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Abstract

The global container shipping network is vital to international trade. Current
techniques for its vulnerability assessment are constrained due to the lack of
historical disruption data and computational limitations due to typical network sizes.
We address these modelling challenges by developing a new framework, composed
by a game-theoretic attacker-defender model and a cost-based container
assignment model that can identify systemic vulnerabilities in the network. Given its
focus on logic and structure, the proposed framework has minimal input data
requirements and does not rely on the presence of extensive historical disruption
data. Numerical implementations are carried in a global-scale liner network where
disruptions occur in Europe’s main container ports. Model outputs are used to
establish performance baselines for the network and illustrate the differences in
regional vulnerability levels and port criticality rankings with different disruption
magnitudes and flow diversion strategies. Sensitivity analysis of these outputs
identifies network components that are more susceptible to lower levels of
disruption which are more common in practice and evaluates the effectiveness of
component-level interventions seeking to increase the resilience of the system.

Keywords: Liner shipping, Network vulnerability, Port disruptions, Attacker-defender
models, Maritime transport

Introduction
Ocean shipping is the principal mode of international freight transport, underpinning

global trade. Stable access to the global network of container shipping services (liner

shipping) has been shown to be a pivotal contributor to the trade competitiveness of

any national economy (UNCTAD 2017).

Disruptions to the global liner shipping network can have significant implications for

consumers, industries, markets, and national economies. Such disruptions (Taylor

2012) include natural disasters, political conflicts and market events, which (depending

on nature, location, and severity) may affect cargo flows across the globe. Furthermore,

these may affect operations in other transport infrastructure systems (roads, rail,

waterways) as well as port hinterlands and dependent supply chains (Tsavdaroglou et

al. 2018). It is therefore critical to quantify the vulnerability of various network

components and determine preventive intervention strategies (PIANC 2017).
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As discussed in the literature reviewed in section 2 of this paper, previous works on

liner shipping vulnerability have mostly used pure-topological or flow-based complex

networks models. Pure-topological models focus on network connectivity and use indi-

cators such as node degree or betweenness centrality to evaluate vulnerability. How-

ever, their representation of component states is mostly binary (e.g. a connection

between two ports exists or not), and therefore cannot be used to evaluate the entire

spectrum of failure conditions. Furthermore, such models are unable to capture

capacity-constrained aspects of liner operations, the effects of re-routing through alter-

native paths, and the financial gains (if any) of preventing disruptions, which is infor-

mation of key interest to decision-makers.

In contrast, flow-based models do not have such shortcomings and are therefore

more suitable for the study of liner shipping vulnerabilities, subject to the availability of

historical disruption data that could be used to determine expectations of failure for

network components. However, in liner shipping, operators often perceive that sharing

historical disruption data can be detrimental to their competitiveness as their

customers can interpret it as a lack of preparedness to withstand disruptions. There-

fore, current industry confidentiality practices, as well as the variety of actors, processes

and relationships among them, render it difficult to access or create such datasets in

liner shipping.

A separate thread of research has used game-theoretic analysis to assess the vulner-

ability of constrained transport networks (Bell et al. 2008) without heavily relying on

historical disruption data. Such techniques focus extensively on network structures

while still considering network flows. While this approach has the potential to address

the shortcomings of both types of models, to the best of our knowledge (section 2)

there has been no study that was able to represent the capacity-constrained nature of

ports while capturing call-skipping and flow rerouting processes.

As such, the objective of this study is to address the current literature gap by devel-

oping a new systemic vulnerability analysis framework for large shipping networks that

does not require prior knowledge of disruption probabilities. The resulting framework

can rank critical network components, quantify the impact of disruption prevention

measures and determine any additional handling costs and non-delivery penalties. The

remainder of this paper is structured as follows: Section 2 provides a review of relevant

literature and identifies research gaps. Premise, assumptions and formulations of the

constituent mathematical models are presented in Section 3. A case study involving

disruptions at major European container ports and services is presented in Section 4,

illustrating the scalability of the algorithm. It is followed by a discussion on how costs

and criticality rankings are affected by disruptions levels and flow diversion strategies.

The paper concludes with a summary of contributions, limitations, and suggestions for

future work.

Background literature
Approaches to assessing transport vulnerability can vary significantly based on the type

of network, disruption sources, and data available (Muriel-Villegas et al. 2016). Previous

studies focused on road networks lacking transport demand data (Bell et al. 2017), sub-

way networks under random failures (Angeloudis and Fisk 2006), country-level ocean

container networks (Calatayud et al. 2017) and power grids exposed to targeted attacks
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(Ouyang et al. 2014). Comprehensive reviews of previous works on vulnerability assess-

ment for various types of transport networks, disruption sources, and the evaluation of

related terms such as resilience and reliability are also available (Mattsson and Jenelius

2015; Reggiani et al. 2015; Hosseini et al. 2016).

Complex network techniques have so far been a popular choice for the analysis of

liner shipping networks (Bartholdi et al. 2016; Angeloudis et al. 2007; Ducruet et al.

2010; Ducruet 2016) which in the context of vulnerability assessment can be classified

into pure-topological or flow-based models. Pure-topological models focus on indica-

tors such as connectivity, betweenness, and degree centrality to evaluate network

vulnerabilities without directly considering material flows or commercial activity

(examples include Calatayud et al. 2017; Ducruet and Zaidi 2012; Viljoen and

Joubert 2016).

