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Abstract

We present a ray-based finite element method for the high-frequency Helmholtz
equation in smooth media, whose basis is learned adaptively from the medium and
source. The method requires a fixed number of grid points per wavelength to represent
the wave field; moreover, it achieves an asymptotic convergence rate ofO(ω− 1

2 ),
where ω is the frequency parameter in the Helmholtz equation. The local basis is
motivated by the geometric optics ansatz and is composed of polynomials modulated
by plane waves propagating in a few dominant ray directions. The ray directions are
learned by processing a low-frequency wave field that probes the medium with the
same source. Once the local ray directions are extracted, they are incorporated into the
local basis to solve the high-frequency Helmholtz equation. This process can be
continued to further improve the approximations for both local ray directions and
high-frequency wave fields iteratively. Finally, a fast solver is developed for solving the
resulting linear system with an empirical complexityO(ωd ) up to a poly-logarithmic
factor. Numerical examples in 2D are presented to corroborate the claims.
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1 Background
We consider the Helmholtz equation:

Hu := −�u(x) − ω2

c2(x)u(x) = f (x), x ∈ Ω ⊆ R
d, (1)

plus boundary (or radiation) conditions, where ω is the frequency, c(x) > 0 is the wave
speed, and f (x) is the source distribution, which we suppose to be compactly supported.
The numerical solution of theHelmholtz equation (1) in the high-frequency regime, i.e.,

ω � 1, is notoriously hard to compute. FromShannon’s sampling principle [90], to resolve
a general wave field oscillating at frequency ω, a mesh size h = O(ω−1) is necessary and
sufficient. Hence, the number of intrinsic degrees of freedom (DOFs) is O(ωd), implying
that the theoretical optimal overall complexity to solve (1) isO(ωd). In general, an overall
complexity of optimal order is difficult to achieve due to two typical challenges:

• how to design a discretization that can achieve both accuracy and stability without
oversampling; and
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• how to solve the resulting linear system in linear complexity, up to poly-log factors,
as the frequency becomes large.

Methods used to discretize the Helmholtz equation can be broadly categorized depend-
ing on the level of adaptivity that they exploit. We refer to adaptive discretizations as
discretizations that depend on the medium and the source.
Examples of non-adaptive discretization are: standard finite differences [63,77], stan-

dard continuous or discontinuous finite elements [34,52,53,83,98], and spectral methods
[79,100,101], among many others. They are very general in the sense that they can be
used for a variety of different problems. However, in the case of the Helmholtz equa-
tion they yield either pollution error,1 inducing oversampled sparse discretizations [4,6]
whose associated linear systems can be solved in optimal complexity [28,29,91,104,109],
or quasi-optimal sparse discretizations whose associated linear systems are prohibitively
expensive to solve [44,101] in the high-frequency regime.2

Adaptivemethods, on the other hand, aim to leverage à priori knowledge of the solution
of the Helmholtz equation, such as its known oscillatory behavior. In practice, adaptive
methods have mostly focused on adaptivity to the medium, such as polynomial Galerkin
methods with hp refinement [3,70,73,96,107,111], specially optimized finite differences
[23,45,92,93,102] and finite elements [4,99], enriched finite elements [30–33], planewave
methods [5,21,42,43,46,69,74], generalizedplanewavemethods [54,55], locally corrected
finite elements [17,38,82], and discretizations with specially chosen basis functions [7,8,
76], among many others. They have been especially successful on reducing the pollution
effect by accurately capturing the dispersion relation. However, in the high-frequency
regime, either they are not asymptotically quasi-optimal for heterogeneous media or they
yield linear systems that cannot be solved in quasi-linear time with current algorithms.3

New advances on adaptive discretizations [14,41,49,78] seem to indicate that quasi-
optimality of the discretization, while still yielding linear systems amenable to fast solvers,
can be achieved if the discretization depends on the medium and the source simultane-
ously. These fully adaptive discretizations aim to leverage analytical knowledge about the
solution, such as asymptotic expansions, which in the case of the solution of theHelmholtz
equation can take the form of the geometric optics ansatz:

u(x) ≈ superposition of
{
An(x)eiωφn(x)

}N
n=1

, (2)

inwhich the phasesφn(x) and amplitudesAn(x) dependon themedium, domain boundary,
and source, but they are independent of the frequency.
Indeed, phase-based methods [41,49,78] are instances of fully adaptive discretizations.

These methods use (2) to build an approximation space by modulating a polynomial basis
with an oscillatory component using the phase functions, which need to be computed
beforehand.

