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Introduction
Determination of the uniaxial compressive strength (UCS), one of the most crucial 
inputs in rock engineering design works is detailed in different standards and sugges-
tions by the International Society for Rock Mechanics and Rock Engineering (ISRM). 
The relevant standards and suggestions include some statements to select appropriate 
values of different parameters like geometry, size and loading rate. As ideal geometry of 
the UCS test specimens, length to diameter (L/D) ratio of the cylindrical specimens is 
suggested to be 2–2.5 by ASTM (American Society for Testing and Materials) and TSE 
(Turkish Standards Institution). On the other hand, the ratio should be 2.5–3 according 
to ISRM suggestions [1–3]. The geometry effect on the UCS values is one of the well-
studied topics in rock testing. It is known that an increase in the ratio of length to diam-
eter of the cylindrical core specimens make strength values to decrease [4–6].

The specimen size has also a significant effect on the UCS test results that an increase 
in the size makes a decrease in the UCS values [7–9]. Stress concentration at the crack 
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initiation location in the specimens increases with an increase in the size under a same 
load per a contact area condition. That situation is a significant reason making bigger 
specimens to fail under lower measured strength values in comparison with smaller size 
specimens [10–12]. In the UCS tests of rock materials, the loading rate is many times 
load control selected with the unit of kN/s. It is known that the increase in the loading 
rate makes also an increase in the UCS values [13–17]. Big size specimens tested under 
a same load controlled rate (kN/s) have lower deformation rates (mm/min) and strain 
rates (s−1) which cause to measure lower UCS values than those of the specimens with 
smaller sizes. From this point of view, it can be inferred that a relatively high loading rate 
should be selected to not have a decrease in the UCS values in case of increase in the 
specimen size.

In this study, different size rock core specimens and cementitious rocklike materials 
were tested to investigate whether the size effect on UCS values can be eliminated by 
loading under an appropriately changed loading rate selection. In addition to the UCS 
values, changes in the modulus of elasticity values and deformation characteristics of dif-
ferent rock and rocklike specimens were determined to investigate variations in the uni-
axial deformability test results with the change of the size and loading rate conditions.

Materials and methods
To prepare rock specimens with different sizes, core cutters with the inner diameters of 
32 mm and 54.7 mm (NX size) were used (Fig. 1). All of the rock core specimens were 
cut to have a same length to diameter ratio of 2 by using sawing machines (Fig. 2). The 
end faces of the cores and rock-like cementitious samples were smoothened to maintain 
precision within 0.02 mm and made perpendicular to the sample axis within 0.05 mm 
using comparator. A total of 75 rock core samples were prepared and used in triplication 
for each testing condition of size and loading rate. Totally, five different rock materials 
(Limestone, Tuff, Siltstone, Dacite, Akarsen mine ore) were tested for the present study. 
All the rock materials tested in this study were taken from the vicinity of Akarsen copper 
mine, an underground mine in Artvin city of Turkey.

Size effect of the rock specimens were investigated under both load controlled rate 
(kN/s) and deformation controlled rate (mm/min) conditions. To load under various 
rate unit selection conditions, two different equipments with hydraulic and electrical 
motor presses were used. A linear variable differential transformer (LVDT) was used 

Fig. 1  Coring process by using drill bits with diameters of 32 mm (a) and 54 mm (b), different size core 
drillers (c)
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in tests with the deformation controlled rate condition. In deformation controlled 
tests, different size specimens were tested under both a same deformation per time 
rate (mm/min) and strain rate (s−1) values which are proportional to the lengths of 
specimens. In case of supplying same deformation per time rate (mm/min) for speci-
mens with different sizes, strain rates were inversely proportional to the specimen 
lengths. For instance, 54/32 times higher strain rate in the unit of s−1 was made for 
core specimens with 32 mm diameter by selecting same deformation rate (mm/min) 
with that of the specimens having the diameter of 54 mm. On the other hand, strain 
rates were selected directly proportional to specimen lengths in the other testing case 
under deformation controlled rate selection. By this way, two different strain rate 
conditions which are directly and inversely proportional to ratio between lengths of 
different size specimens were supplied in deformation controlled tests (Tables 1, 2). 
In the tests with load controlled rate selection, the rate was chosen to be 1.0 kN/s.

