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Abstract

This paper derives a new method for comparing the weak-form efficiency of markets.
The author derives the formula of the Sharpe ratio from the ARMA-GARCH model
and finds that the Sharpe ratio just depends on the coefficients of the AR and MA
terms and is not affected by the GARCH process. For empirical purposes, the Sharpe
ratio can be formulated with a monotonic increasing function of R-squared if the
sample size is large enough. One can utilize the Sharpe ratio to compare weak-form
efficiency among different markets. The results of stochastic simulation demonstrate
the validity of the proposed method. The author also constructs empirical AR-GARCH
models and computes the Sharpe ratio for S&P 500 Index and the SSE Composite
Index.
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Introduction
Since Fama (1970) published his influential paper, there has been a thorough assess-

ment of market efficiency. Various methods have been proposed over the decades to

test the efficient market hypothesis (EMH), but the empirical results vary according to

the specific markets chosen, periods of time, and even the selected methods. For in-

stance, like the frictionless state in physics, the efficient market could just be viewed as

an ideal state with no real existence in the world. However, it could serve as a useful

benchmark for measuring relative efficiency of markets over space and time.

In fact, it is more relevant to measure the relative efficiency of markets from the em-

pirical perspective. Just as Campbell et al. (1997) pointed out, “The notion of relative

efficiency—the efficiency of one market measured against another—may be a more

useful concept than the all-or-nothing view taken by much of the traditional market-

efficiency literature.”
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So far, researchers have tended to measure and investigate market efficiency

using various statistical methods. One market efficiency measure is based on auto-

correlation of returns. The idea behind this method is that a strong autocorrelation

reflects a deviation from random walk pricing and is indicative of violations of the

EMH. For example, the Q-statistic of Box and Pierce (1970) is usually used as a

measure for market efficiency. Lo and Mackinlay (1988) proposed a test statistic,

the ratio of variances, which is also used as a measure for market efficiency. An-

other type of market efficiency measure reflects the degree to which returns are as-

sociated with past market returns; it is similar to the delay measure of Mech

(1993) and Hou and Moskowitz (2005). The logic behind it is that a security price

has a lower efficiency if it incorporates the information contained in the market

index movement slower than another.

The literature mentioned above is based on the EMH, which uses many assumptions

to describe the model, such as independence, limited variance, normality, and linear

paradigm, among many others. However, some literature that tests the market effi-

ciency relies on an alternative theory known as the fractal market hypothesis (FMH).

This theory does not have the aforementioned strict assumptions but instead focuses

on the nonlinearities in the financial market and supposes that the behavior of investors

is affected by their level of understanding of the information along with the investment

period. Based on the FMH, Liu et al. (1999) used a Hurst exponent and a time-varying

Hurst exponent to describe the dynamic changes of market efficiency in the Hong

Kong REITS market. They determined that the market had not yet reached the state of

weak efficiency. Han et al. (2019) compared the efficiency of five primary indexes of dif-

ferent boards of the Chinese stock market using multifractal detrended fluctuation ana-

lysis (MF-DFA). This method measures the multifractal degrees. The authors found

that the SHSE-SZS300 index that reflects the overall trend of the Shanghai and

Shenzhen main board markets was less efficient than the ChiNext index, which had the

lowest multifractal lever among five indexes. Moradi et al. (2019) used the L-Co-R al-

gorithm analyze the fractal features of the Tehran Stock Exchange and the London

Stock Exchange. In essence, fractal theory is a type of chaos theory to some extent.

Ola et al. (2014) applied the local polynomial approximation model, which is a

method relating to chaos processes and testing to determine the efficiency of the

Tehran Stock Exchange and found that the efficiency of the market could not be

confirmed. Moreover, as the efficiency of the market is related to investor behavior,

some works have indirectly analyzed the efficiency of the market from this per-

spective, for example, Wen et al. (2019).

In principle, profitability is at the core of market efficiency. According to Malkiel

(1992), “Moreover, efficiency with respect to an information set … implies that it is im-

possible to make economic profits by trading on the basis of [that information set].”

However, the traditional measures of market efficiency do not reflect profitability. For

example, using data from 56 markets, Griffin et al. (2010) found that variance ratios

and market delay measures often showed greater deviation from random walk pricing

in developed markets than emerging markets. However, they also found that short-

term reversal strategies and momentum strategies could earn similar returns in both

types of markets. Therefore, they argued that the usual efficiency measures might yield

misleading inferences.
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It is regarded that a proper measure of market efficiency should directly reflect the

expected return and the relevant risk. The Sharpe ratio (SR) is one of the main criteria

of portfolio assessment, and it has been widely used to evaluate the performance of mu-

tual funds. Sharpe (1966) proposed the now well-known Sharpe ratio to evaluate a

fund’s return in excess of the risk-free rate, adjusted by the additional risk the fund as-

sumes. A high Sharpe ratio indicates superior risk-adjusted performance.

The Sharpe ratio can help measure market efficiency. Fortunately, one can derive the

formula of the Sharpe ratio from the ARMA-GARCH model. Financial returns are

often modeled as autoregressive time series with random disturbances having condi-

tional heteroscedastic variances, especially with GARCH type processes that have been

extensively used in the financial and econometric literature as risk models of many fi-

nancial time series.

The relationship between the SR and the R2 of the ARMA-GARCH model is investi-

gated in this paper. This is related to the research on return predictability by the R2 of

the regression of stock return on predictors implied by the rational asset pricing model.

These research studies compare the observed R2 of predictive regressions with the max-

imal bounds permitted by asset pricing models, and through the comparison, they con-

clude whether the market is effective. Kirby (1998) first proposed the frame of

analyzing the restrictions on predictability implied by the rational asset pricing model.