1 The ratio between numerical error and best approximation error from a discrete finite element space is ω dependent.
2Recent advances such as [79,100], have lowered the complexity of global spectral methods; however, they still have a
superlinear cost.
3Some of the discretizations mentioned above, in particular plane wave-type Trefftz methods with wave directions in
equi-spaced distribution [47], usually yield extremely ill-conditioned systems due to loss of numerical orthogonality in
the basis. In general, the resulting linear system need to be solved using pivoted QR factorization in superlinear time.
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However, computing the appropriate global phase functions φn(x) in the whole domain
is a challenging task for a general medium with varying speed; different phase functions
may be defined in different regions, whose boundaries are difficult to determine à priori;
the error on the solution is proportional to the approximation error of the phase function
times ω,4 implying that the phase functions need to be computed extremely accurately,
thus, making the computation of the phase functions the bottleneck in such approaches.
In the present paper, we propose a ray-based method based on the geometric optics

ansatz, in which the phase functions are not explicitly computed, thus bypassing the
bottleneck. The method relies on a linear approximation of the phase functions in the
form

φn(x) ≈ φn(x0) + ∇φn(x0) · (x − x0) = φn(x0) + |∇φn(x0)|̂dn(x0) · (x − x0); (3)

where d̂n(x0) := ∇φn(x)
|∇φn(x)| are called the ray directions [12] or the dominant wave directions

[14]. The dominant wave directions are extracted from a low-frequency probing wave
field, namely a solution to a low-frequency problem, i.e., the Helmholtz equation with the
same medium and source, but at a much lower frequency ω̃ = O(ω1/2).
The underpinning property used in this approach is that the phase functions are inde-

pendent of the frequency, and the extraction of their gradient is a stable operation using
signal processing algorithms, such as numerical micro-local analysis (NMLA) [10–12].
The resulting linear system is sparse, and it can be solved efficiently using state-of-the-art
preconditioners such as [28,29,91,104,109].

1.1 Results

The main result of this paper is an algorithm to solve the Helmholtz equation in the high-
frequency regime with an optimal asymptotic cost O(ωd), up to poly-log factors, with
respect to the number of intrinsic degrees of freedom.
The performance of the algorithms owes to the following two ideas:

• we build a fully adaptive discretization based on the geometric optics ansatz and local
linear approximation of the phase functions whose gradients are learned from a low-
frequency problem solved using standard finite elements; the resulting discretization
is stable and asymptotically accurate; in particular, the error converges to zero as
O(ω− 1

2 ), as the frequency increases;
• we solve the resulting linear system using state-of-the-art preconditioners with linear

complexity, up to poly-logarithmic factors.

The adaptive discretization is built by learning the dominant wave directions specific to
the medium and source distribution. In particular, we probe the same medium using the
same source, i.e., solving a low-frequency Helmholtz equation

−�ũ(x) − ω̃2

c2(x) ũ(x) = f (x), x ∈ Ω ⊆ R
d, (4)

plus suitable boundary (or radiation) conditions with the same c(x), f (x) and a relative
low-frequency ω̃. The computed wave field is post-processed by NMLA or other signal

4 If we suppose that the approximation error of computing φn is δφn , then the approximation error of the solution is
given by |eiωφn − eiω(φn+δφn)| ∼ ωδφn , which is ω dependent.
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processing tools to locally estimate the dominant wave directions; both the number of
dominant wave directions and the directions can vary from point to point, thus, providing
the flexibility to deal with general media. The estimated wave directions are then used
to enrich a finite element space, which is used to discretize the original high-frequency
Helmholtz equation.
In particular, we develop a simple ray-based finite element method (ray-FEM) in 2D for

smoothmedia as a proof of concept study of our proposed approach.We start with a finite
element mesh with mesh size h satisfying wh = O(1), i.e., a few points per wavelength.
First, the low frequency is chosen by ω̃ ∼ √

ω such that Eq. (4) is solved quasi-optimality
on such mesh since ω̃2h = O(1) [71]. Then NMLA [10–12] (see Sect. 3) is applied to the
computed low-frequency wave field to estimate the local dominant wave directions.
The estimated dominant wave directions are then used to enrich the local finite element

basis following (2) in order to discretize the high-frequency Helmholtz equation on the
same mesh.
We develop an efficient preconditioner to solve the resulting linear system iteratively

using GMRES [88]. The preconditioner is based on the method of polarized traces [109].
Numerical experiments show that it is possible to solve the linear system in O(N ) com-
plexity with a possible poly-logarithmic factor for a smooth medium, whereN is the total
number of unknowns.
Moreover, once amore accuratewavefield is computed, it canbeused to get a better esti-

mation of the dominantwave directions, which can be used to improve the high-frequency
wave field iteratively. If necessary, the solution for the high-frequency Helmholtz equa-
tion can also be processed by NMLA to improve the estimation of local dominant wave
directions which can be used to further improve the high-frequency solution.