Two different cementitious mixes were prepared as rocklike material specimens. 
The first group rocklike materials (Rocklike 1) included 350 kg/m3 cement, 1675 kg/
m3 aggregate, 180 kg/m3 water. Maximum particle size of the aggregate used in this 
study is 8 mm. Rocklike 1 type material specimens were cured for 3 days before test-
ing. As the second group rock-like material (Rocklike 2), homogeneous cement paste 
specimens without aggregate content were prepared. Because specimens with a small 
diameter of 27 mm were used in the test of second group rocklike material, aggregate 
was not used in the mix since it was thought to cause failure mechanism invalidity. 
Ordinary Portland cement (OPC) and water were mixed thoroughly in a mixer for 
8 min to make homogenization of Rocklike 2 specimens. Similarly, the mix of Rock-
like 1 content was homogenized in a tank mixer for 8 min.

Fig. 2  Core cutting
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Rocklike specimens were cast into moulds with different diameters of 100 mm, 54 mm, 
27 mm and diameter to length ratio of 2 (Fig. 3). The cementitious mixes were cast into 
the moulds in three steps, and air was removed with tamping rods after each casting 
steps. The moulded specimens were also put on the vibration table for 1 min to remove 
air bubbles and increase homogeneity.

In this study, uniaxial compressive strength (UCS) and deformability properties of var-
ious rock and rocklike materials were investigated under the effect of changing size and 
loading rate conditions. Some photos from tests of rock and rock-like specimens with 
different sizes are given in Figs. 4 and 5.

Results
Strength results obtained from tests with load controlled and deformation controlled 
rates are given in Tables 1, 2, 3 and 4 which also include the details of loading rate val-
ues under different test conditions. Additionally, variations in strength values under dif-
ferent size and loading rate conditions are given in Figs.  6 and 7. As seen in Table  4, 
the ratio between strength values obtained from bigger and smaller specimens (UCSb/
USCs) changed within a small range of 5% in case of selecting the strain rate as length 

Table 1  Rock strength results obtained from tests with deformation controlled rate (UCS: 
uniaxial compressive strength, D: diameter, H: height, SN: specimen number, SD: standard 
deviation)

Material Size Def. rate 
(mm/min)

Strain rate (s−1) UCS (MPa) SN SD (MPa)

Limestone D: 54 mm, H: 108 mm 0.54 8.33 × 10−5 18.8 3 0.7

Limestone D: 32 mm, H: 64 mm 0.54 1.41 × 10−4 20.9 3 0.5

Limestone D: 32 mm, H: 64 mm 0.19 4.95 × 10−5 19.5 3 0.6

Tuff D: 54 mm, H: 108 mm 0.54 8.33 × 10−5 11.6 3 0.8

Tuff D: 32 mm, H: 64 mm 0.54 1.41 × 10−4 12.9 3 0.9

Tuff D: 32 mm, H: 64 mm 0.19 4.95 × 10−5 12.2 3 0.7

Siltstone D: 54 mm, H: 108 mm 0.54 8.33 × 10−5 18.1 3 0.6

Siltstone D: 32 mm, H: 64 mm 0.54 1.41 × 10−4 22.0 3 0.8

Siltstone D: 32 mm, H: 64 mm 0.19 4.95 × 10−5 18.4 3 0.5

Akarsen ore D: 54 mm, H: 108 mm 0.54 8.33 × 10−5 12.7 3 0.7

Akarsen ore D: 32 mm, H: 64 mm 0.54 1.41 × 10−4 14.5 3 0.6

Akarsen ore D: 32 mm, H: 64 mm 0.19 4.95 × 10−5 13.4 3 0.8

Table 2  Rocklike material strength results obtained from  tests with  deformation 
controlled rate

Material Size Def. rate 
(mm/min)

Strain rate (s−1) UCS (MPa) SN SD (MPa)

Rocklike 1 D: 100 mm, H: 200 mm 1.00 8.33 × 10−5 5.56 5 0.22

Rocklike 1 D: 54 mm, H: 108 mm 1.00 1.54 × 10−4 6.06 5 0.17

Rocklike 1 D: 54 mm, H: 108 mm 0.29 4.48 × 10−5 5.51 5 0.23

Rocklike 2 D: 54 mm, H: 108 mm 1.00 1.54 × 10−4 14.03 3 0.44

Rocklike 2 D: 54 mm, H: 108 mm 0.48 7.4  × 10−5 12.84 3 0.35

Rocklike 2 D: 26 mm, H: 52 mm 0.48 1.54 × 10−4 15.17 3 0.40

Rocklike 2 D: 26 mm, H: 52 mm 0.23 7.4 × 10−5 14.49 3 0.29
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proportional. Therefore, it can be inferred that the size effect on UCS values can be prac-
tically neglected selecting strain rate proportional to lengths of specimens.

