
Open Geospatial Data,
Software and Standards

de Sousa et al. Open Geospatial Data, Software and Standards (2019) 4:13
https://doi.org/10.1186/s40965-019-0072-0

SOFTWARE Open Access

PyWPS: overview, new features in
version 4 and existing implementations
Luís Moreira de Sousa1* , Jorge Mendes de Jesus2, Jachym Čepicky3 , Athanasios Tom Kralidis4 ,
David Huard5 , Carsten Ehbrecht6, Suzana Barreto7 and Jonas Eberle8

Abstract

PyWPS 4 is a re–make of the Python implementation of the WPS standard. It is the result of the work of over a dozen
individual contributors, during a period of almost three years. One of the goals driving this re–implementation was to
embrace modern Python technologies and the possibilities they open.
This technical note reviews some of the more advanced possibilities this new PyWPS implementation opens. Request
activity is now logged into a structured database, relying on a generic Object–Relational Mapping engine. The
adoption of WSGI (Web Server Gateway Interface) opens new ways for load balancing request execution and
application encapsulation, that are exemplified with modern Python technologies. Furthermore, PyWPS 4 is designed
with containerisation in mind, expediting both development and deployment and improving security.

Keywords: OGC web processing service, OGC WPS, PyWPS, Python, FOSS4G, OSGeo

Introduction
The Web Processing Service (WPS) is a standard devel-
oped by the Open Geospatial Consortium (OGC), whose
purpose is the remote execution of geospatial processes.
WPS does not define what is a geospatial process but
rather how operations are described, executed and pro-
cessed in the server [1]. The standard is comparable to
other remote execution systems like RPC (Remote Proce-
dure Call).
PyWPS was one of the first server side implementations

of the WPS standard. Development started in 2006 by
Jáchym Čepický as part of a student project entitled “Con-
necting of GRASS GIS with UMNMapServer”, supported
by the German Foundation for the Environment, and later
with a scholarship from GDF–Hannover. The broad goals
of PyWPS were the integration, publication and execution
of Python processes via version 1.0 of the WPS standard.
PyWPS evolved as a light–weight server, fully coded in the
Python programming language, connecting to all existing
tools for geospatial data analysis in this language.
From the onset, PyWPS was conceived to offer the sim-

plest publication mechanism possible. A process served

*Correspondence: luis.de.sousa@protonmail.ch
1ISRIC - World Soil Information, Droevendaalsesteeg 3, Building 101, 6708 PB
Wageningen, The Netherlands
Full list of author information is available at the end of the article

by PyWPS is no more than a Python class inheriting from
the Process, which collects the necessary properties
to convey the process meta–data, plus a method named
_handler. At run–time this method provides through is
arguments an object encapsulating the request received by
the server (request) and another (response) through
which process results can be set for return. Listing 1
presents a simple example with the use of the _handler
method and its arguments. With such setting, developing
a process for PyWPS thus requires no additional knowl-
edge beyond that of the Python language itself and the
core concepts of the WPS standard. This makes PyWPS
accessible to individuals lacking advanced training in pro-
gramming, such as spatial analysts or researchers.
PyWPS itself does not provide the processing func-

tionality. It should be considered as an empty envelope,
offering simple interfaces to WPS inputs and outputs. A
typical user of PyWPS is a system administrator or sci-
entist wishing to expose (geospatial) calculations to the
World Wide Web (WWW). Each process should repre-
sent a unique operation on the input data and provide a
well defined output. Part of the work required from the
user is the definition of these inputs and outputs.

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s40965-019-0072-0&domain=pdf
http://orcid.org/0000-0002-5851-2071
http://orcid.org/0000-0002-0375-8277
http://orcid.org/0000-0002-1041-4210
http://orcid.org/0000-0003-0311-5498
mailto: luis.de.sousa@protonmail.ch
http://creativecommons.org/licenses/by/4.0/

de Sousa et al. Open Geospatial Data, Software and Standards (2019) 4:13 Page 2 of 10

Listing 1 Simple example of Process with PyWPS

from pywps import Process, ComplexInput,
LiteralOutput, ...

class Area(Process):
def __init__(self):

inputs = [ComplexInput(’layer’, ’Layer’, ...
outputs = [LiteralOutput(’area’, ’Area’, ...
super(Area, self).__init__(

self._handler,
identifier=’area’,
title=’Process Area’,
inputs=inputs,
outputs=outputs,
store_supported=True,
status_supported=True)

def _handler(self, request, response):
from shapely.geometry import shape
with temp_dir() as tmp:

input_gml = request.inputs[’layer’][0].file
input_geojson = os.path.join(tmp,
’input.geojson’)
subprocess.check_call([’ogr2ogr’, ’-f’,
’geojson’,

str(input_geojson), input_gml])
with open(input_geojson, ’rb’) as f:

data = json.loads(f.read())
for feature in data[’features’]:

geom = shape(feature[’geometry’])
feature[’area’] = geom.area

response.outputs[’area’].data =
[feature[’area’] ...
return response

In its earlier formulations, PyWPS offered also a tight
integration with MapServer, allowing the user to pub-
lish results directly through a Web Feature Service (WFS)
or Coverage Service for the Web (CSW). This feature,
coupled with the ease of use, promoted the adoption of
PyWPS. By the beginning of this decade, PyWPS was
being routinely used in research projects [2, 3]. As it
reached a decade old, PyWPS was starting to show its age.
New geospatial bindings were becoming available for the
Python language, security concerns were being raised on
the way PyWPS spawned processes, and a new release of
the WPS standard was on its way.
By 2015 a new implementation of the WPS standard

was initiated from scratch by the development team.
Development would take almost three years and involved
over a dozen of different contributors. The end result is
PyWPS 4 [4], a fresh implementation of WPS version 1.0
that addresses various changes and trends forming in the
geospatial Python community: the increasing adoption of
Python 3, the release of bindings to other open source
projects (e.g. GRASS GIS) and the introduction of new
geospatial data formats, such as GeoPackage or GeoJSON.
PyWPS 4 also prompts a switch from the GPL licence [5]
to the more permissive MIT licence [6].
The improvements introduced by PyWPS 4 include: the