Most pure-topological approaches can only model disruptions based on complete re-

moval of individual network components (arcs or nodes). Sullivan et al. (2010) discuss

the limitations of such binary representations, especially given the prevalence of disrup-

tive incidents that involve only partial reductions in handling capacities (e.g. March

2013 labour strike described in Qi (2015) which reduced 20% of Hong Kong port

capacity). The authors further argue that disrupted networks in such models feature

isolated sub-networks, which are not commonly observed in real markets, and can be

quickly resolved using service amendments.

Flow-based models use mass-conservation constraints, consider operation costs and

flow redistribution in the aftermath of disruptions (Ouyang et al. 2014; Paul and Maloni

2010) are often embedded in non-cooperative game theoretic (NCGT) methods that

focus on scenarios were individual agents act based on self-interest with diverging or

competing objectives. Such methods have been used to mitigate the absence of histor-

ical disruption probability distributions, and identify worst-case scenarios, which were

in turn used for countermeasure preparation (Kanturska and Angeloudis 2013).

Hollander and Prashker (2006) classified transport-related NCGT studies according to

the types of actors participating in the game: (i) games between travellers, (ii) between

authorities, (iii) travellers vs authorities and (iv) travellers vs demons.

Games involving demons are best suited for the analysis of disruption impacts and

are oftentimes solved using attacker-defender models (ADM). One of the earliest such

efforts in transport was undertaken by Bell (2000), and involved a user seeking to min-

imise trip costs and a tester (demon) seeking to maximise disruption costs. The pro-

posed maximin formulation can be used to obtain optimal routing strategies for

pessimistic network users and optimal disruption strategies for the demon. Estimated

user trip costs serve as a quantitative measure of network vulnerability, while compo-

nent attack probabilities can determine the criticality of each component for overall

network performance. It is important to note that attack probabilities do not represent

actual failure probabilities of network components, but rather serve as a measure of

criticality with respect to the nominal operation of the network. Subsequent studies

considered multiple users and demons (Bell and Cassir 2002) and explored other trans-

port and infrastructure problem settings (e.g. Bell 2003; Bell et al. 2008; Qiao et al.

2014; Wang 2012; Kanturska and Angeloudis 2013).

Bencomo (2009) used ADMs for the evaluation of security incident impacts (e.g.

earthquakes, labour strikes and terrorism) on the transportation costs of ocean
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containers. Their model generates payoff matrices for the game using a

multi-commodity network flow model. However, it assumes that all ports are con-

nected, which is not necessarily the case in practice, and results in rerouting arrange-

ments that do not adhere to service arrangements. Zavitsas (2011) focused on maritime

petroleum supply chains, and their vulnerability against natural disasters, accidents or

malicious attacks. An ADM was used to identify critical components in the network

and propose infrastructure improvements. However, as tankers travel directly between

origins and destinations, the methodology is not immediately transferable to

liner-shipping.

Previous work by Achurra-Gonzalez et al. (2016) focused on unsatisfied cargo de-

mands to quantify disruption impacts and redundancy levels in the network (for cargo

re-routing). The proposed technique was limited by its focus on ports and services,

which precluded the study of disrupted maritime corridors (e.g. canals, straits, access

channels). This was partially addressed in Achurra-Gonzalez et al. (2017), where vessel

routing algorithms were used to identify such dependencies. Both studies focused on

loaded containers, and do not account any repositioning processes that would preclude

the misplaced accumulations of empty containers. Such processes would also be

affected by disruptions and exacerbate their effects due to misplaced accumulations of

empty containers.

Methodological framework
The vulnerability analysis framework presented in this paper consists of a two-stage

game-theoretic attacker-defender model (ADM) between a malevolent agent (attacker)

and an ocean carrier (defender). In the first stage, a cost-based container assignment

model (CAM) adapted for the analysis of networks under disruptions computes the re-

quired payoff matrix for each of the player’s strategies and the ADM is solved for an

initial state where all evaluated network components are exposed disruptions. In the

second stage, the ADM is implemented through a series of iterative network interven-

tions that remove the most critical network component of each previous iteration.

Results generate a criticality ranking of network components with a quantitative meas-

ure of the transportation cost impact of disruptions on each of them.

Cost-based container assignment model

The container assignment model (CAM) seeks to determine optimal container flows

(loaded and empty) from origin ports r ∈ R to destination port s ∈ S, across a sequence

of attractive liner service legs (formed by links connecting any pair of ports within a

liner service) that can reduce the overall routing costs in the system. Higher penalty

values are used for full containers to prioritise cargo deliveries over empty container

repositioning. The resulting assignments utilise a set of optimal paths, expressed as

chains of legs belonging to one or more liner services. Legs correspond to transporta-

tion tasks (between an an origin port and their ultimate destination) whereas links

represent the physical movement of vessels between ports.

Fig. 1 illustrates these concepts for a typical liner service that sequentially connects

ports A, B, C and D where solid blue lines represent links and dashed red lines repre-

sent transport legs. In this example, Leg 2 represents containers loaded in Port A and
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unloaded in Port C, which travel through Link 1 (A➔B) and 2 (B➔C). Since both links

belong to the same liner service, the containers do not have to be transhipped at port

B, which would have been the case otherwise.

