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Transversely isotropic thermoelastic thin
circular plate with constant and periodically
varying load and heat source
Iqbal Kaur* and Parveen Lata

Abstract

The present research deals with the deformation in transversely isotropic thermoelastic (TIT) thin circular plate.
Rotation effect is studied under thermally insulated as well as isothermal boundaries. The Laplace and Hankel
transform techniques have been used to find the solution to the problem. The displacement components,
conductive temperature distribution, and stress components with the radial distance are computed in the
transformed domain and further calculated in the physical domain using numerical inversion techniques. The
effects of rotation and two temperatures are represented graphically. Some specific cases are also figured out from
the current research.
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Introduction
A lot of research has been carried out to predict deform-
ation and heat flow in a continuum using thermoelasti-
city theories during the past few years. Thick plate, thin
plate, and a membrane have a large difference according
to their structure. Circular thin plates and membranes
are widely used in pressure sensors, microphones, loud-
speakers, gas flow metres, optical telescopes, solar pow-
ers, radio and radar antennae, and many other devices.
Plate theories are beneficial for designs and analyses of
these devices. Zhao (2008) described the flexural proper-
ties of a plate influenced by its thickness. According to
Ventsel and Krauthammer (2001) and Zhao (2008),
plates can be classified into three categories: membranes,
thin plates, and thick plates depending upon the aspect
ratio. The aspect ratio is defined as a/h, where a is the
diameter of a plate and h is the thickness of a plate. The
plates with aspect ratio a/h ≥ 80...100 are referred as
membranes. It is termed as thin plate with aspect ratio
as 8…10 ≤ a/h ≤ 80….100. Moreover, if a/h ≤ 8...10, the
plate is termed as thick plate.
Kar and Kanoria (2011) studied the thermoelastic re-

sponse of fibre-reinforced thin circular disc with three

phase lag due to axisymmetric thermoelastic loading.
Tripathi, Warbhe, Deshmukh, & Verma, (2017a; Tripathi,
Warbhe, Deshmukh, & Verma, 2017b) investigated a
quasi-static uncoupled theory of thermoelasticity based on
time fractional heat conduction equation for a thin circu-
lar plate and studied a thin hollow circular disc with
quasi-static uncoupled theory of thermoelasticity with the
time fractional derivative of order alpha subjected to a
time-dependent heat flux. Bhad and Varghese (2014) stud-
ied thermoelastic deformation with annular heat supply
on a thin circular plate. Tikhe and Deshmukh (2005;
Tikhe & Deshmukh, 2006) considered the inverse prob-
lem of transient heat conduction in a thin finite circular
plate with integral transform technique and the thin circu-
lar plate for unknown heating temperatures in the form of
Bessel functions and with integral techniques. Gaikwad
(2016; Gaikwad & Deshmukh, 2005; Gaikwad, Ghadle, &
Mane, 2012) described the circular plate for known inter-
ior temperature under steady-state field, a thin circular
plate due to uniform internal energy generation using
Hankel transform technique for its solution, and the in-
verse problem of thermoelasticity in a thin isotropic circu-
lar plate. Parveen, Lamba, & Khobragade (2012) examined
the thermal deflection of a thin circular plate using
boundary conditions of radiation type. Ahire, Hamoud, &
Ghadle (2019) studied a problem of thermal stresses in
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circular plate due to internal moving heat sources with in-
tegral transform technique. Also, researchers such as
Marin (1998, 1999), Hassan, Marin, Ellahi, & Alamri
(2018; Marin, Baleanu, & Vlase, 2017), Marin and Craciun
(2017; Marin, Craciun, & Pop, 2016), Marin and Öchsner
(2017), Lata and Kaur (Kaur & Lata, 2019; Lata & Kaur,
2019a; Lata & Kaur, 2019c; Lata & Kaur, 2019d), Othman
and Marin (2017), and Kumar, Sharma, & Lata (2016a)
worked on different theories of thermoelasticity. In spite
of all these efforts, no attempt has been made for coupled
theory of thermoelasticity of thin circular plate with
rotation.
In this paper, we have attempted to study the deform-

ation in transversely isotropic thin circular plate due to
isothermal/thermally insulated boundaries. The Laplace
and Hankel transform has been used to obtain the gen-
eral solution of the field equations. The analytical ex-
pressions of stresses, conductive temperature, and
displacement components are computed in transformed
domain. However, the resulting quantities are obtained
in the physical domain by using numerical inversion
technique. Some particular cases are also discussed.