Based on similar frameworks, Levich and Potì (2015) constructed an upper bound on

the explanatory power of predictive regressions motivated by “no good-deal” restric-

tions in the currency market and found that the currency predictability exceeded the

bound, thereby showing that the market is not effective. Huang and Zhou (2017) pro-

vided two theoretical upper bounds on the R2 of the regression and reported that the

predictive R2 was significantly larger than the upper bounds. Their bounds were tighter

than Ross (2005), who is a pioneer of providing the bounds on predictability for all

asset pricing models under no arbitrage conditions. Potì (2018) proposed an upper

bound on the predictability of asset returns, which was at least as tight as Huang and

Zhou (2017).

However, we do not make a comparison between the predicted R2 and the theoretical

boundaries based on asset pricing models under capital market equilibrium because we

do not measure the degree of market efficiency precisely but only compare the market

efficiency among markets. So, we focus on testing whether the SR can show differences

in market efficiency. We find that the SR can be formulated with a monotonic increas-

ing function of R2. We also compare the SR with another indicator proposed by Zhang

(1999), namely conditional entropy.

This paper proceeds as follows. In "The Sharpe Ratio based on the ARMA-GARCH

Forecast" section, the formula of the SR is derived from the ARMA-GARCH model.

"Stochastic simulation" section applies the method through stochastic simulation and

provides a comparison with the conditional entropy indicator. "Empirical Research"

section presents the empirical results of the S&P 500 Index and the SSE Composite

Index. "Conclusion" section gives concluding remarks.

The Sharpe ratio based on the ARMA-GARCH forecast
To compare technical analysis with the time series forecast, Fang and Xu (2003) de-

rived the expected value of a one-period excess return from the AR (1) model forecast.
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Following on these methods, we derive the expected value of a one-period excess re-

turn from the general ARMA(p, q)-GARCH(r,s) model forecast. Furthermore, we de-

duce its standard deviation so that the formula of the SR can be obtained.

The basic approach

We start with the ARMA (p, q) model.

Let St, t = 0, 1, ⋯, T denote stock prices observed at discrete moments. Let Yt denote

the continuously compounded return at time t. So:

Y t ¼ ln
St

St − 1

� �
; t ¼ 1; 2;⋯;T : ð2:1Þ

Suppose {Yt} satisfies the following ARMA (p, q) process:

Y t ¼
Xp
i¼1

aiY t − i þ
Xq
i¼1

biεt − i þ εt ; ð2:2Þ

where {εt} is the Gaussian white noise, WN(0, σ2). Neither ap nor bq is equal to zero.

Provided that all the roots of

1 −
Xp
i¼1

aiz
i ¼ 0

lie outside the unit circle, it is straightforward to verify that {Yt} is a covariance-

stationary process.

According to eq. (2.2), we can express Yt + 1 as

Y tþ1 ¼
Xp
i¼1

aiY t − iþ1 þ
Xq
i¼1

biεt − iþ1 þ εtþ1: ð2:3Þ

Let It denote the information set at time t, which includes the present and past re-

cords of both {εt} and {Yt}. Then the forecast of Yt + 1 based on It is

Et Y tþ1½ � ¼ E Y tþ1 Itj½ � ¼
Xp
i¼1

aiY t − iþ1 þ
Xq
i¼1

biεt − iþ1: ð2:4Þ

Now, eq. (2.3) can be simplified to

Y tþ1 ¼ Et Y tþ1½ � þ εtþ1: ð2:5Þ

As is known, Yt + 1 in eq. (2.3) can also be formulated with an MA(∞) process:

Y tþ1 ¼
X∞
i¼0

ψiεt − iþ1: ð2:6Þ

Because {εt} is the Gaussian white noise, both Yt + 1 and Et[Yt + 1] follow the Gaussian

distribution with zero mean.

For simplicity, we assume that the risk-free return and the trading cost rate are both

zero. Then, it is trivial that the strategy at time t that maximizes the expected value of

the one-period excess return can be formulated as follows.

Definition 1: A buy (sell) signal is generated at time t if
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Et Y tþ1½ � > 0 < 0ð Þ: ð2:7Þ

Accordingly, the expected value of the one-period excess return is

μg ¼ Prob Et Y tþ1ð Þ > 0ð Þ � E Y tþ1 Etj Y tþ1½ � > 0f g
− Prob Et Y tþ1ð Þ < 0ð Þ � E Y tþ1 Etj Y tþ1½ � < 0f g

¼ E Y tþ1 Etj Y tþ1½ � > 0f g:
ð2:8Þ

If the standard deviation of Et[Yt + 1] is known and denoted by σE, it’s easy to verify

(proof in Appendix) that

μg ¼
σE

ffiffiffi
2

pffiffiffi
π

p : ð2:9Þ

Because εt + 1 and Et[Yt + 1] are uncorrelated, we can compute σE according to the vari-

ance of Yt + 1, which is denoted by γ0. So,

σE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ0 − σ2

q
: ð2:10Þ

According to the strategy given by Definition 1, we can verify that the standard devi-

ation of the one-period excess return is (proof in Appendix)

σg ¼ σ2 þ 1 −
2
π

� �
σ2
E

� �1
2

: ð2:11Þ

Therefore, the Sharpe ratio is

SR ¼ μg
σg

¼ σE

ffiffiffi
2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πσ2 þ π − 2ð Þσ2E

p ¼ π
2

1þ σ2

σ2E

� �
− 1

� � − 1
2

; ð2:12Þ

or

SR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 γ0 − σ2
� �

2σ2 þ π − 2ð Þγ0

s
: ð2:13Þ

According to formula (2.12) or (2.13), we conclude that the Sharpe ratio lies in a spe-

cific scope:

SR∈ 0;

ffiffiffiffiffiffiffiffiffiffiffi
2

π − 2

r" !
:

In fact, γ0 is a function of σ2. For a few simple processes such as the AR (1), AR (2),

MA(q), and ARMA (1,1), we are able to derive the formula of γ0 and thereby formulate

the SR with the parameters of the original model.

