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Introduction
The time-series and cross-sectional relationships between corporate investments and 
stock returns are well-documented in the literature. Time-series evidence supports 
the notion that corporate investments are influenced by waves of investor optimism 
and pessimism. According to Arif and Lee (2014), periods of higher corporate invest-
ment correspond to periods of investor optimism and are followed by periods of lower 
aggregate stock returns. Managers increase (decrease) capital investments during peri-
ods of optimism (pessimism) because they overestimate (underestimate) the present 
value of expected future cash flows. Aggregate investments negatively predict future 
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market returns because managers, like investors, are frequently too optimistic (too pes-
simistic). They conclude that investor sentiment influences real managerial decisions, 
either because managers rationally exploit market misvaluations (“managerial cater-
ing” hypothesis) or because they are caught up in market euphoria (“expectation bias” 
hypothesis) and make more capital investments. They demonstrate the tendency for 
aggregate investment to increase during periods of high consumer confidence, high net 
inflows into equity markets, and high sentiment, as measured by the Baker–Wurgler 
sentiment index.

Baker et al. (2003)’s cross-sectional findings suggest that corporate investment is sen-
sitive to nonfundamental changes in stock prices. Their main prediction is that stock 
prices will have a greater impact on the investment of “equity-dependent” firms, which 
require external equity to finance marginal investments. In particular, firms in the top 
quintile of equity dependence have investments that are nearly three times as sensitive 
to stock prices as firms in the bottom quintile. Standard corporate finance considera-
tions suggest that equity-dependent firms tend to be young and have high leverage, low 
cash balance and cash flows, high cashflow volatility (and hence low incremental debt 
capacity), and strong investment opportunities. They discover average negative invest-
ment-future returns sensitivity, which becomes increasingly negative as equity depend-
ence increases.

Similarly, prior research indicated a negative relationship between aggregate mutual 
fund flows, flows from the bond to equity mutual funds, and future market returns. 
According to Ben-Rephael et  al. (2012), mutual fund trading activities generate non-
fundamental price pressure on aggregate stock prices, which reverts in the short term. 
Accordingly, in bullish markets, equity mutual funds receive inflows that must be quickly 
equitized by fund managers. They are experiencing outflows in bearish markets, and 
managers reduce their positions because of redemption pressure. Due to the tendency of 
retail investors to herd, the directional trading of mutual funds is correlated. As a result, 
mutual funds’ collective actions generate short-term price pressure on aggregate stock 
prices. Correlated net inflows (outflows) cause upward (downward) price pressure and 
subsequent negative (positive) returns. Hence, the reversal relationship can be linked to 
price “noise” caused by uninformed trading stemming from sentiment.

In this vein, I investigate the impact of flows between the bond and equity funds on 
investment factors in the United States from 1984 to 2015. Based on previous evidence, 
I hypothesize that market euphoria affects retail investors’ and managers’ decisions. 
Retail investors are shifting their holdings from bond to equity mutual funds, and high-
investment firms are investing more aggressively. “Aggressive” managers are caught up 
in market euphoria; thus, they invest more, and high-investment stocks are overpriced. 
Because high- and low-investment firms are assumed to be differentially impacted by 
market-level euphoria during these periods, high-investment firms earn higher returns 
than low-investment firms. Consequently, the investment factor may be influenced, and 
the contemporaneous relationship between net exchanges and the investment factor can 
be interpreted as negative. Subsequently, the reversal relationship is stronger and, there-
fore, returns for the high-investment portfolio are significantly lower than those for the 
low-investment portfolio. Hence, if both retail investors and managers are overly opti-
mistic, I anticipate that an investment factor will perform particularly well in the coming 
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period (the lagged relationship between net exchanges and the investment factor can be 
assumed to be positive). Overall, I find contemporaneous mispricing effects and a sta-
tistical reversal relationship between net exchanges, flows from bonds to equity funds, 
and both legs of the investment factor. The statistical reversal relationship between pre-
vious net exchanges and the investment factor is economically significant. Moreover, a 
one-standard-deviation shock to net exchanges causes a 0.29% decrease in investment 
factor returns, which are all reversed within 5  months. A trading strategy based on 
signals from past net exchanges and the investment factor outperforms the market by 
0.68% in the months following positive net exchanges and produces significant alphas 
after accounting for well-known equity risk factors. My findings are interpreted as evi-
dence in favor of a behavioral explanation in which sentiment influences real managerial 
decisions. Interestingly, in the regressions, my measure of flows from bonds to equity 
funds, which serves as a proxy for market-level euphoria, outperforms other indicators 
of investor sentiment.

The rest of this paper is structured as follows. Section 2 discusses the relevant litera-
ture. Section 3 describes the data and presents summary statistics. Section 4 discusses 
my empirical findings regarding the relationship between factor portfolio returns, net 
exchanges, and market stress indicators. Finally, Sect. 5 concludes with a summary of the 
major findings.

Related literature
Retail investors are the most common mutual fund shareholders, and they are vulner-
able to volatile market conditions. Based on data reported in the 2018 Investment Com-
pany Institute (ICI) Fact Book,1 retail investors hold about 92% of all equity mutual 
funds, 90% of bond mutual funds, and 62% of money market mutual funds as of 2017. In 
bullish markets, for example, equity mutual funds receive inflows that must be quickly 
equitized by fund managers. The directional trading of mutual funds is correlated due 
to retail investors’ herding behavior. Hence, the collective actions of fund managers gen-
erate short-term price pressure on aggregate stock prices. As a result, the direction of 
mutual fund trades may be predictable due to the price pressure problem associated with 
“crowded trades.” The temporary price pressure hypothesis has recently received strong 
empirical support. The results of Arif et al. (2016) suggest that short sellers trade in the 
opposite direction of these flows based on the flow-induced price impact. When fund 
flows are in the opposite direction, short sellers have up to three times the ability to pre-
dict stock returns. Short sellers are extremely quick to mirror “unexpected” mutual fund 
trades that are not part of an ongoing pattern. The authors do not provide direct evi-
dence on how short sellers can predict these moves, but it appears that short sellers are 
picking up on some important indirect signals. Consistent with the behavioral literature, 
mutual funds lose more to short sellers when retail investors are overoptimistic about 
equities. Ben-Rephael et al. (2012) investigated aggregate net equity fund exchanges in 
the United States and the monthly shifts between bond and equity funds. They discov-
ered that aggregate stock market excess returns are contemporaneously positively, but 