Basic equations
Following Lata (2017a, 2017b), the constitutive relations
and field equations for an anisotropic thermoelastic
medium in the absence of body forces and heat sources
are:

tij ¼ Cijklekl−βijT ; ð1Þ

Cijklekl; j−βijT ; j ¼ ρ€ui; ð2Þ

K�
ij þ Kij

∂
∂t

� �
φ;ij ¼ 1þ τ0

∂
∂t

� �
βijT 0˙eij þ ρCET

̇Þ
�

ð3Þ
where

T ¼ φ−aijφ;ij; ð4Þ

βij ¼ Cijklαij; ð5Þ

eij ¼ 1
2

ui; j þ uj;i
� �

: i ¼ 1; 2; 3 ð6Þ

βij is the thermal tensor, T is the thermodynamic
temperature, τ0 is the relaxation time, T0 is the reference
temperature, tij are the components of stress tensor, eij
are the components of strain tensor, ui are the displace-
ment components, φ is the conductive temperature, ρ is
the density, CE is the specific heat, Kij is the thermal
conductivity parameter, K�

ij is the materialistic constant,

aij are the two temperature parameters, and αijis the co-
efficient of linear thermal expansion. Cijkl are the elastic

parameters with symmetry (Cijkl =Cklij = Cjikl =Cijlk).
These symmetries of Cijkl are due to the following:

� The stress tensor is symmetric, which is only
possible if (Cijkl = Cjikl).

� If a strain energy density exists for the material, the
elastic stiffness tensor must satisfy Cijkl = Cklij.

� From stress tensor and elastic stiffness, tensor
symmetries infer (Cijkl = Cijlk) and Cijkl = Cklij =
Cjikl = Cijlk.

And following Kumar, Sharma, & Lata (2016b), the
equation of motion for a uniformly rotating medium
with an angular velocity Ω is:

tij; j ¼ ρ €ui þ Ω�Ω� uð Þf gi þ ð2Ω� u̇Þi; ð7Þ

where Ω =Ωn, n is a unit vector representing the direc-
tion of axis of rotation, the term Ω × (Ω × u) is the add-
itional centripetal acceleration due to the time-varying
motion only, and the term 2Ω� ˙u is the Coriolis
acceleration.
The components of Lorentz force are:

Fi ¼ μ0 j
!� H

!
0

� �
;

where H
!

0 the is magnetic field intensity vector and j
!

is
the current density vector.

Method and formulation of the problem
We consider a transversely isotropic thin circular plate
of thickness 2b occupying space D defined by 0 ≤ r ≤ ∞,
−h ≤ z ≤ h. Thin plates are usually characterised by the
ratio a/h (the ratio between the length of a side, a, and
the thickness of the material, h, falling between the
values of 8 and 80 as mentioned by Ventsel and
Krauthammer (2001). Let the plate be subjected to axi-
symmetric heat supply thermal shock load applied into
its inner boundary having initially undisturbed state at a
uniform temperature T0. We use plane cylindrical coor-
dinates (r, θ, z) with the centre of the plate as the origin
(Fig. 1).
As the problem considered is plane axisymmetric, (u,

v,w, and φ) are independent of θ. We restrict our ana-
lysis to two-dimension problem with u!¼ ðu; 0;wÞ, also
applying the transformation:

x 0 ¼ x cosϕ þ y sinϕ; y 0 ¼ −x sinϕ þ y cosϕ; z 0

¼ z:

where ϕ is the angle of rotation in x-y plane, on the set
of Eqs. (1)–(3) to derive the equations for TIT solid with
two temperatures and with energy dissipation, to obtain:
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C11
∂2u

∂r2
þ 1

r
∂u
∂r

−
1
r2
u

� �
þ C13

∂2w
∂r∂z

� �
þ C44

∂2u

∂z2
þ C44

∂2w
∂r∂z

� �

−β1
∂
∂r

φ−a1
∂2φ

∂r2
þ 1

r
∂φ
∂r

� �
−a3

∂2φ

∂z2

� 	

¼ ρ
∂2u
∂t2

−Ω2uþ 2Ω
∂w
∂t

� �
;