1.2 Related work

In this section we briefly review related approaches to solve the Helmholtz equation, and
we compare some of them with the approach proposed in this paper.
As stated in the prequel, it is difficult to design a sparse discretization that can achieve

both accuracy and stability under the condition ωh = O(1) as ω becomes large. This is
mainly due to the pollution effect in error estimates for finite element methods [4,6], i.e.,
the ratio between numerical error and best approximation error from a discrete finite
element space is ω dependent.
From a physical point of view, the wave field governed by the Helmholtz equation

containswaves propagating in all directions and satisfying a specific dispersion relation.As
a consequence, numerical errors due to dispersion or interpolation for these propagating
modes will propagate as physical waves to pollute the whole computed wave field. In
particular, a compact stencil on a mesh that is comparable to the wavelength cannot
approximate the dispersion relations for propagating waves in all direction uniformly well
as ω → ∞ [6].
In order to minimize (or eliminate, if possible) the pollution effect, various approaches

have been proposed lately in the literature. Approaches based on polynomial basis coupled
with nonstandard variational formulations (such as [75]) have been proposed in order to
approximate the Helmholtz operator so that the resulting discrete problems have better
stability properties. For example, with an appropriate choice of coefficients, low-order
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compact finite-difference discretizations can effectively reduce the dispersion error [35,
58,80]. Other instances of such approaches are the generalized finite element method
(GFEM) [4] and continuous interior penalty finite element method (CIP-FEM) [107,111],
the interpolated optimized finite-difference method (IOFD) [93,94], Galerkin methods
with hp refinement [70,72,73], among many others. These methods successfully reduce
the pollution error; however, they require either a more restrictive condition on the mesh
size or the degree of the polynomial approximation to beω dependent, resulting on a large
increase in the size and interconnectivity of the associated linear systems as the frequency
increases.
On the other hand, many approaches rely on specially designed basis in order to accu-

rately represent the solution. One of such approaches is the multiscale Petrov–Galerkin
method [17,38,82]; the method relies on local corrections, which are numerically com-
puted in a fine mesh, to the basis functions. This method is stable and quasi-optimal
under the minimal resolution condition ωH = O(1) and m = O(logω) for the coarse
mesh H and an oversampling parameter m. However, the condition on the fine mesh
size, h, to solve the local subscale correction is the same as the standard FEM. It requires
ω3/2h = O(1) for stability [107] and ω2h = O(1) for quasi-optimality [71].
Other instancesof suchapproaches aremethods that incorporate appropriate oscillatory

behavior into the basis ofGalerkinmethods. The key issue for this strategy is how to design
the oscillatory basis. Since the Helmholtz solutions locally behave like plane waves, one
approach is to incorporate plane waves with a predetermined equi-spaced distribution in
directions into the basis. For example, products of plane waves with local finite elements
basis are used in the generalized finite element methods (GFEMs) [71], partition of unity
finite element methods (PUFEM) [5], virtual element methods (VEM) [81], discontinuous
Galerkin (DG) methods [36,42,46], and ultra-weak variational formulation (UWVF) [18,
20,21]. Trefftz-type methods [47] use local solutions of the Helmholtz equation as the
basis functions, which in the case of piece-wise constant media are plane waves.
It is well known that these plane wave-based methods need fewer DOFs to achieve

better accuracy than the conventional finite element methods [47,64]. A comparison of
these methods can be found in [37,39,51,64]. However, these methods have two caveats:
They normally perform poorly when the source is not zero, and it is not clear how to
choose the number of plane wave directions à priori. In order to achieve a good accuracy,
a fine, ω-dependent [47], resolution in the angle space is required. This refinement in the
angle space will not only increase the DOFs significantly but alsomake the resulting linear
system extremely ill-conditioned due to the numerical coherence of the elements of the
basis.
Other basis functions can be utilized, such as Bessel functions [49,67,68] to improve the

adaptivity to the curvature of the solution’s wavefront and also reduce the linear depen-
dence of the basis. Moreover, generalized plane waves [54–56] in the form eP(x) with
an appropriate complex polynomial P(x) are developed to achieve high-order conver-
gence for smooth heterogeneous media. Another instance of methods using other basis
functions is the discontinuous enrichment method (DEM) [31–33,97], which combines
Lagrange multipliers on the mesh interfaces to enforce continuity of the solution with
approximation spaces composed by sums of continuous polynomials and discontinuous
plane waves, leading to a reduction of the number of DOFs.
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Amore adaptive approach to solve the high-frequency Helmholtz equation is based on
the geometric optics ansatz of the wave field (2). In the ansatz, phases and amplitudes are
independent of frequency and hence are non-oscillatory and smooth except at a measure
zero set, e.g., focus points, caustics, corners in a smoothmedium.Once the phase functions
of the wave fronts are available, the oscillatory pattern of the wave field is known; phase-
based numerical methods [14,41,49,78] explicitly incorporate these known phases into
the basis functions to significantly improve both stability and accuracy.
As discussed in the prequel, computing the global phase functions for general media