1  https://​www.​ici.​org/​pdf/​2018_​factb​ook.​pdf, Table 60.

https://www.ici.org/pdf/2018_factbook.pdf
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negatively, correlated with lagged net exchanges. Within four (ten) months, 85% (100%) 
of the contemporaneous relation is reversed. Their findings are interpreted as sup-
porting the notion of “noise” in aggregate market prices. Ben-Rephael et al. (2011) use 
aggregate daily flows to equity mutual funds in Israel and found empirical evidence sup-
porting the “temporary price pressure hypothesis” regarding mutual fund flows: flow-
induced trading activities of mutual funds create temporary price pressure that is then 
corrected. Within 10 trading days, half of the initial price change is reversed. Ben-David 
et  al. (2021) found a causality between flow-based sentiment and returns, presenting 
evidence that mutual fund ratings generate correlated demand, which causes systematic 
price fluctuations. Meanwhile, Wen et al. (2019) discovered a robust negative relation-
ship between retail investor attention and future stock price crash risk for a sample of 
Chinese A-share listed companies. Their empirical evidence suggests that retail investor 
attention can effectively reduce information asymmetry, resulting in a lower risk of a 
stock price crash.

Regarding return predictability, Lou (2012) provided a flow-based explanation for 
some well-known empirical patterns of return predictability. In particular, he showed 
that expected flow-induced trading by mutual funds positively (negatively) predicts 
future stock and fund returns in the short (long) run. The return pattern is consistent 
with the notion that arbitrageurs have limited capacity to absorb temporary demand 
shocks in the financial market, even if these shocks are fully expected. The flow-based 
explanation drives mutual fund performance persistence, the smart money effect, and, 
to a lesser extent, stock price momentum. According to Shive and Yun (2013), patient 
traders’ profit from mutual funds’ predictable, flow-induced trades. In anticipation of 
a 1%-of-volume change in mutual fund flows into a stock the following quarter, institu-
tions in the same 13F category as hedge funds trade 0.29–0.45% of volume in the current 
quarter. A third of the trading is linked to a subset of 504 identified hedge funds. The 
effect is stronger when quarterly mutual fund portfolio disclosure is required and among 
hedge funds with more patient capital. A hedge fund with a one standard deviation 
higher measure of anticipatory trading has a 0.9% higher annualized four-factor alpha. 
Meanwhile, a one standard deviation higher measure of anticipation of a mutual fund’s 
trades by institutions is associated with a 0.07–0.15% lower annualized four-factor alpha.

When studying the negative relationship between corporate investments and future 
returns, one can distinguish between rational and sentiment-based explanations. The 
rational camp argues that the negative relationships are explained by time-varying dis-
count rates, assuming that stock prices are efficient. Short-term market mispricing 
is irrelevant to investment decisions because rational corporate managers optimize 
long-term firm value (e.g., Cochrane 1991; Lamont 2000; Hirshleifer et al. 2009). More 
recently, Hou et al.’s (2015) findings support the view that firms’ investment decisions are 
aligned with the discount rate. Aggressive firms with lower discount rates invest more, 
whereas conservative firms with higher discount rates face higher investment hurdles 
and thus invest less. Behavioral explanations support the notion that corporate invest-
ments are influenced by waves of investor optimism and pessimism. Periods of higher 
corporate investment correspond to periods of investor optimism and are followed by 
lower (aggregate) stock returns. Investor sentiment can be assumed to influence real 
managerial decisions, either because managers rationally exploit market mispricing 
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(“managerial catering”) or because they are caught up in market euphoria (“expectation 
bias”) and increase capital investment (e.gBaker et al. 2003; Polk and Sapienza 2004; Arif 
and Lee 2014). As a result, corporate investments are likely to increase when firms are 
more overvalued by issuing more equity (Baker and Wurgler 2000) or because of a firm 
mispricing channel (Polk and Sapienza 2004, 2009).

Huang et al. (2020) showed that a large set of asset pricing factors (anomalies) is sig-
nificantly vulnerable to noise trader risk, which arises from uninformative demand 
shifts among mutual fund investors. When allocating capital to mutual funds, mutual 
fund investors are largely unaware of systematic factors and rely on simple signals. They 
aggregate flow-induced trades of individual stocks underlying the factors to measure 
uninformed demand for factors. Moreover, they find that mutual funds’ flow-induced 
trading significantly determines average returns, volatility, and co-movements among 
the well-studied factors, implying the vulnerability of these factors to noise trader risk. 
Importantly, they show that arbitrageurs and other investors have significantly priced 
this flow-driven noise trader risk. Zou (2016) suggested that trading noise has a signifi-
cant impact on default risk estimation. Adjusting for trading noise significantly affects 
firms’ estimation of distance-to-default, in terms of magnitude and relative ranking 
among firms. As a result, default probabilities adjusted for trading noise are more pow-
erful predictors of corporate default events. Moreover, Kou et  al. (2021) proposed a 
bankruptcy prediction model for small- and medium-sized firms in the absence of finan-
cial statements. The authors emphasize the significance of transactional data and pay-
ment network-based variables in predicting bankruptcy.

