Bigagli and Rieke Open Geospatial Data, Software and Standards (2017) 2:18

DOI 10.1186/540965-017-0030-7

Open Geospatial Data,
Software and Standards

ORIGINAL ARTICLE Open Access

The new OGC Publish/Subscribe Standard - ®
applications in the Sensor Web and the

Aviation domain

Lorenzo Bigagli" ® and Matthes Rieke?

Abstract

The Open Geospatial Consortium (OGC) has conducted much work in the past on event-based models and architectures.
However, the current OGC standard baseline only supports synchronous web service capabilities, which have insofar
primarily addressed the request/reply model, where a client makes a request and the server usually responds
synchronously, with either the requested information or a failure. Recently, the OGC Publish/Subscribe 1.0 Standard has
introduced an abstract model for publish/subscribe message exchange, a long-awaited building block in the OGC suite
of geospatial standards. The publish/subscribe pattern is distinguished from the request/reply one by the asynchronous
delivery of messages and the ability for a client to specify an ongoing, persistent expression of interest. In this work, we
report on the experimentation of the new OGC Publish/Subscribe 1.0 Standard in the context of the OGC Testbed-12
initiative and related fields of work, particularly in the application domains of Sensor Web and Aviation. We illustrate and
discuss the enhancements in comparison to previous OGC service architectures, highlighting the benefits of introducing
the PubSub 1.0 Standard into the considered systems and their workflows.

Background

OGC standards have primarily addressed the request/
reply model, as it is sufficient to meet many use cases. Cli-
ents request data of interest when required and may re-
quest updates later on. In the request/reply model, a client
makes a request and the server usually responds syn-
chronously, with either the requested information or an
error report. This provides relatively immediate feedback,
but may be impractical in application domains character-
ized by processes with long runtime, such as model execu-
tion in the Model Web, or distributed search in geospatial
discovery, where clients need to keep the connection to
the server continuously open, in order to wait for the
responses.

Besides, synchronous communication may be insufficient
when the application depends on asynchronous events,
such as external communications, status changes, natural
phenomena, or data updates. In such cases, polling strat-
egies are usually implemented where clients repeatedly
check for the desired information. This has undesirable

* Correspondence: lorenzo.bigagli@cnr.it

'Institute of Atmospheric Pollution Research, National Research Council of
Italy, Florence, Italy

Full list of author information is available at the end of the article

@ Springer Open

side effects: if a client polls too frequently, server load and
network traffic might be increased; if a client polls too
infrequently, it may not be notified when needed. These is-
sues are aggravated when event occurrences are unpredict-
able, or when the delay between event occurrence and
client notification must be kept small.

The recently approved Open Geospatial Consortium
(OGC) Publish/Subscribe 1.0 (in short, PubSub) Stand-
ard defines a mechanism to support publish/subscribe
requirements across OGC service interfaces and data
types, including coverages, features, and observations.
The PubSub Standard consists currently of two parts: a
Core document [3] which provides an abstract descrip-
tion of the mandatory functionality, independent of the
underlying binding technology, along with several exten-
sion classes for optional capabilities; and a SOAP bind-
ing document [4], which defines how the PubSub
functionality is realized in SOAP services, i.e. leveraging
the OASIS Web Services Notification (WS-N) set of
standards [7]. Work is underway to define a RESTful
binding, which will specify how to realize the PubSub
functionality in RESTful services.

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s40965-017-0030-7&domain=pdf
http://orcid.org/0000-0003-1734-577X
mailto:lorenzo.bigagli@cnr.it
http://creativecommons.org/licenses/by/4.0/

Bigagli and Rieke Open Geospatial Data, Software and Standards (2017) 2:18

PubSub is a long-awaited building block in the OGC
suite of geospatial standards, and a fundamental enabler
towards an event-driven Service-Oriented Architecture
(SOA). Its roots can be traced back to 2006, when an
OGC Sensor Alert Service was proposed, reappearing
through the years as a Sensor Event Service (SES) and
several evolutions of an Event Architecture. In 2010, the
PubSub Standard Working Group was officially char-
tered, but it was not until 2015 that the 1.0 draft was
finalized and eventually officially approved in February
2016. Even before the official documents were published,
work was already ongoing on several extensions that
would introduce PubSub capabilities to well-known
OGC Web Service (OWS) interfaces, such as Sensor
Observation Service (SOS), Web Coverage Service
(WCS), Web Feature Service (WFS) and Catalogue Ser-
vice for the Web (CSW).

In general, the implementation of forms of asynchron-
ous client-server interaction is highly relevant to most
Spatial Data Infrastructure application scenarios. In this
work, we focus on the Sensor Web and the Aviation ap-
plication domains, to exemplify the benefits of the pub-
lish/subscribe Message Exchange Pattern (MEP).

