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Abstract 

A collection of feed forward neural networks (FNN) for estimating the limit pres-
sure load and the according displacements at limit state of a footing settlement 
is presented. The training procedure is through supervised learning with error loss 
function the mean squared error norm. The input dataset is originated from Monte 
Carlo simulations for a variety of loadings and stochastic uncertainty of the material 
of the clayey soil domain. The material yield function is the Modified Cam Clay model. 
The accuracy of the FNN’s is in terms of relative error no more than 10−5 and this 
applies to all output variables. Furthermore, the epochs of the training of the FNN’s 
required for construction are found to be small in amount, in the order of magnitude 
of 90,000, leading to an alleviated data cost and computational expense. The input 
uncertainty of Karhunen Loeve random field sum appears to provide the most detri-
mental values for the displacement field of the soil domain. The most unfavorable situ-
ation for the displacement field result to limit displacements in the order of magnitude 
of 0.05 m, that may result to structural collapse if they appear to the founded structure. 
These series can provide an easy and reliable estimation for the failure of shallow 
foundation and therefore it can be a useful implement for geotechnical engineering 
analysis and design.

Keywords: Neural networks, Shallow foundation, Footing settlement, Modified Cam 
Clay, Bearing capacity

Introduction
In geotechnical engineering, one of the most major investigation discipline is the deter-
mination of limit state of the system shallow foundation-precedent soil in terms of 
failure pressure load and respective displacement field. In the corresponding scientific 
publications the aforementioned discipline is analyzed considering the physical system 
as deterministic starting from the classical Terzaghi ideas [1], scientific publications in 
later years tackle the problem of the estimation of the response of the aforementioned 
physical system through simple material laws like the Coulomb friction law among oth-
ers[2–6]. In the more recent years, more complicated constitutive modelling and more 
complex FEM or other computational models have been employed to increase the 
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qualitative and quantitative estimation of the response of the footing settlement and the 
soil mass.[7–12]. Furthermore, there are scientific publications that investigate the prob-
lem under discussion, adopting the random nature of the input variables starting from 
the seminal work of [13, 14]. Following the evolution of the computer science, more 
complicated works that consider the stochastic nature of the physical problem analysed 
have been written [11, 15–25]. By means of a deterministic system one can define the 
mechanism of the soil domain once it fails. Subsequently, the failure loads can be cal-
culated and normalized. This investigation has been incorporated to the foundation 
design laws by using the foundation shape variables Si where i=q,c,γ resulting for the 
shape variables accounting for the influence of a lateral vertical load, the cohesion of 
the soil and the total wight of the geomaterial and the size of the settlement. Also, the 
friction variables Ni have been also proposed for concluding the estimation of the limit 
load foundation. When considering the physical system as uncertain, the quantification 
of the influence of the randomness of input material variables, like Young Modulus and 
the hydraulic conductivity can be computed with a reliability and in a rapid process fol-
lowing the vast scientific progress in computational mechanics, materials and computer 
science. The relative scientific literature have been tackling the problem of variability in 
space of the input through the random field creation through the spectral representa-
tion method, the Karhunen Loeve series [13–15, 17, 18, 20, 23, 25] and by incorporating 
a set of deterministic shape functions and nodal random variables [11, 16, 19, 21, 22, 
24]. The formulation of random input vectors may be done with the usage of independ-
ent pseudorandom procedures or by using importance sampling methods like the Latin 
hypercube sampling (LHS) [26, 27]. The variability estimation in geomechanics and the 
determination of the limit situation of the soil mass, has led to reliability analysis and 
estimation for the shallow settlement construction with the aid of the probability density 
function (PDF) of the failure limit load pressure and displacement field parallel to the 
randomness of the starting point of the Meyerhoff spline [28–31].

Machine Learning (ML) methods like neural networks (NN) have been increasingly 
engaged in all aspects of engineering as stated in [32–36] in the precedent years. The 
profound research of [35] has led to the incorporation of the postulation of the so called 
Physics Informed Neural Network (PINN), enlightening its prevalences in terms of reli-
ability and calculation time. The concept of predicting the behaviour of a collection of 
continuum bodies without performing the direct analysis but with a model like NN is 
of vast importance in sciences and engineering for implementing a safe and economic 
construction. The enhancement of the NN with collected evidential experimental in situ 
data applications or computer simulations has become an alleviated difficulty procedure 
and as a consequence the increase of accuracy leads to an affordable computational cost, 
which is one profound gain of the method. Furthermore, high integrated deep learning 
tools like Tensorflow and Pytorch [37, 38] provide parallel computing capabilities. Con-
structing a PINN in these open source programs as well as implementing it can give a 
very large state of efficiency and reliability, which in some probles can be more than the 
corresponding of the conventional finite element method (FEM). Alternative ways are 
the eXtended PINNs (XPINNs) which are founded by [39], Variational PINNs [40] as 
well as Parallel PINNs [41]. In geotechnical engineering this theory has been adopted to 
various problems. A brief presentation of them are constitutive modelling formulation 
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[42, 43], soil parameter determination [44–46], prediction of cohesionless soil liquefac-
tion [47], and infrastructure response like tunnels [48–53] or behaviour of a building 
when landslide occurs [54, 55]. Regarding shallow foundations, surrogate modelling 
have been formulated in caisson foundation located on cohesionless soil mass [56]. All 
the referenced literature has been leading to vast amount of data collection and amalga-
mation in aspects like the stresses, the strains, the displacements, the limit load or the 
failure envelope. These aspects may refer to a certain Gauss point of the total soil mass. 
The aforementioned scientific progress can aid the engineering design and the appropri-
ated decisions to be taken in a faster and a more reliable way. By enriching the data col-
lected using detailed analyses or by in situ investigation the algorithmic steadiness and 
efficiency of the computed estimations augment.