adoption of the C–based lxmlmodule [7] for XML pars-
ing; adoption of the Python multiprocessingmodule
[8] to treat asynchronous requests; integration of the
OWSLib [9] package for special geospatial objects, like

bounding boxes; introduction of a four level input valida-
tion mechanism; introduction of custom input validators.
With these developments PyWPS comes to rely more on
state–of–the–art Python libraries benefiting from their
active development and the communities around them. A
further outcome is a more modular and easier to maintain
code base.
By the time development of PyWPS 4 was starting,

the process of graduation by the Open Source Geospa-
tial Foundation (OSGeo) was also initiated. OSGeo is a
not–for–profit organisation whose mission is to foster
global adoption of open geo–spatial technology, driven
by participatory principles and a philosophy of commu-
nity development. OSGeo has set in place a graduation
process, designed to assure the quality, legal conformance
and long term sustainability of open–source geospatial
projects [10]. Only those projects that complete the grad-
uation process are promoted for global adoption. Grad-
uated projects also become eligible for various support
mechanisms.
Towards that end, the lead developers of PyWPS assem-

bled a Project Steering Committee (PSC). The PSC is
the formal governance organ of an OSGeo project, begin
responsible for the broad development direction of the
project and the bureaucratic and administrative obliga-
tions tied to the OSGeo graduation. The PSC included a
project mentor assigned by OSGeo, another consequence
of the graduation procedure. After meeting the strict cri-
teria set by OSGeo, PyWPS officially graduated in May of
2018 [11], already after the official release of PyWPS 4.
Beyond the improvements mentioned above, this new

PyWPS implementation also provides a number of
advanced features that present an important leap in
the range of modes PyWPS can be used and deployed.
This article starts by reviewing several advanced fea-
tures (“Advanced features in PyWPS 4” section: Log-
ging Using Object–Relational Mapping, Scalability with
WSGI and Containerisation). Afterwards, “Comparison
with other WPS servers” section compares PyWPS with
two other OSGeo graduatedWPS servers: GeoServer and
ZOO–Project; “PyWPS use cases” section follows, with an
account of various real–life use cases of PyWPS; “Sum-
mary and future developments” section summarises the
article and provides notes on future developments.

Advanced features in PyWPS 4
Logging using Object–Relational Mapping
Earlier PyWPS versions used the Python logging mod-
ule to support the recording of messages into a text file,
be it from the server itself or from user processes in exe-
cution. Although simple, this mechanism was convenient
enough for development purposes, within an environment
where a single user issues requests to PyWPS. However,
in production environments this kind of activity produced

de Sousa et al. Open Geospatial Data, Software and Standards (2019) 4:13 Page 3 of 10

an ever expanding file from which it could become hard
to extract information, especially when multiple requests
were executed simultaneously.
PyWPS 4 introduces a new logging mechanism, sup-

ported by a database where requests to the server
and process execution statuses are thoroughly recorded.
This mechanism is based on the SQLAlchemy Object–
Relation Mapping (ORM) module [12], which abstracts
a large number of different database technologies.
SQLAlchemy provides a simple and largely intuitive API
to what is a rather powerful toolbox. In the service con-
figuration file [13], it is now possible to set the location
and kind of database engine to use. Listing 2 provides an
example, the first three elements concern a simple text file
that is used to store error messages, while the fourth sets
the connection string to be passed on to SQLAlchemy.
At start up, PyWPS connects to the database and creates
two tables, one to store execution statuses and another to
store requests.

Listing 2 Logging fragment of a PyWPS configuration file
[logging]
level=INFO
file=logs/pywps.log
format=\%(asctime)s] [\%(levelname)s] file=
\%(pathname)s

line=\%(lineno)s module=\%(module)s function=
\%(funcName)s
\%(message)s

database=sqlite:///logs/pywps-logs.sqlite3

With this new set up, the user not only gains systematic
monitoring means, but also a whole new range of meth-
ods to store logs. Using the appropriate connection string
(possibly including authentication), logs may be stored to
a database hosted by a full featured database management
system, such as PostgreSQL, Oracle, Firebird or MariaDB.
Log maintenance and querying thus becomes consider-
ably more structured and convenient. Alternatively, either
for debugging purposes, or to spare hard disk interaction,

the user may opt for a volatile in–memory database, using
a connection string such as sqlite:///:memory:.
Beyond logging, the database is also used internally by

PyWPS. The requests table functions as a queue, buffering
execution when the number of requests exceeds the num-
ber of processing units available. In such cases, PyWPS
waits for a processing unit to be available; it then serves
the oldest request waiting in the queue.

Scalability usingWSGI
Contrary to its predecessors, PyWPS 4 is no longer a
directly executable service, but rather a Python module to
be used in a Web Server Gateway Interface (WSGI) appli-
cation that implements user processes. Two reference
applications are provided for PyWPS 4: pywps-flask
[14], based on the micro–framework Flask [15], and
pywps-django [16], based on the feature rich, and
heavier, Django [17]; both application frameworks are
WSGI compliant.
Flask is a convenient framework to implement

PyWPS 4 instances, but it comes at the expense of scalabil-
ity. Flask does not support concurrency and may reject
requests if these are received when a previous request is
still being processed. While this may not be an issue in
development, at face value Flask comes across as unsuit-
able for production environments. However, making use
of WSGI servers, Flask can be spawn and managed into
multiple threads or processes, increasing concurrency.
Using a server with WSGI support, wider possibilities
regarding security, scalability and load balancing become
available – capital concerns when deploying a PyWPS
server to a production environment.
A reference PyWPS 4 set–up was developed, encapsu-

lating the server within three layers (Fig. 1):

i) Application – where requests are actually processed.
ii) WSGI – bearing concurrency.

Fig. 1 The various functional layers encapsulating a WSGI application and the technologies employed in PyWPS 4

de Sousa et al. Open Geospatial Data, Software and Standards (2019) 4:13 Page 4 of 10

iii) HTTP – providing security insulation.