Given that vessel arrival and departures at any given port k ∈ K are assumed to be

random and uncoordinated, the availability of attractive legs is proportional to the fre-

quencies of services that can connect k to s. Therefore, the dwell times of s-bound con-

tainers at k is equal to the inverse sum of their service frequencies (Bell et al. 2011). In

contrast, direct shipments do not incur dwell times. It is therefore possible and accept-

able for the model to establish multiple flows for each OD pair, each with a different

path. As exogenous demand matrix is used as an input, which assumes that weekly

demand rates are fixed across the period surveyed – we regard to be a valid assumption

for network-level vulnerability analysis.

The model assumes that loaded containers have fixed a set of daily rent, uniform

loads, handling priorities, and cargo depreciation rates, while all cargo is equally priori-

tised. This departure from real-world practices (ocean carriers can utilise varying cost

structures, shippers incur variable depreciation costs depending on cargo, and reposi-

tioning penalties apply in imbalanced trade lanes) was made to simplify data require-

ments in this study, but is made without loss of generality, as the model formulation is

sufficiently flexible to accommodate such data. The cost structure adopted by our ana-

lysis acknowledges the effects of economies of scale, and are calculated as function of

time charter (TC) rates and vessel capacities in terms of containers of twenty-foot

equivalent units (TEU).

Penalty costs for containers not transported due to capacity limits or in the aftermath

of disruptions are assumed to be USD 50,000 and USD 5000 for loaded and empty con-

tainers respectively. These penalty costs are calibrated to be higher than any routing

costs alternative in all Uij disruption scenarios (described in the attacker-defender

model formulation section) to ensure that cargo flows are maximised when routing

capacity is available without inflating the disruption cost outputs of our model. Our cal-

ibrated penalty costs are significantly smaller than the values used by Kjeldsen et al.

(2011), who adopted a value USD 1,000,000 for any container not transported. These

Fig. 1 Liner service links and corresponding legs
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penalties for undelivered containers are used to capture the impact of disruptions on

repositioning, which as mentioned earlier can lead to misplaced accumulation of empty

containers across the network.

The notation used in our model is summarised in Table 1, which is followed by the

formulation. The operators + and ++ are used to simplify two reoccurring summations:

x f
aþ ¼Ps∈Dx

f
as and wf
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The model seeks to minimise the sum of network routing costs Uij when cargo flow

is diverted from component i by the defender and component j is disrupted by the
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Table 1 CAM and ADM notation

Sets Subsets Indices

A All legs Aþk Legs entering port k a Legs

K All ports A−k Legs leaving port k k Ports

S Destination ports An Legs on service n y Corridors

R Origin ports Ly Links on corridor y l Links

Y All corridors Ln Links on service n n Liner services

L All links r Origin ports

N All liner services s Destination ports

J Disrupted components j Disruption strategies

I Defended components i Defence strategies

f Loaded containers

e Empty containers

Parameters

B f
k Net flow of loaded containers at each port k

Bek Net flow of empty containers at each port k

Ca Sailing time on leg a, including loading and unloading times at ports (e.g. days)

CHCan Container handling cost per loaded container on leg a using liner service n

CR Rental cost per unit time per loaded or empty containers

TDf
rs Demand for loaded containers to be transported from origin r to destination s

in the defined planning horizon

TDe
rs Demand for empty containers to be transported from origin r to destination s

in the defined planning horizon

DV Depreciation cost per unit time per loaded container (inventory cost)

τaln 1 if leg a uses link l on liner service n, and 0 otherwise

τaly 1 if leg a uses link l on maritime corridor y, and 0 otherwise

Fa Frequency of sailings on leg a

PTk Throughput capacity of port k

LSn Throughput capacity of liner service n

MCy Throughput capacity of maritime corridor y

δi Defender flow diversion percentage in strategy i (please refer to Attacker-defender model section)

αj Attacker disruption percentage in strategy j (please refer to Attacker-defender model section)

δ̂i Defender capacity multiplier for network components with flow diversion in strategy i

α̂ j Attacker capacity multiplier for disrupted network components in strategy j

PCf Penalty cost for loaded containers not transported

PCe Penalty cost for empty containers not transported

Decision variables

t frs Serviced demand of loaded containers shipped from origin r to destination s

ters Serviced demand of empty containers shipped from origin r to destination s

x fas Flow of loaded containers on leg a en route to destination s

xeas Flow of empty containers on leg a en route to destination s

w f
ks Expected dwell time at port k for all loaded containers en-route to destination s

we
ks Expected dwell time at port k for all empty containers en-route to destination s

pi Probability defender diverts flows from component i

qj Probability attacker disrupts component j

v Value of the game for the defender (routing costs)

z Value of the game for the attacker (disruption costs)
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attacker (3.1). These costs cover container handling, inventory, and rental fees gener-

ated from the assignment of container flows to legs and penalty costs for containers

not transported.

Constraints (3.2) through (3.5) enforce flow conservation. Constraints (3.6) and (3.7)

ensure that the dwell time of loaded and empty containers is not less than the inverse

of the combined liner service frequencies for the corresponding route. The capacity

constraint for each liner service is defined in (3.8). Constraints for maritime corridor

capacity (e.g. canals, access channels and straits) are defined in (3.9) where α̂ j and δ̂i
define the percentage of available functional capacity in attacker strategy j and defender

strategy i respectively. Similarly, port throughput constraints are defined in (3.10). Con-

straints (3.11) and (3.12) ensure that the total number of full and empty containers

does not exceed the demand specified in OD matrices. Where capacity falls below the

total demand, the model can decide not to fulfil a portion of the demand, subject to

penalties. Finally, (3.13) ensures that all flow variables are non-negative.