A collection of FNNs for the prediction of the limit state of shallow foundations on 
cohesive geomaterials are given, from precedent Monte Carlo analyses of the authors 
[28–31]. The selection of the FNN method for the formulation of the Machine Learn-
ing models was done because from several alternative methods that were applied, like 
the Convolutional Neural Networks and the Random Forest Minimization procedure 
for obtaining the model tuning variables, the FNN modelling provided the minimum 
L2 error after the final convergence of each model. The material values considered as 
stochastic random variables and random fields, are the parameter of elasticity, namely 
the compressibility factor κ , the parameter of plastic evolution, namely the critical state 
line slope c and the material governing the Darcy flow law which is the permeability k. 
These FNN models have as input parameters the eccentricity in X and Y global vectors 
along the area of the foundations as well as the angle of the shallow foundation with 
respect to the horizontal direction. The controlled quantities are the axial force, the hor-
izontal and vertical displacement of the settlement as well as the corresponding rota-
tion at limit state. The loads are static to non porous and porous soil mass which lead to 
the u-p numerical formulation to be solved, in all load cases. Furthermore, the material 

Fig. 1 A neural network constructed through the feed forward procedure with one conealed layer
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constitutive modelling proposed by [57] results to reliable FNNs. A convergence analysis 
for the training epochs is portrayed, justifying the quick convergence, the reliability of 
the model and its adaptivity to be enriched with more data. Smaller values of the ulti-
mate axial load Nult and greater values of the failure displacements and rotations, which 
are the most unfavourable situations, are given from the FNNs formed through Monte 
Carlo simulations with a Karhunen Loeve sum, when considering the pore-soil-fluid 
interaction. When the water presence is negligible larger displacements are estimated 
when κ is linear along the depth of the soil mass. In this paper, initially the FNN theory 
is presented in a brief way. The deterministic physical problem and u-p formulation is 
portrayed afterwards alongside with the material constitutive modelling adopted. Sub-
sequently, the constructed FNNs are given and a discussion is given before the final con-
cluding remarks of the work.

Construction of a feed forward neural network
Feed-forward neural network (FNN) is defined as a congregation of unified processing 
parts called neurons, incorporating an input, an output and a series of intermediary con-
cealed layers. Consider NNkl

: R
dd0

−→ R
ddkl+1 to be a FNN with kl concealed layers, 

with each concealed layer incorporating nnh neurons, for h = 1, 2, ..., kl . The neurons of 
the layers of the input and output are respectively, nn0 = dd0 and nnkl+1 = ddkl+1 . In 
each layer apart from the input a bias vector and a weight matrix, signed as Wej and Bij , 
respectively, are assigned; these are the parameters of the model. The input is signed as 
u0 ∈ R

d0 and the output vector of the hth layer as uh ∈ R
dh , for h = 1, 2, ..., kl + 1 . A FNN 

scheme with one concealed layer is depicted in Fig. 1.
An intermediate layer, h, may be prescribed through recursive equation:

(1)uh = Dδh(Wejzh−1 + Bih), ∀h ∈ {1, 2, ..., kl + 1}

Fig. 2 Illustration of the loading of the problem for non oblique forces. q1 is the maximum of q1, q2, q3, q4 and 
q2 is the minimum of q1, q2, q3, q4 . Furthermore, lx = 5m, ly = 5m, lz = 4m
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Dδh(·) is a non-linear relation and is used layer-wise. Subsequently, the application of a 
FNN may be regarded as a mapping procedure for data of the input u0 ∈ R

dd0 to data of 
the output ukl+1 ∈ R

ddkl+1 , with the use of (1).
The selection of the model hyperparameters through the method known as supervised 

learning. In this method, the FNN is fed with examples, having a value at the input and at 
the output value called as flag value, and then the hyperparameters are altered with tar-
get to have the smallest divergence, among the target variables and its estimated outputs. 
The divergence is estimated through a function of loss estimation, E(We;Bi) , like the 
mean squared norm. If a continuous function is considered and a dataset {o1(i), t1(i)}

Nd
i=1

 , 
is defined, the loss estimation function is given hereinafter:

where {o1(i)}
Nd
i=1

 are the inputs and {t1(i)}
Nd
i=1

 the targets for Nd data vector length.
The activation functions are nonlinear, subsequently the optimization of (2) is a not 

a convex problem, and it may only be solved with numerical solution schemes that are 
nonlinear and iterative like quasi Newton schemes [58] and stochastic gradient meth-
ods [59]. The FNN formulation is adopted hereinafter for the derivation of the NN that 
estimate the limit axial force and the displacement field in footing settlement situated in 
cohesive geomaterials soil domain

The deterministic physical system. The u‑p numerical scheme and the stress 
strain material law
A soil mass with cohesion which is loaded may exhibit interactivity between soil and 
pores in total or partly saturated volumes, named porous media. The numericall prob-
lems that assimilate their behaviour are named porous media problems. The general 
application mathematical system is called the Biot set of partial differential equations. 
In small frequency load cases, the Biot problem is reconstructed to an alleviated 

(2)E(We;Bi) =
1

Nd

Nd
∑

i=1

|ukl+1(o1
(i))− t1

(i)
|

2

Fig. 3 Illustration of the loading of the problem for non oblique forces. q1 is the maximum of q1, q2, q3, q4 and 
q2 is the minimum of q1, q2, q3, q4 . Furthermore, lx = 5m, ly = 5m, lz = 4m
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computational expense calculation algorithm. The u-p set of equations, comprising the 
set of the total mass of fluid and equilibrium of the momentum of the soil with Darcian 
porous behaviour, with the relations acquiring for the soil boundaries and the constitu-
tive law of the stresses and strains is a stable calculating scheme compared to the Biot 
problem.The u-p set of equations is conducted hereinafter as static loads are subjected 
to the clayey soil mass. In most structured geomaterials the u-p scheme is appropriate in 
most of the physical load cases as proven in ([60]).

The discrete setup of u-p numerical scheme is given with the Galerkin method and the 
set of equations are: [61, 62]:

The total matrix for stiffness K , matrix for mass M and matrix for damping C are given 
below:

MS accounts for solid skeleton mass consistent matrix and ρd is the total soil density and 
with Nu is the displacement field’s shape functions so the mass matrix is calculated as:

CS accounts for solid skeleton damping Rayleigh matrix whereas

KS accounts for solid skeleton stiffness matrix. E,B account for the elasticity and defor-
mation matrices. Consequently, KS is the well known:

The total matrices have also the following components. The matrix that accounts 
for coupling the set of equations is Qc =

∫

V BTmNpdv where m stands for the unity 

(3)Mẍ + Cẋ + Kx = f

(4)M =

[

MS 0
0 0

]

(5)MS =

∫

V
NuTNuρddv

(6)C =

[

CS 0

QT
c S

]

(7)K =

[

KS −Qc

0 H

]

(8)KS =

∫

V
BTEBdv

Table 1 Simulations of non porous medium accumulated

κ c Symbolism-
Number of 
NN

Linear Random S - κL - cR-d1

Linear Deterministic S - κL - cD-d2

Constant Random S - κC - cR-d3

Constant Deterministic S - κC - cD-d4
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matrix. The permeability matrix, where if k is the matrix of permeability, then 
H =

∫

V (
�

Np)Tk
�

Npdv . The saturation matrix, where if where NP are the shape func-
tions for pore pressure and Q is related directly from the soil skeleton and pore fluid 
bulk moduli, and S =

∫

V Np 1
QN

pdv . In conclusion, the loading vector divided by the 
total mixture density b , provides an equivalent force vector fS =

∫

V (N
p)T

�T
(kb)dv . 