is a challenging task. Meanwhile, a phase function can be locally approximated by a
linear function with a leading term d̂n(x0) · x, where d̂n(x0) is the local dominant wave
direction and can be extracted stably by signal processing algorithms. With precomputed
dominant wave directions by ray tracing [15,16,22,49], the dominant plane wave method
[14] incorporates them into the local basis to combine the advantages of phase-based
methods and plane wave methods. Since only the dominant directions of wave fronts
relevant to the problem are involved in this approach, the number of degrees of freedom
can be keptminimal, and ill-conditioning of the resulting linear system due to redundancy
can be reduced.
Finally, under the stronger assumption that the medium can be written as a homoge-

neous background plus a compactly supported perturbation, the Helmholtz equation can
be converted to a second-kind integral equation by introducing the Green’s function cor-
responding to the background, resulting in the so-called Lippmann–Schwinger equation.
Recent advances have shown that it is possible to solve the Lippmann–Schwinger equa-
tion, and hence the Helmholtz equation, in optimal time [110]. In this paper, however, we
treat a more general case.

1.3 Outline of the paper

Here is an outline of this paper. We first describe the ray-FEM using the geometric optics
ansatz as the motivation and study its approximation property in Sect. 2. In Sect. 3 we
introduce the NMLA with its stability and local ray direction error analyzed in “Appen-
dices A and B.” Section 4 provides the full presentation of the numerical algorithm whose
empirical complexity is given in Sect. 5. Numerical results are presented in Sect. 6. Con-
clusions and future works are summarized in Sect. 7.

2 The ray-FEMmethod
In this section we describe the ray-FEM method for the Helmholtz equation and its
rationale.We explain briefly the geometric optic ansatz and how it is approximated locally
via a superposition of plane waves propagating in a set of dominant directions. We then
proceed to explain how these plane waves are incorporated into the finite element basis
to improve both stability and accuracy of the numerical solution to the high-frequency
Helmholtz equation.
In this section we suppose that the dominant directions are known exactly. In Sect. 3

we will describe how to learn the dominant wave directions by probing the medium using
low-frequency waves.
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We use the following boundary value problem in 2D to illustrate our method,

{
−�u − k2(x)u = f, in Ω ,

∂u
∂n + iβk(x)u = g, on ∂Ω ,

(5)

whereΩ is an open bounded Lipschitz domain inR2, k(x) = ω/c(x) is the inhomogeneous
wave number, f ∈ L2(Ω) is the source, and g ∈ L2(∂Ω) is the boundary data. Moreover,
we suppose that both source and boundary data are frequency independent. Equation (5)
is usually referred to as the Helmholtz equation with impedance boundary conditions.
This equation was chosen in order to easily impose other types of boundary conditions by
modifying the coefficient β . Specifically, the Dirichlet boundary condition corresponds to
β = ∞ and the first-order absorbing boundary condition to β = ±1. Moreover, it is easy
to extend (5) to incorporate absorbing boundary conditions implemented via PML [13],
as it will be performed in the numerical experiments in Sect. 6.3.

2.1 Geometric optics ansatz

The standard derivation of the geometric optics ansatz usesWKJB approximation [57,60,
87] (or the Lüneberg–Kline expansion [61]) for the solution to the Helmholtz equation
(1):

u(x) ∼ eiωφ(x)
∞∑

	=0

A	(x)
ω	

. (6)

By taking ω → ∞ and considering only the first term one has

u(x) = A(x)eiωφ(x) + O
(
1
ω

)
, (7)

whereA is usually called the amplitude and φ the phase. The key features of the geometric
optics ansatz are:

• A and φ are independent of the frequency ω;
• A and φ depend on the medium, c(x), and the source distribution, f (x).

Moreover, except for a small set of points, e.g., source/focus points, caustics, and disconti-
nuities of the medium, A and φ are smooth functions satisfying the following PDE system
for f = O(ω0),

(eikonal) |∇φ| = 1
c
, (transport) 2∇φ · ∇A + A�φ = 0. (8)

As long as the medium is smooth and no caustic occurs, the asymptotic expansion (6)
holds in the sense that the difference between the exact solution of theHelmholtz equation
and an N -term truncation of the expansion (6) can be made arbitrarily smooth for all x
provided N is taken sufficiently large. This has been justified in [62] for oscillatory initial
value problems of hyperbolic equations and furthermade rigorous in the theory of Fourier
integral operators [48]. In practice, the one-term asymptotic expansion (7), namely the
so-called geometric optics term, usually yields sufficiently accurate asymptotic solutions
[1,2,59,65,66,85,86].



