
Farrell-Maupin and Oden ResMath Sci (2017) 4:14 
DOI 10.1186/s40687-017-0104-2

RESEARCH Open Access

Adaptive selection and validation of
models of complex systems in the
presence of uncertainty
Kathryn Farrell-Maupin1 and J. T. Oden2*

*Correspondence:
oden@ices.utexas.edu
2Institute for Computational
Engineering and Sciences, The
University of Texas at Austin,
Austin, TX, USA
Full list of author information is
available at the end of the article

Abstract

This paper describes versions of OPAL, the Occam-Plausibility Algorithm (Farrell et al. in
J Comput Phys 295:189–208, 2015) in which the use of Bayesian model plausibilities is
replaced with information-theoretic methods, such as the Akaike information criterion
and the Bayesian information criterion. Applications to complex systems of
coarse-grained molecular models approximating atomistic models of polyethylene
materials are described. All of these model selection methods take into account
uncertainties in the model, the observational data, the model parameters, and the
predicted quantities of interest. A comparison of the models chosen by Bayesian model
selection criteria and those chosen by the information-theoretic criteria is given.

1 Background
One of the principal sources of uncertainty in computer predictions of physical events is
the selection of the mathematical model used as a basis for the prediction. For any model
selected, there remains the critical question of whether the model can be judged to be
valid for the purpose of predicting key quantities of interest. In [11], we presented the
Occam-Plausibility ALgorithm (OPAL) as a systematic adaptive procedure for selecting
and validating models among a set of possible mathematical models of complex physical
phenomena, and specifically in [11], among possible coarse-grained models of atomistic
systems. The qualifier “Occam,” of course, refers to Occam’s razor, in reference to an
attempt to select the “simplest” valid model among a set of models. The notions of model
simplicity and validity must be made specific to give meaning to such procedures, and are
discussed in more detail later in this paper.
An appeal to Occam’s razor is not at all new in the history of model selection. In 1970,

Box and Jenkins [7] suggested that the principle of parsimony should lead to a model with
the smallest number of parameters that adequately represent the observational data. The
information-theoretic approaches to model selection embodied in Akaike-type criteria
and its generalizations do, indeed, lead to measures explicitly dependent on the number
of parameters in each model among a set of candidate models. There is a large literature
in statistics referencing Occam’s razor as a principle for model selection (again, the “prin-
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ciple of parsimony of explanations”). So-called Occam factors as a measure of the relative
value of one model over another are discussed in, for example, Jaynes [15], Loredo [23],
Wolpert [27,28], and elsewhere as a form of a Bayes factor weighted by maximum likeli-
hoods of the respective models. Our own version, embedded in OPAL, provides for not
only a parsimonious approach, but, importantly, an approach for addressing model inad-
equacy and determining model validity relative to estimates of the accuracy with which
the model predicts representations of quantities of interest. OPAL is based on Bayesian
model plausibilities, but also involves partitioningmodels into “OccamCategories,” which
are derived from a measure of simplicity based on the number of parameters in a
model.
In the art and science of model validation, much depends upon how one determines

that a model “adequately represents” observational data. Such a determination requires
a notion of adequacy, i.e., a measure of accuracy with which a model can predict specific
data, and a tolerance that must be met in order to deem a model sufficiently accurate. A
famous quote, also attributed to Box [6], is “all models are wrong, but some are useful.”
Validation processes aim to judge which models are useful in predicting specific events in
physical systems.
We remark that many studies have been performed on methods of model selection in

statistics and biological literature, good examples being the work of Posada and Buckley
[25] on model selection and averaging in phylogenetics; the work of Gelman, Hwang, and
Vehtari comparing Akaike information criterion (AIC), deviance information criterion
(DIC), and Watanabe–Akaike information criterion (WAIC) approximations of cross-
validation [12]; the book of BurnhamandAnderson [8] on ecologicalmodels; and the book
of Konishi and Kitagawa [22] on information-theoretic methods in statistical modeling.
These studies do not address the fundamental issue that the best model in a set of models,
no matter how “goodness” of the model is measured, may be completely unacceptable
for the predictive purpose at hand; i.e., the best model may be invalid. The approaches
described in the present work address both relative model quality and validity.
In the present paper, we examine and compare alternative forms of OPAL in which