ð8Þ

C11 þ C44ð Þ ∂2u
∂r∂z

þ 1
r
∂u
∂z

� �
þ C44

∂2w

∂r2
þ 1

r
∂w
∂r

� �

þC33
∂2w

∂z2
−β3

∂
∂z

φ−a1
∂2φ

∂r2
þ 1

r
∂φ
∂r

� �
−a3

∂2φ

∂z2

� 	

¼ ρ
∂2w
∂t2

−Ω2w−2Ω
∂u
∂t

� �
;

ð9Þ

K�
1 þ K 1

∂
∂t

� �
∂2φ

∂r2
þ 1

r
∂φ
∂r

� �
þ K�

3 þ K3
∂
∂t

� �
∂2φ

∂z2

¼ T 0 1þ τ0
∂
∂t

� �
β1

∂˙u
∂r

þ β3
∂˙w
∂z

� �

þρCE 1þ τ0
∂
∂t

� �
˙φ−a1

∂2˙φ

∂r2
þ 1

r
∂˙φ
∂r

� �
−a3

∂2˙φ

∂z2

� 	
:

ð10Þ
In above equations, we use the contracting subscript

notations (1 → 11, 2 → 22, 3 → 33, 5 → 23, 4 → 13, 6
→ 12) to relate Cijkl to Cmn. Also a1 and a3 are two
temperature parameters.
For axisymmetric problem following Lata and Kaur

(2019b), the constitutive relations are:

trr ¼ c11err þ c12eθθ þ c13ezz−β1T ;

tzr ¼ 2c44erz;

tzz ¼ c13err þ c13eθθ þ c33ezz−β3T ;

tθθ ¼ c12err þ c11eθθ þ c13ezz−β1T ;

where

erz ¼ 1
2

∂u
∂z

þ ∂w
∂r

� �
;

err ¼ ∂u
∂r

;

eθθ ¼ u
r
;

ezz ¼ ∂w
∂z

;

T ¼ φ−a1
∂2φ

∂r2
þ 1

r
∂φ
∂r

� �
−a3

∂2φ

∂z2
;

βij ¼ βiδij; Kij ¼ Kiδij;

β1 ¼ c11 þ c12ð Þα1 þ c13α3;

β3 ¼ 2c13α1 þ c33α3:

To facilitate the solution, the following dimensionless
quantities are introduced:

r 0 ¼ r
L
; z 0 ¼ z

L
; t 0 ¼ c1

L
t; u 0 ¼ ρc21

Lβ1T 0
u;w 0

¼ ρc21
Lβ1T 0

w;T 0 ¼ T
T 0

; tzr0 ¼ tzr
β1T 0

; tzz0 ¼ tzz
β1T 0

;Ω 0

¼ L
C1

Ω;φ 0 ¼ φ
T0

; a1
0 ¼ a1

L2
; a3

0 ¼ a3
L2

;

ð11Þ
where c21 ¼ c11

ρ , and L is a constant of dimension of length.

Using the dimensionless quantities defined by Eq. (11)
in Eqs. (8)–(10) and after that suppressing the primes
and applying the Laplace and Hankel transforms defined
by:

Fig. 1 Geometry of the problem
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f � r; z; sð Þ ¼
Z
0

∞
f r; z; tð Þe−stdt; ð12Þ

~f ξ; z; sð Þ ¼
Z
0

∞
f � r; z; sð Þr Jn rξð Þdr: ð13Þ

on the resulting quantities, we obtain:

−ξ2−s2 þΩ2 þ δ2D2
� �

~uþ ξδ1D−2Ωs½ �~w
þ ξ 1−a3D

2Þ þ a1ξ
3� �� �

~φ ¼ 0;

ð14Þ
δ1ξDþ 2Ωsð Þ~uþ δ3D

2−δ2ξ
2−s2 þΩ2

� �
~w

−
β3
β1

D 1−a3D
2

� �þ ξ2a1

 �� �

~φ ¼ 0;