This numerical set of equations is having a solution through contemporary integration 
procedures like Newmark method. Furthermore, the force and the independent vari-
ables array are composed:

Stress–strain law. Plastic yield function and bond strength function
The material constitutive model incorporated hereinafter is a modified Cam Clay type 
yield function from critical state theory for structured cohesive soils. The stresses 
signed comprise the solid skeleton effective stresses instead of the respective stresses 
at the pores. The model defines two surfaces, the plastic yield function (PYF) for the 
elastic region and the bond strength function (BSF) which portrays the acceptable 
places in which PYF may be. ([57, 63–66]). BSF has size related to the shape of cohe-
sive microslates. A stress tensor that lies within BSF circumference, the deterioration 
gradient of the cohesive soil is at the largest value. The functions are in elleipsoidal 
shape and therefore may only be intersected to a one point.

The mathematical representation of a function of this model is given by:

For σ , stress the volumetric part phy and a distortional part sd whilst the point L com-
prising the center of the elliptical shape consists of the volumetric part pL−hy and the 

(9)f =

[

fS
0

]

x =

[

u
p

]

(10)
fh(phy, sd, pL−hy, sL−d, a0) =

1

c2
(s− sL−d) : (s− sL−d)+ (phy − pL−hy)

2
− (ξaa0)

2
= 0

Table 2 Simulations of porous medium accumulated

κ c k Symbolism-Number 
of NN

Constant Random Deterministic P - κC - cR - kD-1

Constant Random Random P - κC - cR - kR-2

Constant Deterministic Random P - κC - cD - kR-3

Constant Deterministic Deterministic P - κC - cD - kD-4

Linear Random Deterministic P - κL - cR - kD-5

Linear Random Random P - κL - cR - kR-6

Linear Deterministic Random P - κL - cD - kR-7

Linear Deterministic Deterministic P - κL - cD - kD-8

Random process Function, 
b=2

Random process Function, 
b=2

Random process Function, 
b=2

P - κRF - cRF - kRF2-9

Random process Function, 
b=4

Random process Function, 
b=4

Random process Function, 
b=4

P - κRF - cRF - kRF4-10

Random process Function, 
b=8

Random process Function, 
b=8

Random process Function, 
b=8

P - κRF - cRF - kRF8-11
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distortional part sL−d . a0 is the halfsize of the larger diameter of BSF and the reduction 
of the PYF in relation to BSF is through the value of ξa . If sL−d = 0 , pL−hy = a0 then 
ξa = 1 and BSF is:

Fig. 4 Realization of the random fields constructed from the Karhunen Loeve series, when the correlation 
lengths are 2 m, 4 m, 8 m. In the X axis the soil depth with respect to the upper soil surface is denoted in 
m. In Y axis the normalized value of a certain material parameter ( κ , c, k) with respect to the corresponding 
mean value is given
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Nonetheless, when the volumetric part diverges from a0 and the distortional part of the 
center of the ellipse is not zero subsequently PYF is the following:

The elasticity of the soil is considered as having isotropically poroelastic behaviour. The 
volumetric deformity modulus, which is directly related to the shear deformity modulus, 
as a consequence of a fixed Poisson ratio is as follows:

ν is the specific volume of the soil.
The framework analysed in chapters 2-4 is adopted to the analyses portrayed in chap-

ter  5 and was chosen in particular in order to maximize the qualitative and quantita-
tive value of the numerical results accuracy and the reliability of the constructed FNN. 
The medium stress strain relation assumption with the stochastic finite element method 
implementation increases the reliability of the variability estimation and the statistical 
moments estimation and subsequenlty the NN s precision with small calculation cost in 
relation of the epochs needed for training.

Data accumulation from Monte Carlo stochastic analyses and formulation 
of the feed forward neural networks for the prediction of footing settlement 
limit state.
Data acquisition and numerical analyses performed

The aforementioned numerical and physical framework is used in porous medium simu-
lations as depicted in Figs. 2 and 3 and are defined by relations (3). The output response 
are the perpendicular load to the area of the shallow foundation and its nodal displace-
ments in global vectors X (horizontal) and Z (vertical) of the points A, B, C, D of Figs. 2 
and 3 and the rotation of the shallow foundation. The implementation of the foundation is 
by only embedding the nodal forces that are providing the same energy as the linear stress 
distribution if a certain value of axial force and moments is assumed. The forces are the 
nodal values q1 − q4 that correspond to B, C, A and D. The application of the forces is in 
the surface ABCD, of size (1X1 m2 ). The vector of eccentricities alongside and the obliq-
uity of the footing force (ex = Mx

N , ey =
My

N , θq) may be adopted with the given hereinafter 
vectors: (0, 0, 90o), ( h012 , 0, 900), (

h0
6 , 0, 900), ( h03 , 0, 900), ( h06 , h06 , 900), ( h03 , h06 , 900), ( h03 , h03 , 900), (0, 0, 0o)

,
(0, 0, 30o), (0, 0, 45o), (0, 0, 60o) , h0 is the respective length of the footing settlement for 

each non central force. The FEM mesh is formed with 8 node hexahedral finite elements 
with linear interpolation functions for pore pressures and displacements, which results 
to quantitatively reliable response estimation ([67, 68]). The FEM mesh size in X, Y, Z 
global vectors are lx = 5m, ly = 5m, lz = 4m . The mesh used was put in contrast to more 
detailed meshes and was proven that the difference in the output response is in the error 
magnitude of 5 % , which is acceptable. The geostatic stresses are set as initial conditions: 

(11)fh(phy, sd, pL−hy, sL−d, a0) = F(phy, sd, a0) =
1

c2
s : s+ (phy − a0)

2
− a20 = 0

(12)fg (phy, sd, pL−hy, sL−d, a0) = fp(phy, sd, pL−hy, sL−d, a0)

(13)Kbulk =

νphy

κ
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σv = γ z , σx = σy = 100kPa . These initial conditions were set in order to comply to an 
overconsolidated analyzed clay and to a reliable bulk modulus in the order of magni-
tude of 20 MPa. The total simulation time is one day for quasi static conditions to be 
attained and the time fragment is dt=0.001 d. The displacement response over time was 
portrayed where it was confirmed the soil mass exhibit a static behaviour. The boundary 
relations are: ux(z = h) = uy(z = h) = uz(z = h) = 0 and the remaining boundary sur-
faces are free to respond. The input material variability constitutes of the compressibility 
factor κ , the critical state line inclination c and the permeability factor k.