Fang et al. Res Math Sci (2017) 4:9 Page 8 of 35

The coefficients {Al} in the asymptotic expansion (6) satisfy a recursive system of trans-
port equations [1,2,86] which are coupled with the eikonal equation. Under the assump-
tion that the medium is smooth and no caustic occurs, one may solve the transport
equations to estimate the coefficients {Al} in different formulations [1,2,65]. Since the
geometric optics term is oscillatory when ω �= 0, it should be understood in the L2 sense
rather than the L∞ sense.
Assuming that the medium is smooth and no caustic occurs, the asymptotic expansion

(7)will not fail as long as the frequency parameterω is not zero, but the resulting difference
between the asymptotic expansion (7) and the exact solutionmaybe large in theL2 normas
the frequency approaches zero [86]. Given an inhomogeneousmedium, however, it is hard
to pin down how large ω should be so that the asymptotic expansion (7) is accurate up to
a certain specified accuracy, as this is closely related to both fluctuations and correlation
lengths of the normalized propagation speed of the medium [106] and the frequency
parameter ω. We refer the reader to [27] for further details on the geometric optics
ansatz.

2.2 Local plane wave approximation

In general, the phase function, φ, and the amplitude function,A, aremultivalued functions
corresponding to multiple arrivals of wave fronts [9]. Hence, one can further decompose
the geometric optics ansatz into a superposition of several wave fronts in the form:

u(x) = superposition of {An(x)eiωφn(x)}N (x)
n=1 + O

(
1
ω

)
, (9)

whereN (x) is the number of fronts/rays passing through x, and the phases φn and ampli-
tudes An are single valued functions satisfying the eikonal/transport equations (8), each
defined in a suitable domain with suitable boundary conditions [9].
Based on the above geometric optics ansatz, one can derive a local plane wave approxi-

mation at any point where φn and An are smooth with variations on aO(1) scale. Indeed,
using Taylor expansions on a small neighborhood around an observation point x0 for the
n-th wave front, we have,

u(x) = (An(x0)+∇An(x0)(x−x0)) eiω(φn(x0)+∇φ(x0)·(x−x0))+O
(
h2+ωh2+ 1

ω

)
, (10)

for |x − x0| < h � 1.
Define

d̂n := ∇φn(x0)
|∇φn(x0)| = c(x0)∇φn(x0) (11)

as the ray directions of the wave fronts at x0, k(x0) = ω/c(x0), and

Bn(x) = (An(x0) + ∇An(x0)(x − x0))eiω(φn(x0)−∇φ(x0)·x0) (12)

the affine complex amplitude. By replacing (11) and (12) in (10) we have

u(x) = Bn(x)eik(x0)̂dn·x + O
(
h2 + ωh2 + 1

ω

)
, (13)

for |x − x0| < h � 1.
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From (9) and (13), we have thatu can be approximated locally by a superposition of plane
waves propagating in certain directions with affine complex amplitudes. Moreover, as
ω → ∞, such thatωh = O(1), the asymptotic error for the local planewave approximation
(13) isO(ω−1), which is of the sameorder as the asymptotic error for the original geometric
optics ansatz (9).We use (13) as themotivation to construct local finite element basis with
mesh size h = O(ω−1), in which an affine function is multiplied by plane waves oscillating
in those ray directions, resulting in local approximations similar to (13).

2.3 Ray-based FEM formulation

We use a finite element method to compute the solution to (5), whose standard weak
formulation is given by

Find u ∈ H1(Ω), such that B(u, v) = F (v), ∀v ∈ H1(Ω), (14)

where

B(u, v) :=
∫

Ω

∇u · ∇vdV −
∫

Ω

k2uvdV + iβ
∮

∂Ω

kuvdS, (15)

F (v) :=
∫

Ω

f vdV +
∮

∂Ω

gvdS. (16)

The domain,Ω , is discretized with a standard regular triangulatedmesh, withmesh size
h. The resulting mesh is denoted by Th = {K }, where K represents a triangle of the mesh.
Using the aforementioned mesh, we define two approximation spaces for the variational
formulation (14):

• the standard FEM(S-FEM),whereweuse low-orderP1finite elements, i.e., piece-wise
bilinear functions;

• the ray-FEM, where we use P1 finite elements multiplied by plane waves as in (13).