Barber et al. (2016) argued that sophisticated investors will consider all factors (priced 
and unpriced) that explain cross-sectional variation in fund performance when evalu-
ating a fund manager’s skill. They examined the factors that investors pay attention to 
by analyzing mutual fund flows as a function of recent returns decomposed into alpha 
and factor-related returns. Surprisingly, when evaluating funds, investors pay the most 
attention to market risk (beta) and regard returns attributable to size, value, momentum, 
and industry factors as alpha. Using proxies for investor sophistication (wealth, distri-
bution channels, and periods of high investor sentiment), the authors determined that 
more sophisticated investors use more sophisticated benchmarks when evaluating fund 
performance.

Data and descriptive statistics
Fund flows

I employ a subset of the flow data examined in a recent study by Ben-Rephael et  al. 
(2012) of the ICI. Although their research relies on ICI data from 1984 to 2008, I use 
aggregate mutual fund flows from January 1984 to December 2015. Over our sample 
period, the aggregate data contain 33 categories: 5 for domestic equity funds, 4 for inter-
national equity funds, 4 for mixed funds (both equity and bonds), and 20 for bond funds. 
The aggregate data are published monthly. The emphasis is on equity funds that include 
domestic equity, international equity, and mixed funds. Domestic equity is the most 
important asset class in terms of asset values and flows, and it includes the following 
asset classes: growth, aggressive growth, growth and income, income equity, and sector. 
Following Warther (1995) and Ben-Rephael et al. (2012) calculated monthly net flows as 
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the sum of the following components: “new sales” plus “exchanges in” minus “redemp-
tion” and “exchanges out.” The fund assets at the beginning of the month are used to 
normalize the monthly flow components. Moreover, the flows are divided into two cate-
gories: NEIO and NSR. NEIO is the normalized aggregate net exchanges of equity funds 
(“exchanges in” minus “exchanges out” flows from bond to equity funds), and NSR is 
the normalized aggregate net sales of equity funds (“new sales” minus “redemptions”). I 
concentrate on NEIO in my analysis, which is motivated by the findings of Ben-Rephael 
et al. (2012). The reason for this is that net exchanges reflect mutual fund investors’ asset 
allocation decisions to shift their holdings between bond and equity funds, whereas net 
sales and redemption are influenced more by long-term savings and withdrawals.

I focus on two investment factors: the Conservative Minus Aggressive (CMA) factor, 
which includes a conservative and aggressive investment portfolio, and the R_IA invest-
ment factor developed by Hou et al. (2015). The data are obtained from the websites of 
Kenneth French and Chen Xue. I also use FTS, a market stress indicator based on Baele 
et al.’s (2020) flight-to-safety dummy, which is available daily. I convert the daily dum-
mies into a monthly indicator that shows the fraction of FTS days in a given month. I 
identified 11% of the months as having FTS of varying intensity. Table  1 presents the 
summary statistics of the equity fund flows, the market stress indicator, and the factor 
portfolio returns.

Table 1  Summary statistics

The table presents the summary statistics of the equity fund flows, the market excess return and the other factor portfolio 
returns used in the study. The sample period ranges from February 1984 to December 2015, covering a total of 383 months, 
Fund flows are calculated based on data from the Investment Company Institute (ICI). The following fund categories are 
included: domestic equity, international equity, and mixed funds. The equity market returns are value-weighted returns of 
NYSE, Amex, and Nasdaq stocks from the Center for Research in Security Prices (CRSP). The net flows of the equity funds 
and their components are normalized each month by the previous month’s fund assets value: NFLOWS is the normalized 
net flows (in %). NSR is the normalized net sales ("new sales" minus "redemptions") in %. NEIO is the normalized "net 
exchanges" ("exchanges in" minus "exchanges out") in %. FTS is based on the daily flight-to-safety dummy of Bekaert et al. 
(2019) and transformed to derive a monthly indicator, which provides information about the fraction of FTS days within the 
month. Mkt-RF is the excess market return, the value-weighted returns of NYSE, Amex, and Nasdaq stocks from the Center 
for Research in Security Prices (CRSP) over 30-day T-bill return in %. CMA_LO is the average return on the two conservative 
investment portfolios. CMA_HI is the average return on the two aggressive investment portfolios. Conservative Minus 
Aggressive (CMA) is the average return on the two conservative investment portfolios minus the average return on the two 
aggressive investment portfolios. R_IA is the investment factor of Hou et al. (2015)

Mean Median SD Min Max

NFLOWS (%) 0.59 0.50 0.85  − 2.94 3.85

NSR (%) 0.64 0.56 0.67  − 1.18 3.61

NEIO (%)  − 0.05  − 0.02 0.33  − 2.41 2.23

FTS 0.03 0.00 0.09 0.00 0.59

Mkt-RF 0.65 1.16 4.45  − 23.24 12.47

CMA_LO 1.12 1.63 4.81  − 25.44 14.27

CMA 0.26 0.10 2.02  − 6.88 9.58

R_IA 0.31 0.29 1.94  − 7.16 9.24

CMA_HI 0.86 1.39 5.52  − 27.83 14.12
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Net exchanges and the investment factor returns
My primary research question concerns the relationship between mutual fund flows 
(normalized net sales (NSR) or normalized net exchanges (NEIO)) and investment fac-
tor returns.2 The analysis is structured as follows: First, I use a regression analysis to 
determine whether a relationship exists between flows and contemporaneous and sub-
sequent investment factor returns. Second, I estimate the accumulated dynamic effects 
using a vector autoregression (VAR) methodology. Third, I examine the economic sig-
nificance using trading strategies based on signals from previous flows. Finally, I relate 
the trading exercise results to sentiment measures.

Relationship between the investment factor and contemporaneous and lagged flows

In this section, I examine the relationship between factor returns and all US equity fund 
flows (NFLOWS net flows) and the two separate components, namely, NEIO (normal-
ized net exchanges) and NSR (normalized net sales). The two flow components, NEIO 
and NSR, correlate positively with an average value of 0.32, which is statistically signif-
icant at the 1% level. Previous research indicates that flows between bond and equity 
funds within the same fund family are particularly interesting. When using normalized 
net exchanges, one deliberately ignores flows between equity funds that do not contain 
the same information. Furthermore, unlike net exchanges, flows into bond and equity 
funds that are not part of the same fund family do not contain the same information 
because they strictly refer to very different investors. Therefore, “net exchanges” is the 
most accurate proxy for flows from bond funds to equity funds.3 Table 2 shows the coef-
ficients from time-series regressions with factor portfolio returns as the dependent vari-
able on both contemporaneous and lag flows.