The compressibility factor κ , may have spatial distribution with respect tor depth as 
constant ( κC ), or linear ( κL ). In the κL case, κz=0 = 0.008686 and the ratio R follows the 
truncated normal PDF with R =

κz=max
κz=0

 . The linear equation of the compressibility fac-
tor as a function of depth is a usual conjecture of this material variable. This enlightens 
that with the increase of depth bulk modulus is increased κ is decreased. Additionally, 
hereinafter the value for κ at the top is assumed deterministic because in the upper place 
of the soil mass it is easy to determine a value for the material input value thus it can be 
set as deterministic. The ratio has mean value µR = 0.469 and the respective coefficient 
of variation (CoV) is 0.25, so κz=max,mean = 0.004074 . These values are used for the solid 
mixture stiffness to comply to a shear velocity of 200 ms  . Bulk and the shear moduli are 
analogous, as a subsequence of constant Poisson ratio. Thus, κ is related with the shear 
velocity. If κ is constant through the soil mass, the mean value of κ is κµ = 0.004074 and 
the CoV is 0.25.

The critical state slope c is set as constant spatially and it may be calculated from a ran-
dom variable PDF or with a non stochastic value. In a random variable occasion cR , the 
friction angle φ0 complies with the truncated normal continuous random variable with 
the mean value is µφ = 23o and the standard deviation is σφ = 2o and the random vector 
of φ0 is collected with the LHS method. The set of φ0 has values that apply to most of 
natural clays ([57]). The φ0 random discrete set is attained with the standard normal dis-
tribution sample collection with the Latin Hypercube Sampling and then are reformed 
to the truncated normal PDF. Thus, c is estimated through c =

√

2
3

6sin(φ0)
3−sin(φ0)

 . If c is set as 

deterministic and signed as, cD , c=0.7336 for friction angle µφ = 23o.
The permeability k, is set as fixed spatially. The absolute value is set to follow a random 

continuous PDF or as non stochastic. In a random variable case kR , the mean value is 
µk = 10−8 and the CoV is CoVk = 0.25 . If k is set as deterministic kD , k = 10−8 . It should 
be noted hereby that the chosen values of the material constitutive parameters analyzed, 
as well as, the material constitutive modelling calibration parameters were chosen to 
account for a cohesive soil of an overconsolidated clay with OCR=4. This accounts to a 
fairly stiff clay and subsequently this can explain the solution of shallow foundation for 
the support of an infrastructure.

The simulations performed are of two kinds. The solid simulations, where the pore-
fluid interaction is of neglecting magnitude and the porous simulations, where the fluid 
soil mixture interconnection is considerable. The solid simulations performed, signed 
with ( S ), are portrayed in Table 1, using linear (L) or constant (C) assumption for κ and 
deterministic (D) or random variable (R) relation for c. The porous simulations per-
formed are depicted in Table 2, using constant (C), linear (L) and random field (RF) case 
for κ . Deterministic (D), random continuous variable (R) and random process field (RF) 
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relation for c. Deterministic (D), random process field (RF) and random continuous vari-
able (R) for k. The abbreviation of the Monte Carlo analysis as well as abbreviation of the 
neural network is also given.

In the stochastic functions the mean values are applied: κmean = 0.008686 , cmean

=0.7336 and kmean = 10−8m3 s
Mgr  according to ([60, 62, 69]). The standard deviations 

applied are: σκ = 0.25κmean , σφ = 2o and σk = 0.25kmean . The autocorrelation relation 
is Ch = e

−|�x|
b  and is chosen in all random process simulations. Correlation length 

value has three alternatives, b=2 m ( kRF2 ), b=4 m ( kRF4 ) and b=8 m ( kRF8 ). The spa-
tial representations for κ , κL and κC , with the random variable simulations for all 
material variables comply to random variable analysis. A constant deterministic sim-
ulation for c is used. When a random process field (RF) is selected, the Karhunen 
Loeve sum is used and an arbitral representation of the process is defined with the 
finite sum of the method using an autocovariance function of exponential type. Ran-
dom variables ξ complying to standard normal PDF were attained through the Latin 
Hypercube sampling and then the input random vectors are formed. The eigenfunc-
tions and eigenvalues of Ch are given from a direct set of equations due to the inte-
grodifferential Fredholm eigenproblem having an analytical solution for this type of 
Ch . An illustration of the stochastic processes used hereinafter, for different correla-
tion lengths, is described in Fig. 4. It should be noted that for convenience, the nor-
malized functions with respect to mean value are portrayed in the realizations.

The forces are static total time and the timestep correspond to a static simulation 
of the analysis domain and eight eigenfunctions of Ch are adopted. Limit state is con-
sidered if a Gaussian Point exhibits a softening response or in other words: H0, H 
corresponds to the modulus of plasticity. A Monte Carlo analysis was done for 100 
deterministic analyses and the input random random vectors were attained with the 
Latin Hypercube Sampling. The random output vector size was proven sufficient for 
attaining convergence for the statistical moments of the response of the output as 
is described and confirmed in the preceding literature of the authors. 1000 samples 
have been simulated from a Monte Carlo analysis and assessed for the convergence 
in contrast with the two first statstical moments for 100 deterministic simulations. 
The divergence in relative terms is no more than 5% thus 100 samples are adequate 
for predicting the statistical moments of the output response. The correlation of the 
material variables is only with themselves thus the matrix of the correlation is a diag-
onal matrix.