Where weekly port call frequencies exist, we assume that there exist enough allocated

vessels to ensure maintain weekly call frequencies (as is common practice on major

routes). For services that do not operate on a weekly basis, we use the effective route

capacity LSn formula:

LSn ¼ ð

X

h∈Hn

NChn

THn
ÞðSMF

Fn
Þ ∀n ∈N ð3:14Þ

Where
n ∈ N Set of liner services in the network

h ∈ Hn Set of container vessels deployed in liner service n ∈ N

Fn Port call frequency of liner service n ∈ N

NChn Nominal capacity (TEU) of a container vessel h ∈ Hn deployed in liner service n ∈ N

THn Total number of vessels deployed in liner service n ∈ N

SMF Standardised model service frequency (e.g. weekly, monthly, annual)

In the above, SMF is expressed as the actual number of days for the desired time

window in which the liner service capacities will be standardised.

Attacker-defender model

In our attacker-defender model (ADM) formulation, the attacker represents an abstract

entity that encompasses potential sources of targeted disruption that may affect a liner

shipping network. These include, but are not limited to labour strikes, intentional port

access closure political conflicts, cyber- or terrorist attacks. The attacker’s objective is

to disrupt critical components and maximise disruption costs to the defender.

For the purposes of this study, we assume that the defender is a global ocean carrier or

alliance seeking to serve transport demands at the lowest possible routing cost. Ocean

carriers in today’s liner shipping industry can influence operations at some components of

their network (e.g. ports owned by the same holding company) to increase security

measures that would reduce the incidence of some disruptions. However, most ocean

carriers do not have such influence across all components of their network and are

therefore exposed to disruptions at components that they cannot protect.
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As such, the ocean carrier modelled as the defender in our ADM is assumed to be

incapable of protecting network components. Instead, it is only capable diverting cargo

flows away from critical component the attacker may disrupt to minimise its routing

costs. Thus, the defender’s objective is to identify any critical components that the

attacker would be likely to disrupt and divert container flows in a way that minimises

disruption-related rerouting and penalty costs.

Our ADM is, therefore, a zero-sum game played simultaneously, with both players

having access to perfect information on the abilities of their opponent but no know-

ledge of their adopted strategy. The required payoff matrix is generated using the CAM

model, executed for all combinations of available strategies. For the purposes of this

study, we assume that the attacker can disrupt only one network component at any

time, but is afforded the option to attack more components in further rounds.

Similarly, the defender undertakes a single preventative activity on each stage. This

aspect of the framework is explained further in Section 3.3.

The disruption scenarios are built on the premise that the attacker can only disrupt

the same set of components that the defender may choose to divert flow from. Each

scenario Uij, where i is the component from which the defender diverts cargo and j is

the component disrupted by the attacker. With the assumptions stated above and m

being the total number of elements in the sets I = J, the following two cases are possible

for each scenario:

1) Case i = j: The attacker and defender choose the same component to disrupt or

defend, and there remain m − 1 components in the network that are not affected

by disruption or flow diversion.

2) Case i ≠ j: The attacker and defender choose different components to disrupt or

defend, and there remain m − 2 unaffected components.

Using the network routing costs Uij for all scenarios, we construct an m-by-n payoff

matrix, with values calculated by distinct CAM iterations. The minimum number of

iterations required to complete the payoff matrix depends upon the defender flow

diversion percentage δi and the attacker capacity disruption percentage αj as defined in

the following two cases:

1) Case αj = δi: If the attacker disruption percentage αj is equal to the defender flow

diversion percentage δi, then Uij =Uji. Since the matrix is symmetric, the minimum

number of required CAM iterations is equal to (m + 1)m/2.

2) Case αj ≠ δi: If the attacker disruption percentage αj is not equal to the defender

flow diversion percentage δi, then Uij ≠Uji. Therefore, the minimum number of

required CAM iterations increases exponentially according to m2 corresponding to

the total number of elements in the payoff matrix.

For the defender, we define the scalar δ̂i ¼ 1−δi as the functional capacity for
network components with flow diversion in strategy i. Similarly, for the attacker, α̂ j ¼ 1
−α j defines the functional capacity for network components affected by disruptions in
attacker strategy j. Using the above definitions, we develop the following maximin
formulation for the attacker-defender model:
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Objective:

max
q j

min
pi

X

i∈I

X

j∈ J

piU i jq j

 !