In the inner application level lay the functionalities that
translate requests into objects tractable by PyWPS and
user processes (the work of Flask or Django); at this
level no concerns with concurrency or scalabily exist, the
application is taken as fully self–contained. The interme-
diate WSGI layer is set–up with Gunicorn [18], pro-
viding concurrency by spawning system processes for the
requests received. The outer HTTP layer is provided by
an HTTP server like the NginX web server [19], that
additionally furnishes reverse–proxy functionalities, secu-
rity and load balancing. This proposal is not meant to
be a panacea, but rather a template showcasing deploy-
ment practices with modern technologies. Users are free
to employ alternative technologies in each of these layers,
adjusting the set–up to their specific needs.

Containerisation
While in its basic realisation with Flask PyWPS 4 still
provides the easy and approachable WPS server of its
predecessors, the reference set–up with Gunicorn and
Ngin might be too hurdling to certain users. Especially
so to researchers lacking formal training in computer
sciences, that simply wish to deploy their model(s) to
the WWW. With this in mind, the PyWPS team has
made publicly available containerised versions of vari-
ous reference set–ups [20] using the Docker technology
[21]. Each of these containerised set–ups demonstrate the
deployment of PyWPS with different WSGI application
frameworks and different HTTP servers. Other set–ups
based on these initial proposals have been made public
by the community1, further attesting to the deployment
flexibility achieved with PyWPS 4.
Using one (or more) of these reference containers, users

may develop their processes within an easeful framework
like Flask and then seamlessly deploy them to a previ-
ously set–up, full fledged production server. For instance,
a development or testing environment can be set up only
with Flask, whereas a production container may include
all necessary components, e.g. Gunicorn and NginX.
The employment of containers for testing and devel-

oping purposes sets the theme for various developments
that will too rely on the Docker technology. An extension
to PyWPS allowing processes themselves to be container-
ised has been developed as a Master’s thesis [22] and is
presently in the final stages of integration. Containeri-
sation implies that an Execute request results in the
spawning of an ad hoc container in which the correspond-
ing process is executed in a sand–boxed environment.
This way process execution is kept largely isolated from
the host system. Two important advantages emerge from

1https://hub.docker.com/search?q=pywps&type=image

this extension: first is the increase in security, with crit-
ical system resources made invisible at execution time.
Secondly, containerisation allows processes to execute in
environments that are different from the host system;
for instance, a particular process that requires a specific
library unavailable in the host system may be executed in
such a way. What is more, the same process can be made
available to execute in different environments, comply-
ing with different requirements. This extension is to be
included in a forthcoming minor version of PyWPS 4.

Comparison with other WPS servers
GeoServer
GeoServer started as the reference implementation of
the WFS standard on the Java programming language
[23]. It soon evolved to support most of the other OGC
web service standards, including WPS. Today, GeoServer
presents itself as a broad platform for geo–spatial data
sharing and editing over the internet. It is implemented as
a Java servlet, therefore meant to be deployed to applica-
tion servers such as Tomcat [24] or Jetty [25]. Properly
setting up and managing one of these servers demands
a certain degree of know–how, even in a development
environment.
GeoServer stands out for the way it extends the WPS

standard with additional operations and information ele-
ments in response documents. This server provided its
own operation to stop running process already with WPS
version 1.0. Called Dismiss, this operation is in all simi-
lar to the Cancel operation in version 2.0 of the standard.
Response documents are extended with pagination and an
additional parameter named OrderBywhich can be used
to order the document by owner, identifier or status. The
statusInfo document in particular, is extended with
three extra elements that detail execution progress:

• ExpirationDate – date and time by which the
process execution and its results will no longer be
accessible.

• EstimatedCompleted – date and time by which
the process execution is expected to be finished.

• NextPoll – suggested time of status update.

Another aspect in which GeoServer excels is in the
number of example processes it makes available out of the
box. By version 2.13, GeoServer was bundling 192 pro-
cesses, most of which implementing the spatial functions
provided by the JTS Topology Suite [26] (e.g. area, buffer,
intersection). To these add a number of processes spe-
cific to Geoserver, such as bounds and re–projection, that
connect internally to assets served throughWCS orWFS.
Various tools are required for the development of a new

WPS process in GeoServer. Beyond the Java framework
itself, command of the Maven project management tool

https://hub.docker.com/search?q=pywps&type=image

de Sousa et al. Open Geospatial Data, Software and Standards (2019) 4:13 Page 5 of 10

[27] and the Spring web development framework [28]
are also necessary. Each new process must be in itself a full
fledged Maven project, requiring its specific Maven and
Spring configuration files and particular folder struc-
ture. Development clearly benefits from being conducted
within a well featured, Java–friendly, Integrated Develop-
ment Environment such as Eclipse [29].
Process development in GeoServer does not benefit

from direct integration with any of the wholesale spa-
tial analysis engines, such as GRASS [30] or SAGA [31].
However, the developer may easily access the functional-
ity provided by GeoTools, a Java toolkit for geo–spatial
data [32].
GeoServer comes across as a vast and thorough WPS

server, with plenty to offer when it comes to features and
out–of–the–box processing abilities. GeoServer provides
functionality beyond the WPS standard than can be cru-
cial in scaling up and load–balancing services. On the
other hand, it requires the mastery of a number of dif-
ferent tools for the most basic level of development. To
someone not well versed on object–oriented program-
ming and the Java ecosystem tooling, developing a process
for GeoServer can be a challenge. GeoServer therefore
stands in stark contrast to PyWPS, with the latter opting
for sufficient compliance to the standard, no additional
features, and a minimal set of process examples, but the
ease of development within a minimalistic WSGI frame-
work like Flask.

ZOO–Project
ZOO–Project is a WPS implementation coded in C,
Python and JavaScript. It supports both version 1.0 and 2.0
of the standard. ZOO–Project is presented as a set of four
different components, of which the ZOO–Kernel is the
actual server. Notably, it also includes a client side library,
something unique amongWPS implementations. The full
list of components:

• ZOO–Kernel – a WPS server able to manage and
chain WPS services, by loading dynamic libraries and
code written in different languages.

• ZOO–Services – A growing collection of ready to use
process built on top of open source libraries such as
GDAL [33], GRASS, Orfeo Toolbox [34] or SAGA.