For each Table, specifications (1), (2), and (4) use NFLOWS, NSR, and NEIO concur-
rently in the regressions, which, for example, are all extremely important market fac-
tors (Panel A). The adjusted-R2 between Mkt-RF and NSR is lowest with 4.9%, whereas 
the adjusted-R2 between Mkt-RF and NEIO is highest with 32.0%. This could imply that 
the positive relationship between Mkt-RF and NFLOWS, as well as Mkt-RF and NSR, 
is primarily due to NEIO. This is a plausible explanation given that NEIO and NSR are 
positively and significantly correlated, with a correlation value of 0.32. Assuming that 
fund flows are uninformed, nonfundamental investment decisions, a positive coefficient 
indicates that stocks are overpriced (underpriced) and market prices temporarily deviate 
from fundamental value during periods of flows from the bond to equity funds (from 
equity to bond funds). This pricing error is later corrected. Table 2 Panel A also includes 

2  A limitation of my study is that given the timing of my analysis relying on monthly data, data availability does not 
allow me to directly test for a relation of e.g. manager’ optimism or aggregate investment and net exchanges. However, 
building on the Arif and Lee (2014) results, I find that net exchanges are related to their sentiment measures. Using 
annual data, they show that aggregate investment is more likely to increase during periods of high consumer confidence, 
high net inflows into equity markets, and high sentiment as measured by the Baker-Wurgler sentiment index index. Net 
inflows into equity markets is the single most important explanatory variable for changes in aggregate investment. My 
monthly flow variable can be interpreted similarly to net inflows into equity markets as a measure of price "noise" that is 
due to investor demand/supply shock stemming from sentiment. I find that it is significantly (below 1%) correlated with 
monthly changes in the "Consumer Sentiment Index" of the Michigan University Survey Center (0.16) or the monthly 
changes of the (seasonally adjusted) OECD consumer confidence indicator (0.11). Hence, I conclude that it captures 
dimensions of investor sentiment and can be assumed to be related to aggregate investments in line with the Arif and 
Lee (2014) results.
3  Fant (1999) also makes use of all four components of the fund flows ("new sales, "redemptions," "exchanges in," and 
"exchanges out"), but uses "exchanges in" and "exchanges out" separately, which results in different flow measures.
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the coefficients of Mkt-RF from time-series regressions on lagged NEIO and NSR. In 
keeping with previous research (Warther 1995; Fant 1999; Ben-Rephael et  al. 2012), I 
focus on NSR and NEIO. Specifications (3), (5), and (6) are based on NSR, NEIO, and 
joint lags, respectively. Unreported findings suggest that NSR lags from t − 2 to t − 4 are 
insignificant both individually and collectively (based on Wald statistics). In contrast, 
for NEIO lags, each coefficient is negative and only partially significant, and the p-value 
of the Wald statistic is below 1%. Interestingly, the coefficients for longer lags (t − 2 to 

Table 2  Regression of factor portfolio returns on flows and FTS

The table presents the coefficients from the time-series regressions of NFLOWS, NSR and NEIO, and the flight-to-safety (FTS) 
indicator on the respective factor portfolio returns. The sample period the sample period ranges from February 1984 to 
December 2015, covering a total of 383 months. Fund flows are calculated based on data from the Investment Company 
Institute (ICI). The following fund categories are included: domestic equity, international equity, and mixed funds. The net 
flows of the equity funds and their components are normalized each month by the previous month’s fund assets value: 
NFLOWS is the normalized net flows (in %). NSR is the normalized net sales ("new sales" minus "redemptions") in %. NEIO 
is the normalized "net exchanges" ("exchanges in" minus "exchanges out") in %. MEANNEIO2-4 (MEANNSR2-4) is the average 
of NEIO (NSR) lags from period t − 2 to t − 4. FTS is based on the daily flight-to-safety dummy of Baele et al. (2020) and 
transformed to derive a monthly indicator, which provides information about the fraction of FTS days within the month. 
Mkt-RF is the excess market return, the value-weighted returns of NYSE, Amex, and Nasdaq stocks from the Center for 
Research in Security Prices (CRSP) over 30-day T-bill return in %. Conservative Minus Aggressive (CMA) is the average return 
on the two conservative investment portfolios minus the average return on the two aggressive investment portfolios

R_IA is the investment factor of Hou et al. (2015). Coefficients are corrected for any persistence of the single regressor 
according to Amihud and Hurvich (2004) or Amihud et al. (2008) for multiple persistent regressors. Simulated p-values are 
computed as in Boudoukh et al. (2007), via 10,000 simulations under the null of zero predictability, but accounting for the 
regressors’ auto-correlation, cross-correlations and the cross-correlation of the errors

***, **, *Statistical significance at the 1%, 5% and 10% level, respectively

Panel A: Mkt-RF (1) (2) (3) (4) (5) (6) (7)

INTERCEPT  − 0.35  − 0.11 0.76 0.99*** 0.55** 0.43 0.98***

NFLOWSt 2.18***

NSRt 1.53***

NEIOt 8.57***

FTS  − 13.14***

MeanNSR2-4  − 0.15 0.21

MeanNEIO2-4  − 3.53***  − 3.78***

Adj. R2 15.3% 4.9% 0.0% 32.0% 1.6% 1.4% 6.5%

Panel B: CMA (1) (2) (3) (4) (5) (6) (7)