In the next chapter, we introduce the concepts under-
pinning the PubSub Standard and some of its related
technologies. Then we describe the methodological
framework of our experimentation. Subsequently we de-
scribe our application of PubSub to the geospatial do-
mains of Sensor Web and Aviation. Finally, we discuss
our results, draw some conclusions and propose further
activities for future research and experimentation.

Concepts and technologies

Two primary actors characterize the publish/subscribe
MEDP: a Publisher, which is publishing information; and a
Subscriber, which expresses an interest in all or part of
the published information, by subscribing to the Pub-
lisher. After a subscription has been created, the Pub-
lisher delivers information that match the subscription
criteria to the Receiver defined in the subscription. In-
formation may be XML, binary data, or other content,
and is contained and transported in messages. Messages
may include additional data, including headers or other
information used for routing or security purposes.

In many cases, the Subscriber coincides with the entity
to which messages are to be delivered (the Receiver).
However, they are distinguished in PubSub to allow for
these roles to be segregated. This would allow, for ex-
ample, a system manager to act as a Subscriber and set
up information flows from Publishers to a number of
system entities that act as Receivers.

Similarly, the Publisher often coincides with the entity
which delivers the data (the Sender), but these roles can
be decoupled. Senders may be unaware of the ultimate

Page 2 of 10

recipients of their messages and of the architecture of
the system into which they inject messages.

Figure 1 shows the operations required to implement
the basic publish/subscribe workflow. The Subscriber cre-
ates a subscription on behalf of a Receiver using the Sub-
scribe operation on a Publisher (1.0). If the Publisher
accepts the Subscribe request, it creates a Subscription
(1.1) and returns a SubscribeResponse — either success or
an exception (1.2). The Subscriber may supply filter cri-
teria with the Subscribe request. Filter expressions evalu-
ate to a boolean value when applied to a message. Filter
criteria can apply to the message content (such as XPath
or OGC Filter Specification), the message metadata (such
as header content), or to other aspects of a message.

Whenever a new message is available, the Publisher at-
tempts to match it against each Subscription (2.0).
Those messages that evaluate to true for all filter expres-
sions on a Subscription are considered to have matched
that Subscription. If the message matches a Subscription,
the Sender delivers it to the location and/or Receiver
specified for the Subscription via the Notify operation
(2.1). Messages are delivered asynchronously as they be-
come available to the Publisher.

Every Subscription has a defined time at which it ex-
pires. When that time is reached, the Publisher termi-
nates the Subscription. The Renew operation may be
utilized (3.0) to set a new termination time for a Sub-
scription. If the Publisher accepts the Renew request, the
new termination time is set on the Subscription and the
Publisher returns a RenewResponse (3.1) informing the
Subscriber of the outcome of the request.

Termination of a Subscription may be requested any
time after the creation via the Unsubscribe operation
(4.0). If the Publisher accepts the Unsubscribe request, it
terminates the subscription (4.1) and returns an Unsub-
scribeResponse (4.2) informing the Subscriber of the
outcome of the request.

The PubSub Core document attributes the above basic
functionalities to the Basic Publisher conformance class.
PubSub Core defines several other optional conformance
classes (see Fig. 2), introducing additional functionalities,
e.g. to pause a Subscription (Pausable Publisher), derive
additional publications (Publication Manager), group
messages in batches (Message Batching Publisher).

PubSub Core requires that a PubSub-enabled OWS
advertise the implemented Conformance Classes in its
Capabilities document, namely in the Profile property of
the Serviceldentification section. Besides, it requires that
a Publisher return the additional Capabilities compo-
nents represented in Fig. 3 in its GetCapabilities re-
sponse. The PubSub Standard does not specify the
specific mechanism for incorporating these additional
Capabilities components into an OWS Capabilities
document. We have proposed to include these additional

Bigagli and Rieke Open Geospatial Data, Software and Standards (2017) 2:18

Page 3 of 10

Subscriber Publisher Sender Receiver
T T T T
: 1.0 Subscibe(Subsaibe) : : : :
| SubscoibeResponse | | |

> Subscription | |
1.1 | |
12 - | |
________________ | |
: 1 I
| s | I
| P/ ! | I
| [for each newly published m: ge] | | |
| | Esfa | |
| | 2.0 *for each subscription]:match | |
: ! message against sub§aipiion() : :
| ! | I
| ! | I
| ! | |
| 2.1 [message matches subsaription]: | |
| ' o | |
| T |
| ! I
| ! I
| : 2.2 Notify(Message) | _ |
|
| 3.0 Renew(Renew) !
| :RenewResponse T H T |
" L B : | I
3.1 | |
<-—-——-——————————-——- ! | I
L L : [|
! 4.0 Unsubsaibe{Unsubsaibe) : | | ! !
! UnsubsoibeResponse ! | ! !
I L 41 | |
e | .
e = —— —— —43 ———————— | |
L L] : | I
| | | |
Fig. 1 Basic publish/subscribe workflow (source: [3])

Capabilities components in the ExtendedCapabilities of
the OWS, as detailed in the following.