ð3:15Þ

Subject to:
X

j∈ J

q j ¼ 1 ð3:16Þ

X

i∈I

pi ¼ 1 ð3:17Þ

q j; pi ≥ 0 ∀i ∈ I; j ∈ J ð3:18Þ

The objective (3.15) is for the attacker to maximise the expected disruption cost

while the defender minimises the expected disruption cost. Constraints (3.16) through

(3.18) ensure valid mixed strategies where each player assigns a probability to each

component in I = J such that the sum of probabilities equals to one. The model is

solved using a linear formulation with the introduction of a variable z that represents

network disruption costs:

Objective:

maxz ð3:19Þ

Subject to:
X

j∈ J

Ui jq j ≥ z ∀i ∈ I ð3:20Þ

X

j∈ J

q j ¼ 1 ð3:21Þ

q j ≥ 0 ∀ j ∈ J ð3:22Þ

The resulting objective (3.19) represents the attacker’s intention to maximise z. Setting z

on the right-hand side of the inequality constraints (3.20) ensures that the optimal strat-

egy of the defender is taken into account because the payoff for the attacker cannot ex-

ceed the smallest expected disruption costs considering all possible moves of the

defender. To derive the optimisation problem of the defender, we introduce a variable v to

represent total routing costs, alongside a minimisation objective (3.23):

Objective:

min v ð3:23Þ

Subject to:
X

i∈I

Ui jpi ≤ v ∀ j ∈ J ð3:24Þ
X

i∈I

pi ¼ 1 ð3:25Þ

pi ≥ 0 ∀i ∈ I ð3:26Þ

The model formulation for attacker strategies is the dual of the defender strategy

model and vice versa. Therefore, the optimal solution would satisfy z = v and the
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solution would be a Nash equilibrium with mixed strategies. Here, the attacker’s

strategy represents the worst case attack probabilities assuming that these are

anticipated by the defender (Kanturska and Angeloudis 2013). In other words, higher

component attack probabilities would have a more adverse effect to the networks. On

the other hand, the equilibrium strategy of the defender indicates the safest path choice

frequency. As expected for maritime supply chain networks, this path choice frequency

often involves the use of more than one path.

As demonstrated in previous ADM implementations, disruption costs can be

expected irrespective of the routing paths selected by the defender. Therefore, the

value of the game also represents a measure of the overall vulnerability of the transport

network. On the other hand, the value of the game for the defender indicates the

worst-case routing costs. The routing strategy selected by the defender guarantees that

regardless of attack strategies, the total routing costs will not be higher than the value

of the game.

Model integration

The ADM and CAM models are combined in a two-stage framework that evaluates a

series of iterative network interventions to generate a criticality ranking of network

components. This framework hereinafter referred to as ADCAM, follows from Sullivan

et al. (2010), who investigated the use of sequential approaches to assess the relative

importance of disrupted components as part of a solution procedure. This approach

does not focus on the investigation of specific impacts of a single disruptive action but

the performance of the system against known or unknown sources of disruption.

The overall workflow of our proposed framework stages and the interactions between

the two models are illustrated in Fig. 2. The pseudocode for the framework

implementation is presented in Fig. 3. In the first stage, iterations of the CAM for Uij

scenarios defined by the player’s strategies populate the required payoff matrix of the

ADM (pseudo code lines 14 through 21). The ADM is then solved for an initial

iteration t where all evaluated network components are exposed disruptions. The most

critical network component (MC) is identified in line 24 as the arc or node with the

highest attack probability (max of vector q) from solving the current ADM iteration t.

In the second stage, the most critical network component at iteration t is removed

from the set of components that can be disrupted by the attacker in iteration t + 1.

Therefore, the algorithm proceeds to remove the current MC from the payoff matrix in

lines 27 and 28 of the pseudocode before solving the next ADM iteration. The

iterations end when all network components are removed from the attacker’s

disruptable set. The outputs of the integrated framework include a series of network

disruption costs Z∗ ranging from a worst-case disruption scenario (where the most

vulnerable component is disrupted) to the best-case scenario (where the attacker is only

able to disrupt the component with minimum network impact). Also provided are

network component rankings with respect to the attack probabilities in the network.

The iterative removal of components in the second stage of our proposed framework

is not part of the defence strategy of the ocean carrier but an algorithmic step

necessary to generate a criticality ranking of the network components. Without this

iterative removal of network components, quantitative vulnerability methods such as
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the ADM can only identify few components with high attack-probabilities and many

components with non-differentiable attack probabilities which impede the understand-

ing of their relative importance within the network. This limitation is caused by the

liner shipping operational characteristic of high concentrations of cargo flows in few

components (e.g. major transhipment ports or import/export gateways).

The two-stage ADCAM framework is, therefore, is a suitable method for computing

criticality rankings of components and quantifying the potential impact of disruptions

in the liner shipping networks.LINER-LIB dataset developed by Brouer et al. (2014).

LINER-LIB was initially intended for use as a benchmark dataset for liner-shipping

network design algorithms. However, as it was developed in close co-operation with in-

dustry stakeholders and it is deemed to be sufficiently representative for use in a

broader spectrum of liner shipping studies.

Network parameters that were used in the analysis are summarised in Table 2.

Container rental and cargo depreciation costs used for this case study follow from Bell

et al. (2013), while container handling costs are defined as the ratio of time charter

rates against the average TEU capacity of each vessel class. This is an improvement

upon earlier studies on container assignment, the majority of which tend to use

constant values across the entire network. Cost rates were also obtained from the

LINER-LIB dataset, and incorporate operating expenses, crew salaries and maintenance

costs. For this study, we assume that these do not depend upon vessel utilisation, which

would have been considered during service design.