• ZOO–API – A server–side JavaScript API for
creating, chaining and orchestrating WPS Services.

• ZOO–Client – A client side JavaScript API to
interact with WPS servers from web applications.

ZOO–Project is itself a web server, with its core devel-
oped in C, making use of the cgic library for CGI pro-
gramming [35]. This aspect greatly limits dependencies on
third–party software, making install and deployment rela-
tively simple (especially when compared with GeoServer).

However, it still requires compiling the cgic library
and the ZOO–Kernel. Packaged versions are available for
operating systems that ship with package managers, but
in such cases the user is not able to fine tune compila-
tion parameters. Basic configuration of the ZOO–Project
is on par with that of PyWPS, based on a simple text
file. But complexity increases as additional components,
like Orfeo Toolbox or SAGA, are integrated with the
ZOO–Kernel.
Process development is also low on complexity, being

essentially based on an abstraction layer that bridges the
ZOO–Kernel with the process itself. This abstraction is
nothing more than a configuration file with the extension
.zcfg that describes to the ZOO–Kernel the process
inputs, outputs and other meta–data required in a reply
to theWPS DescribeProcess request. While the con-
figuration file is a fairly simple concept, it represents an
extra burden compared to pure object–oriented imple-
mentations like PyWPS or GeoServer. Names of inputs
and outputs are replicated between the source code and
the .zcfg file, and must be manually maintained in
synchronicity by the process developer.
The one aspect where the ZOO–Project stands out from

otherWPS implementations is the wide range of program-
ming languages in which processes can be developed. The
list presently includes:

• C – the process is implemented as a shared library;
• Fortran – the process is a module;
• Python – the process is a Python module;
• Java – the process is a Java class;
• PHP – the process is a script;
• Ruby – the process is a class;
• C# – the process is a C# class;
• JavaScript – the process is a script;

If GeoServer is pretty much at the antipodes of PyWPS
considering the functionality/complexity balance, ZOO–
Project is found somewhere in between. ZOO–Project
excels primarily for its flexibility, it may be used in a
lightweight mode, with a basic ZOO–Kernel deployment
and simple processes coded in a language like JavaScript;
but through increasingly refined configuration, it can also
be hiked to integrate with geo–spatial engines and serve
processes relying on heavyweight libraries. All this in a
bespoke set–up that may best suit user requirements and
affinities.

PyWPS use cases
Computation services at DKRZ
The German Climate Computing Centre (Deutsches Kli-
marechenzentrum, DKRZ) is a central service centre
for German climate and earth system research. Its high
performance computers, data storage and services form

de Sousa et al. Open Geospatial Data, Software and Standards (2019) 4:13 Page 6 of 10

the central research infrastructure for simulation–based
climate science in Germany. The DKRZ also hosts a
multi–petabyte repository of climate data that can be
accessed through the WWW.
Increasing numbers of users call for the provisioning

of web based interfaces to compute the data resources
hosted by DKRZ. The DKRZ thus participates in national
and international joint projects and cooperations with the
aim of providing compute services for climate data. In
this context, PyWPS has been used to implement and
deploy standardised computation services, that can be
invoked and orchestrated by users. These activities have
led to contributions and active support of the PyWPS and
OWSLib projects.
In collaboration with Ouranos (see ahead), the DKRZ

started the Birdhouse community effort [36], with the
aim of developing auxiliary components forWPS projects.
Birdhouse intends to facilitate the creation and usage of
compute services based on PyWPS. Among the features
provided, the following can be found:

• A Cookiecutter template [37], including
Dockerfiles, that allows users to create their own
PyWPS compute services.

• An Ansible script [38] to deploy a full–stack
PyWPS service.

• A Python library suitable for Jupyter notebooks
[39] to interact with WPS compute services.

Canadian climate service platform
Ouranos is a consortium on regional climatology based
in Montréal, whose mission is to support adaptation to
climate change [40]. This involves working with engi-
neers, biologists, urban planners and professionals from
dozens of different disciplines to understand their climate
data needs and provide them with clear, understandable
and actionable information. To speed–up and standard-
ize the delivery of climate services to users and facilitate
collaborations with academics, Ouranos has been devel-
oping with the Centre de Recherche en Informatique
de Montréal (CRIM) and the Birdhouse community a
climate service platform based on WPS [40]. The plat-
form includes a handful of thematic servers powered by
PyWPS, offering tools to search data catalogues, com-
pute climate indices, subset and aggregate climate data,
run hydrological models using climate projections and
a number of other specialized algorithms. These servers
are spun–up as Docker containers and accessed through
a proxy handling load–balancing and authorization/au-
thentication to files and services. A high–level WPS client
has been developed based on OWSLib to simplify access
to those services and provide users with an interface to
remote processes that look and feel like normal Python
functions.

The long term vision for this platform is to facilitate
trans–disciplinary collaborations by packaging state–of–
the–art scientific expertise into easily accessible web pro-
cesses available to non–experts. This includes not only
climate algorithms but also impact models driven by
weather and climate conditions. Ouranos hopes to part-
ner with similarlyminded institutions to build a federation
of climate service servers which, through conventions
on data and metadata formats, would be inter–operable.
This would over time lead to scientists writing complex
workflows chaining operations and data frommultiple dif-
ferent institutions. Not only could this reduce time spent
on tedious low level work, but more importantly, make
research outputs by experts easier to discover and access
by non–specialists.

ECOPOTENTIAL
Environment Systems is an environmental and agricul-
tural data driven consultancy established in 2003 in the
UK, specialising in Geo–Informatics and Earth Observa-
tion. This consultancy has been researching the potential
of wrapping some of its satellite data processing algo-
rithms in WPS processes, within the ECOPOTENTIAL
project [41].
ECOPOTENTIAL is a large European project funded by

the Horizon 2020 research programme of the European
Commission [42]. It focuses its activities on a targeted
set of internationally recognised protected areas, blending
earth observations from remote sensing and field mea-
surements, data analysis and modelling of current and
future ecosystem conditions and services, ready for oper-
ational delivery. ECOPOTENTIAL considers cross–scale
geosphere–biosphere interactions at regional to continen-
tal scales, addressing long–term and large–scale environ-
mental and ecological challenges.
Environment Systems already provides analysis ready

satellite data through its data services platform; the
research has thus been centred on potential WPS servers
that could wrap those services. Different implementations
have been assessed, considering three essential aspects: (i)
ease of use, (ii) interoperability with other services such
as WCS or WFS, and (iii) integration with Celery [43]
for scaling. The latter in particular has proved challeng-
ing, since it has not yet been possible to run Celery on
Python 3.6. At present a series of synchronous WPS ser-
vices are being developed, that will soon be available at
the Environment Systems’ demonstrator site [44]. Even
though a specific WPS server implementation is yet to be
definitely selected, Environment Systems has built strong
experience on PyWPS and contributed back to the project.