different methods of model selection are employed. In particular, we depart from a fully
Bayesian approach and explore the frequentist, information-theoretic methods embodied
in the Akaike information criterion (AIC). Introduced in the 1970s [2–4], AIC has been
studied andusedpredominantly in areas of ecological and biological sciences, as discussed,
for example, in [8]. Variations and extensions have also been introduced to confront
computational complications that may arise in cases of limited observational data; see,
e.g., [14,22,26].We give further details on AIC, Bayesian plausibilities, and othermethods
and compare validation results and predictions using each approach.We continue to focus
on the difficult problem of selection and validation of coarse-grained models of atomistic
systems, as it exhibits all of the challenges of model validation and quantification of
uncertainties in predictions.
Following this Introduction, we review a number of basic concepts that are fundamental

to predictive science and, particularly, model validation. We review general methods of
model selection in Sect. 3 and describe OPAL in Sect. 4. Applications to coarse graining
of models is taken up in Sect. 5 and conclusions are collected in a final section.
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2 Preliminaries
To establish the setting for this exposition, we review briefly some basic concepts and
notations relevant to predictive modeling following [24]. It is understood in the present
work that the term model refers to a mathematical model, a collection of mathematical
constructions put forth as mathematical abstractions of systems, particularly physical or
engineered systems, but social and economic systems could conceivably be considered as
well. It is useful to regard a model as characterizing an abstract mathematical problem,
such as: Given θ ∈ � ⊂ Rk and S, find u(θ, S) ∈ V such that

A(θ, S;u(θ, S)) = 0, (1)

whereA is a collection of mathematical operators, θ is a vector of model parameters taken
from a parameter space � (assumed finite dimensional here), S is the scenario in which
the model is implemented, and u(θ, S) is the solution for given θ and S belonging to a
space V of trial functions. For any S, (1) is referred to as the forward problem, as the
model extrapolates information forward into a solution u(θ, S) from which predictions of
features of the system (or specific events) are derived.
The concept of a scenario is important in the science and technology of model vali-

dation. Mathematically, a scenario is viewed as a set of parameter-independent features
of the model that can generally be specified exactly, such as the domain of the solution
u(θ, S) or certain boundary and initial data, the idea being that the same model can be
used in several different scenarios. The term scenario is used to refer to both the actual
physical environment, in which experimental data are collected, and the computational
environment, in which the reality to be predicted by the model resides.
In theory, the mathematical model is selected to solve the forward problem in the full

prediction scenario Sp, and the solution u(θ, S) is then used to compute specific quantities
of interest (QoIs). The QoIs are specific realities targeted in the prediction process. Math-
ematically, they are usually characterized as functionals Q on the space V of functions in
which the solution u(θ, Sp) resides:

Q : V → R, Q(u(θ, Sp)) = Q̃(θ). (2)

Physically (and philosophically), the QoIs are not observables, as model predictions may
be of events in systems that do not (yet) exist, such as engineering designs. In statistics,
they are sometimes identified as “out-of-sample” data (e.g. [12]), extrapolations outside
realm of measurable observations.
In processes of calibration and validation of models, other scenarios are considered. At

a primitive level, calibration scenarios Sc are considered that involve unit tests on compo-
nents of a model. They are designed to update prior information on model parameters by
matching model predictions with experimental calibration data yc. Multiple calibration
scenarios may be considered, each involving different model parameters that could be
subsets of those appearing in the prediction scenario. The fundamental issue of model
validation is the process of assessing the validity of themodel in question as ameans to pre-
dict the QoI with acceptable accuracy. This involves the design of validation experiments
on subsystem models in validation scenarios Sv, designed to compare model predictions
with validation observable data yv. The challenges of validation are to design experiments
that deliver observational data adequately representing the QoI, to test the validity of
hypotheses made in developing the model that may not be fully trusted, to choose an
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appropriate metric to measure the accuracy with which the model predicts QoI-informed
data yc, and to select a tolerance γtol, of the error that the modeler is willing to accept
in order to declare the model “valid” (or not invalid). Once a model is determined to be
valid (through this subjective process), the model parameters of the valid model (or their
statistical representation by appropriate probability density functions) are introduced into
themodel implemented in the full prediction scenario, the forward problem is solved, and
the QoI is evaluated.
Several remarks should be made at this point. Firstly, as noted earlier, and famously