ð15Þ
δ4 sþ τ0s2
� �

ξ~u−δ5 sþ τ0s2
� �

D~w

þð−δ6 sþ τ0s2
� �

1þ ξ2a1
� �

− K �
1 þ

C1

L
K1s

� �
ξ2

þD2 K �
3 þ

C1

L
K3sþ a3δ6 sþ τ0s

2
� �� �Þ~φ ¼ 0;

ð16Þ
where

δ1 ¼ c13 þ c44
c11

; δ2 ¼ c44
c11

; δ3 ¼ c33
c11

; δ4

¼ β21T 0

ρ
; δ5 ¼ β1β3T 0

ρ
; δ6 ¼ ρCEC

2
1;

and

D ≡
d
dz

;

ftzz ¼ C13

C11
ξ~uþ δ3D~w−

β3
β1

1þ a1ξ
2−a3D2

� �
~φ; ð17Þ

etrz ¼ δ2D~u−ξδ2~w; ð18Þ

etrr ¼ −ξ~uþ C12ξ
C11

~uþ C13

C11
D~w− 1þ a1ξ

2−a3D
2

� �
~φ:

ð19Þ
We will obtain the non-trivial solution of Eqs.

(14)–(16) if the determinant of the coefficient ~u, ~w, and
~φ vanishes, which yields to the following characteristic
equation:

AD6 þ BD4 þ CD2 þ E ¼ 0; ð20Þ

where

A ¼ δ2δ3ζ12−δ2ζ10ζ8;

B ¼ ζ1ζ12δ3−ζ1ζ10ζ8 þ δ2δ3ζ11þδ2ζ12ζ6−δ2ζ10ζ7−ζ
2
2ζ12

−ζ2ζ9ζ8 þ ζ5ζ10ζ2−ζ5ζ9δ3;

C ¼ δ3ζ1ζ11 þ δ2ζ6ζ11 þ ζ1ζ6ζ12−ζ1ζ10ζ7−ζ
2
2ζ11

þζ2ζ7ζ9−ζ5ζ6ζ9 þ ζ4ζ2ζ10−δ3ζ4ζ9 þ ζ23ζ12;

E ¼ ζ6ζ1ζ11−ζ4ζ6ζ9:

ζ1 ¼ −ξ2−s2 þΩ2;

ζ2 ¼ δ1ξ;

ζ3 ¼ 2Ωs;

ζ4 ¼ ξ 1þ a1ξ
2� �
;

ζ5 ¼ a3ξ;

ζ6 ¼ −δ2ξ
2−s2 þΩ2;

ζ7 ¼ −
β3
β1

1þ a1ξ
2� �
;

ζ8 ¼
β3
β1

a3;

ζ9 ¼ δ4 sþ τ0s2
� �

ξ;

ζ10 ¼ −δ5 sþ τ0s2
� �

;

ζ11 ¼ −δ6 sþ τ0s2
� �

1þ a1ξ
2� �
−ξ2 K�

1 þ
C1

L
K1s

� �
;

ζ12 ¼ K�
3 þ

C1

L
K 3sþ a3δ6 sþ τ0s

2
� �� �

:

The solutions of Eq. (20) can be written in the form by
making use of the radiation condition that ~u, ~w, ~φ →0
as z→ ∞ :

~u ¼
X

Ai ξ; sð Þ cosh qizð Þ; ð21Þ

~w ¼
X

diAi ξ; sð Þ cosh qizð Þ; ð22Þ

~φ ¼
X

liAi ξ; sð Þ cosh qizð Þ; ð23Þ

where Ai, being arbitrary constants,±qi are the roots of
Eq. (20), and

di ¼ ζ2ζ12−ζ8ζ9ð Þq3i þ ζ3ζ12q2i þ ζ2ζ11−ζ7ζ9ð Þqi þ ζ3ζ11
−ζ8ζ10 þ δ3ζ12ð Þq4i þ δ3ζ11 þ ζ6ζ12−ζ7ζ10ð Þq2i þ ζ6ζ11

;

ð24Þ

li ¼ −ζ9δ3 þ ζ1ζ10ð Þq2i þ ζ3ζ10qi−ζ8ζ9
−ζ8ζ10 þ δ3ζ12ð Þq4i þ δ3ζ11 þ ζ6ζ12−ζ7ζ10ð Þq2i þ ζ6ζ11

;