Data quality assessment at WOUDC
WOUDC is since 1962 the World Ozone and Ultravi-
olet Data Centre component of the World Meteorolog-

de Sousa et al. Open Geospatial Data, Software and Standards (2019) 4:13 Page 7 of 10

ical Organisation (WMO)’s Global Atmospheric Watch.
The WOUDC data centre is operated by the Meteo-
rological Service of Canada, a branch of Environment
and Climate Change Canada. Its data archive includes
total column and vertical profile measurements of Ozone
obtained through LiDAR, ozone–sonde flights, and the
Umkehr technique. The archive further comprises Ultra-
violet (UV) radiation measurements, including high res-
olution spectra. There are over 500 registered stations
in the archive, contributed by more than 150 different
institutions.
The WOUDC provides an online data archive, together

with metadata (e.g. station location), and value added
products such as graphs of total ozone time series and
near real–time ozonemaps. OGC standards are employed
to provide standards–based–on–demand access to the
archive.
In 2015 the project was renewed with a focus on data

access using standards [45]. This refocus targeted not only
data services, but also internal processes. The WOUDC
must process, quality access and ingest into its archive the
Ozone and UV datasets provided by contributing institu-
tions. The data rejected is reported back to the contrib-
utor for subsequent correction and re–submission. WPS
was employed to facilitate these procedures.
In 2016 theWOUDCdeployed a PyWPS stack to expose

services to process and assess data to the public via WPS.
This allows contributors to quality assess their data before
submitting to the WOUDC. These PyWPS services not
only help reduce the internal quality assessment workload,
but further provide a means of real–time data valida-
tion [46]. The functioning of each of these services is
documented in detail to facilitate their use [47].

The earth observation monitor
The Earth Observation Monitor (EOM) aims to ensure
easy access and analysis of spatial time–series data for
landmonitoring on local scales. The concept behind EOM
combines the advantages of web service–based geo–
processing with easy–to–use interfaces; this provides an
easy access for users without specific knowledge in data
processing techniques. EOM focuses on hiding existing
barriers (e.g., manual data download, (pre–)processing,
data conversion), through automation. This enables users
can focus on the analysis and interpretation of results.
The back–end system processes Earth observation

time–series data and executes analysis tools based on
users’ inputs. The basis for the automated data process-
ing and analysis is operational and automated data access,
which is accomplished by introducing a multi–source
data processing middleware [48]. This middleware is con-
nected to external data providers to interoperate with
requested data, including the provision of standardised
OGC web services. Data processing and analysis have

been made available via WPS services, implemented on
PyWPS. Ready–to–use Python libraries, such as rpy2 for
the R statistical language [49], as well as command line
executions (with the Python library subprocess [50]),
are used to run external software for data analysis and data
processing.
Since the functions of the EOM are available through

web services, client applications can easily interact with it.
Two example clients were created to show the possibili-
ties of such a service–based infrastructure: A web portal
(webEOM) and a mobile application (mobileEOM). Both
of these clients use the OGC WPS–compliant web ser-
vices developed for data integration and analysis; webEOM
uses the OGC Web Map Services and Web Feature Ser-
vices to visualize the outputs of analysed areas.
The focus of the web portal (Fig. 2) is to provide an

easy–to–use client, while making it possible to extract
time–series data and execute further time–series analy-
sis functions. At least two inputs are necessary to extract
datasets for a given geometry: (1) the location of the
area of interest, which can be created in the map as a
point or a polygon, and (2) the name of the dataset the
user is interested in (e.g., vegetation index, land surface
temperature, climate station data). When using the data
integration process, users can specify different param-
eters for the selected dataset, such as start and end
dates, as well as filtering options. In addition to the
extracted dataset, a time–series and a decomposition plot
are generated automatically. (e.g., breakpoint detection,
trend calculation). The resulting data can either be visu-
alised directly in the web portal or can be downloaded
for further usage. Spatial outputs can be interactively
explored on the map, and CSV files are plotted as an
interactive chart.
During fieldwork, users cannot use web–based systems

developed for desktop computers. A mobile application
is therefore needed to foster the use of spatial time–
series tools on mobile devices, which can be more eas-
ily used in the field. The mobile application for EOM
was developed to provide access to time–series data and
derived analyses on mobile devices. Using their current
GPS location or a manual set position, users can extract
vegetation time–series data, as well as view data plots,
trend, and breakpoint analysis plots directly on their
mobile devices. An OGC WPS process was developed
for the mobile application, providing all necessary func-
tionalities in a single process, available as a web service.
This process extracts data from Google Earth Engine
and plots the time–series and decomposition figure. In
a second step, time–series analyses for breakpoint detec-
tion and trend calculations are executed and plotted in a
figure. The resulting output is a GeoJSON file contain-
ing the values of the analysis tools, as well as links to the
generated figures.

de Sousa et al. Open Geospatial Data, Software and Standards (2019) 4:13 Page 8 of 10