For a given element K ∈ Th, we denote by Vj and xj , j = 1, 2, 3, the vertices of K and
their coordinates, respectively. Moreover, we denote by {ϕj(x)}3j=1 a partition of unity
consisting of piece-wise bilinear functions satisfying ϕj(xi) = δij , i, j = 1, 2, 3, where δij
is the Kronecker delta. The basis given by {ϕj(x)}3j=1 is usually called the nodal basis for
Lagrange P1 finite elements. The standard local approximation space is given by

VS(K ) = span{ϕj(x), j = 1, 2, 3}, (17)

and the global P1 finite element space

VS(Th) = {
v ∈ C0(Ω) : v|K ∈ VS(K ),∀K ∈ Th

}
. (18)

To define the ray-FEM we enrich the P1 finite elements by incorporating the ray infor-
mation. Letting {̂dj,l}njl=1 be nj ray directions at the vertex Vj , we define the ray-based local
approximation space by

VRay(K ) = span
{
ϕj(x)eikj d̂j,l ·x, kj = k(xj), j = 1, 2, 3, l = 1, . . . , nj

}
,

and the global ray-FEM space by

VRay(Th) = {
v ∈ C0(Ω) : v|K ∈ VRay(K ),∀K ∈ Th

}
.
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We can define the standard FEMmethod by

Find u ∈ VS(Th), such that B(u, v) = F (v), ∀v ∈ VS(Th). (19)

Analogously, we define the ray-FEM method by

Find u ∈ VRay(Th), such that B(u, v) = F (v), ∀v ∈ VRay(Th). (20)

2.4 Approximation property of ray-FEMwith exact ray information

We provide a simple computation to estimate the approximation error of the ray-FEM
space. In particular, we compute an asymptotic bound on infuh∈VRay(Th) ||u − uh||L2(Ω),
where u is the solution to theHelmholtz equation (1).We achieve the bound by estimating
the interpolating error using VRay(K ) as a basis.
In the computation we assume that the ray direction, which is the gradient of the phase

function φ, and the phase function itself are exactly known. For simplicity, we assume
N = 1 for the asymptotic formula in (9); i.e., only one ray crosses each point of the
domain, and thus, no caustic occurs. Similar results can be derived for the multiple-ray
crossing case:N > 1. In addition we suppose that f , the source, is zero inside the domain;
otherwise, singularities in the amplitude may appear. Under those circumstances A and
φ are smooth. From the geometric optics ansatz, we have

u(x) = A(x)eiωφ(x) + O
(
ω−1) . (21)

We denote byNh the total number of vertices on themesh Th, by {xj}Nh
j=1 the coordinates

of all mesh nodes, and by {ϕj(x)}Nh
j=1 their corresponding nodal basis functions for the

standard P1 element.
We note that eiω[φ(xj)−∇φ(xj)·xj] is a constant for the nodal basis associated to xj in an

element K . From this observation we can easily deduce that the local ray-FEM space can
be rewritten as

VRay(K ) = span
{
ϕj(x)eikjdj ·x

}
= span

{
ϕj(x)eiω∇φ(xj)·x

}
,

= span
{
ϕj(x)eiω∇φ(xj)·xeiω[φ(xj)−∇φ(xj)·xj]

}
,

= span
{
ϕj(x)eiω[φ(xj)+∇φ(xj)·(x−xj)]

}
.

Hence, the nodal interpolation of the solution can be written as

uI :=
Nh∑
j=1

A(xj)ϕj(x)eiω[φ(xj)+∇φ(xj)·(x−xj)], (22)

which by construction lies within the global ray-FEM space VRay(Th).
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Let Sj be the support ofϕj(x), and |Sj| ∼ O(h2) be the area of Sj . Thenusing the triangular
inequality and the smoothness assumptions, we have

‖u − uI‖L2(Ω) ≤ ‖A(x)eiωφ(x) −
Nh∑
j=1

A(xj)ϕj(x)eiωφ(x)‖L2(Ω)

+‖
Nh∑
j=1

A(xj)ϕj(x)
(
eiωφ(x)−eiω[φ(xj)+∇φ(xj)·(x−xj)]

)
‖L2(Ω) + O(ω−1)

≤ ‖A(x) −
Nh∑
j=1

A(xj)ϕj(x)‖L2(Ω)

+
Nh∑
j=1

‖A‖L∞(Ω)‖eiωφ(x) − eiω[φ(xj)+∇φ(xj)·(x−xj)]‖L2(Sj) + O(ω−1)

� h2|A|H2(Ω) +
Nh∑
j=1

‖A‖L∞(Ω)ωh2‖∇2φ‖L∞(Ω)|Sj| + O(ω−1)

� h2|A|H2(Ω) + ωh2‖A‖L∞(Ω)‖∇2φ‖L∞(Ω) + O(ω−1).

To be more precise, h2|A|H2(Ω) comes from the interpolation error estimate [95], and
ωh2‖A‖L∞(Ω)‖∇2φ‖L∞(Ω) comes from the Taylor expansion of φ(x) near xj , where the
constant for� is a generic positive constant only depending on the domainΩ . This implies
that

inf
uh∈VRay(Th)

||u− uh||L2(Ω) � h2|A|H2(Ω) + ωh2‖A‖L∞(Ω)‖∇2φ‖L∞(Ω) +O(ω−1). (23)

Or, asymptotically,

inf
uh∈VRay(Th)

||u − uh||L2(Ω) = O(h2 + ωh2 + ω−1). (24)

Moreover, if the exact rays are known and the mesh size follows h ∼ ω−1, then we have

inf
uh∈VRay(Th)

||u − uh||L2(Ω) = O(ω−1), (25)

i.e., that the approximation error decays linearly with 1
ω
, without oversampling.