noted by Box [6], all models of physical reality are imperfect. The goal of predictive
computational science is to determine whether model predictions are “close enough”
to reality to use in predictions of events to contribute to scientific knowledge or as a
basis for important decisions. Next, the validity of a model depends upon the QoI to be
predicted; a model “valid” for one QoI may be invalid for another. It is emphasized that
the notion of a valid model can be highly subjective, involving the design of an experiment
to mimic a non-observable QoI, the choice of a metric, and the choice of a tolerance for
acceptability. Furthermore, predictions are made in the presence of many uncertainties in
model parameters, in data (yc, yv), and in selecting the model itself. Validation methods
may or may not address these uncertainties. The QoI is generally a random number
or variable. An important challenge is to quantify the uncertainty in the prediction. In
addition, a computational model is generally derived from the mathematical model to
render it to a form that can be processed by a computer. The discretization of themodel, of
course, introduces additional errors in the prediction. While not addressed in the current
study, this subject is takenup in earlierwork [1]. Finally, not all of theparameters of amodel
necessarily influence the QoI for a particular prediction scenario Sp. Effective methods of
measuring the sensitivity of predictions to choices of model parameters and estimates of
parameter sensitivity can lead to elimination ofmodels that do not significantly inform the
QoI, resulting in a substantial reduction in the complexity of the model selection process.

3 Model selection
The development of a rigorous basis for selecting the “best” model among a set of pos-
sible models has been a goal of some modelers, particularly in statistics, for decades.
Various measures to assess the quality of one model relative to another have foun-
dations in Bayesian arguments, such as Bayes’ factors and Occam factors, as well as
information-theoretic arguments derived from frequentist statistics and maximum like-
lihood approaches. All of the methods of interest involve calculations designed to assess
howwellmodel predictions using parametricmodels agreewith observational data or how
closely the parametric model can approximate a probability distribution representing the
“truth,” i.e., the true reality.
In the Bayesian setting, the idea of model evidence and posterior model plausibilities is

extremely powerful. The notion of posterior plausibilities is mentioned in the 1981 paper
of Chow [9], who attributes the idea to Jeffreys’ treatments of probability theory [16]. It
was certainly known to Schwarz [26], who developed easily implemented approximations
to model evidence that lead to the Bayesian information criterion (BIC) in analogy to
information-theoretic approaches. More recently, the use of such Bayesian probability
approaches for model selection were advocated by Beck and Yuen [5], Hawkins-Daarud
et al. [13], and Farrell et al. [10,11]; see also [24].
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On the information-theoretic side, the work of Akaike [2,4] leading to the Akaike infor-
mation criteria or its various generalizations [14] are perhaps best known in the domain of
frequentist statistics. An account of information-basedmodel selection criteria, including
extensions to “generalized information criteria” (GIC), is given in the book of Konishi and
Kitagawa [22].
We explore the case in which we have many models from which to choose, and the goal

is to identify the model with the most potential for predicting target quantities of interest.
Consider the setM ofm parametric model classes,

M = {P1 (θ1) ,P2 (θ2) , . . . ,Pm (θm)} , (3)

each with its own parameter space�i from which the parameter vector θi may be chosen.
Each model Pi(θi) is presumed to be developed on the basis of physical and empirical
laws described by mathematical constructions. Assume also that we have acquired a set
of observational data y = {y1, y2, . . . , yn} ∈ YS where YS is a space of observational data
accessible in scenario S.

3.1 Bayesian posterior plausibilities

Suppose that for each model, a prior probability density π (θi|Pi,M) is specified. We sim-
ply rewrite Bayes’ rule, acknowledging that we have additional conditional information;
namely, that the model Pj(θj) is known to belong to the setM:

π (θj|y,Pj ,M) = π (y|θj ,Pj ,M)
π (y|Pj ,M)

· π (θj|Pj ,M), 1 ≤ j ≤ m. (4)

The key term is the model evidence, the denominator on the right-hand side of (4). It is
the marginalization of the numerator with respect to the parameters:

π (y|Pj ,M) =
∫

�j
π (y|θj ,Pj ,M)π (θj|Pj ,M) dθj , 1 ≤ j ≤ m. (5)

Themodel evidence can be interpreted as a new likelihood function for a discrete version
of Bayes’ rule over the setM of models. Its posterior, for each model Pj , denoted ρj , is the
posterior model plausibility,

ρj = ρj(Pj|y,M) = π (y|Pj ,M)π (Pj|M)
π (y|M)

, 1 ≤ j ≤ m. (6)

Choosing the denominator to normalize the set of discrete plausibilities, we have
n∑

j=1
ρj = 1. (7)

The model (or models) inM with the largest plausibility (or plausibilities) ρk such that
ρk ≥ ρj , 1 ≤ j ≤ m, is deemed the most plausible (the “best”) model in the setM for given
data y. The prior π (Pj|M) may be set equal to 1/m if, initially, allmmodels are regarded
as equally plausible. Otherwise, prior experience may be called upon to weigh one model
over another.