INTERCEPT 0.37*** 0.28** 0.16 0.20* 0.31*** 0.27** 0.23**

NFLOWSt  − 0.23**

NSRt  − 0.04

NEIOt  − 1.53***

FTS 1.20

MeanNSR2-4 0.20 0.06

MeanNEIO2-4 1.48** 1.40**

Adj. R2 0.6% 0.0% 0.1% 4.7% 1.3% 1.1% 0.0%

Panel C: R_IA (1) (2) (3) (4) (5) (6) (7)

INTERCEPT 0.41*** 0.32*** 0.18 0.25** 0.37*** 0.30** 0.27***

NFLOWSt  − 0.21*

NSRt  − 0.02

NEIOt  − 1.46***

FTS 1.45

MeanNSR2-4 0.26** 0.12

MeanNEIO2-4 1.62*** 1.47***

Adj. R2 0.5% 0.0% 0.4% 4.7% 1.9% 1.7% 0.2%
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t − 4) are all significant and significantly smaller than the coefficient for the first lag. Ben-
Rephael et al. (2012) attributed the one-month delay in reversal to ICI’s delayed release 
of flow information. Apparently, investors only learn about new flow information with a 
month lag. However, this difference is unimportant for my analysis because the results 
are qualitatively similar when the first lag is included. Hence, the explanatory variable 
in specifications (3), (5), and (6) is the mean of NEIO lags 2–4, with the first lag omitted 
due to the one-month lag in ICI’s reporting. I find the relationship between NEIO (NSR) 
and Mkt-RF highly significant (insignificant), with an adjusted-R2 that is much higher 
for specification (5) than specification (3). When using both lagged flows as regressors 
(specification (6)), I found that the NEIO lags take precedence.

The same analysis is replicated for the CMA (R IA) factor and yield similar reversal 
patterns. When investors are optimistic (pessimistic), the negative coefficient for NEIOt 
in Panels B and C of Table 2 suggests that the CMA (R_IA) factor portfolio is tempo-
rarily mispriced and undervalued (overvalued). My findings suggest that during peri-
ods when retail investors, for example, shift their holdings from bonds to equity mutual 
funds, aggressive investment stocks substantially outperform conservative investment 
stocks. The initial mispricing in both portfolios is then corrected, resulting in MeanNEIO2 

4 coefficients with the opposite sign of NEIOt coefficients. I find a strong (significant) 
reversal effect for both the market and investment factors.

The magnitude of the significant “reversal” effect for the investment factors is com-
parable to the magnitude of the initial mispricing. In Table 3, I focus on the CMA fac-
tor and separately replicate the analysis for stocks with conservative and aggressive 
investments. The CMA is the average return on the two conservative investment port-
folios (CMA_LO) minus the average return on the two aggressive investment portfo-
lios (CMA_HI). The mispricing in t is stronger for stocks with aggressive investments 
(short leg) compared to the conservative investment portfolio (long leg). A time-series 
regression of the long (short) leg on NEIO yielded a coefficient of 8.69 (10.22), which 
is significant at the 1% level. The reversal relationship is also distinct; the relationship 
between the short leg and past net exchanges is significantly stronger than that between 
the long leg and past net exchanges. The coefficient from a time-series regression of the 
long (short) leg on the average NEIO from t − 2 to t − 4 is − 3.32 (− 4.80), and it is signifi-
cant at the 1% level. Baker et al. (2003) suggested that negative investment-future return 
sensitivity varies across firms and becomes increasingly negative as equity dependence 
increases. They contend that equity-dependent firms offer excellent investment oppor-
tunities. My findings suggest that the observed effect for the CMA factor is caused by the 
difference in the reversal effects of conservative and aggressive investment portfolios.

To gain a better understanding of the dynamics, I use a vector autoregression (VAR) 
methodology to estimate the accumulated dynamic effect of NEIO on the factor port-
folios. The equation system is a three-variable VAR involving NSR, NEIO, and the 
respective factor portfolio. I am interested in the accumulated impulse response to one-
standard-deviation shock to NEIO on the factor portfolio returns.

The Cholesky order is NSR, NEIO, CMA factor portfolio based on the lagged inter-
relationships between the variables. However, I find that changing the order has no 
effect on the quality of the results. Figure 1 depicts the results of the impulse response 
simulation. It shows the point estimates and the bootstrap 90% confidence interval 
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of a one-standard-deviation shock to NEIO (normalized net exchanges) on factor 
portfolio returns. The estimation of the impulse response is based on a three-variable 
VAR system with four lags for each variable.4 The shock’s contemporaneous period is 
denoted by period t. These findings follow the previous findings. Both graphs are in 
line with the mispricing-reversal pattern that I mentioned earlier. Surprisingly, the 
CMA portfolio undergoes a complete reversal between periods t + 1 and t + 5. I repli-
cated the analysis for the conservative and aggressive investment portfolios separately 
to understand the differences in the CMA factor. Figure 2 depicts the point estimates, 
bootstrap 90% confidence intervals, and impulse response function results of a one-
standard-deviation shock to NEIO (normalized net exchanges) on both portfolios. 

Table 3  Regression of the long and short leg of the CMA factor portfolio on flows

The table presents the coefficients from the time-series regressions of NFLOWS, NSR and NEIO, and the flight-to-safety (FTS) 
indicator on the respective factor portfolio returns. The sample period the sample period ranges from February 1984 to 
December 2015, covering a total of 383 months. Fund flows are calculated based on data from the Investment Company 
Institute (ICI). The following fund categories are included: domestic equity, international equity, and mixed funds. The net 
flows of the equity funds and their components are normalized each month by the previous month’s fund assets value: 
NFLOWS is the normalized net flows (in %). NSR is the normalized net sales ("new sales" minus "redemptions") in %. NEIO 
is the normalized "net exchanges" ("exchanges in" minus "exchanges out") in %. MEANNEIO2-4 (MEANNSR2-4) is the average 
of NEIO (NSR) lags from period t − 2 to t − 4. FTS is based on the daily flight-to-safety dummy of Baele et al. (2020) and 
transformed to derive a monthly indicator, which provides information about the fraction of FTS days within the month. 
Conservative Minus Aggressive (CMA) is the average return on the two conservative investment portfolios (CMA_LO) minus 
the average return on the two aggressive investment portfolios (CMA_HI). Coefficients are corrected for any persistence 
of the single regressor according to Amihud and Hurvich (2004) or Amihud et al. (2008) for multiple persistent regressors. 
Simulated p-values are computed as in Boudoukh et al. (2007), via 10,000 simulations under the null of zero predictability, 
but accounting for the regressors’ auto-correlation, cross-correlations and the cross-correlation of the errors