For a general ARMA(p, q) process, it is difficult to obtain the formula of γ0, but we

can adopt the following ways to calculate its value.

First, according to Box et al. (2008), the series {ψj} in eq. (2.6) can be computed re-

cursively from the following relations:

ψ j ¼
1; j ¼ 0

bj þ
Xp
k¼1

akψ j − k ; j ¼ 1; 2;⋯

8><
>: ; ð2:14Þ

with ψj = 0 for j < 0, and bj = 0 for j > q.
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Because the values of {ψj} decay geometrically toward zero, we need to compute only

a few terms.

Secondly, it is easy to calculate the value of γ0 according to eq. (2.6).

γ0 ¼ σ2
X∞
j¼0

ψ2
j : ð2:15Þ

From eq. (2.13), (2.14), and (2.15), we find that the SR just depends on the autore-

gressive coefficients, a1, ⋯, ap, and the moving average coefficients, b1, ⋯, bq.

For empirical purposes, we can estimate the SR by means of formula (2.13), in which

σ can be replaced by the standard error of the regression, and γ0 can be estimated as

the sample variance of {Yt}. In fact, if the sample size is large enough, formula (2.13)

can be reduced to

SR ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2R2

π − 2R2

s
: ð2:16Þ

Formula (2.16) shows the SR is a monotonic increasing function of the R-squared.

Therefore, the R-squared in time series models is of great significance with respect to

market efficiency. The R-squared in time series models can be used as a measure of

market efficiency.

The relationship between the SR and R-squared can also be shown as the curve in

Fig. 1.

From Fig. 1, we see that the relationship between the SR and R-squared is approxi-

mately linear positive dependence when the value of R-squared is larger than 0.1.

Cochrane (1999) derived a similar result from the following model:

Y tþ1 ¼ E Yð Þ þ b Xt − E Xð Þ½ � þ εtþ1:

The author demonstrated that the SR associated with a market timing strategy based

on this predictor equation is given by

SR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SR2

0 þ R2

1 − R2

s
; ð2:16’Þ

Fig. 1 The relationship between the Sharpe ratio and R-squared. The horizontal axis shows the R-squared,
and the vertical axis shows the Sharpe ratio
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where SR0 is the SR based on a buy-and-hold strategy, and R-squared is taken from the

predictor equation.

It is obvious that the SR in formula (2.16’) is also a monotonic increasing function of

R-squared. Nevertheless, if {Yt} satisfies the ARMA(p, q) process, it is improper to use

formula (2.16’), which gives an overestimate of the SR.

Several simple examples

The AR (1) process

To start with, we consider the AR (1) process:

Y t ¼ a1Y t − 1 þ εt ; ð2:17Þ

where 0 < |a1| < 1.

It is easy to verify

γ0 ¼
σ2

1 − a21
; ð2:18Þ

σE ¼ a1j jσffiffiffiffiffiffiffiffiffiffiffiffi
1 − a21

p : ð2:19Þ

First, substituting eq. (2.19) into eq. (2.9) gives

μg ¼
a1j jσ ffiffiffi

2
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π 1 − a21ð Þ
p : ð2:20Þ

Then, substituting eq. (2.19) into eq. (2.11) gives

σg ¼ σ
π − 2a21
π 1 − a21ð Þ

� �1
2

: ð2:21Þ

Finally, substituting eq. (2.19) into eq. (2.12) gives

SR ¼
ffiffiffi
2

p
a1j jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π − 2a21
p : ð2:22Þ

Now it can be seen that the SR just depends on a1 and is not affected by the variance

of εt. The smaller the absolute value of a1 is, the lower the SR is. The SR is equal to

zero when a1 is equal to zero.

The AR (2) process

In order to derive the formula of γ0 for the AR (2) or ARMA (1,1) processes, we make

use of the autocovariance-generating function. According to Hamilton (1994), the

autocovariance-generating function for a stationary ARMA(p, q) process can be written

as:

gy zð Þ ¼ σ2 1þ b1z þ b2z2 þ⋯ð Þ 1þ b1z − 1 þ b2z − 2 þ⋯ð Þ
1 − a1z − a2z2 −⋯ð Þ 1 − a1z − 1 − a2z − 2 −⋯ð Þ : ð2:23Þ

If we convert expression (2.23) to a polynomial of z, then the coefficient of z0 is

exactly γ0.

Now, we consider the AR (2) process:
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Y t ¼ a1Y t − 1 þ a2Y t − 2 þ εt ; ð2:24Þ

where 0 < |a2| < 1, a2 ± a1 < 1.