ð25Þ
where i = 1, 2, 3.
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Also, using Eqs. (21)–(23) in expressions (17)–(19), we
obtain stress components as:

ftzz ¼ X
Ai ξ; sð Þηi cosh qizð Þ þ

X
μiAi ξ; sð Þ sinh qizð Þ;

ð26Þ
etrz ¼ X

Ai ξ; sð ÞMi cosh qizð Þ þ
X

NiAi ξ; sð Þ sinh qizð Þ;
ð27Þ

trr ¼
X

Ai ξ; sð ÞRi cosh qizð Þ þ
X

SiAi ξ; sð Þ sinh qizð Þ;
ð28Þ

where

ηi ¼
C13

C11
ξ−

β3
β1

li 1þ a1ξ
2−a3q2i

� �
;

Ri ¼ −ξ þ C12ξ
C11

− 1þ a1ξ
2−a3q2i

� �
;

Si ¼ C13

C11
diqi;

μi ¼ δ3diqi;

Mi ¼ δ2diξ;

Ni ¼ δ2qi; i ¼ 1; 2; 3:

Boundary conditions
We consider a cubical thermal source and normal force
along with vanishing of tangential stress components at
the stress-free surface at z = ± h. Mathematically, these
can be written as:

h1
∂φ
∂z

þ h2φ ¼ �go F r; zð Þ; ð29Þ

tzz r; z; tð Þ ¼ f r; tð Þ; ð30Þ
trz r; z; tð Þ ¼ 0: ð31Þ

Here, h2→ 0 corresponds to thermally insulated
boundaries and h1→ 0 corresponds to isothermal
boundaries. Using the dimensionless quantities defined
by Eq. (11) on Eqs. (29)–(31) and taking Hankel and La-
place transform of the resulting equations and then
using Eqs. (26) and (27) and Eqs. (21)–(23) yields:

X
Aili h1qi þ h2ð Þ sinh qihð Þ ¼ �go ~F ξ; hð Þ; ð32Þ

X
Ai ξ; sð Þηi cosh qihð Þ þ

X
μiAi ξ; sð Þ sinh qihð Þ ¼ ~f ξ; sð Þ;

ð33Þ

X
Ai ξ; sð ÞMi cosh qihð Þ þ

X
NiAi ξ; sð Þ sinh qihð Þ;¼ 0:

ð34Þ
Solving Eqs. (21)–(23) with the aid of Eqs. (32)–(34)

and hence solving Eqs. (26)–(28), we obtain:

~u ¼
~f ξ; sð Þ
Δ

−χ1ϑ1 þ χ2ϑ2−χ3ϑ3
� 


þ go ~F ξ; hð Þ
Δ

χ4ϑ1−χ5ϑ2 þ χ6ϑ3
� 


;

ð35Þ

~w ¼
~f ξ; sð Þ
Δ

−χ1d1ϑ1 þ χ2d2ϑ2−χ3d3ϑ3
� 


þ go ~F ξ; hð Þ
Δ

χ4d1ϑ1−χ5d2ϑ2 þ χ6d3ϑ3
� 


;

ð36Þ

φ ¼
~f ξ; sð Þ
Δ

−χ1l1ϑ1 þ χ2l2ϑ2−χ3l3ϑ3
� 


þ go ~F ξ; hð Þ
Δ

χ4l1ϑ1−χ5l2ϑ2 þ χ6l3ϑ3
� 


;

ð37Þ

tzz ¼
~f ξ; sð Þ
Δ

−χ1G4 þ χ2G5−χ3G6
� 


þ go ~F ξ; hð Þ
Δ

χ4G4−χ5G5 þ χ6G6
� 


;

ð38Þ

etzr ¼ ~f ξ; sð Þ
Δ

−χ1G7 þ χ2G8−χ3G9
� 


þ go ~F ξ; hð Þ
Δ

χ4G7−χ5G8 þ χ6G9
� 


;

ð39Þ

trr ¼
~f ξ; sð Þ
Δ

−χ1G10 þ χ2G11−χ3G12
� 


þ go ~F ξ; hð Þ
Δ

χ4G10−χ5G11 þ χ6G12
� 


;

ð40Þ
where

Gi ¼ li h1qi þ h2ð Þθi;
Giþ3 ¼ ηiϑi þ μiθi;