Remark 1 The ray information can be incorporated into other Galerkin basis in the same
fashion. For example, in the hybrid numerical asymptotic method of [41], the basis func-
tions are constructed by multiplying nodal piece-wise bilinear functions to oscillating
functions with phase factors; the plane wave DG method of [14] employs the products of
small degree polynomials and dominant plane waves as basis functions; the phase-based
hybridizable DGmethod of [78] considers basis functions as products of polynomials and
phase-based oscillating functions. Moreover, the phase or ray information in these meth-
ods is obtained from solving the eikonal equation with ray tracing and related techniques.

3 Learning local dominant ray directions
In Sect. 2 we use geometric optics to provide the motivation for the ray-FEM by building
an adaptive approximation space that incorporates ray information specific to the under-
lying Helmholtz equation. However, the ray directions, which depend on themedium and
source distribution, are unknown quantities themselves; hence, they need to be computed
or estimated. One way is to compute the global phase function, by either ray tracing or
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solving the eikonal equation, and take its gradient. As discussed in the introduction, com-
puting the global phase function in a general varying medium can be extremely difficult.
In the present paper, we propose a totally different approach. This novel approach is

based on learning the dominant ray directions by probing the same medium with the
same source but using a relative low-frequency wave. To be more specific, we first solve
the Helmholtz equation (4) with the same speed function c(x), right-hand side f (x) and
boundary conditions but with a relative low-frequency ω̃ ∼ √

ω on a mesh with size h =
O(ω̃−2) = O(ω−1) with a standard finite element method, which is quasi-optimal in that
regime. Then the local dominant ray directions are estimated based on the computed low-
frequencywave field. The key point is that the low-frequencywave has probed themedium
specific to theproblemgloballywhile only local dominant raydirectionsneed tobe learned,
which allows us to handle multiple arrivals of wave fronts locally. In particular, we use
NMLA, which is simple, stable, and robust, to extract the dominant ray directions locally.
However, this is a signal processing task that can be accomplished using other methods
such as Prony’s method [19], Pisarenko’s method [84], MUSIC [89], matrix pencil [50],
wavefront tracking methods [103], among many others. The main advantage of NMLA is
that it was explicitly designed for capturing the dominant directions; in particular, NMLA
was designed to be more robust to perturbations of the underlying model.

3.1 NMLA

In this subsection, for the sake of completeness, we provide a brief introduction to NMLA
developed in [11,12]. If we suppose that a wave field is locally a weighted superposition of
plane waves having the same wave number and propagating in different directions, then
the aim of NMLA is to extract the directions and the weights by sampling and processing
the wave field locally. In the sequel, we use a 2D example to illustrate the method, which
can be easily extended to 3D cases [12].
Suppose that a wave field, denoted by u(x), is composed of N plane waves around an

observation point x0,

u(x) =
N∑
n=1

Bneik(x−x0)·̂dn , |̂dn| = 1. (26)

We suppose that we can sample the wave field, u(x), and its derivative on a circle Sr(x0)
centered at x0 with radius r. The wave field can be written under the model assumption
in (26) as

u(x0 + r̂s) =
N∑
n=1

Bneiα̂s·̂dn , α = kr, ŝ ∈ S
1. (27)

Furthermore, we define the angle variables θ = θ (̂s) and θn = θ (̂dn) such that ŝ =
(cos θ , sin θ ), d̂n = (cos θn, sin θn), and x(θ ) = x0 + r̂s(θ ). Using the angle-based notation,
we sample the impedance quantity on the circle Sr(x0),

U (θ ) := 1
ik

∂ru(x(θ )) + u(x(θ )), (28)

which removes any possible ambiguity due to resonance [11] and improves the robustness
to noise for solutions to the Helmholtz equation. Then we apply the filtering operator B
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to the impedance quantity

BU (θ ) := 1
2Lα + 1

Lα∑
l=−Lα

(FU )leilθ

(−i)l(Jl(α) − iJ ′l (α))
, (29)

where Lα = max(1, [α], [α + (α)
1
3 − 2.5]), Jl is the Bessel function of order l, J ′l is its

derivative, and

(FU )l :=
1
2π

∫ 2π

0
U (θ )e−ilθdθ (30)

is the l-th Fourier coefficient of U . It is shown in [11] that

BU (θ ) =
N∑
n=1

BnSLα (θ − θn), (31)

where SL(θ ) = sin([2L+1]θ/2)
[2L+1] sin(θ/2) . As a consequence, we have that if α = kr → ∞ then

lim
α→∞BU (θ ) =

{
Bn, if θ = θn(or ŝ = d̂n);
0, otherwise.