From the Monte Carlo simulations depicted the FNN procedure illustrated in 2 is 
adopted in order to give the FNN that estimate the limit axial force Nult , the vertical 
and horizontal displacements uy,ux respectively and the rotation at limit state of the 
footing settlement Rotation. The training aimed to minimize the error described by 
2. A Monte Carlo analysis results to a distinct series of FNNs and 4 distinct FNNs for 
each output is formed. This has been done for porous and non porous medium. The 
collection of the FNNs enlightens not only the prediction of the soil domain response 
but also illustrates the efect of the uncertainty in space of the input material param-
eters and portrays the qualitative influence of each input variability to corresponding 
output uncertainty.
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The validation of the stochastic analyses, as referenced in the respective publications 
[28–31] is the following. At first the deterministic finite element model is validated 
through comparison of the results provided from the Open Source Computational 
Mehanics code MSolve of National Technical University of Athens, which the link 
may be found in the Declarations section. The comparison was done with the respec-
tive results from ANSYS. Subsequently, since the deterministic model was verified the 
stochastic model was verified through the comparison of the probability density func-
tions of the output with the analytical or semianalytical solutions for the variables dis-
cussed. Finally, since the stochastic modelling is verified the Neural Network validity 
was verified through the validation dataset. The dataset of training was done with all 
the mean values of the points discussed in the first paragraph of section 5.1. The num-
ber of the dataset input vector is 11, referring to the triad of eccentricities and obliquity 
angle (ex = Mx

N , ey =
My

N , θq) . The validation dataset was formed from respective analy-
ses in the vicinity of the 11 points. Consequently, the standard validation procedure in 
the FNN theory was adopted. Subsequently, all deterministic, stochastic and Machine 
Learning models were tested and verified.

Output response and corresponding assessment

Hereinafter, the results and the respective assessment follows. In Table  3,the conver-
gence analysis of the formulated Neural Networks (NN) is presented. The L2 error is no 
more than in the order of magnitude of 10−5 , enlightening the accuracy of the FNNs. In 
the Appendix, the 3 FNNs that estimate the unfavorable values for the axial load Nult , 
the horizontal and vertical displacement ux and uy as well as the rotation Rotation of the 
shallow foundation, in porous analyses and the 2 FNNs for medium which is without the 
pore pressure are presented in Figs. 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 
21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 and 32 comprising of 5 smaller figures. The 5 sub-
figures are the schematic illustration of the the FNN in 3 dimensions, the required for 
convergence epochs and the model L2 loss figure and the FNN projection to the input 
axis x, which is the eccentricity ex , the input axis y, which is the eccentricity ey and the 
input axis z, which is the obliquity angle in relation to the horizontal direction θq . An 
FNN is formulated with dataset point that correspond to the mean value of a Monte 
Carlo simulation.

The assessment of the convergence of the model hyperparameters reveals that the 
greatest amount of Epochs are 92,200 and they provide an L2 error of 1.12× 10−7 . Fur-
thermore, the largest error is 1.96× 10−5 and it is obtained when the training Epochs 
amoun is in the order of magnitude 50000. Taking this into consideration and combin-
ing the relative scientific publications [56] it can be concluded that the selection of the 
FNNs is appropriate for the problem in discussion. Subsequently, this method is not only 
effortless but also convenient and adaptive for improving the FNN in terms of data, like 
real in situ or in laboratory tests as well as more computational data from FEM analysis. 
It is a future work and research goal to enrich this model of high reliability with real 
world data and investigate the effect of the data enrichment to the prediction of the shal-
low foundation limit state under cohesive soil domain.

The assimilation of the dataset vector and the formulation of the FNNs lead to impor-
tant deductions for computational geomechanics discipline. Hereinafter, the most 
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unfavorable estimated values of an FNN will be provided alongside with the triad of the 
input vector that result the aforementioned unfavorable situations. Furthermore, the 
remainining response values estimated will be portrayed and assessed. Alongside with 
the aforementioned analysis, a comparative assessment will be provided in order to 
obtain the most detrimental situations for the shallow foundation subjecteed to static 
load and sited to a stochastic soil domain comprised by cohesive geosubstance. These 
results will be accurate quantitatively as a result to a high accuracy of the material stress 
strain law and the increased reliability of the neural network algorithm construction.

In Neural Network with ordinal number 10, that abbreviates to the Monte Carlo sto-
chastic analysis of P - κRF - cRF - kRF4 is proven to result to most detrimental situation, that 
is the minimum value, for Nult . For this output variable, the critical value is 642.80 kN 
whilst the rest of the output values uy , ux , Rotation are 0.0030 m, 0.0528 m, 1.41× 10−5 
rad, respectively. This situation is obtained when the input triad (ex, ey, θ) are (0,0,0). Fur-
thermore, the range of Nult is fairly large which is approximated as ≅ 3500-640=2860 
kN leading to the conclusion that the FNN can estimate a variety of possible situations. 
Consequently, the situation of horizontal central load is the most critical for the founda-
tion failure load and the rest output values can be described as moderate values for verti-
cal displacement and foundation rotation and large values for horizontal displacement. 
This analysis is depicted in Figs.9, 10, 11 and 12

In Neural Network with ordinal number 11, that is to the Monte Carlo computational 
reproduction of P - κRF - cRF - kRF8 is found to give the most detrimental situation, that is 
the maximum values for ux . For the horizontal displacement, the critical value is 0.0898 
m while the rest of the output values Nult , uy , Rotation respectively are 736.817 kN, 
0.0124 m, 4 × 10−4 rad. This is obtained when the input vector is (ex, ey, θ)=(0,0,30o ). 
Furthermore, the range of ux is fairly large as is estimated as 0.0898 m, resulting to the 
deduction that the variety of estimations of the FNN is substantial. As a result, the situ-
ation of moderate oblique central load is the most unfavorable for the foundation failure 
load and the rest output values may be characterized as modest values for vertical dis-
placement, foundation rotation and ultimate load which means a complex way of failure 
occurs. This analysis is portrayed in Figs. 13, 14, 15 and 16

In Neural Network with ordinal number 9, that abbreviate to the stochastic compu-
tational reproduction of P - κRF - cRF - kRF2 is found to have the most unfavorable val-
ues, that is the largest values, for uy . For the aforementioned variable the critical value is 
0.0641 m while the rest of the output values Nult , ux , Rotation respectively are 3605.381 
kN, 0.0622 m, 2× 10−4 rad. This situation is acquired when the set of input values 
(ex, ey, θ) are (0,0,90o ). The range of uy is considered as moderate since it is estimated as 
0.0641 m. Subsequently, the situation of vertical central load is the most critical for the 
foundation failure load and the rest output variables can be portrayed as having moder-
ate values for foundation rotation and large values for horizontal displacement and fail-
ure footing settlement load. This analysis is presented in Figs. 5, 6, 7 and 8