The FilterCapabilities component describes the filtering-
related capabilities of a PubSub-enabled OWS, i.e. the fil-
ter languages it supports for matching messages against
subscriptions (e.g., OGC Filter Encoding, XQuery).

The DeliveryCapabilities component describes the
methods supported by the PubSub-enabled OWS for de-
livering messages, e.g. SOAP, WS-N, ATOM, Server-

Sent Events (SSE), WebSockets, Open Archives Initiative
Protocol for Metadata Harvesting (OAI-PMH).

PubSub is agnostic as for the language to filter mes-
sages in subscriptions and as for the delivery of mes-
sages. Publishers may support multiple filter languages,
and offer more than one method of delivery for each
Publication, to be chosen by each Subscriber. This sup-
ports the flexible pluggability of technologies. The pub-
lish/subscribe MEP typically implies push-style message

OWS Common

T

Basic Publisher

)] |

Pausable Publlshel"” |

Standalone Publisher

vr\“

""" Heartbeat Publisher

l

) =7

Capabilities Filtering

Fig. 2 PubSub Core Conformance Classes (source: [3])

]

Message Batchi.ng Publisher
|

Brokering Publisher

J

Bigagli and Rieke Open Geospatial Data, Software and Standards (2017) 2:18

Page 4 of 10

ows:Capabilities

PublisherCapabilities

1.1

FilterCapabilities |

Publications 1 _1|DeliveryCapabilities

Y

V.

¥

FilterLanguage

Publication

DeliveryMethod

Fig. 3 PubSub Capabilities components (source: [3])

_

delivery, however some delivery methods may actually
be underpinned by pull-based mechanisms (e.g. polling).

Examples of delivery methods include: SOAP and re-
lated technologies, such as WS-N (used by the PubSub
SOAP Binding), ATOM, PubSubHubbub, OAI-PMH,
email, Short Message Service, WebSockets and SSE. SSE
is a pure push-style communication technology based
on HTTP and the SSE EventSource API standardized as
part of HTML5 by the W3C. An SSE client (e.g. all mod-
ern HTML 5.0 browsers) receives automatic updates
from a server via HTTP connection by setting some
HTTP parameters in the request.

The Publications component describes the contents
offered by the PubSub-enabled OWS, ie. the sets of
messages that Subscribers can subscribe to. PubSub is
agnostic as for the message encoding. The most generic
mechanism to notify about updates is that the Publisher
re-send the whole response element corresponding to
the request used as filter in the Subscription. For ex-
ample, in the case of WFS, if the client subscribes with a
wfs:GetFeature request as a filter, the PubSub-WFS
should notify about any changes by delivering a standard
wfs:FeatureCollection, in response to that request. By re-
ceiving the new response and comparing it with the pre-
vious one, a Subscriber can figure out the changes.
Future evolutions of this extension may evaluate more
efficient and semantically accurate encoding of notifica-
tions. A possible option for XML-based content types is
XMLdiff (e.g. XML Patch, RFC 5261), or annotations
(XML attributes) to add simple CRUD semantics on top
of the existing XSDs.

Methods
Major parts of the experimentation reported in this work
were conducted within the 12th edition of the OGC

Testbed initiative. The OGC is an international not for
profit organization, whose members (about 520 at present,
from government, commercial organizations, NGOs, aca-
demic and research organizations) are committed to mak-
ing quality open standards for the global geospatial
community. These standards are made through a consen-
sus process and are freely available for anyone to use, to im-
prove sharing of the worlds geospatial data. OGC
standards are used in a wide variety of domains including
Aviation, Environment, Defense, Health, Agriculture, Me-
teorology, Sustainable Development and many more.

OGC Testbed initiatives are fast-paced, multi-stakeholder
collaborative efforts to define, design, develop, and test can-
didate interface and encoding specifications; to experiment
with new architectural approaches and patterns; to develop
guides on spatio-temporal information technologies; and to
serve as rapid prototyping environments for general geo-
spatial IT challenges. They are executed as part of the OGC
Innovation Program (IP), but receive requirements and def-
inition of work items from all OGC programs (i.e. Stan-
dards Program, Compliance Program and Communications
& Outreach Program). The results of a Testbed are cap-
tured in Engineering Reports (ERs) and demonstrated with
prototype implementations.

OGC Testbed-12 started in January 2016 and finished
with the final demonstration event in November 2016.
Several work items addressed the means to incorporate
forms of asynchronous service interaction, including the
publish/subscribe MEP, for example in Web Processing
Service (WPS), WCS, WES, or in geospatial queries of
aviation data. The experimentation reported in this
work contributed mainly to the Large-Scale Analytics
(LSA) and Aviation threads of Testbed-12. Details on
these are documented in the Testbed-12 Results En-
gineering Report [11].