The ports selected for disruption analysis (listed in Table 3) are located in Northwest

Europe and are recognised as trade gateways, with significant transhipment and feeder

traffic. Port throughput rates (TEU handled per year) were obtained from

Containerisation International (2012) and were used to define the upper bound

Fig. 2 ADCAM implementation workflow
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Fig. 3 ADCAM algorithm

Table 2 Case study network parameters

Network particulars

Depreciation rate for container cargo 80 USD/TEU/day

Undelivered container penalty (loaded) 50,000 USD/TEU

Undelivered container penalty (empty) 5,000 USD/TEU

Rental cost for loaded/empty containers 18 USD/TEU/day

Transport cost per vessel class

Vessel class Capacity (TEU) Time charter (USD/day) Handling cost (USD/TEU/day)

Feeder_450 900 4,680 5.20

Feeder_800 1,600 7,966 4.98

Panamax_1200 2,400 11,683 4.86

Panamax_2400 4,800 21,774 4.53

Post_Panamax 8,400 33,922 4.04

Super_PostPanamax 15,000 48,750 3.25
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capacity values for ports in the network. As these figures are aggregate and describe all

container traffic regardless of carrier, we use the approach described in

Achurra-Gonzalez et al. (2017) to obtain the downscaled capacity PTk for all 230 ports

in the case study network as follows:

PTk ¼

X

n∈N

LSnk
X

n̂∈N̂

LSn̂k
RTk ∀k ∈ K ð4:1Þ

Where:
K Set of all ports in the case study network

N̂ Set of all liner services in the original dataset

N Subset of services considered by the case study

LSnk, LSn̂k Weekly capacity of liner services n ∈ N and n̂∈N̂, calling at port k ∈ K

PTk Adjusted weekly throughput for port k ∈ K

RTk Reported weekly throughput for port k ∈ K

A transhipment incidence parameter TIk was used to indicate the relative proportion

of transhipment traffic for any port k that can be disrupted. This was determined using

(3.2) and is defined as the percentage of transhipment flows from the total weekly

throughput at port k in the baseline scenario (BSTk) without disruptions and flow

diversions. Results for each of the ports surveyed, accompanied by their corresponding

UNLOCODE, reported throughput (RTk) and adjusted port capacity (PTk) are provided

in Table 3.

TIk ¼
BSTk−ð

X

r∈R

TDf
rk þ

X

s∈S

TDf
ksÞ

BSTk
∀k ∈ K ð4:2Þ

where:
K Set of all ports

R Set of origin ports

S Set of destination ports

BSTk Weekly baseline scenario throughput at port k ∈ K

RTk Reported weekly throughput of port k ∈ K

TDf
rk

Weekly demand for loaded containers from r ∈ R to port k ∈ K

TDf
ks

Weekly demand for loaded containers from port k ∈ K to destination s ∈ S

TIk Transhipment incidence of port k in the case study network

Table 3 Container ports in strategy sets I and J

Port name Country UNLOCODE RTk PTk BSTk TIk

Antwerp BE BEANR 162,856 27,686 5,208 68.6%

Hamburg DE DEHAM 151,924 12,002 2,522 15.8%

Zeebrugge BE BEZEE 45,960 6,342 3,214 16.6%

Bremerhaven DE DEBRV 93,678 54,614 28,936 34.9%

Rotterdam NL NLRTM 214,342 50,156 26,648 46.8%

Felixstowe UK GBFXT 65,384 19,812 11,146 43.7%
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The model formulations and overall algorithm were implemented and solved using a

combination of MATLAB, the IBM OPL modelling language, and the IBM CPLEX

solver (version 12.6). The model was executed on a high-performance workstation with

an E5-2640v3 Xeon CPU and 192GB RAM. The average solution time for each CAM

iteration was 17.4 min with a standard deviation of 1.8 min. The number of iterations

required varies by the defender flow diversion percentage δi and the attacker capacity

disruption percentage αj (αj = δi in Case 1 and αj ≠ δi for Case 2).

Complete disruptions

In the first instance, we considered disruptions affecting port operations, with a defender

response involving the complete diversion of cargo from the ports in question (Case 1

where αj = δi = 100%). Key events at each timestep are presented in the list below.

t = 0: The port of Bremerhaven is initially identified as the most critical port in the

case study network, with an attack estimated to result in a cost of 771.5 mil USD/

week.

t = 1: Bremerhaven is defended against disruptions (and is therefore excluded from the

list of ports that can be attacked). The cost of disruption is reduced by 89 USD

million/week (− 11.6% marginal disruption cost z∗ decrease). Rotterdam and Felixstowe

are identified as the most critical ports, with attack probability values of 0.90 and 0.10

respectively.

t = 2: Following defensive measures at Rotterdam, disruption costs are decreased by

376 million USD/week (48.7%) Felixstowe and Antwerp are identified as potential

targets, with attack probabilities of 0.77 and 0.23, respectively.

t = 3: An intervention in Felixstowe reduces the estimated cost of disruption by 145.3

USD million/week (− 18.8%). Three ports are identified as potential targets, with

probabilities of 0.57 for Antwerp, 0.31 for Zeebrugge, and 0.12 for Hamburg.

t = 4: Antwerp is defended against disruptions resulting in financial gains of 52.8

million USD/week (− 5.9% marginal z∗ decrease). Updated attack probabilities for the

two remaining ports are 0.56 for Zeebrugge and 0.44 for Hamburg.