3.2 The Akaike information criterion

As in the Bayesian setting, each model has its own likelihood distribution πj(y|θj). We
drop the dependence on M and replace the dependence on Pj with the subscript πj for
the moment to simplify notation. Note that each likelihood captures the probability that
the model Pj is able to reproduce the observed data y.



Farrell-Maupin and Oden ResMath Sci (2017) 4:14 Page 6 of 15

It is customary and convenient in mathematical statistics, particularly in frequentist
statistics, to assume the existence of the “truth” or full reality embodied in a probability
density f . The expected value with respect to the truth f of the log-likelihood has the
following important property: Denote by θ∗ the vector such that

θ∗ = argmax
�

Ef [log π (y|θ)]

= argmax
�

∫
YS

f (y) log π (y|θ) dy

= argmin
�

[
−

∫
YS

f (y) log π (y|θ) dy
]

= argmin
�

DKL(f ‖π (·|θ)), (8)

where DKL is the Kullback–Leibler divergence, also called the the relative entropy or the
information loss between the truth f and the model, represented by the likelihood π (y|θ),

DKL(f ‖π (·|θ)) =
∫
YS

f (y) log f (y)
π (y|θ) dy. (9)

That is, the parameter vector θ∗ that maximizes the log-likelihood with respect to f for
given data yminimizes information lost in approximating the truth with the model.
For a setM ofmmodels, each with likelihood πj(y|θj), the averaged DKL over the truth

leads to the following measure of information loss for each model:

Aj = ExEy log πj
(
x|θ̂j(y)

)
, 1 ≤ j ≤ m, (10)

x and y being independent samples taken from the same distribution for scenario S and
θ̂j(y) is the maximum likelihood estimate (MLE) for model Pj , found using data y. As in
(8), the expectations Ex and Ey are taken with respect to the truth f .
Obviously, since the truth f is not known, the measures Aj cannot be evaluated. How-

ever, under certain assumptions on smoothness of the likelihood function and asymptotic
behavior of the likelihood as the number n of samples becomes larger, the quantities Aj
can be approximated by the Akaike information criterion,

AICj = −2 log πj(y|θ̂j) + 2Kj, (11)

where Kj is the number of parameters of model Pj . The model with a lower AIC indicates
amodel with a lowerDKL-distance to reality and is, therefore, a “better” model. Therefore,
in general, we seek model Pj ∈ M such that

AICj ≤ AICi, ∀i = 1, 2, . . . , m. (12)

A derivation of (11) is given in [8].
An accepted alternative, the Bayesian information criterion (occasionally referred to as

SIC, the Schwarz information criterion), is given by [26],

BICj = −2 log π (y|θ̂) + Kj log(n). (13)

Also, a “second-order”AIC for small sample sizes has been proposed by Hurvich and Tsai
[14] which replaced AICj of [7] by

AICcj(y) = AICj + 2Kj(1 + Kj)
n − Kj + 1

, (14)

n being the sample size. Burnham and Andersen [8] comment that “unless the sample size
is largewith respect to the number of estimated parameters, use ofAICcj is recommended”
over AICj .
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The individual values of AICj , BICj , or AICcj are generally not interpretable; however,
the relative values are informative. To this end, and recalling that the minimum AICj (or
BICj or AICcj) value indicates to the “best” model, we can calculate the AIC differences,

�j = AICj − AICmin. (15)

The larger �j is, the less plausible it is that Pj is the best model for minimizing the
information lost in using model Pj over the “truth” model. Recalling that the evidence
π (y|Pj ,M) of (5) can be regarded as the likelihood of the model Pj given the data y, an
information-theoretic version of this likelihood can be put forth that is related to the AIC
differences of the form,

π (y|Pj ,M) ∝ exp
(

−1
2
�j

)
. (16)

Then the Akaike version of model plausibilities is, in analogy with (6), the so-called
Akaike weights,

wj = exp(−�j/2)∑
i exp(−�i/2)

. (17)

TheAkaike weightswi are akin to Bayesianmodel plausibilities and can be used as amodel
selection criterion, and the model with weight wi closest to unity is deemed the best.