Bigagli and Rieke Open Geospatial Data, Software and Standards (2017) 2:18

In particular, the LSA thread included the Asynchron-
ous Service Interaction subtask, part of a set of subtasks
aimed at enhancing the OGC Baseline, by extending
OGC architectural designs through efforts that cross
over several individual standards and services and are
applied in a much wider scope. The activities of the sub-
task have experimented and compared three different
approaches to implement asynchronous interaction in
OGC Web services:

1. WPS facades;
2. Specific extensions to each OGC Web Service with

asynchronous request/reply capabilities;
3. PubSub Standard.

The results of these activities are captured in the
document deliverable “A067 Implementing Asynchron-
ous Service Response Engineering Report” [8], which fo-
cused on the first and the second approach, with the
goal to summarize and compare the results from using a
WPS facade and an extension for WES for asynchronous
service responses, as well as to provide recommenda-
tions for future activities. The document deliverable
“A074 PubSub/Catalog Engineering Report” [1] focused
on the third approach, OGC PubSub, in the specific case
of catalogs, investigating the functional requirements of
an interoperable, push-based data discovery solution.

The Aviation thread addressed the requirements for
Asynchronous Messaging for Geospatial Queries of Avi-
ation Data. This task investigated the means to incorpor-
ate publish-subscribe messaging patterns for the retrieval
of aviation data (i.e. AIXM, FIXM, or AMXM) informa-
tion using geospatial queries through a Java Message Ser-
vice (JMS) interface and Advanced Message Queuing
Protocol (AMQP) interface. This task also demonstrated a
capability using the recommended approach.

The results of these activities are captured in the
document deliverable “Asynchronous Messaging for Avi-
ation Engineering Report” [9] describing the results of
the asynchronous messaging study and implementation
applying the PubSub Standard in the aviation domain.
The goal was to develop a publish/subscribe messaging
architecture between different aviation components such
as clients, data provider instances, and Data Brokers.
The architecture study took various messaging protocols
such as AMQP 1.0, JMS and OASIS WS-N into consid-
eration. Special attention was laid on the smooth inte-
gration of middleware solutions implementing the
various messaging protocols and the PubSub Standard.

Application domains

The dissemination of near-real time data plays an im-
portant role in many application domains. This section
provides examples where the OGC PubSub Standard has

Page 5 of 10

been integrated into existing architectures in order to
provide an interoperable solution for the asynchronous
delivery of data.

Sensor web

Sensor Web technologies have been driven by the OGC
Sensor Web Enablement (SWE) Working Group since
more than a decade. The SOS is a well-established inter-
face standard for providing access to timeseries observa-
tion data. As it follows the request/reply MEP, the SOS
does not provide access to near-real time data. Still,
many application domains of the Sensor Web require
access to data in an asynchronous way.

Water infrastructure management highly depends on
low latency data processing. In particular, the exceed-
ance of critical thresholds of water gauges play an im-
portant role in the prevention of flood scenarios. In the
past, error prone polling mechanisms using SOS in-
stances have been installed to achieve this goal.

Another example of a Sensor Web application domain
is the management of air quality data. Near real-time
processing of air quality data has become an increasingly
important mechanism to detect critical air pollution sit-
uations (e.g. for large cities, see [2]). Sensor Web tech-
nologies and in particular PubSub provide the means to
deliver such data in time using asynchronous message
delivery. This section describes the approach and design
of a Sensor Web service architecture that addresses
these requirements.

Technological viewpoint

In order to achieve (near) real-time dissemination of ob-
servation data, previous Sensor Web service infrastruc-
tures have been based on the orchestration of multiple
server nodes and intermediary components. The sub-
scription to as well as the delivery of data of interest was
realized by either a dedicated service component or a
customized workaround. Broring et al. [5] describe a
complex architecture to achieve this functionality featur-
ing OGC service specifications such as SES and Web
Notification Service (WNS). In analogy, Fig. 4 illustrates
the design of such an architecture.

The architecture is comprised of four service nodes: a
SOS that provides access to time series observation data,
a SES that provides the possibility to subscribe for spe-
cific data and an intermediary component, the SOS-SES
Connector. In addition, the WNS has been used to estab-
lish the communication between SES and the client. The
dissemination mechanism for real-time observation data
could be email delivery, HTTP for machine-to-machine
communication or for example an instant messaging
protocol such as XMPP (Extensible Messaging and Pres-
ence Protocol).