Fig. 2 The webEOM portal

Summary and future developments
PyWPS 4 represents a major step forwards relative to
previous versions of the software, embracing state–of–
the–art technologies available to the Python language. It
preservesmuch of its original nature, especially the ease of
development and simplicity of deployment. Now as a pure
Python library, PyWPS offers further degrees of freedom
to users and software administrators, making it simple to
combine it with different web serving technologies.
While remaining a simple tool to publish processing ser-

vices to the WWW, the new implementation of PyWPS
has opened the way to various advanced features that
improve management, deployment and security. With the
introduction of an ORM layer, an additional logging mode
became available, that greatly enhances log parsing and
search. By adopting WSGI PyWPS 4 gained deployment
flexibility, easily integrating with different WGSI applica-
tion frameworks and HTTP engines. This new charac-
ter renders PyWPS 4 an easy target for containerisation
with a technology like Docker. Containerisation improves
encapsulation and scalability, and offers new possibilities
concerning execution security.
Other WPS implementations exist beyond PyWPS, two

projects in particular deserve consideration, since they
too are graduated by OSGeo: GeoServer and ZOO–
Project. GeoServer is notable by the number of features
it offers, even going beyond the WPS standard. ZOO–
Project shines with its modularity and the wide range

of programming languages and environments it allows.
PyWPS offers some important contrasts to those projects,
by prising ease of use over feature set, and narrowing
development to Python. The philosophy of simplicity has
not hindered the adoption of PyWPS, as it can be found in
production environments deployed by high–profile insti-
tutions around the world.
The work with ORM has opened other development

roads for PyWPS, that allow users to rely further on a rela-
tional database, if so needed. As part of the 2018 Google
Summer of Code, a student of the Czech Technical Uni-
versity in Prague, extended PyWPS with the possibility of
storing process outputs directly in a database [51]. Once
stored in the database, the outputs are then automati-
cally published through MapServer [52], thus becoming
accessible through the appropriate OGC standard (WFS
or WCS). This extension is currently under evaluation,
and could be integrated formally into PyWPS.
In a coming release of PyWPS (likely a minor version)

the development team also intends to introduce logging
from user processes to a database. This feature will intro-
duce at least one more additional table to store messages
issued from processes in execution.
The major mid–term goal is compliance to version

2.0 of the WPS standard. This newer version intro-
duced three new important requests concerning asyn-
chronous execution: Pause, Resume and Cancel. The
former two serve to temporary halt (and later resume)

de Sousa et al. Open Geospatial Data, Software and Standards (2019) 4:13 Page 9 of 10

execution of a process, the latter terminates process-
ing execution altogether, abandoning any outputs. While
Cancel appears implementable withoutmuch re–design,
the same is not true for Pause and Resume. PyWPS
relies on Multiprocessing for asynchronous process
execution, which does not support message passing, or
any other formal process–to–process interaction mech-
anism, therefore an alternative must be conceived. The
development team has been considering Celery for this
purpose, even though it might be a somewhat heavy
solution. An alternative would be to further extend the
process containerisation paradigm, applying these new
WPS requests to container images in which processes are
executed. In any event, full compliance with WPS 2.0 is
certain to require a relevant review of the PyWPS 4.0
design, therefore being something to expect only with a
future major release.

Availability and requirements
• Project name: PyWPS
• Project home page: https://www.pywps.org
• Operating system(s): Platform independent
• Programming language: Python
• Other requirements: PyWPS runs on Python 2.7,

3.3 or higher. Git and the Python bindings for GDAL
must be installed in the system. The Python libraries
on which PyWPS depends are listed in the file
requirements.txt that may be applied with a
package manager like pip.

• Licence: MIT
• Any restrictions to use by non–academics: only

those stated in the licence.

Abbreviations
CRIM:Centre de Recherche en Informatique de Montréal; EOM: Earth
observation monitor; OGC: Open geospatial consortium; ORM: Object–relation
mapping; RPC: Remote procedure call; WCS: Web coverage service; WFS: Web
feature service; WMO: World meteorological organisation; WPS: Web
processing service; WSGI: Web server gateway interface; WOUDC: World ozone
and ultraviolet data centre; WWW: World wide web

Acknowledgements
The authors would like to thank all individuals that contributed to PyWPS 4, be
it with code, bug reports, documentation or mere support, too many to list in
this space.
The ECOPOTENTIAL project has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agreement No
641762.

Authors’ contributions
All authors have contributed actively to the development of PyWPS 4 and its
code base. JČ is the original creator of PyWPS, having been involved in all its
releases since 2007. TK is since 2015 the project mentor, being largely
responsible for its graduation with the OSGeo Foundation. JČ, JMdJ, JE, LMdS
and TK are founding members of the PyWPS Project Steering Committee
(PSC); CE is a PSC member since 2018. For this article, LMdS lead the writing;
JMdJ devised the WSGI set up, developed the Docker images and assessed
alternative WPS servers; CE, DH, SB, TK and JE contributed to the accounting of
Use Cases; JČcoordinated students’ contribution programmes.

Competing interests
The authors declare that they have no competing interests.

Author details
1ISRIC - World Soil Information, Droevendaalsesteeg 3, Building 101, 6708 PB
Wageningen, The Netherlands. 2GeoCat B.V., Veenderweg 13, 6721 WD
Benekom, The Netherlands. 3OpenGeoLabs s.r.o., Brandlova 1559, 149 00
Prague, Czech Republic. 4World Ozone and Ultraviolet Radiation Data Centre
Meteorological Service of Canada Environment and Climate Change Canada,
4905 Dufferin Street, ON M3H 5T4 Toronto, Canada. 5Ouranos, 550 Rue
Sherbrooke Ouest Tour Ouest, 19e étage, H3A 1B9 Montréal, Québec, Canada.
6Deutsches Klimarechenzentrum GmbH, Bundesstraße 45a, D-20146
Hamburg, Germany. 7Environment Systems Ltd, 9 Cefn Llan Science Park, SY23
3AH Aberystwyth, Ceredigion, United Kingdom. 8Friedrich-Schiller-University,
Department for Earth Observation, Loebdergraben 32, 07743 Jena, Germany.

Received: 6 November 2018 Accepted: 2 September 2019

References
1. Mueller M, Pross B. OGC�WPS 2.0 Interface Standard Corrigendum 1.
2. de Jesus J, Walker P. WPS cookbook. Technical report. 2011.
3. de Sousa L, Eykamp C, Leopold U, Baume O, Braun C. iGUESS - A web

based system integrating Urban Energy Planning andAssessment
Modelling for multi-scale spatial decision making. In: International
Congress on Environmental Modelling and Software Managing
Resources of a Limited Planet, Sixth Biennial Meeting. Leipzig; 2012. p. 8.
https://doi.org/10.13140/2.1.3913.7284. http://www.iemss.org/sites/
iemss2012/proceedings.html http://www.iemss.org/sites/iemss2012/
proceedings/A3_0783_Sousa_et_al.pdf.