By the way proposed above, we obtain

γ0 ¼
1 − a2ð Þσ2

1þ a2ð Þ 1 − a2ð Þ2 − a21
	 
 : ð2:25Þ

Substituting formula (2.25) into formula (2.10) gives

σE ¼ σ� 1 − a2
1þ a2ð Þ 1 − a2ð Þ2 − a21

	 
 − 1

( )1
2

: ð2:26Þ

Then, substituting formula (2.26) into formula (2.9) gives

μg ¼
σ

ffiffiffi
2

pffiffiffi
π

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − a2
1þ a2ð Þ 1 − a2ð Þ2 − a21

	 
 − 1

s
: ð2:27Þ

Now, substituting formula (2.26) into formula (2.11) gives

σg ¼ σ
π 1 − a2ð Þ − 2 a21 þ a22

� �þ 2a2 a22 − a21
� �

π 1þ a2ð Þ 1 − a2ð Þ2 − a21
	 


" #1
2

: ð2:28Þ

In the end, dividing eq. (2.27) by eq. (2.28) gives

SR ¼ μg
σg

¼ 2 a21 þ a22
� �þ a2 a21 − a22

� �	 

π 1 − a2ð Þ − 2 a21 þ a22ð Þ þ a2 a21 − a22ð Þ½ �

� �1
2

: ð2:29Þ

Now it can be seen that the SR just depends on a1 and a2, and it is not affected by

the variance of εt. From formula (2.29), we can see that the AR (2) process is reduced

to the AR (1) process when a2 is equal to zero. Furthermore, both μg and SR will be

zero if both a1 and a2 are equal to zero.

The ARMA (1,1) process

Now, let us consider the ARMA (1,1) process. In a similar way, we obtain

γ0 ¼
1þ 2a1b1 þ b21
� �

σ2

1 − a21
; ð2:30Þ

σE ¼ a1 þ b1j jσffiffiffiffiffiffiffiffiffiffiffiffi
1 − a21

p ; ð2:31Þ

μg ¼
a1 þ b1j jσ ffiffiffi

2
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π� 1 − a21ð Þ
p ; ð2:32Þ

σg ¼ σ 1þ 1 −
2
π

� �
a1 þ b1ð Þ2
1 − a21

" #1
2

; ð2:33Þ

SR ¼
ffiffiffi
2

p
a1 þ b1j jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π 1þ 2a1b1 þ b21
� �

− 2 a1 þ b1ð Þ2
q : ð2:34Þ
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Now, it can be seen that the SR just depends on a1 and b1, and it is not affected by

the variance of εt.

It is obvious that the SR will be zero only if

a1 þ b1 ¼ 0:

In fact, at this point, the ARMA (1,1) process is equivalent to white noise, so it is im-

possible to realize any positive return.

In addition, it is easy to verify that formula (2.34) is equivalent to formula (2.22) only

if

b1 ¼ − 2a1:

Then, the SR is the same for the ARMA (1,1) and AR (1) processes.

The SR for the ARMA (1,1) process is approximately equal to that for the AR (1)

process if both a1 and b1 are small enough (e.g., less than 0.1) and the coefficient a′1 in

the AR (1) meets the following condition:

a01j j ¼ a1 þ b1j j:

The MA (2) process

Finally, we consider the MA (2) process and compare the SR with the Q-statistic of

Box and Pierce (1970).

For the MA (2) process, it is easy to verify

γ0 ¼ 1þ b21 þ b22
� �

σ2;

γ1 ¼ b1 þ b1b2ð Þσ2;

γ2 ¼ b2σ2;

γ j ¼ 0; for j > 2:

Substituting the expression of γ0 into formula (2.13) gives

SR ¼ 2 b21 þ b22
� �

π þ π − 2ð Þ b21 þ b22
� �

" #1
2

: ð2:35Þ

Now, it can be seen that the SR just depends on b1 and b2, and it is not affected by

the variance of εt.

The autocorrelation parameters of {Yt} are as follows:

ρ1 ¼
γ1
γ0

¼ b1 þ b1b2
1þ b21 þ b22

;

ρ2 ¼
γ2
γ0

¼ b2
1þ b21 þ b22

;

ρ j ¼ 0; for j > 2:

According to Box and Pierce (1970), the Q-statistic at lag k is a test statistic for the

null hypothesis that there is no autocorrelation up to order k. It is computed as:
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Q ¼ T T þ 2ð Þ
Xk
j¼1

r2j
T − j

; ð2:36Þ

where rj is the j-th sample’s autocorrelation and T is the number of observations.

For large T, rj approximates ρj, so expression (2.36) can be reduced to

Q ≈ T
Xk
j¼1

ρ2j : ð2:37Þ

Formula (2.37) shows that the Q-statistic is proportional to the sample size, T. There-

fore, it is unreasonable to use the Q-statistic as a measure of market efficiency if the

sample size is ignored.

Applying formula (2.37) to the MA (2) process gives

Q ¼ T b21 1þ b2ð Þ2 þ b22
	 


1þ b21 þ b22
; ð2:38Þ

or

Q=T ¼ b21 1þ b2ð Þ2 þ b22
1þ b21 þ b22

: ð2:39Þ

Now, we consider whether the ratio of Q to T can be used to measure market effi-

ciency. For example, given b1 = 0.5, let us change the value of b2 from − 0.45 to 0.45

and observe how the values of SR and Q/T change with it (Fig. 2).

Figure 2 shows that the Sharpe ratio achieves the minimum when b2 is equal to zero

and the SR curve is symmetrical. In contrast, Q/T achieves the minimum when b2 is

Fig. 2 Comparison of the Sharpe ratio and Q/T for the MA (2) Process. The horizontal axis shows b2, the
coefficient of the second moving average term. The vertical axis shows the Sharpe ratio or the ratio of the
Q-statistic to sample size
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equal to − 0.23, and the curve is asymmetrical. It is obvious that ranking by Q/T is dif-

ferent from ranking by SR. Therefore Q/T is not a proper measure of market efficiency.

The ARMA-GARCH model

Now, we consider the general ARMA-GARCH model.