Bigagli and Rieke Open Geospatial Data, Software and Standards (2017) 2:18

Page 6 of 10

Client

[

WNS

SOS

~» g

SOS-SES SES

Connector

/

R

Sensors

Fig. 4 Legacy Sensor Web Architecture

The SOS-SES Connector component introduced a fair
amount of instability to the system: to manage the re-
trieval of time series observation data, the component
had to persist its state. In particular, it was required to
store the timestamps of single observations in order to
not retrieve these multiple times and subsequently pro-
duce duplicates. The introduction of such business logic
made the system error prone, e.g. in situations where
the connector’s state could not be persisted and restored
after a planned server maintenance. In general, the in-
volvement of such a high amount of service instances
implies multiple drawbacks:

1. More web service components have to be
maintained, configured and updated

2. every component introduces a possible point of
failure

3. the overall system becomes static and prevents
extensibility

4. for each service endpoint, a corresponding client
and/or management component has to be provided

Real world applications of this architecture pattern
have confirmed the above listed aspects. Therefore, the
development of the OGC PubSub specification has been
highly anticipated in the Sensor Web community as it
provides the capabilities to overcome multiple of these
concerns. Figure 5 illustrates a Sensor Web architecture
that introduces PubSub as a pivotal component.

The SOS service is extended with the PubSub interface
in a modular way. All functionality that has previously
been realized by SES, the SOS-SES Connector and the

Client

PubSub
Interface

SOS

e

Sensors

Fig. 5 PubSub-enabled Sensor Web Architecture

WNS is now bundled within the PubSub interface. The
client software only communicates with one service in-
stance that provides both SOS and PubSub interfaces.

A PubSub service instance has to provide a set of Pub-
lications (see section “Concepts and technologies”) that
form the basis for a subscription. In the Sensor Web do-
main, it has become a common practice to provide the
Observation Offerings of the SOS as the Publications of-
fered by the PubSub interface. Observation Offerings
bundle the time series data for a given context that is
valid for the use case. For example, in a water infrastruc-
ture architecture, all measurements of a certain water
gauge station are defined as one Observation Offering. A
typical client application consists of a mechanism to dis-
play time series data for distinct measurement stations
(see Fig. 6), i.e. the offering.

The integration of SOS and PubSub by means of the
Observation Offering shows great potential for user appli-
cations and provides a close link to an existing concept of

Bigagli and Rieke Open Geospatial Data, Software and Standards (2017) 2:18

Page 7 of 10

Helgoland Map Favorites Provider Listselecton Settings
210.00
Legend
205.00
Fuestrup_3310010
Wasserstand (cm)
200.00 Wasserstand-Fuestrup_3310010
Wasserstand
o
195.00 » Q0 /S 06 x
.
£190.00
5
185.00
180.00
Data without warranty!
175.00
04:00 08:00 12:00 16:00 20:00 00:00
Feb04 Feb05 Feb05 Feb06 Feb06 Feb07 Feb07 Feb08 Feb08 Feb09
1200 0000 1200 00:00 12:00 00:00 12:00 00:00 1200 00:00
16:02:25 o 1= < 06.02.17 - 07.02.17 > =
Fig. 6 Helgoland Sensor Web client

the SOS. If the user is interested in real-time data by a cer-
tain measurement station, he/she can subscribe for the
publication that is the same as the offering. An integration
within the user interface could be realized via a few con-
trols within the diagram view, e.g. via a button “auto-up-
date” to enable the real-time update of the diagram with
new observation data. For such a web-based solution, the
Delivery method would be pre-defined to use WebSock-
ets. The web application would act as both the Subscriber
and Receiver following the PubSub terminology.

Aviation and air traffic management

This section describes previous and current service ar-
chitectures in the domain of Air Traffic Management
(ATM). Current ongoing initiatives such as the SESAR
Joint Undertaking governed by Eurocontrol [10] and the
System Wide Information Management (SWIM) Next-
Gen of the Federal Aviation Administration (FAA) pro-
ject [6] investigate the possibilities to integrate the
asynchronous delivery of ATM data. In this scope, sev-
eral architectures have been developed (mainly within
OGC interoperability experiments) to design a possible
SOA featuring publish/subscribe capabilities.

Use cases

Base data such as airspaces or scheduled flights are
modeled and encoded using the Air Traffic Information
Exchange Model (AIXM) and related technologies (e.g.
Flight Information Exchange Model, see [9]). Access to
this base data is provided via WFS instances. ATM re-
quires to communicate updates on specific features in a

fast and reliable way. For example, the runway of an air-
port could be closed due to bad weather, or an ad-hoc
airspace could be defined to ensure the secure deploy-
ment of Search and Rescue activities. This information is
highly dynamic and therefore requires an approach be-
yond the request/reply MEP as provided by classic data
services like the OGC WES.