4 OPAL
As previously stated, OPAL is an algorithm designed to systematically select the simplest
valid model. In the version advocated in [11], the simplicity was defined by the number
of parameters such that the simplest model has the fewest parameters among a set of
models, and validity was established by passing a validation criterion. It is clear from (11),
(13), and (14) that this measure of simplicity is consistent with similar measures of model
quality found in frequentist or information theory onmodel selection criteria, but it could
be replaced by other notions of model complexity, if appropriate.
Briefly stated, OPAL consists of the following steps:

1. A setM of parametric models,

M = {
P1(θ1),P2(θ2), . . . ,Pm(θm)

}
(18)

is identified, each with parameters θi belonging to an appropriate parameter space
�i, 1 ≤ i ≤ m.

2. A parameter sensitivity analysis is performed to assess the sensitivity of a model
output function Y (θ) on perturbations in model parameters. Those models with
parameters not appreciably affecting the output are eliminated, yielding a reduced
set M̄ of models,

M̄ = {
P̄1(θ̄1), P̄2(θ̄2), . . . , P̄l(θ̄l)

}
, l ≤ m. (19)

3. The models surviving Step 2 are partitioned into “Occam Categories” according to
their complexity. Those with the fewest parameters, for example, are put in Category
1, those with the next highest number of parameters in Category 2, and so forth.

4. Models in the setM∗ ofCategory 1 are calibrated in calibration experiments involving
calibration data yc, yielding a calibrated set of Category 1 models,

M∗ = {
P∗
1(θ

∗
1),P∗

2(θ
∗
2), . . . ,P∗

k (θ
∗
k )

}
. (20)
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5. The posterior Bayesian plausibilities ρi of all models inM∗ are computed. Recall that
these plausibilities depend explicitly (see, e.g., (6)) and implicitly (via the calibration
process (4)) on the calibration data yc. Only the most plausible models with ρi ≥
ρj , 1 ≤ j ≤ m are retained.

6. An experimental validation scenario is constructed yielding validation observational
data yv , and the most plausible model in Category 1 is used to compute a prediction
of the observables yv ; if the difference between the observables and the prediction,
measured in an appropriate metric or pseudo-metric, is within a preset tolerance
γtol , themodel is deemed “valid.” If not, one returns to Step 3 and repeats the process
for the next category of models until a valid model is found. If no models of any
category are deemed valid, one returns to Step 1 and enlarges the set M of possible
model classes and then proceeds with the steps listed above.

7. Upon identifying a valid model, the forward problem is solved in the prediction
scenario and the original QoI is computed, completing the prediction process.

All of these steps are designed to cope with uncertainties in the parameters, the obser-
vational data, and the target QoIs, all generally characterized by probability densities. The
output Y (θ), when feasible, may be taken to be the QoI available in the full prediction sce-
nario of the model. In regard to eliminating parameters with small sensitivity indices with
respect to the output function Y (θ), it should be noted that the elimination of a parame-
ter should be done only if 0 is in the domain of the parameter itself. Otherwise, another
nominal value of the parameter must be chosen for the reduced model(s). It should be
understood that among the setM of model classes, theremay bemany better models than
that selected by OPAL, i.e. models in a higher Occam category, which produce predic-
tions closer to the validation observations by some appropriate metric. OPAL is designed
to uncover the simplest model (as measured by the number of parameters, for example)
that satisfies a predefined validation criterion.
Step 4 in theOPAL algorithm is often themost computationally intensive, and it may be

meaningful to consider other simpler methods of model selection when feasible. One goal
of this study is to explore, through numerical experiments, the results of model validation
when simpler methods, such as the AIC and BIC, are used instead of plausibilities for
complex multi-parameter problems. Both the AIC and the BIC are derived using several
simplifying approximations that involve truncation error and use of asymptotic estimates,
and are not regarded to deliver model selections as accurate as plausibility measures.