***, **, *Statistical significance at the 1%, 5% and 10% level, respectively

Panel A: CMA_LO (1) (2) (3) (4) (5) (6) (7)

INTERCEPT 0.01 0.19 1.22*** 1.46*** 1.02*** 0.92** 1.50***

NFLOWSt 2.42***

NSRt 1.86***

NEIOt 8.69***

FTS  − 15.08***

MeanNSR2-4  − 0.15 0.19

MeanNEIO2-4  − 3.32***  − 3.56***

Adj. R2 16.2% 6.3% 0.0% 28.1% 1.2% 1.0% 7.3%

Panel B: CMA_HI (1) (2) (3) (4) (5) (6) (7)

INTERCEPT  − 0.36  − 0.09 1.06*** 1.26*** 0.71** 0.64* 1.27***

NFLOWSt 2.65***

NSRt 1.90***

NEIOt 10.22***

FTS  − 16.28***

MeanNSR2-4  − 0.34 0.13

MeanNEIO2-4  − 4.80***  − 4.96***

Adj. R2 14.8% 4.9% 0.0% 29.6% 2.0% 1.8% 6.5%

4  The augmented Dickey–Fuller test was used to test stationarity. The null hypothesis is that the time series is non-sta-
tionary and the alternative is that the series is stationary. Results suggest that the stationarity of the flow and return data 
that I use can be confirmed. In line with Ben-Rephael et al. (2012), I verified that there is no structural break in the VAR 
equations. The test of Andrews (1993) for structural breaks in any of the three equations for unknown change points was 
estimated. The test indicated that there is no structural break. Next to stationarity of the variables, which is critical to 
development of a VAR model, the VAR is covariance-stationary, if the eigenvalues of the coefficient matrix all lie inside 
the unit circle (Hamilton 1994). In this case, the consequences of any given shock must eventually die out. Results sug-
gest that my VAR models are stable.
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The accumulated responses show the cumulative periodic effect, and the reversal col-
umn shows the reversal effect in percent (%). The contemporaneous effects in period t 
differ, with 1.68% for stocks with conservative investments and 1.96% for stocks with 
aggressive investments, resulting in a contemporaneous effect of − 0.29% in period 

Fig. 1  Impulse responses, Mkt-RF and CMA
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t for the CMA portfolio. Furthermore, the cumulative responses in the subsequent 
periods differ. For the first six months, the aggressive investment portfolio reverts 
much stronger than the conservative investment portfolio. Hence, the difference in 
the intensity of the reversal effect causes the CMA factor to reverse.5 As a result, the 
CMA factor portfolio performs especially well in the months following the inflow 
period. This observation is used in a trading exercise in the following.

My findings indicate a statistically significant reversal relationship between net 
exchanges and factor portfolio returns, but the economic significance of the effect is 
unclear. Hence, in the following, I investigate a trading strategy based on a previous sig-
nal from net exchanges. To make my investment decision in month t, I use the average 
over NEIO from period t − 2 to period t − 4 as an indicator. Because the flow informa-
tion is released with a one-month lag, I do not use it in period t − 1. Moreover, the strat-
egy is to take a position in the market factor that contradicts what the indicator suggests 
because of the strong inverse relationship between net exchanges and the market factor. 

Fig. 2  Impulse responses, CMA_LO and CMA_HI

5  I obtain very similar results for R_IA.
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Hence, if the past net exchanges have been negative on average, I invest all of my funds 
in the market and short the risk-free rate. However, if the past net exchanges have been 
positive, I invest all of my funds in the risk-free rate or investment factor portfolio. I 
identified 213 of 379 months (56%) where the decision is to be in the market over the 
entire sample period. In these months, the average market return over the risk-free rate 
was 1.25%, with a standard deviation of 4.62%. In contrast, I identified 166 of 379 months 
(44%) where the decision was made to be long in the factor portfolio. The market factor’s 
average return in these months is − 0.05%, with a standard deviation of 4.13%. Mean-
while, the average market returns of the two subgroups differ statistically significantly 
(the p-value of the difference between the two subgroups’ average market returns is less 
than 1%). However, the variances of the two subgroups are not statistically and signifi-
cantly different from one another (the p-value of the F-test for the difference of variances 
is above 10%). Regarding the factor portfolios, the average return of the CMA factor in 
periods of previous negative (positive) net exchanges is 0.04% (0.58%), with a standard 
deviation of 2.11% (1.93). At the 1% level, the averages of the two subgroups are sta-
tistically significantly different. The R_IA factors’ average return in periods of previous 
negative (positive) net exchanges is 0.05% (0.63%), with a standard deviation of 1.85% 
(2.02%). At the 1% level, the averages of the two subgroups are statistically significantly 
different. The performance of the investment strategies is depicted in Fig. 3.