Giþ6 ¼ Niθi þMiϑi;

Giþ9 ¼ Siθi þ Riϑi; i ¼ 1; 2; 3:

Δ ¼ G1χ4−G2χ5 þ G3χ6;

Δ1 ¼ −~f ξ; sð Þχ1 þ go ~F ξ; hð Þχ4;
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Δ2 ¼ ~f ξ; sð Þχ2−go ~F ξ; hð Þχ5;

Δ3 ¼ −~f ξ; sð Þχ3 þ go ~F ξ; hð Þχ6;
χ1 ¼ G2G9−G8G3½ �;
χ2 ¼ G1G9−G7G3½ �;
χ3 ¼ G1G8−G2G7½ �;
χ4 ¼ G5G9−G8G6½ �;
χ5 ¼ G4G9−G6G7½ �;
χ6 ¼ G4G8−G5G7½ �;
ϑi ¼ cosh qihð Þ; θi ¼ sinh qihð Þ; i ¼ 1; 2; 3

Applications
In this section, we discuss the effect of various heat
sources on the transversely isotropic thin circular plate.

Constant load and heat source
For constant load and heat source which decays moving
away from the centre of the thin circular plate in the ra-
dial direction as well as along the axial directions:

f r; tð Þ ¼ H tð Þ; F r; zð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2

p ð41Þ

where H(t) denotes the Heaviside function. Applying the
Laplace and Hankel transform, on Eq. (41), gives:

f ξ; sð Þ ¼ 1
s
; ~F ξ; zð Þ ¼ e−ξ zj j

ξ
ð42Þ

Periodically varying load and heat source
For periodically varying load and heat source which de-
cays moving away from the centre of the thin circular
plate in the radial direction as well as along the axial
directions:

f r; tð Þ ¼ T 0
sin

πt
γ
; 0≤ t≤γ;

0; t > γ:

(
F r; zð Þ ¼ 1

r2 þ z2
ð43Þ

Applying the Laplace and Hankel transform, on Eq.
(43), gives:

f ξ; sð Þ ¼ T0πγ 1þ e−sγð Þ
π2 þ s2γ2ð Þ ; ~F ξ; zð Þ ¼ K 0 ξzð Þ ð44Þ

Inversion of the transforms
To find the solution of the problem in physical domain,
we must invert the transforms in Eqs. (34)–(39). These
equations are functions of ξ and z and hence are of the

form ~f ðξ; z;ωÞ. To get the function f(r, z, ω) in the phys-
ical domain, first, we invert the Hankel transform using:

f r; z;ωð Þ ¼
Z
0

∞

ξ~f ξ; z;ωð Þ Jn ξrð Þdξ: ð45Þ

The last step is to calculate the integral in Eq. (45).
The method for evaluating this integral is described in
Press, Teukolshy, Vellerling, & Flannery (1986), which
uses Romberg’s integration with adaptive step size. This
also uses the results from successive refinements of the
extended trapezoidal rule followed by extrapolation of
the results to the limit when the step size tends to zero.

Particular cases
The cases are as follows:

� If K �
ij ¼ 0; τ0 ¼ 0; then Eqs. (35)–(40) give results

for TIT thin plate for classical coupled
thermoelasticity.

� If angular velocity of thin plate is taken zero, i.e.
Ω = 0, then Eqs. (35)–(40) give results for TIT thin
plate without rotation.

� If Kij = 0, τ0 = 0,we obtain a TIT thin plate without
energy dissipation, i.e. GN II theory from Eqs.
(35)–(40).

� If Kij≠0≠K�
ij; τ0 ¼ 0, we obtain a TIT thin plate with

and without energy dissipation, i.e. GN III theory
from Eqs. (35)–(40).

� If we take c11 ¼ c22 ¼ c33; c12 ¼ c13; c44 ¼ c66; β1
¼ β3 ¼ β;K1 ¼ K3 ¼ K ;K �

1 ¼ K �
3 ¼ K�, then we

obtain the results for the case of cubic crystal
materials from Eqs. (35)–(40).

� If we take c11 = c33 = λ + 2μ, c12 = c13 = λ, c44 = μ,
β1 = β3 = β = (3λ + 2μ)α, K1 ¼ K3 ¼ K ;K�

1 ¼ K�
3

¼ K �, then we obtain results for isotropic rotating
thin plate with and without energy dissipation from
Eqs. (35)–(40).