If the {εt} in expression (2.2) follows a GARCH(r,s) process:

εt ¼
ffiffiffiffiffi
ht

p
� vt ; ð2:40Þ

ht ¼ φþ
Xr

j¼1

α jht − j þ
Xs

k¼1

βkε
2
t − k ; ð2:41Þ

where {vt} is the Gaussian white noise, WN(0, σ2), and φ > 0, αj > 0, j = 1, ⋯, r, βk > 0,

k = 1, ⋯, s,
Pr
j¼1

α j þ
Ps
k¼1

βk < 1.

According to Lu (1999), we can conclude that {εt} is a covariance-stationary process:

E εtð Þ ¼ 0;

Var εtð Þ ¼ φ

1 −
Xr

j¼1

α j −
Xs

k¼1

βk

;

Cov ε j; εk
� � ¼ 0; j≠k:

Because vt + 1 and Et[Yt + 1] are uncorrelated, εt + 1 and Et[Yt + 1] are uncorrelated. So,

we can compute the standard deviation of Et[Yt + 1] according to formula (2.10) if we

use
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

φ

1 −
Xr

j¼1

α j −
Xs

k¼1

βk

vuuut to replace σ. In fact, all results are the same as the ARMA

model if σ is replaced by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

φ

1 −
Xr

j¼1

α j −
Xs

k¼1

βk

vuuut .

Furthermore, the SR is not affected by the variance of εt, so it is not affected by the

GARCH process. The SR just depends on the coefficients of the ARMA(p, q) process,

namely a1, ⋯, ap, b1, ⋯, bq.

Stochastic simulation
We explore the proposed method by means of stochastic simulation. We study the AR

(1), ARMA (1,1), and AR (1)-GARCH (1,1) processes, which serve as three examples.

Stochastic simulation of the AR (1) process

Simulation about risk

Given a set of parameters, according to eq. (2.17), we simulated the AR (1) process to

produce a series consisting of 10,000 observations. Then, we simulated trading in ac-

cordance with the strategy described in Definition 1 and generated a series of returns

whose standard deviation (denoted by σsimul) can be computed and compared with the

value from formula (2.21).

The results for nine sets of parameters are displayed in Table 1.
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From Table 1, we can see the values of σsimul are very close to the values of σg. The

results confirm formula (2.21).

Simulation about return

Now, we specify the parameters as follows:

a1 ¼ 0:1; σ ¼ 0:01:

Substituting them into formula (2.20) gives

μg ¼ 0:0802%:

Similarly, we simulated to produce a series consisting of 1000 observations according

to eq. (2.17). Then, we simulated trading according to the strategy described in Defin-

ition 1 and generated a series of returns whose average value (denoted by R) can be

computed and compared with the value from formula (2.20).

We carried out the simulation 100 times and found the mean of R to be 0.0793%,

which approximates 0.0802%.

Figure 3 shows the distribution of R along with its summary statistics.

It can be seen that R approximately follows the Gaussian distribution.

Table 1 Results on risk for the AR (1) process. The table reports the actual standard deviations of
the simulated returns and their theoretical values for nine AR (1) processes with different
parameters. The actual standard deviation of the simulated returns is denoted by σsimul, and its
theoretical value is denoted by σg
Group (1) (2) (3) (4) (5) (6) (7) (8) (9)

a1 0.1 0.4 0.8 0.1 0.4 0.8 0.1 0.4 0.8

σ 0.01 0.01 0.01 0.02 0.02 0.02 0.03 0.03 0.03

σg 0.0100 0.0103 0.0128 0.0200 0.0207 0.0257 0.0301 0.0310 0.0385

σsimul 0.0101 0.0102 0.0128 0.0203 0.0206 0.0255 0.0301 0.0314 0.0381

Fig. 3 The distribution and summary statistics of the average simulated return for the AR (1) process. We
use R to denote the average value of the simulated returns. The distribution of R is shown in the left, and
the summary statistics are listed in the right
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Stochastic simulation of the ARMA (1,1) process

Simulation about risk

First, given a set of parameters, we simulated to produce a series consisting of 10,

000 observations according to eq. (2.3). Then, we simulated trading according to

the strategy described in Definition 1 and generated a series of returns whose

standard deviation (denoted by σsimul) can be computed and compared with the

value from formula (2.33).

The results for eight sets of parameters are displayed in Table 2.

Just like Tables 1 and 2 shows that the value of σsimul is very close to the value of σg.

The results confirm formula (2.33).

Simulation about return

Now, we specify the parameters as follows:

a1 ¼ 0:075; b1 ¼ − 0:03; σ ¼ 0:015:

According to formula (2.32), we obtain

μg ¼ 0:0540%:

We simulated to produce a series consisting of 1000 observations according to eq.

(2.3). Then, we simulated trading according to the strategy described in Definition 1

Table 2 Results on risk for the ARMA (1,1) process. The table reports the actual standard deviations
of the simulated returns and their theoretical values for nine ARMA (1,1) processes with different
parameters. The actual standard deviation of the simulated returns is denoted by σsimul, and its
theoretical value is denoted by σg
Group (1) (2) (3) (4) (5) (6) (7) (8)

a1 0.5 0.5 −0.5 − 0.5 0.5 0.5 −0.5 − 0.5

b1 0.3 − 0.3 0.3 − 0.3 0.3 − 0.3 0.3 − 0.3

σ 0.01 0.01 0.01 0.01 0.03 0.03 0.03 0.03

σg 0.0114 0.0101 0.0101 0.0114 0.0343 0.0303 0.0303 0.0343

σsimul 0.0114 0.0103 0.0101 0.0115 0.0346 0.0301 0.0301 0.0344

Fig. 4 The distribution and summary statistics of the average simulated return for the ARMA (1,1) process.
We use R to denote the average value of the simulated returns. The distribution of R is shown in the left,
and the summary statistics are listed in the right
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and generate a series of returns whose average value (denoted by R) can be computed

and compared with the value from formula (2.32).