Neural Network with ordinal number 9, that is to the Monte Carlo computational 
reproduction P - κRF - cRF - kRF2 happens also to provide the most detrimental situation, 
that is the largest values, for Rotation. For this output variable the critical value is 0.0243 
rad whilst the rest of the output values Nult , uy , ux respectively are 1837.24 kN, 0.0005 
m, 0.0531 m. This situation occurs when the set of input values (ex, ey, θ) are ( h

3
,0,0). The 
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range of Rotation is estimated as 0.0243 rad which is characterized as moderate. Subse-
quently, it represents a substantial amount of real world situations. Consequently, the 
situation of horizontal large eccentricity load is the most detrimental situation for the 
foundation rotation and the remaining output values can be depicted as moderate values 
for vertical displacement and large values for horizontal displacement and foundation 
failure load. This analysis is depicted in Figs. 5, 6, 7 and 8

In Neural Network with ordinal number d1, that abbreviates to the Monte Carlo com-
putational reproduction S - κL - cR is justified to have the most detrimental occasion, that 
is the smallest values, for Nult . For this output variable the critical value is 643.56 kN 
while the rest of the output values uy , ux , Rotation respectively are 0.0029 m, 0.0408 m, 
1.8× 10−7 rad. This occurs when the set of input values (ex, ey, θ) are (0,0,0). The range 
of Nult is estimated as ≅ 3900-640=3260 kN which is considered as fairly large. Con-
sequeqntly, the variety of real world situations that are represented from the FNN can 
be characcterized as significant. Subsequently, when horizontal central load is sub-
jected into the shallow foundation then the most unfavorable situation occurs for the 
aforementioned NN for predicting the foundation failure load and the remaining out-
put values can be described as moderate values for vertical displacement and founda-
tion rotation and large values for horizontal displacement. This analysis is portrayed in 
Figs. 17, 18, 19 and 20

Neural Network with ordinal number d1, that ties in with the Monte Carlo computa-
tional reproduction S - κL - cR happens also to reuslut to the most unfavorable situation, 
that is the largest values, for uy . For this output variable the critical value is 0.0488 m 
while the rest of the output values uy , ux , Rotation respectively are 3851.63 kN, 0.0472 
m, 2× 10−4 rad. This situation is done when the set of input values (ex, ey, θ) are (0,0,90o

).The range of uy is estimated as 0.0488 m which is considered as moderate to large. As a 
result, the situation of vertical central load is the most probable for the NN to predict the 
most critical situation for the foundation failure load and the 3 other output variables 
can be depicted as having moderate values for foundation rotation and large values for 
horizontal displacement and failure footing settlement load. This analysis is presented in 
Figs.17, 18, 19 and 20

In Neural Network with ordinal number d2, that is to the Monte Carlo simulation S - 
κL - cD is justified to have the most unfavorable values, that is the largest values, for ux . 
For this output variable the critical value is 0.0655 m while the rest of the output values 
Nult , uy , Rotation respectively are 759.06 kN, 0.0108 m, 3× 10−5 rad. This situation is 
done when the set of input values (ex, ey, θ) are (0,0,30o ). The range of ux is estimated as 
0.0655 m which is concluded as moderate to large. As a result, the situation of moderate 
oblique central load is the most unfavorable for the foundation failure load and the rest 
output values can be described as moderate values for vertical displacement, foundation 
rotation and ultimate load which means a complex way of failure occurs. This analysis is 
depicted in Figs. 21, 22, 23 and 24

Neural Network with ordinal number d2, that corresponds to the Monte Carlo simu-
lation S - κL - cD happens also to have the most unfavorable values, that is the greatest 
values, for Rotation. For this output variable the critical value is 0.0222 rad while the rest 
of the output values Nult , uy , ux respectively are 2174.30 kN, 0.0466 m, 1.41× 10−4 rad. 
This situation is done when the set of input values (ex, ey, θ) are ( h

3
,0,90o ). The range for 
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Rotation, is estimated as 0.0222 rad which is considered as moderate to large. This leads 
to the conclusion that the variety of real world situations portrayed from the FNNs in 
all displacements and rotations is substantial. As a consequence, the situation of verti-
cal load of high eccentricity is the most unfavorable situation for the footing settlement 
failure load and the rest output values can be depicted as moderate values for foundation 
rotation and large values for failure load and vertical displacement. This analysis is pre-
sented in Figs. 21, 22, 23 and 24

The aforementioned findings lead to two important deductions. In porous analyses the 
most critical situation regarding Nult , ux , uy , Rotation is obtained when the Karhunen 
Loeve random field representation is assumed for the input randomness. If the depth of 
the soil domain coincides with the correlation length (b=4 m) the ultimate load is the 
smallest and thus the most unfavorable situation for this variable occurs. A decrease for 
the correlation length maximizes the value for the vertical displacement and the rota-
tion at failure whilst an increase of the correlation length gives greater horizontal dis-
placement estimations. Subsequently, the diminishing of the correlation length which 
maximazies the uncertainty, the limit displacements variability is increased. If the water 
pore pressure is neglected, the worst case scenario regarding Nult , ux , uy , Rotation occur 
when linear distribution over depth for κ is considered. Specifically, for the limit load 
and the vertical failure displacement more unfavorable situations are predicted by the 
neural networks when random variable case is considered for the critical state line incli-
nation whilst for the horizontal failure displacement and rotation the critical situation is 
obtained when c is deterministic. As a result, the effect of c is more profound to the limit 
load, as expected, and to the corresponding vertical displacement field and the effect of 
κ is more evident in the estimation of the displacement field at failure. The aforemen-
tioned results indicate quantitatively and qualitatively the effect of each material vari-
able uncertainty to the response of the soil domain and extends similar results that are 
obtained by previous literature in terms of estimating the response without new analyses 
required. The range of all FNNs estimations can be considered as substantial and with 
an acceptable variety of real world situations in Geotechnical Engineering. It should be 
also highlighted here that the optimum estimations of the FNNs for a model that is the 
most detrimental for two output variables simultaneously do not have the exact same 
values, as expected. As a concluding remark, the FNNs have the advantage that can be 
easily improved by collecting more computational or experimental data. Subsequently 
this work enlightens the value of the scientific fields of the variability estimation in engi-
neering and in computational geoengineering.