Numerical results and discussion
In order to illustrate our theoretical results in the pro-
ceeding section and to show the effect of rotation in dif-
ferent forms of boundary conditions as mentioned in
applications in above part, we now present some numer-
ical results. Cobalt material is chosen for the purpose of
numerical calculation, which is transversely isotropic.
The physical data for cobalt material, which is trans-
versely isotropic, is taken from Dhaliwal and Singh
(1980) which is given by:

c11 ¼ 3:07� 1011Nm−2;

c12 ¼ 1:650� 1011Nm−2;

c13 ¼ 1:027� 1010Nm−2;
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c33 ¼ 3:581� 1011Nm−2

c44 ¼ 1:510� 1011Nm−2;

CE ¼ 4:27� 102JKg−1 deg−1;

β1 ¼ 7:04� 106Nm−2 deg−1; ρ ¼ 8:836� 103Kgm−3

β3 ¼ 6:90� 106Nm−2 deg−1;

K1 ¼ 0:690� 102Wm−1Kdeg−1; K3

¼ 0:690� 102Wm−1K−1;

K�
1 ¼ 0:02� 102NSec−2 deg−1;

K�
3 ¼ 0:04� 102NSec−2 deg−1:

L ¼ 1; τ0 ¼ 1; h ¼ 0:01m

The values of normal force stress tzz, tangential stress
tzr, radial stress trr, and conductive temperature φ for a
TIT solid with two temperature and thermal relaxation
times are illustrated graphically to show the effect of two
temperatures.

Fig. 2 variations of displacement component u with radius r

Fig. 3 variations of displacement component w with radius r
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� The solid black line with centre symbol square
corresponds to thermal insulated boundaries
without rotation.

� The solid red line with centre symbol circle
corresponds to thermal insulated boundaries with
rotation.

� The solid green line with centre symbol triangle
corresponds to isothermal boundaries without
rotation.

� The solid blue line with centre symbol diamond
corresponds to isothermal boundaries with rotation.

Case 1: Constant load and heat source
Figure 2 shows the variations of displacement compo-
nent u with radius r for constant load and heat source.

In the initial range of radius r, there is a sharp decrease
in the value of displacement component for all the cases.
However, for thermal insulated boundary, the displace-
ment component varies more as compared to isothermal
boundary conditions. Moreover, away from source ap-
plied, it follows oscillatory behaviour. We can see that
the rotation has a significant effect on the displacement
component in all the cases as there are more variations
in u in case of rotation as compared to when rotation is
zero.
Figure 3 illustrates the variations of displacement com-

ponent w with radius r for constant load and heat
source. In the initial range of radius r, there is a decrease
in the value of displacement component for all the cases.
However, for thermal insulated boundary and rotation,

Fig. 4 Variations of conductive temperature φ with radius r

Fig. 5 Variations of tangential stress component tzr with radius r
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the displacement component varies more as compared
to isothermal boundaries, with and without rotation.
Moreover, away from source applied, it follows opposite
oscillatory behaviour. We can see that the rotation has a
major effect on the displacement component as there
are more variations in w in case of rotation, and it be-
haves opposite for thermal insulated and isothermal
boundary conditions.
Figure 4 illustrates the variations of conductive

temperature φ with radius r for constant load and heat
source. In the initial range of radius r, there is a sharp
increase in the value of φ for all the cases. However, for
thermal insulated boundary and rotation, the conductive

temperature varies more as compared to isothermal
boundaries, with and without rotation. Moreover, away
from source applied, it follows opposite oscillatory be-
haviour nearby the zero value.
Figure 5 illustrates the variations of tangential stress

component tzr with radius r for constant load and heat
source. In the initial range of radius r, there is a small os-
cillation in the value of stress component tzr for all the
cases. However, for isothermal boundary and without ro-
tation, the stress component tzr varies more as compared
to thermal insulated boundaries for both with and without
rotation. Moreover, away from source applied, it follows
opposite oscillatory behaviour nearby the zero value.