We carried out the simulation 100 times and found the mean of R to be 0.0588%,

which approximates 0.0540%. In fact, their difference can be accounted for by the low

value of the SR, which was only 0.036.

Figure 4 shows the distribution of R along with its summary statistics.

It can be seen that R approximately follows the Gaussian distribution.

Stochastic simulation of the AR (1)-GARCH (1,1) process

Simulation about risk

Given a set of parameters, according to eqs. (2.17), (2.40), and (2.41), we simulated the

AR (1)-GARCH (1,1) process to produce a series consisting of 10,000 observations.

Then, we simulated trading in accordance with the strategy described in Definition 1

and generated a series of returns whose standard deviation (denoted by σsimul) can be

computed and compared with the value from the following formula:

σg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

φ π − 2a21
� �

π 1 − a21ð Þ 1 − α1 − β1ð Þ

s
: ð3:1Þ

The results for eight sets of parameters are displayed in Table 3.

From Table 3, we can see the values of σsimul are very close to the values of σg. The

results confirm formula (3.1).

Simulation about return

Now, the expected value of the one-period excess return is

μg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2φa21
π 1 − a21ð Þ 1 − α1 − β1ð Þ

s
: ð3:2Þ

We specify the parameters as follows:

a1 ¼ 0:1;φ ¼ 0:0001; α1 ¼ 0:1; β1 ¼ 0:1:

Substituting them into formula (3.2) gives

μg ¼ 0:0897%:

Table 3 Results on risk for the AR (1)-GARCH (1,1) process. The table reports the actual standard
deviations of the simulated returns and their theoretical values for eight AR (1)-GARCH (1,1)
processes with different parameters. The actual standard deviation of the simulated returns is
denoted by σsimul, and its theoretical value is denoted by σg
Group (1) (2) (3) (4) (5) (6) (7) (8)

a1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

φ 0.0001 0.0001 0.0001 0.0001 0.0004 0.0004 0.0004 0.0004

α1 0.1 0.1 0.2 0.2 0.1 0.1 0.2 0.2

β1 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2

σg 0.0112 0.0120 0.0120 0.0129 0.0224 0.0239 0.0239 0.0259

σsimul 0.0114 0.0120 0.0121 0.0127 0.0224 0.0236 0.0238 0.0262
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Similarly, we simulated to produce a series consisting of 1000 observations according

to eqs. (2.17), (2.40), and (2.41). Then, we simulated trading according to the strategy

described in Definition 1 and generated a series of returns whose average value (de-

noted by R) can be computed and compared with the value from formula (3.2).

We carried out the simulation 100 times and found the mean of R to be 0.0913%,

which approximates 0.0897%.

Figure 5 shows the distribution of R along with its summary statistics.

Comparison with the method of conditional entropy

In physics and information theory, Shannon entropy is used to measure the degree of

disorder:

S ið Þ ¼ −
Xn
i¼1

p ið Þ log2p ið Þ; ð3:3Þ

where p(i) is the probability that the event i appears out of n events.

Based on this concept, Zhang proposed to measure market efficiency with conditional

entropy (Wen et al. 2019):

H jð Þ ¼ −
Xn
i¼1

p ið Þ
Xm
j¼1

p j ijð Þ log2p j ijð Þ
" #

; ð3:4Þ

where p(j|i) is the conditional probability that the event j would follow, with the event i

given. Here, “event” stands for the direction of price movement. For example, p(+|−,

− , +) means the conditional probability that price will rise if the price history is “fall,”

“fall,” and “rise” in turn for the recent three periods.

Conditional entropy uses the information from a given previous event (i.e., the past

price) to help predict future price movement. The higher the conditional entropy is,

the better the market efficiency is. For the binary case when i and j are both binary

strings, its maximal value is one. Zhang (1999) did not present empirical research on

the concept.

Fig. 5 The distribution and summary statistics of the average simulated return for the AR (1)-GARCH(1,1)
process. We use R to denote the average value of the simulated returns. The distribution of R is shown in
the left, and the summary statistics are listed in the right
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Because the MA(q) process is equivalent to an AR(∞) process, it is impossible to

compute conditional entropy for the MA(q) or ARMA(p,q) process. Here, we just con-

sider the AR (1) process.

First, given a set of parameters, we computed the expected value of the one-period

excess return and the Sharpe ratio according to the corresponding formula.

Then, we simulated to produce a series consisting of 1000 observations according to

the corresponding model.

For the AR (1) process, different absolute values of a1 mean different degrees of mar-

ket efficiency. The smaller the value of |a1| is, the better the market efficiency is. If a1
is equal to zero, then the market is perfectly efficient, meaning the prices conform to a

random walk.

Given σ = 0.15, we simulated five times for each value of a1 and computed conditional

entropy according to formula (3.4).

Table 4 displays the results for nine sets of parameters.

The first column in Table 4 is the result for random walk. As expected, its Sharpe ra-

tio is equal to zero, and its conditional entropy is very close to one.

The SR in the second column is equal to 0.0359, but the conditional entropy is nearly

the same as the one in the first column. It shows that the conditional entropy is not a

proper measure of market efficiency when the signal-noise ratio of the market is at a

low level.

Figure 6 shows the scatter plot corresponding to Table 4.

From Fig. 6 and Table 4, we can observe that the conditional entropy declines when

the SR rises to a value larger than 0.1 though its range of fluctuation expands corres-

pondingly. In summary, both the Sharpe ratio and conditional entropy can be used to

measure market efficiency. However, the former is more accurate than the latter, espe-

cially when the degree of market efficiency is very high.