5 Application to the selection of coarse-grainedmodels of atomistic systems
One of the most complex challenges in model selection and validation occurs in the
construction of coarse-grained (CG) models of atomistic systems—a standard approach
in molecular dynamics simulations of chemical and biological systems. CG models are
created by aggregating atoms together into representative groups. Interactions between
thesenewgroups are generally unknownandmust bedefined in termsof forcepotentials to
characterize the mathematical representation of each CGmodel of the molecular system,
the parameters of which should be determined following theories, ideas, and processes
discussed earlier.
Traditionally, many interatomic potentials are represented by four types of interactions:

bonded, angular, torsional (dihedral), and van derWaals. It is quite common to represent
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bonds and angles with a harmonic potential and the van der Waals interactions with a
Lennard-Jones potential. In the OPLS functional form [17,18], torsional interactions are
given a cosine expansion. The OPLS potential energy is therefore given by,

V (r) =
∑
bonds

1
2
kr,i(ri − r0,i)2 +

∑
angles

1
2
kθ ,i(θi − θ0,i)2

+
∑

dihedrals

4∑
n=1

Vn,i
2

[
1 + (−1)n−1 cos(nφi)

]

+
∑

non−bonded
4εij

((
σij
rij

)12
−

(
σij
rij

)6
)
. (21)

In this equation, r is the configuration of the atoms (the vector of atomic coordinate
vectors), the parameters kr,i and kθ ,i are spring stiffness parameters for the bonds and
angles, respectively, r0,i and θ0,i are the equilibrium bond and angle values, and ri and θi
are the bond and angle distances at the given configuration r. The constants Vn,i are the
dihedral coefficients, and φi are the torsional angles. For any pair of non-bonded atoms,
the Lennard-Jones parameters are εij and σij , and rij is the distance between them. An
electrostatic interaction in the form of a Coulomb potential can also be added; however,
in this example, the CG particles are assumed to be charge neutral.
In both the atomistic and coarse-grained systems, the potential energy drives the com-

putational simulation. During these implementations, configurations are sampled and the
corresponding potential energy is calculated. The probability density approximated using
these samples will be used to the compute the validation metrics discussed later in this
section.
Following [11], we consider as a representative example the problem of computing the

potential energy of a polyethylene cube. To initializeOPAL, a setM of possible parametric
models is identified. First, theAA-to-CGmap is defined, shown in Fig. 1. EachCGparticle,
shown in red, is defined to represent two carbon atoms and their attached hydrogen
atoms. In this example, the set M is created by tabulating the possible combinations of
interactions shown in (21), as shown in Table 1. Further details regarding these types of
interactions can be found in [10,11]. The interactions and parameters of each model are
the same for those used in the Bayesian setting; therefore, the sensitivity analysis detailed
and completed in [11] may be used here. As discussed in previous work, the potential
energy in this particular application is insensitive to dihedral parameters. In some cases,

Fig. 1 Representation of the AA-to-CG map G for polyethylene. Carbon atoms are shown in gray, hydrogen
atoms are shown in white, and the CG particles are idealized by the red spheres
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Table 1 Possible CGmodels are created by including various combinations of interactions

Model Bonds Angles Dihedrals LJ 12-6 LJ 9-6 Param Cat.

P1 � 3 1

P2 � 3

P3 � 3

P4 � 3

P5 � � 5 2

P6 � � 5

P7 � � 5

P8 � � 5

P9 � � 5

P10 � 5

P11 � � � 7 3

P12 � � � 7

P13 � � 7

P14 � � 7

P15 � � 7

P16 � � 7

P17 � � � 9 4

P18 � � � 9

P19 � � � 9

P20 � � � 9

P21 � � � 9

P22 � � � � 11 5

P23 � � � � 11

The Occam categories are determined by counting the number of parameters in the model

insensitive parameters may be set to nominal, constant values. In the present example,
the models are nested; thus, the models containing dihedral interactions are redundant
and may therefore be eliminated from consideration.
The remaining models are collected into the set M̄ such that M̄ = {P̄1, P̄2, . . . , P̄11} =

{P1, . . . ,P9,P11,P12}. From Table 1, it can be seen that the lowest category contains
those models which depend upon only three parameters. Thus,M∗ = {P∗