4. Čepický J, de Sousa LM. The International Archives of Photogrammetry,
Remote Sensing and Spatial Information Sciences. 2016;41:927.

5. Free Software Foundation Inc. The MIT License. 1991. https://opensource.
org/licenses/GPL-2.0. Accessed 2 June 2019.

6. Massachusetts Institute of Technology (MIT). The MIT License. 1988.
https://opensource.org/licenses/MIT. Accessed 24 Sept 2018.

7. lxml contributors. lxml - XML and HTML with Python. 2018. https://lxml.
de/. Accessed 24 Sept 2018.

8. Python contributors. multiprocessing—Process-based parallelism.
2018. https://docs.python.org/3.7/library/multiprocessing.html. Accessed
24 Sept 2018.

9. Kralidis T. OWSLib 0.17.0 documentation. 2018. https://geopython.github.
io/OWSLib/. Accessed 24 Sept 2018.

10. Open Source Geospatial Foundation. Project Graduation Checklist. 2014.
https://www.osgeo.org/about/committees/incubation/graduation/.
Accessed 8 July 2019.

11. Open Source Geospatial Foundation. PyWPS graduation sheet. 2018.
https://wiki.osgeo.org/wiki/PyWPS. Accessed 5 June 2019.

12. Copeland R. Essential SQLAlchemy. Sebastopol: O’Reilly Media, Inc.; 2008.
13. PyWPS Development Team. PyWPS Configuration. 2018;https://pywps.

readthedocs.io/en/latest/configuration.html. Accessed 8 Dec 2018:.
14. PyWPS Development Team. Demo service for PyWPS 4 with Flask. 2018.

https://github.com/geopython/pywps-flask. Accessed: 8 Dec 2018.
15. Grinberg M. Flask Web Development: Developing Web Applications with

Python. Sebastopol: O’Reilly Media, Inc.; 2014.
16. PyWPS Development Team. PyWPS demo using django. 2018. https://

github.com/jorgejesus/pywps-django. Accessed 8 Dec 2018.
17. Forcier J, Bissex P, Chun WJ. Python Web Development with Django.

Boston: Addison-Wesley Professional; 2008.
18. Chesneau B, et alia. Gunicorn-Python WSGI HTTP Server for UNIX. 2017.

http://gunicorn.org/. Accessed 24 Nov 2017.
19. Reese W. Nginx: the high-performance web server and reverse proxy.

Linux J. 2008;2008(173):2.
20. PyWPS Development Team. PyWPS repository at Docker Hub. 2018.

https://hub.docker.com/u/pywps/. Accessed 8 Dec 2018.
21. Merkel D. Docker: lightweight linux containers for consistent

development and deployment. Linux J. 2014;2014(239):2.
22. Laža A. Izolace procesŭ ve frameworku pywps. Master’s thesis. 2018.

https://github.com/ctu-geoforall-lab-projects/dp-laza-2018/.
23. Open Source Geospatial Foundation. What is Geoserver? 2019. http://

geoserver.org/about/. Accessed 3 Mar 2019.
24. The Apache Software Foundation. Apache Tomcat. 2019. http://tomcat.

apache.org/. Accessed 3 Mar 2019.

https://www.pywps.org
https://doi.org/10.13140/2.1.3913.7284
http://www.iemss.org/sites/iemss2012/proceedings.html
http://www.iemss.org/sites/iemss2012/proceedings.html
http://www.iemss.org/sites/iemss2012/proceedings/A3_0783_Sousa_et_al.pdf
http://www.iemss.org/sites/iemss2012/proceedings/A3_0783_Sousa_et_al.pdf
https://opensource.org/licenses/GPL-2.0
https://opensource.org/licenses/GPL-2.0
https://opensource.org/licenses/MIT
https://lxml.de/
https://lxml.de/
https://docs.python.org/3.7/library/multiprocessing.html
https://geopython.github.io/OWSLib/
https://geopython.github.io/OWSLib/
https://www.osgeo.org/about/committees/incubation/graduation/
https://wiki.osgeo.org/wiki/PyWPS
https://pywps.readthedocs.io/en/latest/configuration.html
https://pywps.readthedocs.io/en/latest/configuration.html
https://github.com/geopython/pywps-flask
https://github.com/jorgejesus/pywps-django
https://github.com/jorgejesus/pywps-django
http://gunicorn.org/
https://hub.docker.com/u/pywps/
https://github.com/ctu-geoforall-lab-projects/dp-laza-2018/
http://geoserver.org/about/
http://geoserver.org/about/
http://tomcat.apache.org/
http://tomcat.apache.org/

de Sousa et al. Open Geospatial Data, Software and Standards (2019) 4:13 Page 10 of 10

25. The Eclipse Foundation. About Eclipse Jetty. 2019. https://www.eclipse.
org/jetty/about.html Accessed 3 Mar 2019.

26. JTS Contributors. JTS Topology Suite. 2019. https://sourceforge.net/
projects/jts-topo-suite/. Accessed 2 Mar 2019.

27. The Apache Software Foundation. The Apache Maven Project. 2019.
https://maven.apache.org/. Accessed 2 Mar 2019.

28. Pivotal Software Inc. Spring: the source for modern java. 2019. https://
spring.io/. Accessed 2 Mar 2019.

29. The Eclipse Foundation. Eclipse: The Platform for Open Innovation and
Collaboration. 2019. https://www.eclipse.org/. Accessed 2 Mar 2019.

30. GRASS Development Team. GRASS – Geographic Resources Analysis
Support System. 2019. https://grass.osgeo.org/. Accessed 3 Mar 2019.

31. SAGA contributors. SAGA – System for Automated Geoscientific Analyses.
2019. http://www.saga-gis.org. Accessed 3 Mar 2019.