Strains of specimens were not measured in tests with load controlled rate selection. 
On the other hand, both strength and deformability parameters were determined under 
the tests carried out with deformation controlled rate selection. According to the stress 
and strain graphs drawn by the loading equipment program, secant modulus of elasticity 
(Esec) and tangent modulus of elasticity (Etan) values were calculated as given in Table 5. 
To calculate the modulus of elasticity values, methodology suggested by the ISRM [1] 
was followed. Average modulus of elasticity values were not calculated since it is not 
usable for comparison of different loading conditions as stress strain graphs are line-
arized under different stress levels for different specimens.

As seen in Figs. 8 and 9, modulus of elasticity values were found to increase with 
increasing loading rate. Besides, stress strain graph shapes of all the materials tested 

Fig. 3  Molded cementitious mixes: Rocklike 1 (a) and Rocklike 2 (b) specimens

Fig. 4  Testing strengths of rocklike specimes with different diameters of 100 mm (a), 54 mm (b) and 26 mm 
(c)
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in this study were determined to significantly differ with the change in load conditions 
that the specimens were found to be fail with a more brittle characteristic as a result 
of increase in loading rate values. Some stress–strain graphs given as example for the 

Fig. 5  Testing strengths of rock specimes with different diameters of 32 mm (a), 54 mm (b)

Table 3  Results of tests with load controlled rate selection

Material Size Load rate 
(kN/s)

UCS (MPa) SN SD (MPa)

Limestone D: 54 mm, H: 108 mm 1.0 18.3 3 0.5

Limestone D: 32 mm, H: 64 mm 1.0 22.4 3 0.6

Tuff D: 54 mm, H: 108 mm 1.0 10.6 3 0.6

Tuff D: 32 mm, H: 64 mm 1.0 13.8 3 0.7

Siltstone D: 54 mm, H: 108 mm 1.0 17.2 3 0.9

Siltstone D: 32 mm, H: 64 mm 1.0 24.3 3 0.8

Dacite D: 54 mm, H: 108 mm 1.0 49.7 3 1.3

Dacite D: 32 mm, H: 64 mm 1.0 62.4 3 1.5

Akarsen ore D: 54 mm, H: 108 mm 1.0 13.2 3 1.0

Akarsen ore D: 32 mm, H: 64 mm 1.0 17.5 3 0.9

Table 4  Strength relations obtained under  the  condition of  strain rate values selected 
as  proportional to  specimen heights (UCSb: uniaxial compressive strength of  big 
specimens, USCs: uniaxial compressive strength of small specimens)

Material Strength ratios (UCSb/USCs) Height of big size specimens Height 
of small 
specimens

Limestone 0.96 108 64

Tuff 0.95 108 64

Siltstone 0.98 108 64

Akarsen ore 0.95 108 64

Rocklike 1 1.01 200 108

Rocklike 2 0.97 108 52
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Fig. 6  UCS values under same load rate (kN/s)

Fig. 7  UCS values under same deformation rate (mm/min)
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change in brittleness with variations in strain rate values are shown in Fig. 10. As a 
result of the increase in the brittleness with increasing in strain rate, failure shapes 
were also differed. As a remarkable failure variation with the change of strain rate, 
limestone specimens exhibited a failure with throwing particles and crumbling parts 
under the high strain rate of 1.41 × 10−4  s−1, whereas limestone specimens loaded 
under low strain rate value of 4.95 × 10−5 s−1 failed with one narrow crack (Fig. 11).