Concluding remarks
A series of feed forward neural networks predicting the limit state of shallow founda-
tion under structured geomaterials is given. The aforementioned data are taken from 
precedent Monte Carlo analyses that estimate the limit load of the footing settlement 
under static loading conditions. Furthermore, estimations about the displacement field 
at the time the soil exhibits its bearing capacity are provided. Specifically, the horizontal 
and vertical displacements of the footing settlement neural networks are given alongside 
with a prediction for the corresponding rotation of the foundation. The material con-
stitutive model of stress–strain relation is a high fidelity model for cohesive soils which 
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provide a reliable stress strain law in terms of quantitative results and thus the load–dis-
placement field response in static and dynamic loading. Therefore, the estimation of the 
neural network are considered to be reliable and attested.

In terms of convergence, these FNNs are constructed with a small amount of epochs 
and the L2 error is relative low for the accuracy needed for an application in geomechan-
ics. No more than 1,00,000 epochs are needed for a loss at most 10−5 . The prediction 
of the displacement filed demands importantly smaller number of epochs compared to 
the corresponding for the failure output load. Furthermore, alleviated error is estimated 
for the neural networks of the horizontal displacement at failure and increased error is 
estimated for the respecting of the rotation of the shallow foundation. That indicates the 
advantage of the method used for obtaining the neural networks and also highlits an 
advantage of the method that it can be easily enriched with more experimental or com-
putational data. The enrichment of the neural network with experimental data and the 
comparison with the one presented in this article is a future work to be done and the 
conclusions of this research will be of a significant importance.

In terms of the results presented, in analyses that take into account the soil-pore fluid 
interaction the most unfavorable situation for the output values of failure load and fail-
ure displacement field is when the uncertainty of the unput material paramters are rep-
resented with the Karhunen Loeve sum. In this case the most detrimental limit load is in 
the order of magnitude of 642 kN while the displacements are in the order of magnitude 
of 0,05 m and the rotations are negligible. The most unfavorable displacements are in 
the order of magnitude of 0,09 m with corresponding axial load in the vicinity of 735 
kN and negligible rotations. When the uncertainty increases, with the reduction of the 
correlation length, the uncertainty of the limit displacement field increases. For analyses 
that neglect the water pressure, the values for output values of failure load and failure 
displacement field are generally most unfavorable when linear relation with respect to 
depth for the compressibility factor is set. In this case the most detrimental limit load 
is in the order of magnitude of 643 kN while the displacements are in the order of mag-
nitude of 0,04 m and the rotations are negligible. The most unfavorable displacements 
are in the order of magnitude of 0,07 m with corresponding axial load in the vicinity of 
3800 kN and negligible rotations. All these may be attributed to the fact that the mean 
value of a Monte Carlo simultaion was adopted at a data point of the neural networks 
constructed. It comes to an accordance with the precedent scientific publications of the 
authors. If c is deterministic, the horizontal displacement and the rotation of the founda-
tion are having their largest values. If c is set to comply to random continuous variable, 
the vertical displacement and the failure load of the footing settlement are having their 
most unfavorable values.

Appendix
The following tables and figures are placed in this section
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Table 3 L2 loss and training epochs required for neural networks corresponding for Monte Carlo 
analyses for porous and solid simulations

NeurNet # of epochs L2 loss

P−κC − cR − kD ,Nult 36800 1.30× 10
−7

P−κC − cR − kD ,Uy 22000 5.76× 10
−7

P−κC − cR − kD ,Ux 47300 9.92× 10
−7

P−κC − cR − kD , Rot 47000 8.92× 10
−7

P−κC − cR − kR ,Nult 76400 1.33× 10
−7

P−κC − cR − kR ,Uy 26500 1.85× 10
−6

P−κC − cR − kR ,Ux 49000 4.65× 10
−10

P−κC − cR − kR , Rot 36000 3.02× 10
−6

P−κC − cD − kR ,Nult 87400 6.94× 10
−8

P−κC − cD − kR ,Uy 46000 7.78× 10
−7

P−κC − cD − kR ,Ux 46400 7.50× 10
−10

P−κC − cD − kR , Rot 50000 2.39× 10
−6

P−κC − cD − kD ,Nult 40400 5.80× 10
−7

P−κC − cD − kD ,Uy 50000 2.23× 10
−6

P−κC − cD − kD ,Uy 42100 8.13× 10
−9

P−κC − cD − kD , Rot 41000 3.75× 10
−6

P−κL − cR − kD ,Nult 53200 3.41× 10
−7

P−κL − cR − kD ,Uy 12000 1.71× 10
−6

P−κL − cR − kD ,Ux 37100 1.46× 10
−7

P−κL − cR − kD , Rot 50000 9.63× 10
−8

P−κL − cR − kR ,Nult 92200 1.12× 10
−7

P−κL − cR − kR ,Uy 33100 3.92× 10
−6

P−κL − cR − kR ,Ux 46800 1.50× 10
−9

P−κL − cR − kR , Rot 47000 6.86× 10
−6

P−κL − cD − kR ,Nult 96500 6.60× 10
−8

P−κL − cD − kR ,Ux 22900 3.17× 10
−6

P−κL − cD − kR ,Uy 44000 9.59× 10
−10

P−κL − cD − kR , Rot 38900 9.99× 10
−6

P−κL − cD − kD ,Nult 43800 7.14× 10
−8

P−κL − cD − kD ,Uy 24000 3.48× 10
−6

P−κL − cD − kD ,Ux 47000 1.75× 10
−9

P−κL − cD − kD , Rot 36500 9.19× 10
−6

P−κRF − cRF − kRF2,Nult 48900 1.13× 10
−6

P−κRF − cRF − kRF2,Uy 4400 2.30× 10
−6

P−κRF − cRF − kRF2,Ux 34300 4.16× 10
−8

P−κRF − cRF − kRF2, Rot 50000 1.96× 10
−5

P−κRF − cRF − kRF4,Nult 43100 4.63× 10
−7

P−κRF − cRF − kRF4,Uy 39100 1.50× 10
−6

P−κRF − cRF − kRF4,Ux 50000 7.22× 10
−9

P−κRF − cRF − kRF4, Rot 46500 3.65× 10
−8

P−κRF − cRF − kRF8,Nult 83100 2.07× 10
−7

P−κRF − cRF − kRF8,Uy 38500 1.75× 10
−6

P−κRF − cRF − kRF8,Ux 47400 2.11× 10
−10

P−κRF − cRF − kRF8, Rot 50000 9.09× 10
−6

S−κL − cR ,Nult 90500 6.77× 10
−8
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Table 3 (continued)