32. Open Source Geospatial Foundation. GeoTools: The Open Source Java
GIS Toolkit. 2019. http://geotools.org/. Accessed 3 Mar 2019.

33. GDAL contributors. GDAL - Geospatial Data Abstraction Library. 2019.
https://www.gdal.org/. Accessed 3 Mar 2019.

34. Centre National d’Études Spatiales (CNES). Orfeo ToolBox – Open Source
processing of remote sensing images. 2019. https://www.orfeo-toolbox.
org/. Accessed 3 Mar 2019.

35. Boutell.Com Inc. cgic: an ANSI C library for CGI Programming. 2019.
https://boutell.com/cgic/. Accessed 3 Mar 2019.

36. The Birdhouse Community. The Birdhouse Project: Climate data analytics
for sustainable development using OGC standards. 2019;http://bird-
house.github.io/. Accessed 24 Feb 2019:.

37. Greenfeld DanielRoyandPierzina Raphael. Cookiecutter: Better Project
Templates. 2019. https://cookiecutter.readthedocs.io. Accessed 24 Feb
2019.

38. Red Hat Inc. Ansible: Automation for everyone. 2019. https://www.
ansible.com/. Accessed 24 Feb 2019.

39. Project Jupyter contributors. The Jupyter Notebook. 2019. https://jupyter.
org/. Accessed 24 Feb 2019.

40. Huard D, Chaumont D, Logan T, Sottile M-F, Brown RD, St-Denis BG,
Grenier P, Braun M. A decade of climate scenarios: The ouranos
consortium modus operandi. Bull Am Meteorol Soc. 2014;95(8):1213–25.
https://doi.org/10.1175/BAMS-D-12-00163.1.
https://doi.org/10.1175/BAMS-D-12-00163.1.

41. The ECOPOTENTIAL Consortium. ECOPOTENTIAL: improving future
ecosystem benefits through earth observations. 2019. http://www.
ecopotential-project.eu/. Accessed 24 Feb 2019.

42. European Commission. What is Horizon 2020? 2019. https://ec.europa.eu/
programmes/horizon2020/what-horizon-2020. Accessed 2 June 2019.

43. Ask Solem and contributors. Celery: Distributed Task Queue. 2019. http://
www.celeryproject.org/. Accessed 28 Feb 2019.

44. Environment Systems Ltd. Environment Systems Data Services
Demonstrator. 2019. https://data.envsys.co.uk/demonstrator/. Accessed
24 Feb 2019.

45. World Ozone and Ultraviolet Radiation Data Centre. 2019. https://woudc.
org/about/data-access.php. Accessed 27 Feb 2019.

46. World Ozone and Ultraviolet Radiation Data Centre. Data Validator. 2019.
https://woudc.org/contributors/validation.php. Accessed 27 Feb 2019.

47. World Ozone and Ultraviolet Radiation Data Centre. Working with
WOUDC Web Services. 2019. https://github.com/woudc/woudc/wiki/
WebServicesHowto. Accessed 24 Feb 2019.

48. Eberle J, Clausnitzer S, Hüttich C, Schmullius C. Multi-source data
processing middleware for land monitoring within a web-based spatial
data infrastructure for siberia. ISPRS Int J Geo-Inform. 2013;2(3):553–76.

49. Gautier L. rpy2 - R in Python. 2019. https://rpy2.bitbucket.io/. Accessed 5
Mar 2019.

50. Python Software Foundation. subprocess — Subprocess management.
2019. https://docs.python.org/3.5/library/subprocess.html. Accessed 5
Mar 2019.

51. Pisl J. Database Output Storage for PyWPS. 2018. https://wiki.osgeo.org/
wiki/Database_Output_Storage_for_PyWPS. Accessed 8 Dec 2018.

52. Kropla B. Beginning MapServer: Open Source GIS Development. New
York: Apress; 2006.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://www.eclipse.org/jetty/about.html
https://www.eclipse.org/jetty/about.html
https://sourceforge.net/projects/jts-topo-suite/
https://sourceforge.net/projects/jts-topo-suite/
https://maven.apache.org/
https://spring.io/
https://spring.io/
https://www.eclipse.org/
https://grass.osgeo.org/
http://www.saga-gis.org
http://geotools.org/
https://www.gdal.org/
https://www.orfeo-toolbox.org/
https://www.orfeo-toolbox.org/
https://boutell.com/cgic/
http://bird-house.github.io/
http://bird-house.github.io/
https://cookiecutter.readthedocs.io
https://www.ansible.com/
https://www.ansible.com/
https://jupyter.org/
https://jupyter.org/
https://doi.org/10.1175/BAMS-D-12-00163.1
http://arxiv.org/abs/https://doi.org/10.1175/BAMS-D-12-00163.1
http://www.ecopotential-project.eu/
http://www.ecopotential-project.eu/
https://ec.europa.eu/programmes/horizon2020/what-horizon-2020
https://ec.europa.eu/programmes/horizon2020/what-horizon-2020
http://www.celeryproject.org/
http://www.celeryproject.org/
https://data.envsys.co.uk/demonstrator/
https://woudc.org/about/data-access.php
https://woudc.org/about/data-access.php
https://woudc.org/contributors/validation.php
https://github.com/woudc/woudc/wiki/WebServicesHowto
https://github.com/woudc/woudc/wiki/WebServicesHowto
https://rpy2.bitbucket.io/
https://docs.python.org/3.5/library/subprocess.html
https://wiki.osgeo.org/wiki/Database_Output_Storage_for_PyWPS
https://wiki.osgeo.org/wiki/Database_Output_Storage_for_PyWPS

	Abstract
	Keywords

	Introduction
	Advanced features in PyWPS 4
	Logging using Object–Relational Mapping
	Scalability using WSGI
	Containerisation

	Comparison with other WPS servers
	GeoServer
	ZOO–Project

	PyWPS use cases
	Computation services at DKRZ
	Canadian climate service platform
	ECOPOTENTIAL
	Data quality assessment at WOUDC
	The earth observation monitor

	Summary and future developments
	Availability and requirements
	Abbreviations
	Acknowledgements
	Authors' contributions
	Competing interests
	Author details
	References
	Publisher's Note