Iterations t = 5 and t = 6 defend Zeebrugge and Hamburg respectively with combined

financial gains of 107 million USD/week. A summary of results and the resulting payoff

matrix are provided in Table 4, which also provides an outline of intervention strategies

at critical network components. Figure 4 plots the changes in disruptions costs from

the network interventions at the most critical port identified at t − 1 as well as marginal

financial gains from such interventions.

Partial disruptions

We conduct a sensitivity analysis that evaluates how changes in disruption (αj) and

flow diversion (δi) influence network vulnerability and criticality ranking of the selected

ports (Case 2 where αj ≠ δi). The evaluated disruption and flow diversion levels between

the range of 0% to 100% at increments of 20% in 30 distinct network instances.

Figure 5 illustrates the changes in network disruption costs z∗ and the changes in

criticality rankings.
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For disruption levels αj ≤ 20%, Felixstowe is the most critical port in the network with

disruption costs ranging from 70.5 thousand USD/week (at defender flow diversion

δi = 0%) up to 62.74 million USD/week (at δi = 100%). At this disruption level,

Rotterdam is the second most critical port followed by Bremerhaven. Disruptions costs

at Rotterdam are similar to those in Felixstowe ranging from 65.3 thousand USD/week

at δi = 0% up to 62.73 million USD/Week at δi = 100%.

For Bremerhaven, disruption costs at αj ≤ 20% are lower when the defender does

not divert any cargo flow (327 USD/week at δi = 0% up to 62.67 million USD/Week at

δi = 100%). This suggests that in the case study network, Felixstowe and Rotterdam

Table 4

CAM Payoff matrix disruption costs (USD/week)

Network Components Attacker: Scenarios j

DEBRV NLRTM GBFXT BEANR BEZEE DEHAM

Defender:
Scenarios i

DEBRV 7.14E+08 1.37E+09 9.91E+08 8.41E+08 7.94E+08 7.77E+08

NLRTM 1.37E+09 6.56E+08 9.34E+08 7.85E+08 7.36E+08 7.19E+08

GBFXT 9.91E+08 9.34E+08 2.77E+08 4.06E+08 3.57E+08 3.40E+08

BEANR 8.41E+08 7.85E+08 4.06E+08 1.28E+08 2.08E+08 1.91E+08

BEZEE 7.94E+08 7.36E+08 3.57E+08 2.08E+08 8.05E+07 1.43E+08

DEHAM 7.77E+08 7.19E+08 3.40E+08 1.91E+08 1.43E+08 6.27E+07

Attacker-Defender Model (ADM)

t Intervention
Strategy

Disruption
costs z*
(USD/week)

Marginal
financial gains
(USD/week)

Attack probabilities

DEBRV NLRTM GBFXT BEANR BEZEE DEHAM

0 NONE 7.72E+08 - 0.91 0.09 0 0 0 0

1 DEBRV 6.82E+08 8.94E+07 0 0.9 0.1 0 0 0

2 NLRTM 3.06E+08 3.76E+08 0 0 0.77 0.23 0 0

3 GBFXT 1.61E+08 1.45E+08 0 0 0 0.57 0.31 0.12

4 BEANR 1.08E+08 5.29E+07 0 0 0 0 0.56 0.44

5 BEZEE 6.27E+07 4.52E+07 0 0 0 0 0 1

6 DEHAM 0.00E+00 6.27E+07 0 0 0 0 0 0

Fig. 4 Disruption costs and intervention financial gains
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have less spare capacity to withstand disruptions that are lower than 20% when

compared to Bremerhaven.

As shown in Figure 5, the criticality ranking of remaining ports in the network for

αj ≤ 20% is Antwerp (4th most critical), Zeebrugge (5th most critical), and Hamburg

(6th most critical). Disruptions costs range from 0 USD/week when the defender does

not divert any cargo flows (δi = 0%) to 62.6 million USD/week when the defender

deviates all cargo flows to other terminals (δi = 100%).

For disruption levels αj between 20% and 40%, Felixstowe remains the most critical

port in the network with costs between 3.3 million USD/week (at δi = 0%) and 65.9

million USD/week (at δi = 100%). For this interval, Bremerhaven becomes the second

most critical port, surpassing Rotterdam. For these two ports, disruptions costs range

from 1.5 million USD/week (at δi = 0%) up to 64.5 million USD/week at δi = 100%. The

criticality ranking of Antwerp, Zeebrugge remain unchanged at this disruption interval.

For the remaining ADCAM instances with disruption levels αj greater than 60%,

Bremerhaven becomes the most critical port of the network with disruption costs up to

771.5 million USD/Week (αj = 100 % , δi = 100 % ). Rotterdam remains as the second

most critical port in the network with disruption costs up to 682.2 million USD/week

whereas Felixstowe falls to the third position with disruption costs of up to 306.1

million USD/week.

Discussion
The available spare capacity in the network primarily drives the changes in criticality

ranking of ports and overall disruption costs that each port must meet its inbound and

outbound throughput as well as any transhipment cargo flows. Since Felixstowe

operates with lower spare capacity, it is more susceptible to lower disruptions levels

(e.g. αj ≤ 40%) when compared with Rotterdam and Bremerhaven. As such, it is the

most critical port for lower disruption levels.