In Fig.  3, I compare the performance of the various dynamic strategies with a sim-
ple static investment in the market factor. First, all dynamic strategies outperform the 
market factor portfolio. Second, the Mkt-RF/CMA and the Mkt-RF/R IA strategies out-
perform the other strategies, suggesting a statistically and economically significant rela-
tionship between the investment factors and past net exchanges. Third, the investment 

Fig. 3  Performance of alternative trading strategies. The Figure presents the performance of alternative 
trading strategies based on $100 invested in May 1984. The strategies are based on past signals from net 
exchanges. For each month t, I calculate the average over NEIO (normalized net exchanges) from period t-2 
to t-4. I use the average as an indicator to determine my investment decision in month t. If on average the 
past net exchanges have been negative, I invest all my funds in the market portfolio and short the risk-free 
asset (30-day T-bills). If on average the past net exchanges have been positive, I invest all my funds in the 
respective factor portfolio
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factor strategies significantly outperform the market factor portfolio. The average return 
of the Mkt-RF/R_IA strategy (the market factor portfolio) is 0.98% (0.65%), and the 
standard deviation is 3.72% (4.45%). The superior performance is generated during the 
months following positive net exchanges, in which the CMA factor (R_IA factor) signifi-
cantly outperforms the market factor by 0.62% (0.68%). The outperformance was statisti-
cally significant at the 5% level.

Apparently, investors’ optimism interacts with real managerial decisions. Although 
managers may rationally exploit market misvaluation given the short time frame that 
I assume for the contemporaneous mispricing effects, I find it less plausible that cor-
porate managers “cater” to noise traders (the “managerial catering” hypothesis) by, for 
example, timing their stock issuances to take advantage of the lower-than-rational cost 
of capital. Hence, I find it more likely that the evidence can be interpreted in favor of 
the “expectation bias” hypothesis. When retail investors and managers are jointly caught 
up in the market euphoria, they are too optimistic. Therefore, retail investors shift their 
money from bonds to equity mutual funds, and equity-dependent firms invest more 
aggressively. Hence, the mispricing during these periods is particularly pronounced for 
the aggressive investment portfolio compared with the conservative investment portfo-
lio. Subsequently, the reversal relation is also stronger, and therefore, returns are signifi-
cantly lower for the aggressive investment portfolio than the conservative investment 
portfolio. Moreover, although the market performs poorly, investment factor returns are 
significantly positive and far less volatile.

The superior performance of the investment factor strategies is obtained during the 
months following the flows from the bond to equity funds, hence, in periods of negative 
price corrections. Flight-to-safety or market stress episodes can be thought of as specific 
instances of extreme negative price corrections. As a result, to understand the perfor-
mance difference, I regress the difference between the monthly returns of the investment 
factor strategy and the market factor returns on a market stress indicator FTS, which is 
based on Baele et al.’s (2020) flight-to-safety dummy. I convert the daily dummies into a 
monthly indicator that shows the fraction of FTS days in a given month. Surprisingly, I 
discovered that FTS is negatively and highly significantly correlated with past positive 
flows, but not with past negative flows. Therefore, in line with my reasoning, observing 
an average positive flow in periods t − 2 until t − 4 makes it significantly more likely to 
experience flight-to-safety days in month t. The method independently identifies 11% 
of the months as having FTS of varying intensity. With a slope coefficient of 5.41 (5.97), 
the FTS beta for the Mkt-RF/CMA strategy (Mkt-RF/R IA strategy) is highly significant. 
The average effect for the Mkt-RF/CMA strategy (Mkt-RF/R_IA strategy) implies that 
for a month with an FTS incidence equal to the average value among all FTS months 
(i.e., 0.23), a 1.38% (1.52%) return difference is observed. When I simply used a monthly 
dummy variable to classify an FTS month, I found that the MkT-RF/CMA (Mkt-RF/R_
IA) strategy outperforms the market factor by 1.85% (2.01%) during all FTS months (42 
of 379 months).

Given the relationship between flows and market returns, a flow-based trading strat-
egy could take advantage of the well-documented momentum anomaly. For example, 
Vayanos and Woolley (2013) proposed a theory of momentum and reversal based on 
flows between investment funds. Flows are triggered by changes in the efficiency of 
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fund managers, wherein investors can observe directly or infer from past performance. 
Momentum emerges when flows exhibit inertia and rational prices underreact to 
expected future flows. The flows push prices away from fundamental values, causing a 
reversal. Moreover, flows generate co-movement, lead-lag effects, and amplification, in 
addition to momentum and reversal, with these being more pronounced for high-idio-
syncratic-risk assets. A calibration of their model based on mutual fund returns and flow 
yields sizable Sharpe ratios for momentum and value strategies. As a result, my flow-
based portfolios’ abnormal returns may produce large alphas, but these might be well 
explained by well-known equity risk factors. I employ the Fama–French plus momen-
tum factors commonly used in the literature (the factors are from Kenneth French’s data 
library). The results indicate that flow-based trading strategies continue to deliver sig-
nificant risk-adjusted abnormal returns. The MkT-RF/CMA (Mkt-RF/R IA) strategy has 
a risk-adjusted alpha of 0.57% (0.58%) and a robust t-stat of 3.34% (3.33%). Noticeably, 
both flow-based portfolios exhibit positive and statistically significant (at the 1% level) 
loadings on value and negative and statistically significant (at the 1% level) loadings on 
momentum. Hence, my results are not influenced by well-known equity risks.

As I previously demonstrated, the investment factors are negatively related to NEIO 
and positively related to lagged net exchanges. Accordingly, I investigate the joint rela-
tionships between NEIO, investment factor returns, and sentiment indicators that may 
explain NEIO.

As shown in Panels A and B of Table 4 in specifications (2), (5), and (8), the lagged 
relationship of the investment factors with the sentiment measures is not all positive, 
with only four of six sentiment betas being insignificant. I apply the Amihud et al. (2008) 
correction for multiple persistent regressors and calculate the p-value using a simula-
tion, as Boudoukh et al. (2007) did. As a result, there is weak evidence that investment 
factor returns following periods of high sentiment (CSI) are typically positive. However, 
once I control for NEIO, the lagged relationships of these variables with the investment 
factor are all insignificant. These findings are interpreted as evidence in favor of price 
noise caused by uninformed trading, which captures different information compared 
with well-known sentiment measures.