Technological viewpoint

The OGC has driven the development of SOAs in the
Aviation and ATM domain since 2008. From the begin-
ning, the push-based dissemination of data has played a
fundamental role in the design of systems and its appli-
cations. Figure 7 outlines the high-level architecture for
asynchronous data delivery of the OGC Web Services
Testbed — Phase 9 (OWS-9). The Event Service (ES)
takes the role of a middleware component, which man-
ages subscriptions, as well as the corresponding delivery
of ATM data to clients.

The WES instance had to take care to push updated
data to the ES instance which then delivered the data to
subscribed client components. This architecture showed
drawbacks in terms of flexibility and interoperability. In
particular, both the client component and the WES in-
stance had to communicate with the interfaces of the
ES. In addition, the ES had to communicate with the
WES in order to enrich data with supplementary infor-
mation. This was especially the case for AIXM data as
updates to features in general only provided the specific
updated properties of the feature and not the full repre-
sentation. Still, the ES might have had to apply a spatial

Bigagli and Rieke Open Geospatial Data, Software and Standards (2017) 2:18 Page 8 of 10

s
2
I
E
2 e > DMS/Clients
=
§ —
£ A A J
(=) [H
[g : Push matching
% i 57 data
i At
g v
gi ©
5 =i =
] Event Service <
55 x
2 & -
3= o
& 2 /2
© -
2 g_ __ Push data g
g 2 ‘B
g 3 >
=V o
[a
i ©
o : “r‘e
g e WFS-T 2.0 8
&
8
©
a
L CLELEREERLEREED > Pull-based communication (Request/Response)
=——> Push-based communication (Publish/Subscribe)
Fig. 7 Push-based architecture as designed in OWS-9 (source: [12])

filter as defined in a subscription and therefore had to
resolve relevant information in an additional processing
step.

Recently, the OGC designed an advanced architecture
which features the PubSub Standard as part of the
Testbed-12 interoperability experiment (see [9]). Figure 8
illustrates the newly developed architecture. It acts as the
intermediary step towards a single-service architecture
where both the request/reply access to data and the asyn-
chronous delivery is managed in a single component.

The Asynchronous Messaging Server is an implementa-
tion of the OGC PubSub Brokering Publisher conform-
ance class. It is therefore able to manage subscriptions as
well as to act as a data broker between different compo-
nents of the system architecture. AMQP in its version 1.0
has been used as the delivery method. This allowed
the integration of existing data delivery components
such as the Harris DEX, which is the current imple-
mentation of FAA NAS (National Airspace System)
Enterprise Messaging Service.

In contrast to the application within the Sensor Web
domain, the definition of PubSub publications has been
realized in a broader way. As the system architecture
was of a prototypical nature, it was sufficient to defined
general publications, i.e. one for AIXM data and FIXM

data. In production environments, one possibility for a
finer-grained set of publications could be a definition
based on geographic regions (e.g. “Airspaces in the San
Francisco area”). This would fit to most use cases of
ATM as a subscription would likely be defined in the
scope of a specific flight and therefore would have a pre-
dictable spatial extent.

Results and Discussion

The publish/subscribe MEP is distinguished from the re-
quest/reply model by the asynchronous delivery of mes-
sages from the server to the client, and the ability for a
Subscriber to specify an ongoing, persistent expression
of interest.

In the publish/subscribe model, the server can take
the initiative to notify the clients when an event occurs,
rather than relying on clients to anticipate it, hence re-
ducing the latency between event occurrence and event
notification.

The two models are complementary, not alternative.
In fact, request/reply may be supplemented with pub-
lish/subscribe: for example, the initial state of interest
may be requested via request/reply, and then a subscrip-
tion may be created so that changes and updates are

Bigagli and Rieke Open Geospatial Data, Software and Standards (2017) 2:18

Page 9 of 10

Minimum requirement

PuhSith 10

PubSub 1.0
Service
Consumer
(asynch client;

Stretch
Requirement

we-subscribe
responsa

AMQP of JUS

fiters on the fitar

PubSub 1.0
OGC i
) Service Harris DEX Ulkee
Web Service Consumer (FAA sWIM) L™ & Pt
Consumer (asynch client)

WFS/

WFS-TE/

WMS/ Subscribe Notify | [

WCSs

Data Broker

Asynch Msg Server

(Brokering Publisher)

Fitor

WFS/

http-post (easy)
WFS-TE/ “anything” non-
WMS/ standard
wes spee Non-standard Spec
Eventful OWS Publisher OGC PubSub 1.0 SEGC
Data Provider Extension TB-12 AV architecture

Fig. 8 PubSub architecture as designed in OGC Testbed-12 (source: [9])

FAA SWIM

delivered. This can result in less or more predictable
network traffic.

In fact, the publish/subscribe MEP can be imple-
mented for the generic OWS via its existent operations,
as exemplified in Fig. 9.

