 125 years, and at time 200, the descendants of the original cohort

number only 43% of their initial number.

The introduction of actual mortality rates seems to have only a small effect, as

the observed population rates yield times to decline quite similar to those in

Table 1. For example, Italy has a time to decline of 126.7 years with an NRR of

0.70, a life expectancy of 84.6 years, and a mean age of fertility of 31.4 years.



Table 2 The total size of a cohort and its descendants, as calculated by projection and by Eq. (10),
for NRR = 0.75 and μ = 29 years

(1) (2) (3) (4) (5)

Time (t) [years] Projected total size [PT(t)] Growth rate [PT(t)/PT(t − 5)] Total size from Eq. (10) Proportional
error

0 1.0

5 1.0 1.0

10 1.0 1.0

15 1.0 1.0

20 1.1642 1.1642

25 1.4064 1.2081

30 1.5625 1.1110

35 1.6475 1.0544

40 1.7418 1.0572

45 1.8534 1.0641

50 1.9695 1.0626

55 2. 0730 1.0526

60 2.1651 1.0444

65 2.2544 1.0412

70 2.3417 1.0387

75 2.4244 1.0353

80 2.5023 1.0321

85 1.5763 0.6300 1.9352 − 0.2277

90 1.6474 1.0451 1.8420 − 0.1181

95 1.7153 1.0412 1.7533 − 0.0221

100 1.7796 1.0375 1.6689 0.0622

105 1.6764 0.9420 1.5885 0.0524

110 1.4923 0.8902 1.5120 − 0.0132

115 1.3916 0.9325 1.4392 − 0.0342

120 1.3594 0.9769 1.3699 − 0.0077

125 1.3153 0.9675 1.3039 0.0087

130 1.2515 0.9515 1.2411 0.0083

135 1.1809 0.9436 1.1813 − 0.0004

140 1.1206 0.9490 1.1244 − 0.0034

145 1.0698 0.9546 1.0703 − 0.0005

150 1.0197 0.9532 1.0187 0.0009

155 0.9697 0.9510 0.9697 0.000 03

160 0.9225 0.9513 0.9230 − 0.000 54

165 0.8785 0.9523 0.8785 − 0.000 06

170 0.8366 0.9524 0.8362 0.000 48

175 0.7962 0.9516 0.7960 0.000 26

180 0.7574 0.9514 0.7576 − 0.000 23

185 0.7209 0.9518 0.7211 − 0.000 28

190 0.6864 0.9521 0.6864 0.000003

195 0.6535 0.9520 0.6534 0.000 17

200 0.6219 0.9518 0.6219 0.000 08

Notes: The initial cohort is age 0 at time 0. The 5-year stable growth rate is 0.9518. The proportional error in the
Eq. (10) analytical projection in column (5) is calculated as [(2) − (4)]/(2), referring to columns (2) and (4)
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Table 3 The time to decline based on observed rates in three contemporary populations

Measure USA 2012 Italy 2012* Hong Kong 2011

Life expectancy at birth 81.2 84.6 86.7

Total fertility rate 1.88 1.43 1.56

Net reproduction rate 0.92 0.70 0.76

Mean age of fertility 28.6 31.4 31.2

Variance of age of fertility 38.3 33.4 30.7

Time to decline (t*) 341.7 126.7 157.5

Ratio of total population size to initial cohort size at year:

100 2.28 1.35 1.64

150 1.93 0.79 1.08

200 1.62 0.43 0.68

250 1.36 0.24 0.44

300 1.14 0.14 0.28

Sources: Fertility data from United Nations Demographic Yearbook 2013, Table 10 (United Nations Statistical Division
2014). Female mortality values for the United States from Arias et al. (2016), Table 3; for Italy from ISTAT (2016), Life
Tables of the Resident Population—2015; for Hong Kong from Hong Kong Life Table for Females, 2011, Table 3, Hong
Kong Central Statistics Dept
Notes: *Italian mortality is based on the 2015 Italian Life Table. In all cases, the sex ratio at birth is taken to be 105 males
per 100 females. See discussion in text
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For an NRR of 0.70 and a life expectancy of 85 years, Table 1 has a time to

decline of 132.1 years for μ = 29 years and 127.1 years for μ = 33 years.
Summary and conclusions
Population momentum means that a growing population continues to increase in

size for some years after its fertility falls to replacement. Here, we take a birth

cohort, individual level, perspective, and examine how long it takes, under below

replacement fertility, before the number of survivors of a cohort, plus its living

descendants, falls below the number in the initial cohort. With no mortality

below the highest age attained (75 or 85), and constant below replacement

fertility, we find that t*, the time to decline, varies dramatically with the level of

fertility, moderately with longevity, and modestly with the mean age of fertility.

As the cohort reproduces, the succession of generations prolongs the onset of

population decrease. When e(0) is 85 and the NRR is 0.95, it takes nearly

650 years for total population size to be less than 1. For an NRR of 0.50 or

below, t* is 85 years, the point at which the initial cohort dies. Projections with

the observed vital rates of three contemporary below replacement populations

suggest that the model simplifications have only a minor effect on the time to

decline.

Analytically, Eq. (10) allows a simplified projection in terms of life expectancy,

the NRR, and the mean age of fertility. That procedure tracks the projected

population size quite closely after about 150 years.

Even with an NRR of 0.65, an e(0) of 75, and no migration, the time to decline

is almost a century. A cohort produces its own momentum, propelled by the

arrival of succeeding generations.
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Appendix
Table 4 Age-specific fertility values (fj) for three mean ages of fertility (μ)
Age Mean age of fertility (μ)

25 29 33

15–19 0.360 0.200 0.060

20–24 0.430 0.310 0.180

25–29 0.110 0.210 0.250

30–34 0.070 0.120 0.240

35–39 0.015 0.100 0.160

40–44 0.010 0.050 0.100

45–49 0.005 0.010 0.010

All ages 1.000 1.000 1.000

Note: The mean ages are calculated based on age at the end of each age interval, per Eq. (3). That mean age is also the
mean implied by the dominant left eigenvector of matrix F in Eq. (6)
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