1,P∗
2 ,P∗

3 ,P∗
4} =

{P1,P2,P3,P4}. The MLE for each of these models is determined via a quasi-Newton
optimization scheme in which the starting point is the mean value of the parameters
determined in an analysis of a simplified AA scenario. Specifically, these mean values are
those used in the maximum entropy prior distributions in the Bayesian implementation.
See appendix of [11] for complete details.
The calibration scenario consists of a single chain of polyethylene (C80H162), simulated

in a canonical ensemble. The calibration data yc is a vector of observed potential energy
values. Once the MLE for each model in Category 1 is obtained, the AIC and Akaike
weight for each model may be calculated according to (11), (15) and (17). In the present
application, we find that

w1 ≈ 1, w2 ≈ 0, w3 ≈ 0, w4 ≈ 0. (22)

For this set of models, it is clear that P∗
1 = P1, which contains only bonded interactions,

is considered the “best” model. This result agrees with the best model choice determined
using Bayesian plausibilities for model selection [11].
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Separate validation scenarios in which parameters are updated again are not typical
in deterministic model development. However, for the purpose of following OPAL, we
construct a validation test for the AIC-best model. We consider two chains of C80H162
simulated in a canonical ensemble and the data yv is a set of potential energies. Using
the calibration MLE as the starting point for the validation likelihood maximization, we
update the MLE.
As validation metrics, we calculate the DKL between the AA and CG distributions

produced in the validation scenario, as well as the normalized Euclidean distance between
the AA and CG ensemble averages. That is, if uAA and uCG are the set of samples of the
potential energy produced by the AA and CG models, respectively, in a given validation
scenario,

γ1 = |QAA − QCG| = |〈uAA〉 − 〈uCG〉|, (23)

and

γ2 = DKL(uAA‖uCG) =
∫

π (uAA) log
π (uAA)
π (uCG)

dω. (24)

We take as validation tolerances,

γ1,tol = 0.1QAA , γ2,tol = 0.15σ 2
AAO(QAA), (25)

for the normalized Euclidean distance and DKL metrics, respectively. Notationally, QAA
is the ensemble average of the observable, O(QAA) is its order of magnitude, and σ 2

AA is
its variance.
For modelP∗

1, theMLE parameters are updated using data from the validation scenario.
These parameters are used in a forward implementation of polyethylene. Then, using (23)
and (24),

γ1 = 1.8371 × 10−4QAA ≤ γ1,tol, γ2 = 0.0061σ 2
AAO(QAA) ≤ γ2,tol, (26)

renderingP∗
1 “valid” (not invalid). In a second validation scenario consisting of four chains

of C80H162, the parameters, without another update, are used to produce a second uAA
and uCG. Using the same validation tolerances γ1,tol and γ2,tol, both models are again
deemed “not invalid” since

γ1 = 0.0064QAA, γ2 = 0.0788σ 2
AAO(QAA). (27)

Since this model has passed two validation tests, we have confidence to say that it may be
used to predict the QoI in our prediction scenario.
AlthoughP∗

1 has been vetted as a “valid”model, we shall move through another iteration
of OPAL for the purposes of illustration. Tightening the validation criteria so that

γ2,tol = 0.06σ 2
AAO(QAA) (28)

renders the Category 1 model P∗
1 invalid. Following the OPAL algorithm, we move to the

subset of models in Category 2, in whichM∗ = {P∗
1,P∗

2 ,P∗
3 ,P∗

4 ,P∗
5} = {P5,P6,P7,P8,P9}.

For each model, the MLE parameters and Akaike weights are calculated for each model,

w1 ≈ 1, w2 ≈ 0, w3 ≈ 0, w4 ≈ 0, w5 ≈ 0. (29)

Clearly, P∗
1, which accounts for the potential energy in bonds and angles, is the AIC-best

model. Note that this differs from the Bayesian implementation, in which P∗
2, consisting

of bonds and Lennard-Jones 12-6 interactions, is chosen to be the most plausible.
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In the validation scenario comprised of two chains of polyethylene, theMLE is updated,
and we calculate

γ1 = 3.2970 × 10−7, γ2 = 0.0070σ 2
AAO(μAA), (30)

using (23) and (24), respectively. Moving into the second validation scenario yields

γ1 = 0.0063, γ2 = 0.0618σ 2
AAO(μAA), (31)

rendering the Category 2 model invalid, and necessitating another iteration through
OPAL to Category 3. Note that when OPAL was implemented with Bayesian plausi-
bilities as a model selection criterion, the Category 2 model was found to be not invalid.
Recalling that γ1 measures only the difference in mean, while γ2 takes into account the
entire distribution of the potential energy, this result implies that the Bayesian approach
better accounts for the various uncertainties present in this application.
Continuing another iteration of OPAL, we select the Category 3 models such that