Fig. 6 Variations of radial stress with radius r

Fig. 7 Variations of displacement component u with radius r
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Figure 6 illustrates the variations of radial stress with
radius r. In the initial range of radius r for constant load
and heat source, there is a large oscillation in the value
of radial stress for all the cases. However, for thermal in-
sulated boundaries, the radial stress varies more as com-
pared to isothermal boundary for both with and without
rotation.

Case II: Periodically varying load and heat source
Figure 7 shows the variations of displacement compo-
nent uwith radius r due to periodically varying load and
heat source. For thermally insulated boundary in the ini-
tial range of radius r, there is a sharp decrease in the

value of displacement component for all the cases; how-
ever, rotation case displacement w shows oscillations.
However, for thermal insulated boundary, the displace-
ment component varies more as compared to isothermal
boundaries conditions. Moreover, away from source ap-
plied, it follows oscillatory behaviour. We can see that
the rotation has a significant effect on the displacement
component as there are more variations in u in case of
rotation as compared to when rotation is zero.
Figure 8 illustrates the variations of displacement com-

ponent wwith radius r due to periodically varying load
and heat source. In the initial range of distance x, there
is a decrease in the value of displacement component for

Fig. 8 Variations of displacement component w with radius r

Fig. 9 Variations of conductive temperature φ with radius r
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all the cases. However, for thermal insulated boundary
and rotation, the displacement component varies more
and is almost opposite as compared to isothermal
boundaries, with and without rotation. Moreover, away
from source applied, it follows opposite oscillatory be-
haviour nearby the zero value. We can observed that the
rotation as well as isothermal boundary conditions has a
significant effect on the displacement component in all
the cases as there are more variations in w in case of ro-
tation, and it behaves opposite for thermal insulated and
isothermal boundary conditions.
Figure 9 illustrates the variations of conductive

temperature φ with radius r due to periodically varying
load and heat source. In the initial range of distance x,

there is a sharp increase in the value of φ for all the
cases. However, for thermal insulated boundary and ro-
tation, the conductive temperature varies less and rather
oscillates near the plate as compared to isothermal
boundaries, with and without rotation. Moreover, away
from source applied, it follows opposite oscillatory be-
haviour near the zero value.
Figure 10 illustrates the variations of tangential stress

component tzr with radius r due to periodically varying
load and heat source. In the initial range of radius r,
there is a small oscillation in the value of stress compo-
nent tzr for all the cases. However, for isothermal bound-
ary and without rotation, the stress component tzr varies
more as compared to thermal insulated boundaries for

Fig. 10 Variations of tangential stress with radius r

Fig. 11 Variations of radial stress with radius r
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both with and without rotation. Moreover, away from
source applied, it follows opposite oscillatory behaviour
near the zero value.
Figure 11 illustrates the variations of radial stress

trr with radius r due to periodically varying load and heat
source. For thermally insulated boundary and without
rotation, the value of radial stress increases for 0 ≤ r ≤
3.0 and then decreases, while for thermally insulated
boundary and with rotation, radial stress trr first de-
creases for the range 0 ≤ r ≤ 2.5 and then increases. For
isothermal boundary and without rotation, the value os-
cillates with small amplitude, and for isothermal bound-
ary and with rotation, the value increases but has small
increase as opposite of thermally insulated boundary.
However, for thermal insulated boundaries, the radial
stress varies more as compared to isothermal boundary
for both with and without rotation. Moreover, away
from source applied, it follows oscillatory behaviour near
the zero value.

Conclusion
In this paper, we have discussed the thermoelastic prob-
lem for a transversely isotropic thin circular plate with
and without rotation and with relaxation time and GN
III model. Thermally insulated and isothermal boundary
cases for circular edges are considered, and temperature
is maintained on upper and lower surface of the circular
thin plate. The Laplace and finite Hankel transform
technique is used to obtain the numerical results.
In the present research article, conductive temperature,

displacement, and stresses along with rotation, two tem-
peratures with thermally insulated and isothermal bound-
ary for constant and periodically varying load have been
outlined. Since the thickness of plate is very small, the
series solution given here will be definitely convergent.
The temperature, displacement, and thermal stresses that
are obtained can be applied to the design of pressure sen-
sors, microphones, gas flow metres, optical telescopes,
radar antennae, and many other device structures or ma-
chines in engineering applications.
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