Empirical research
As examples, we measured the market efficiency of the S&P 500 Index and the SSE

Composite Index. The two samples span from January 1, 2000 to December 31, 2014.

From Yahoo finance, we obtained a total of 782 weekly closing prices of the S&P 500

Index, and a total of 754 weekly closing prices of the SSE Composite Index. Returns

were the log differences of the closing prices.

Table 4 Results on conditional entropy. The table reports the Sharpe ratio and conditional entropy
for nine AR (1) processes with different parameters. The Sharpe ratio is denoted by SR, and the
conditional entropy is denoted by H

Group (1) (2) (3) (4) (5) (6) (7) (8) (9)

a1 0 0.045 0.145 0.245 0.345 0.445 0.545 0.645 0.745

μg (%) 0 0.0539 0.1754 0.3024 0.4399 0.5947 0.7780 1.0102 1.3367

SR 0 0.0359 0.1165 0.1993 0.2863 0.3798 0.4829 0.6002 0.7392

H 0.9960 0.9985 0.9968 0.9835 0.9706 0.9453 0.9018 0.8461 0.7835

0.9995 0.9966 0.9897 0.9869 0.9597 0.8900 0.8958 0.8571 0.7892

0.9994 0.9978 0.9923 0.9823 0.9546 0.9305 0.8800 0.8704 0.7984

0.9978 0.9933 0.9919 0.9724 0.9180 0.9493 0.9101 0.8694 0.7760

0.9979 0.9979 0.9875 0.9773 0.9578 0.9379 0.9138 0.8466 0.7887
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We chose the AR(p)-GARCH (1,1) process to apply to the data. Table 5 reports the

parameter estimates for the time series model.

Table 5 shows that the ARCH and GARCH effects are always significant at the 1%

level in the two models. We can compute the R-squared according to the residual error

and the data of returns. Then, we can obtain the Sharpe ratio according to formula

(2.16). For the S&P 500 Index, the Sharpe ratio is 0.055; for the SSE Composite Index,

the Sharpe ratio is 0.086. So, we conclude that the market efficiency of the S&P 500

Index is higher than that of the SSE Composite Index.

Based on the AR-GARCH model, we propose a trading strategy on the S&P 500

Index, which we call the AR-GARCH strategy. We compare the return of the strategy

Fig. 6 The relationship between the Sharpe ratio and conditional entropy. The horizontal axis shows the
Sharpe ratio, and the vertical axis shows the conditional entropy

Table 5 Parameter estimates for the AR(p)-GARCH (1,1) process. The table reports the parameter
estimates for the AR(p)-GARCH (1,1) processes. The notations come from expressions (2.2), (2.40),
and (2.41). The numbers in parentheses are the t-ratios. The t-ratios marked with asterisks (double
asterisks or three asterisks) indicate that the corresponding coefficients are statistically different
from zero at the 10% (5% or 1%) level of significance

S&P 500 Index SSE Composite Index

a1 −0.0782383
(− 1.87)*

0.0511606
(1.38)

a2 −0.0082874
(− 0.20)

0.0837641
(2.17)**

a3 −0.0786243
(− 2.16)**

–

Intercept 0.0025749
(3.72)***

0.0006806
(0.65)

α1 0.7341439
(23.76)***

0.8754173
(28.85)***

β1 0.2185006
(8.59)***

0.0910423
(4.17)***

φ 0.0000358
(3.92)***

0.0000367
(2.63)***

Log Likelihood 1867.151 1542.614
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to the buy-and-hold strategy over the sample period. The merit of the strategy is cap-

tured in Definition 1, as also mentioned in "The Sharpe Ratio based on the ARMA-

GARCH Forecast" section. It is namely that if the prediction of the AR-GARCH model

is positive, we should buy the index at the closing price. Conversely, we should sell the

index at the closing price if the prediction is negative. We carried out the strategy on a

rolling basis without considering trading friction.

Firstly, for each trading week, we used the previous 50 weekly yields of the S&P 500

Index as a sample window to fit the optimal AR-GARCH model. Secondly, we obtained

the predicted yield of the next trading week through the estimated model. Thirdly, if

the prediction of the next week was positive, then we went long the index at the latest

closing price; if the prediction was negative, we went short the index at the same price.

Lastly, for the next trading week, in case we got the same direction of the prediction as

the previous week, then we held our position. If not, then we closed our position and

made a reverse position at the close price. Based on the strategy, we got the following

two curves in the Fig. 7.

The AR-GARCH strategy did not always outperform the buy-and-hold strategy. The

excess return of the AR-GARCH strategy most occurred during the financial crisis

period of 2008 and in the period of the tech bubble burst of 2001. While in other

period, the AR-GARCH strategy could not gain excess return obviously better than the

buy-and-hold strategy.. This may mean that during these crisis periods, the market was

not as effective as the ordinary period. This may also mean that one can obtain excess

returns through the time series strategy only when the market is not efficient. During

these periods, the model predicts better because of the available past information.

To show the results’ stability, we fit the daily and monthly data to the AR-GARCH

process. Table 6 reports the parameter estimates for the four series.