M∗ = {P∗
1 ,P∗

2} = {P11,P12}. Both Category 3 models take into account bond, angle, and
Lennard-Jones interactions; they differ only in the representation of the Lennard-Jones
interaction. Calculating the Akaike weights,

w1 ≈ 0, w2 ≈ 1, (32)

making the model with 9-6 Lennard-Jones interactions “better” than that with 12-6
Lennard-Jones interactions. In the first validation scenario,

γ1 = 6.5408 × 10−8, γ2 = 1.0518 × 10−4σ 2
AAO(μAA), (33)

and in the second validation scenario,

γ1 = 0.0174, γ2 = 0.0259σ 2
AAO(μAA), (34)

making the Category 3 model P∗
2 not invalid for use in the prediction scenario. The

potential energy distributions for all the “AIC-best” models in each of the three Occam
Categories in the validation scenarios are given in Fig. 2.
A summary of the Bayesian implementation of OPAL results presented in [11] and the

frequentist, AIC-based version of OPAL presented here is given in Table 2. Recall that
the parameters were updated in the first validation scenario in both the deterministic and

Fig. 2 Potential energy distributions produced by the models chosen using the AIC in the first validation
scenario (a), and the second validation scenario (b)
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Table 2 Possible CGmodels are created by including various combinations of interactions

Method Model Sv1 Sv2
γ1 γ2 γ1 γ2

Level 1

Bayes P∗
1 0.0118 0.0622 0.0181 0.0826

AIC P∗
1 1.8371 ×10−4 0.0061 0.0064 0.0788

Level 2

Bayes P∗
2 0.0115 0.0440 0.0178 0.0587

AIC P∗
1 3.2970 ×10−7 0.0070 0.0063 0.0618

Level 3

Bayes − − − − −
AIC P∗

1 6.5408 ×10−8 1.0518 ×10−4 0.0174 0.0259

The Occam categories are determined by counting the number of parameters in the model

Bayesian processes. The MLE calibration is much closer to the data than the parameter
distributions produced byBayesian calibration, as can be seen by a comparison of γ1 and γ2
for Sv1. Although most of the validation metrics computed in the first validation scenario
for the MLE models are lower than those computed for the corresponding Bayesian
models, there is a larger jump in these values as the complexity of the scenario increases
(e.g., to the second validation scenario). Consider, for example, the validationmetric values
produced in Level 2. The relative change in γ1 from Sv1 to Sv2 for the Bayesian plausibility
is about 55%, while the change in AIC is about 20,000%. For γ2, this relative change is<1%
for plausibility and nearly 8% for AIC. This may imply that the Bayesian models are more
robust for extrapolation to more complex scenarios.
It should be noted that these results depend on the data y that is used to calibrate the

parameters, if Bayes’ rule or maximum likelihood estimation is used. Theoretically, as the
amount of data increases, the Bayesian posterior π (θ|d) and the MLE θ∗ of the truly best
model converge to the true distribution or true value of the parameters, respectively [19–
21]. It can be argued that, similarly, as the amount of data increases, Bayesian plausibilities

Fig. 3 Evolution of AIC values for Category 2 models as the number of data points increases. In each case,
Model 1 is the “best” model. Furthermore, Model 4 and Model 5 differ only in the representation of the
Lennard-Jones interaction, which may explain the similarity in their AIC values
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andAIC values will converge to indicate themodel that will best represent reality. Figure 3
provides plots of the dependence of the AIC values on the available data for models.

6 Concluding comments
On the basis of the sample calculations described in this work on the problem of vali-
dating coarse-grained models of atomistic systems, the Akaike and Bayesian criteria for
model selection provide an efficient alternative to the more rigorous methods of Bayesian
plausibility. Examples of implementations of the OPAL algorithm in model selection and
validation suggest that the information-theoretic AIC selection procedures, as expected,
seem to provide acceptable criteria for model selection. But in at least one case con-
sidered here, the best model selected by AIC differed from that pointed to by Bayesian
plausibilities. From a practical point of view, even if the chosen model selection criteria
fail to select the best model among a set of models proposed for a prediction, and if this
model is invalid, this fact will be caught during the validation phase of OPAL. The better
computational efficiency of the AIC methods in comparison with Bayesian plausibilities
could make feasible new approaches to model selection and validation in the presence of
uncertainties.
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