Our work has provided detailed extensions, imple-
mentation experiences as well as a proposal for a
general, basic mechanism for enabling to PubSub the
generic OWS over the existing request/reply MEP, as
documented in the PubSub / Catalog Engineering Re-
port [1] and the Asynchronous Messaging for Avi-
ation Engineering Report [9].

The Testbed-12 Results Engineering Report [11] dis-
cusses the three approaches considered in Testbed-12 to
implement asynchronous communication: WPS facades,
service-specific extensions, and OGC PubSub. The first
builds on the capabilities of the WPS, which offers asyn-
chronous communication patterns and therefore can be
used as facade to any other service. The second develops
an individual solution per each OWS interface (in fact,
the WPS asynchronous interface is such a solution, for
the WPS), and the third option builds on the PubSub
Standard, which defines publish/subscribe functionality
independently of the binding technology.

The Implementing Asynchronous Services Response
Engineering Report [8] summarizes and compares the
results from asynchronous communication experiments
executed in Testbed-12. Testbed-12 implemented the
WPS facade approach against WES and WCS service in-
stances, added support for asynchronous communica-
tion to a WEFS using additional request parameters, and
added publish/subscribe support to catalogs, as detailed
in the PubSub/Catalog Engineering Report [1].

The Testbed-12 Results Engineering Report [11] con-
cludes that all the three solutions have been imple-
mented successfully. However, the solution based on the
PubSub Standard resulted the most flexible of all three
(and can include the other two if necessary).

Conclusion

The implementation of efficient asynchronous commu-
nication is necessary to support the transition to ad-
vanced push-based service interaction styles and enable
ubiquitous sensor-based applications. The realizations of
publish/subscribe architectures in the domains of Sensor
Web and Air Traffic Management show high potential.
In situations requiring the delivery of critical informa-
tion in near-real time, a PubSub component can fill the

2. OWSRequest_#1

2.1 OWSResponse

1. Subscribe (filter = OWSRequest_#1)

-

[

3. Notify (data/descriptor_#1)

4. Notify (data/descriptor_#2)

PubSub Client ™
Fig. 9 Publish/subscribe MEP for the generic OWS

PubSub OWS

Bigagli and Rieke Open Geospatial Data, Software and Standards (2017) 2:18

gap that exists when using request/reply web services. It
is planned to implement OGC PubSub in additional ap-
plication domains of the Sensor Web, such as oceanog-
raphy and marine applications.

In conclusion, the long-awaited Publish/Subscribe 1.0
Standard bridges a gap between the existing OGC stand-
ard baseline and the many technologies supporting
server-initiated communications. It is applicable to all
existing OWS’s by supplementing the existing service
interface with additional capabilities for retrieving data
in an asynchronous way.

Future work in the scope of the OGC PubSub Stand-
ard Working Group will focus on development of add-
itional interface binding documents (e.g. REST/JSON
binding) to address the needs of modern web client
based systems. In addition, the definition of profiles for
delivery methods is an important task. In order to allow
smooth and interoperable integration of PubSub ser-
vices, such profiles are crucial. The integration of mod-
ern and well-established technologies such as AMQP,
MQTT and JMS into PubSub with specific profiles is
therefore a central goal.

Currently, the PubSub Standard defines ways to filter
data of a publication in an extensible way. An interesting
field of work would be the addition of event stream pro-
cessing capabilities. Stream processing goes beyond the
capability of basic data filtering. It generates higher level
information from raw data stream (e.g. event patterns
such as “temperature < 20 followed by temperature >=
20”). It would allow the integration of concepts such as
Complex Event Processing into the standard and could
be realized as a dedicated event processing extension of
the PubSub Standard.

Abbreviations

AIXM: Aeronautical Information Exchange Model; AMQP: Advanced Message
Queuing Protocol; AMXM: Aerodrome Mapping Exchange Model; ATM: Air
Traffic Management; CSW: OGC Catalogue Service for the Web; ES: Event
Service; FAA: Federal Aviation Administration; FIXM: Flight Information
Exchange Model; HTML: Hypertext Markup Language; JMS: Java Message
Service; KVP: Key-Value Pair; LSA: Large-Scale Analytics; MEP: Message
Exchange Pattern; NAS: National Airspace System; OAI-PMH: Open Archives
Initiative Protocol for Metadata Harvesting; OGC: Open Geospatial
Consortium; OWS: OGC Web Services; PubSub: OGC Publish/Subscribe 1.0
Standard; SES: OGC Sensor Event Service; SOS: OGC Sensor Observation
Service; SSE: Server-Sent Events; SWE: Sensor Web Enablement; SWIM: System
Wide Information Management; WCS: OGC Web Coverage Service; WFS: OGC
Web Feature Service; WNS: OGC Web Notification Service; WPS: OGC Web
Processing Service; WS-N: OASIS Web Services Notification; XML: Extensible
Markup Language; XMPP: Extensible Messaging and Presence Protocol

Acknowledgements

Lorenzo Bigagli is grateful to Fabrizio Papeschi and Massimiliano Olivieri,
from the National Research Council of Italy, for their contributions to the
research activities leading to these results.