Table 5  Deformation modulus values (Esec: secant modulus of  elasticity, Etan: tangent 
modulus of elasticity)

Material Size Def. rate 
(mm/min)

Strain rate (s−1) Esec (GPa) Etan (GPa)

Limestone D: 54 mm, H: 108 mm 0.54 8.33 × 10−5 9.32 11.53

Limestone D: 32 mm, H: 64 mm 0.54 1.41 × 10−4 8.87 11.09

Limestone D: 32 mm, H: 64 mm 0.19 4.95 × 10−5 8.06 10.35

Tuff D: 54 mm, H: 108 mm 0.54 8.33 × 10−5 7.44 9.61

Tuff D: 32 mm, H: 64 mm 0.54 1.41 × 10−4 6.90 8.98

Tuff D: 32 mm, H: 64 mm 0.19 4.95 × 10−5 6.31 8.64

Siltstone D: 54 mm, H: 108 mm 0.54 8.33 × 10−5 9.53 10.77

Siltstone D: 32 mm, H: 64 mm 0.54 1.41 × 10−4 10.22 12.86

Siltstone D: 32 mm, H: 64 mm 0.19 4.95 × 10−5 8.98 11.43

Akarsen ore D: 54 mm, H: 108 mm 0.54 8.33 × 10−5 9.69 11.90

Akarsen ore D: 32 mm, H: 64 mm 0.54 1.41 × 10−4 8.75 10.06

Akarsen ore D: 32 mm, H: 64 mm 0.19 4.95 × 10−5 7.39 9.31

Rocklike 1 D: 100 mm, H: 200 mm 1.00 8.33 × 10−5 1.40 2.78

Rocklike 1 D: 54 mm, H: 108 mm 1.00 1.54 × 10−4 0.83 1.49

Rocklike 1 D: 54 mm, H: 108 mm 0.29 4.48 × 10−5 0.61 1.02

Rocklike 2 D: 54 mm, H: 108 mm 1.00 1.54 × 10−4 1.82 2.73

Rocklike 2 D: 54 mm, H: 108 mm 0.48 7.4 × 10−5 1.54 2.45

Rocklike 2 D: 26 mm, H: 52 mm 0.48 1.54 × 10−4 2.24 3.34

Rocklike 2 D: 26 mm, H: 52 mm 0.23 7.4 × 10−5 1.91 2.53

Fig. 8  Secant modulus of elasticity values
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Fig. 9  Tangent modulus of elasticity values

Fig. 10  Some stress–strain graphs

Fig. 11  An example for variation in failure under different strain rates: Limestone specimens tested under 
different strain rates of 1.41 × 10−4 s−1 (a) and 4.95 × 10−5 s−1 (b)
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Discussions and conclusion
Finding the increase of the UCS values with an increase in loading rate is parallel with 
the results obtained from other previous studies carried out by different researchers 
[13–17]. Under a load controlled rate (kN/s), change in the size causes also a change 
in the strain rate (s−1) that a decrease of the size makes an increase in the rate value. 
Therefore, UCS values measured from smaller size specimens are higher than those of 
bigger ones.

The size effect was assessed to be not ignorable under the conditions of both load 
controlled and deformation controlled rates [18–20]. However, it should be noted 
herein that the size effect was found to be considerably minimized by testing under a 
same deformation rate condition in comparison with a load controlled rate selection. 
To practically remove the size effect, strain controlled loading rate (s−1) selected to 
proportionally increase with the change in specimen lengths was found usable. For 
instance, in case of increase in rock core specimen length from 64 mm to 108 mm, 
strain rate should be increased 108/64 times in comparison to the rate in test of the 
small specimen. In this study, core diameters of 32 mm and 54 mm were compared to 
investigate a 1.7 times change in size of the core specimens with the ratio of length to 
diameter of 2. Therefore, findings of this study should be considered for that kind of 
size variation and not be used for generalization since relation between UCS values 
can change for different variations in specimen sizes [21–23].

The size and loading rate have significant effect not only for strength values but also 
on deformability properties of rock and rocklike materials. The modulus of elasticity 
values were found to increase with increasing in loading rate as similar with results of 
other studies [24–26]. As another significant observation from this study, brittleness 
of rock and rocklike materials was determined to increase with an increase in loading 
rate. This situation confirms that more energy absorption is needed to make the start 
of cracking as the loading rate increases and the increase in energy absorption under 
the elastic deformation limit makes more rapid crack propagation and immediate fail-
ure as the plastic deformation starts [27–29].

In conclusion, the loading rate was found to significantly change strength and 
deformability properties of rock and cementitious rocklike materials that the increase 
in loading rate made increases in both UCS and modulus of elasticity values and the 
brittleness. As the most notable outcome of this study, the loading rate is suggested to 
select as strain controlled and proportional to diameters of specimens with different 
sizes to practically eliminate the size effect on the UCS values.
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