NeurNet # of epochs L2 loss

S−κL − cR ,Uy 35700 1.78× 10
−6

S−κL − cR ,Ux 45500 4.35× 10
−9

S−κL − cR , Rot 48800 9.37× 10
−9

S−κL − cD ,Nult 92200 9.38× 10
−10

S−κL − cD ,Uy 45000 2.08× 10
−6

S−κL − cD ,Ux 41100 8.06× 10
−9

S−κL − cD , Rot 35000 1.24× 10
−5

S−κC − cR ,Nult 80800 7.95× 10
−7

S−κC − cR ,Uy 50000 3.98× 10
−7

S−κC − cR ,Ux 47000 9.53× 10
−9

S−κC − cR , Rot 83000 8.33× 10
−9

S−κC − cD ,Nult 63200 1.62× 10
−7

S−κC − cD ,Uy 27100 2.87× 10
−7

S−κC − cD ,Ux 42300 ‘1.80× 10
−8

S−κC − cD , Rot 34400 3.95× 10
−6

Fig. 5 Neural network schematic illustration that respects to Monte Carlo simulation κRF − cRF − kRF2 (NN9) 
for the evaluation of the limit axial force Nult in kN
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Fig. 6 Neural network schematic illustration that respects to Monte Carlo simulation κRF − cRF − kRF2 (NN9) 
for the evaluation of the limit vertical displacement uy in m
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Fig. 7 Neural network schematic illustration that respects to Monte Carlo simulation κRF − cRF − kRF2 (NN9) 
for the evaluation of the limit horizontal displacement ux in m
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Fig. 8 Neural network schematic illustration that respects to Monte Carlo simulation κRF − cRF − kRF2 (NN9) 
for the evaluation of the limit rotation of the settlement Rotation in rad
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Fig. 9 Neural network schematic illustration that respects to Monte Carlo simulation κRF − cRF − kRF4 (NN10) 
for the evaluation of the limit axial force Nult in kN
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Fig. 10 Neural network schematic illustration that respects to Monte Carlo simulation κRF − cRF − kRF4 
(NN10) for the evaluation of the limit vertical displacement uy in m
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Fig. 11 Neural network schematic illustration that respects to Monte Carlo simulation κRF − cRF − kRF4 
(NN10) for the evaluation of the limit horizontal displacement ux in m
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Fig. 12 Neural network schematic illustration that respects to Monte Carlo simulation κRF − cRF − kRF4 
(NN10) for the evaluation of the limit rotation of the settlement Rotation in rad
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Fig. 13 Neural network schematic illustration that respects to Monte Carlo simulation κRF − cRF − kRF8 
(NN11) for the evaluation of the limit axial force Nult in kN
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Fig. 14 Neural network schematic illustration that respects to Monte Carlo simulation κRF − cRF − kRF8 
(NN11) for the evaluation of the limit vertical displacement uy in m
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Fig. 15 Neural network schematic illustration that respects to Monte Carlo simulation κRF − cRF − kRF8 
(NN11) for the evaluation of the limit horizontal displacement ux in m
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Fig. 16 Neural network schematic illustration that respects to Monte Carlo simulation κRF − cRF − kRF8 
(NN11) for the evaluation of the limit rotation of the settlement Rotation in rad
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Fig. 17 Neural network schematic illustration that respects to Monte Carlo simulation κL − cR (NNd1) for the 
evaluation of the limit axial force Nult in kN
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Fig. 18 Neural network schematic illustration that respects to Monte Carlo simulation κL − cR (NNd1) for the 
evaluation of the limit vertical displacement uy in m
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Fig. 19 Neural network schematic illustration that respects to Monte Carlo simulation κL − cR − kRF8 (NNd1) 
for the evaluation of the limit horizontal displacement ux in m
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Fig. 20 Neural network schematic illustration that respects to Monte Carlo simulation κL − cR − kRF8 (NNd1) 
for the evaluation of the limit rotation of the settlement Rotation in rad
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Fig. 21 Neural network schematic illustration that respects to Monte Carlo simulation κL − cD (NNd2) for the 
evaluation of the limit axial force Nult in kN
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Fig. 22 Neural network schematic illustration that respects to Monte Carlo simulation κL − cD (NNd2) for the 
evaluation of the limit vertical displacement uy in m
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Fig. 23 Neural network schematic illustration that respects to Monte Carlo simulation κL − cC − kRF8 (NNd2) 
for the evaluation of the limit horizontal displacement ux in m



Page 37 of 48Savvides and Papadopoulos  International Journal of Geo-Engineering           (2024) 15:15  

Fig. 24 Neural network schematic illustration that respects to Monte Carlo simulation κL − cD − kRF8 (NNd2) 
for the evaluation of the limit rotation of the settlement Rotation in rad
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Fig. 25 Neural network schematic illustration that respects to Monte Carlo simulation κC − cR (NNd3) for the 
evaluation of the limit axial force Nult in kN
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Fig. 26 Neural network schematic illustration that respects to Monte Carlo simulation κC − cR (NNd3) for the 
evaluation of the limit vertical displacement uy in m



Page 40 of 48Savvides and Papadopoulos  International Journal of Geo-Engineering           (2024) 15:15 

Fig. 27 Neural network schematic illustration that respects to Monte Carlo simulation κC − cR − kRF8 (NNd3) 
for the evaluation of the limit horizontal displacement ux in m
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Fig. 28 Neural network schematic illustration that respects to Monte Carlo simulation κC − cR − kRF8 (NNd3) 
for the evaluation of the limit rotation of the settlement Rotation in rad
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Fig. 29 Neural network schematic illustration that respects to Monte Carlo simulation κC − cD (NNd4) for the 
evaluation of the limit axial force Nult in kN
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Fig. 30 Neural network schematic illustration that respects to Monte Carlo simulation κC − cD (NNd4) for the 
evaluation of the limit vertical displacement uy in m
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Fig. 31 Neural network schematic illustration that respects to Monte Carlo simulation κC − cC − kRF8 (NNd4) 
for the evaluation of the limit horizontal displacement ux in m
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