Conclusions
According to the “expectation bias” hypothesis, managers make more (fewer) capital invest-
ments during periods of optimism (pessimism) because they overestimate (underestimate) 
this value of expected future cash flows. Periods of higher corporate investment correspond 
to periods of investor optimism and are followed by lower aggregate stock returns. Equiv-
alently, when retail investors are optimistic (pessimistic), equity mutual funds experience 
inflows (outflows) that must be quickly equitized by fund managers. Consequently, the 
collective actions of fund managers generate short-term price pressure on aggregate stock 
prices. In addition, mutual fund investors’ uninformative demand shifts negatively predict 
future market returns because investors are frequently too optimistic (too pessimistic). In 
this vein, I investigate the impact of flows between bond and equity funds on investment 
factor returns in the United States over the period 1984–2015. I find contemporaneous 
mispricing effects and a statistical reversal relationship between these flows and both legs 
of the investment factor. Meanwhile, the statistical reversal relationship between past net 
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Table 4  Regressions of the investment factors on CCI, CSI and BW_Sent

The table presents the coefficients from the time-series regressions of CMA and R_IA portfolio returns on NEIO and selected 
market stress indicators. The sample period ranges from February 1984 to December 2015, covering a total of 383 months. 
Fund flows are calculated based on data from the Investment Company Institute (ICI). The excess equity market returns 
(ExRet) are the value-weighted returns of NYSE, Amex, and Nasdaq stocks from the Center for Research in Security Prices 
(CRSP) over the 30-day T-bill return. NSR is the normalized net sales ("new sales" minus "redemptions") in %. NEIO is the 
normalized "net exchanges" ("exchanges in" minus "exchanges out") in %. MEANNEIO1-4 is the average of NEIO lags from 
period t − 1 to t − 4. dCCI is the monthly change of the (seasonally adjusted) OECD consumer confidence indicator. dCSI is 
the monthly change of the University off Michigan consumer sentiment indicator. dSent is the monthly change of Baker and 
Wurgler’s (2006) sentiment indicator. MEANExpl1-4 is the average of the explanatory variable lags from period t − 1 to t − 4. 
Coefficients and Wald statistics are corrected for any persistence of the single regressor according to Amihud and Hurvich 
(2004) or Amihud et al. (2008) for multiple persistent regressors. Simulated p-values are computed as in Boudoukh et al. 
(2007), via 10,000 simulations under the null of zero predictability, but accounting for the regressors’ auto-correlation, cross-
correlations and the cross-correlation of the errors

***, **, *Statistical significance at the 1%, 5% and 10% level, respectively

Panel A: 
CMA

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Expl. Var dCCI dCSI dSent

INTER-
CEPT

0.20* 0.26** 0.29*** 0.20* 0.26** 0.28*** 0.21** 0.26** 0.29***

NEIO  − 1.51***  − 1.55***  − 1.56***

Expl  − 0.24 0.01 1.41

Expl-1  − 0.90 0.02 1.07

Expl-2 1.04 0.03  − 0.15

Expl-3 1.16 0.07**  − 0.26

Expl-4  − 1.30 0.02  − 0.05

MEAN-
NEIO1-4

1.69** 1.44** 1.75**

MEAN-
Expl1-4

0.00 0.09  − 0.46

CMA lags No No Yes No No Yes No No Yes

R2 5.0% 0.6% 4.8% 5.0% 2.2% 5.3% 7.1% 0.8% 4.8%

Wald Stats

 Expl. 
lags

0.85 0.14** 0.65

Panel A: 
R_IA

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Expl. Var dCCI dCSI dSent

INTER-
CEPT

0.25*** 0.31*** 0.36*** 0.25** 0.31*** 0.34*** 0.26*** 0.31*** 0.35***

NEIO  − 1.46***  − 1.47***  − 1.49***

Expl 0.04 0.01 1.28

Expl-1  − 0.17 0.19 0.74

Expl-2  − 0.08 0.02  − 0.25

Expl-3 1.48 0.04**  − 0.42

Expl-4  − 1.43 0.03  − 0.25

MEAN-
NEIO1-4

1.89*** 1.59** 2.00***

MEAN-
Expl1-4

 − 0.29 0.10  − 0.89

CMA lags No No Yes No No Yes No No Yes

R2 4.9% 0.4% 4.8% 4.9% 1.8% 5.4% 7.0% 0.6% 5.0%

Wald Stats

 Expl. 
lags

 − 0.20 0.13**  − 0.17
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exchanges and the investment factor is economically significant. A one-standard-deviation 
shock to net exchanges causes a 0.29% decrease in investment factor returns, which are 
reversed within 5 months. A trading strategy based on signals from previous net exchanges 
and the investment factor outperforms the market by 0.68% in the months following posi-
tive net exchanges and produces significant alphas after accounting for well-known equity 
risk factors. I interpret my findings as evidence in favor of a behavioral explanation, in which 
sentiment influences actual managerial decisions. Given the timing of all my findings, I find 
it less plausible, but still possible, that managers (rationally) exploit market mispricing, such 
as by timing stock issuances (the “managerial catering” hypothesis). Moreover, I conjec-
tured this study’s net exchanges serve as a proxy for market-level optimism/pessimism, and 
retail investors and managers are both caught up in market euphoria (the “expectation bias” 
hypothesis). Hence, retail investors shift their holdings from bond to equity mutual funds, 
and high-end investment firms invest more aggressively. As a result, high- and low-invest-
ment firms can be assumed to be differentially influenced by market-level euphoria, and 
thus, the investment factor can be influenced. During these periods, the mispricing is espe-
cially pronounced for a high-investment portfolio versus a low-investment portfolio. Subse-
quently, the reversal relationship is stronger, and therefore, returns for the high-investment 
portfolio are significantly lower than those for the low-investment portfolio. As a result, 
in line with my hypothesis, the investment factor outperforms the market factor during 
months following periods of positive flows. Interestingly, in the regressions, my measure of 
flows, which serves as a proxy for market-level euphoria, outperforms other indicators of 
investor sentiment.
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