Funding

The research activities leading to these results were partially funded by the
OGC Testbed-12 sponsors, in particular by the National Geospatial-
Intelligence Agency (NGA), US Federal Aviation Administration (FAA) and
European Organisation for the Safety of Air Navigation (EUROCONTROL).

Page 10 of 10

Availability of data and materials
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

LB was the main contributor to the introduction, methodology, concepts
and technologies chapters. MR was the main contributor to the application
domains chapter. Both authors contributed to the discussion and conclusion
chapters. Both authors read and approved the final manuscript.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Author details

'Institute of Atmospheric Pollution Research, National Research Council of
Italy, Florence, Italy. 252°North Initiative for Geospatial Open Source Software
GmbH, Munster, Germany.

Received: 1 March 2017 Accepted: 6 June 2017
Published online: 03 August 2017

References

1. Bigagli L. OGC® Testbed-12 PubSub / Catalog Engineering Report. 2017.
Available via OGC. http://docs.opengeospatial.org/per/16-137r2.html.

2. Botts M, Percivall G, Reed C, Davidson J. OGC® Sensor Web Enablement:
Overview And High Level Architecture. 2007. Available via OGC. http://
portal.opengeospatial.org/files/?artifact_id=25562

3. Braeckel A, Bigagli L, Echterhoff J. OGC® Publish/Subscribe Interface
Standard 1.0 — Core. 2016. Available via OGC. http://docs.opengeospatial.
org/is/13-131r1/13-131r1.html

4. Braeckel A, Bigagli L. OGC® Publish/Subscribe Interface Standard 1.0 SOAP
Protocol Binding Extension. 2016. Available via OGC. http://docs.opengeospatial.
org/is/13-133r1/13-133r1 .html

5. Broring A, Echterhoff J, Jirka S, Simonis I, Everding T, Stasch S, Liang S,
Lemmens R. New Generation Sensor Web Enablement. 2011. http://dx.doi.
0rg/10.3390/5110302652

6. FAA SWIM. System Wide Information Management (SWIM) — FAA. 2017.
https.//www.faa.gov/nextgen/programs/swim/. Accessed 28 Feb 2017.

7. Graham S, Hull D, Murray B. Web Services Base Notification 1.3. 2016.
Available via OASIS. http://docs.oasis-open.org/wsn/wsn-ws_base_
notification-1.3-spec-os.pdf.

8. Prof3 B. OGC® Testbed-12 Implementing Asynchronous Services Response
Engineering Report. Pending Approval by OGC. 2017.

9. Rieke M, Balaban A. OGC® Testbed-12 Asynchronous Messaging for Aviation
Engineering Report. 2017. Available via OGC. http://docs.opengeospatial.
org/per/16-017.html.

10. SESAR Joint Undertaking. SESAR - Partnering for smarter aviation. 2017.
http://www.sesarju.eu/. Accessed 28 Feb 2017.

11, Simonis I. OGC® Testbed-12 Results Engineering Report. 2017. Available via
OGC. http//www.opengeospatial.org/projects/initiatives/testbed12.

12. Speed C. OGC® OWS-9 Aviation Architecture Engineering Report. 2013.
Available via OGC. https://portal.opengeospatial.org/files/?artifact_id=51823

http://docs.opengeospatial.org/per/16-137r2.html
http://portal.opengeospatial.org/files/?artifact_id=25562
http://portal.opengeospatial.org/files/?artifact_id=25562
http://docs.opengeospatial.org/is/13-131r1/13-131r1.html
http://docs.opengeospatial.org/is/13-131r1/13-131r1.html
http://docs.opengeospatial.org/is/13-133r1/13-133r1.html
http://docs.opengeospatial.org/is/13-133r1/13-133r1.html
http://dx.doi.org/10.3390/s110302652
http://dx.doi.org/10.3390/s110302652
https://www.faa.gov/nextgen/programs/swim/
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf
http://docs.opengeospatial.org/per/16-017.html
http://docs.opengeospatial.org/per/16-017.html
http://www.sesarju.eu/
http://www.opengeospatial.org/projects/initiatives/testbed12
https://portal.opengeospatial.org/files/?artifact_id=51823

	Abstract
	Background
	Concepts and technologies
	Methods
	Application domains
	Sensor web
	Technological viewpoint

	Aviation and air traffic management
	Use cases
	Technological viewpoint

	Results and Discussion
	Conclusion
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors’ contributions
	Consent for publication
	Ethics approval and consent to participate
	Publisher’s Note
	Author details
	References