Table 6 shows that the ARCH and GARCH effects are always significant at the 1%

level in all four models. Formula (2.16) was used to compute the Sharp ratios for the

S&P 500 Index, which were 0.0745 and 0.0515 for the monthly and daily data,

Fig. 7 The AR-GARCH strategy curve and the buy-and-hold strategy curve. The AR-GARCH strategy is not
always effective. Its returns mainly occurred in the crisis period of 2008. During other periods, the strategy
did not perform better than the buy-and-hold strategy. This means that the market is more efficient during
ordinary times than during the crisis period. In the latter period, one can get excess returns in the
inefficient market
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respectively. The Sharp ratios of the SSE Composite Index were 0.122 and 0.056 for the

monthly and daily data, respectively. So, we can also conclude that the market effi-

ciency of the S&P 500 Index is higher than that of the SSE Composite Index.

Conclusion
From the empirical research perspective, it is more meaningful to measure relative effi-

ciency of markets as opposed to testing the EMH. A proper measure of market effi-

ciency can reflect the potential return and the relevant risk. However, the traditional

test statistics reflect neither of these two aspects. In this paper, we proposed a new

method for comparing the weak-form efficiency of a market. We deduced the for-

mulae of the expected return and risk from the ARMA-GARCH model and thereby

acquired the formula of the Sharpe ratio. The study found that the Sharpe ratio is

not affected by the variance of εt and thus not affected by the GARCH process.

The Sharpe ratio just depends on the coefficients of the ARMA (p, q) process,

namely a1, ⋯, ap, b1, ⋯, bq.

In empirical research, the Sharpe ratio can be formulated with a monotonic

increasing function of R-squared if the sample size is large enough. This shows that the

R-squared in time series models is of great significance for the measure of market effi-

ciency. One can utilize the Sharpe ratio to measure weak-form efficiency and compare

different markets. The results of our stochastic simulation demonstrated the validity of

the proposed method. It can be applied in both high and low efficiency markets.

Appendix: Proofs
Lemma 1: Provided that {Yt} satisfies the ARMA(p, q) process, and both the risk-free

return and the trading cost rate are zero, trading in accordance with the strategy de-

scribed in Definition 1 will produce a series of excess returns.

Table 6 Parameter estimates for the AR-GARCH process. The table reports the parameter estimates
for the AR(p)-GARCH(1,1) processes for daily and AR(p)-GARCH (1,0) processes for monthly data.
The notations come from expressions (2.2), (2.40) and (2.41). The numbers in parentheses are the t-
ratios. The t-ratios marked with asterisks (double asterisks or three asterisks) indicate that the
corresponding coefficients are statistically different from zero at 10% (5% or 1%) level of
significance

S&P 500 Index
-monthly

SSE Composite
Index-monthly

S&P 500 Index
-daily

SSE Composite
Index-daily

a1 0.151447
(2.54)**

0.080948
(1.11)

−0.058303
(− 3.13)***

0.018532
(1.10)

a2 0.193746
(2.81)***

−0.032937
(− 1.94)*

− 0.011153
(− 0.67)

a3 – 0.022778
(1.36)

Intercept 0.002195
(0.60)

0.003046
(0.54)

0.000583
(4.04)***

0.000335
(1.73)

α1 0.960079
(18.08)***

0.973209
(78.52)***

0.895647
(111.8)***

0.913373
(160.7)***

β1 0.092683
(12.64)***

0.075154
(14.11)***

φ 0.00007
(0.72)

0.000194
(2.75)***

0.00000164
(7.26)***

0.00000318
(6.99)***

Log Likelihood 306.2535 210.8371 11,967.77 10,311.22
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If the standard deviation of Et[Yt + 1] is known and denoted by σE, then the expected

value of one-period excess return is

μg ¼
σE

ffiffiffi
2

pffiffiffi
π

p :

Meanwhile, the standard deviation of one-period excess return is

σg ¼ σ2 þ 1 −
2
π

� �
σ2
E

� �1
2

:

Proof of Lemma 1: According to the original assumption, we know

Et Y tþ1½ � � N 0; σEð Þ:

According to eq. (2.8), we have

μg ¼ E Y tþ1 Etj Y tþ1ð Þ > 0f g
¼ E Et Y tþ1ð Þ Etj Y tþ1ð Þ > 0f g
¼

Z þ∞

0

2xffiffiffiffiffiffi
2π

p
σE

e
− x2

2σ2
E dx

¼ σE
ffiffiffi
2

pffiffiffi
π

p
Z þ∞

0
e
− x2

2σ2
Ed

x2

2σ2
E

� �

¼ σE
ffiffiffi
2

pffiffiffi
π

p �e − x2

2σ2
E

0
þ∞

����
¼ σE

ffiffiffi
2

pffiffiffi
π

p :

ðA:1Þ

This is just formula (2.9).

Because εt + 1 and Et[Yt + 1] are uncorrelated, according to eq. (2.5) and Definition 1,

we have

σ2
g ¼ σ2 þ Var Et Y tþ1ð Þ Etj Y tþ1ð Þ > 0f g
¼ σ2 þ E Et Y tþ1ð Þ½ �2 Etj Y tþ1ð Þ > 0

� 

− E E Et Y tþ1ð Þ Etj Y tþ1ð Þ > 0½ �½ �2� 


:
ðA:2Þ

Substituting expression (A.1) into eq. (A.2) gives

σ2
g ¼ σ2 þ E Y 2

tþ1 Etj Y tþ1½ � > 0
� 


−
2σ2E
π

¼ σ2 −
2σ2E
π

þ
Z þ∞

0

2x2ffiffiffiffiffiffi
2π

p
σE

e
− x2

2σ2
E dx

¼ σ2 −
2σ2E
π

þ
Z þ∞

− ∞

x2ffiffiffiffiffiffi
2π

p
σE

e
− x2

2σ2
E dx

¼ σ2 −
2σ2E
π

þ σ2
E

¼ σ2 þ 1 −
2
π

� �
σ2E:

ðA:3Þ

This is just formula (2.11).
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