Fig. 5 Disruption costs for all ADCAM instances
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In contrast, Bremerhaven and Rotterdam, which operate with more spare capacity,

are capable of withstanding disruption levels below 40% without significantly increasing

the overall network disruption costs. However, these ports surpass Felixstowe in the

criticality ranking for disruptions levels above 60% due to the considerable number of

containers affected when disruptions occur at Bremerhaven or Rotterdam.

These results are significantly influenced by the OD matrix input where most

container flows are destined to Bremerhaven, Rotterdam, and Felixstowe.

Consequently, disruptions in Antwerp, Zeebrugge, and Hamburg have less impact on

the overall network vulnerability. The latter ports have lower inbound and outbound

flows in the case study network (between 2.5 and 5.2 thousand TEU/week).

In the case study network, ports with high transhipment incidence in the baseline

scenario (e.g. Antwerp with about 69%) are avoided following a disruption by using

alternative paths. In contrast, Bremerhaven, Rotterdam, and Felixstowe have the

characteristic feature of lower transhipment incidence (between 35 and 47%) and high

inbound and outbound flows (between 18 and 50 thousand TEU/week). As such,

interventions that prevent disruptions at these ports result in higher financial gains

across the ADCAM instances evaluated.

Conclusions and further research
This study proposes a new framework capable of identifying the most critical network

components and quantifying the systemic vulnerability of realistic large-scale liner ship-

ping networks with limited or no historical disruption data available. To test the pro-

posed family of models, we performed a numerical case study using a subset of the

European port system.

Results indicate a significant concentration of attack probabilities in specific ports,

rendering the evaluated port system particularly susceptible to disruptions. These

outputs are significantly influenced by the characteristics of the case study OD matrix

drawn from practice where most of the cargo flows are bound to a small number of

import gateway ports in Europe. As such, disruptions in other regional ports with

higher transhipment incidence have a lower impact on the overall system vulnerability.

We conducted a sensitivity analysis modifying the flow diversion strategies and the

network disruption levels of the scenarios modelled. Key insights of this sensitivity

evaluation demonstrated how regional criticality ranking can vary significantly

depending on the available spare capacity of each port which dictates the terminal’s

capability to withstand disruptions. This allows us to identify network components that

were more susceptible to lower levels of disruptions (e.g. Felixstowe in our case

network) which are more common in practice and quantify financial gains from

network interventions aimed at preventing disruptions in the most critical ports at

various levels of disruptions.

The outputs of our proposed framework can, therefore, support the network design

decision process of ocean carriers and other industry stakeholders (e.g. port operators

and governments) establishing performance baselines and testing the effectiveness of

interventions intended to increase the overall resilience of liner shipping networks.

Examples of such interventions include the restructuring of liner service port calls

and public-private investments aimed at increasing the spare capacity of critical

container terminals.
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Contrary to previous complex network pure-topological approaches, our framework

provides an enhanced representation of liner shipping network operations under dis-

ruptions because it captures the re-distribution of container flows considering second-

ary paths and aggregating cost dependencies such as container transport costs and

penalty costs for cargo not routed.

Interventions proposed by this study assume that it is possible to make centralised

decisions on network structure when aiming to reduce exposure to disruptions. While

this may be possible in some instances (e.g. an international financial institution

allocating funds to port infrastructure in each region), in most cases, liner shipping

stakeholders would be subject to competitive tendencies. Therefore, we identify the

relationship between market dynamics and the collective actions that contribute to

robustness against disruptions as a fertile ground for future work.

The maritime component of international shipping networks used in this study

provides a good indication of overall liner service network vulnerability but do not

capture hinterland intermodal connectivity links which can also serve as secondary

paths between ports in regions such as Europe. Future improvements such as the

inclusion of hinterland links and their corresponding costs can highlight relevant

network vulnerabilities not captured in this study.

The ADM formulation and numerical implementations presented in this study

provide the expected worst-case scenario for an ocean carrier against a single network

attacker (global demon). However, given that in recent years global ocean carriers have

consolidated into three mega alliances, the proposed analysis can be improved present-

ing a broader scope of the liner shipping industry where the worst-case scenario for the

majority of liner services worldwide can be modelled using three attackers (e.g. one for

each alliance).

Furthermore, as discussed in Schmöcker et al. (2009), the Spiess and Florian

hyperpath concept used in the embedded linear program of CAM used in this study

can be adapted to a non-cooperative game between a network router (e.g. the ocean

carrier) and multiple node-specific attackers that can penalise individual links or legs

exiting nodes.

Multiple node-specific demons can improve the limitation of the single attacker pre-

sented in this study which is only capable of penalising a single component anywhere

in the network. This is an essential consideration in container liner networks where

multiple node-specific demons can produce more realistic routing strategies (resulting

from more than a single incident) avoiding nodes with longer total delays (Schmöcker

et al. 2009).

Another future enhancement to the ADM proposed in this study is the formulation of

less extreme attackers. As described in Bell et al. (2008), a logit model approach can be

used to adjust the level of aggressiveness of attackers (or user pessimism) that a certain

network component will fail in the network evaluated. This approach allows to depart

from worst-case scenario analysis resulting from the formulation of extremely aggressive

attackers or pessimistic users (as presented in this study) and provide a vulnerability as-

sessment of transport networks exposed to less extreme events or test the functioning of

the ADM methodology considering random disruptions such as accidents or natural di-

sasters. Future improvements to this framework could also include the use of an n +m

player game structure where multiple carriers compete in cargo rerouting.
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