(32)

Then it is possible to obtain the directions and the amplitudes by picking the peaks in the
filtered data in (31); see details in Algorithm 2.
However, for applications, the measured data are never a perfect superposition of plane

waves; therefore, we provide, for completeness, stability and error estimates for NMLA
from [11] in “Appendix A.” In principle, for a single wave, as long as the perturbation is
relatively small with respect to the true plane wave signal, say the relative noise level do
not surpass 25%, the estimation error isO( 1

kr ). In other words, the larger the radius of the
circle compared to wavelength the more accurate the estimation is.
In our application, the datum is the numerical solution of the Helmholtz equation. In

addition to noises and numerical errors, there are perturbations due to twomodel errors :

• the geometric optics ansatz has an asymptotic error of orderO(ω−1) [see (9)];
• in the geometric optics ansatz the wave field at a point is a superposition of curved

wave fronts. In particular, the curvature of the wave fronts results in a compromise in
the choice of the radius of the sampling circle to be of order O(ω− 1

2 ) for the NMLA
in order to achieve the stability and the minimal error of orderO(ω− 1

2 ).

A detailed analysis is provided in “Appendix B.” We mention that the accuracy of NMLA
can be improved by a curvature correction for a single point source; we refer the reader to
“Appendix C” for details. Below is a summary of the NMLA (plus curvature correction)
algorithm.
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Algorithm 1 NMLA
1: function Dω = NMLA(x0, Th,ω, h, c,u)
2: choose r ∼ ω− 1

2 � Radius for the sampling circle
3: chooseM ∼ ωr � Number of sampling points
4: �θ = 2π/M, � Angular discretization
5: for θ = 0 : �θ : 2π do
6: x(θ ) = x0 + r̂s(θ )
7: U (θ ) = ω

ic(x0)∂ru(x(θ )) + u(x(θ )) � Sample impedance data
8: F (θ ) = BU (θ ) � Apply the filter (29)
9: end for

10: θ = [0 : �θ : 2π ], F = F (θ)
11: θest = FindPeaks(θ,F )
12: dω = d(θest )
13: end function

Algorithm 2 FindPeaks
1: function θest = FindPeaks(θ,F )
2: dF = F[2 : end] − F[1 : end − 1] � Approximate the differentiation
3: s = sign(dF) � Take the sign
4: ds = s[2 : end] − s[1 : end − 1]
5: idx = 1 + find(ds < 0) � Find the index of local maxima
6: θest = θ[idx]
7: end function

Algorithm 3 NMLA Curvature Correction
1: function dω = NMLA- Correction(x0, Th,ω, h, c,u)
2: choose r ∼ ω− 1

2 ,M ∼ ωr, �θ = 2π/M
3: α = ωr/c(x0), L = max(1, [α], [α + (α)

1
3 − 2.5])

4: for θ = 0 : �θ : 2π do
5: x(θ ) = x0 + r̂s(θ )
6: U (θ ) = ω

ic(x0)∂ru(x(θ )) + u(x(θ )), F (θ ) = BU (θ )
7: end for
8: θ = [0 : �θ : 2π ], F = F (θ)
9: θest = FindPeaks(θ,F ) � Get the first angle estimation

10: for l = −L : L do
11: β̂l = (F(F))l � Compute the Fourier coefficients (48)
12: ψl = Imag(log( β̂l

β̂0
eilθest )) � Compute the imaginary part (50)

13: end for
14: δθ = LeastSquare([ψl]l=−L:L) � Estimate the coefficient of linear term (50)
15: θcor = θest − δθ , dω = d(θcor ) � Correct the angle
16: end function

3.2 Approximation property of numerical ray-FEM

In this section we incorporate the errors from the estimation of the ray directions into the
approximation error for the ray-FEM method, in which ray directions are first estimated
by applying Algorithm 1 to the solution of the Helmholtz equation with a relatively low
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frequency. The estimated ray directions are then used to generate the approximation
space. With the same assumptions as in Sect. 2.4, we estimate an upper bound on

inf
uh∈Vh

Ray(Th)
‖u − uh‖L2(Ω), (33)

when the ray-FEM space,Vh
Ray(Th), is constructed using the estimated ray directions from

high-frequency waves by NMLA.
From “Appendix B,” the error estimation of dominant ray directions is O(ω−1/2). The

numerical ray-FEM space Vh
Ray(Th) is defined similar to VRay(Th) with the exact ray direc-

tions {̂dj} replaced by the ones {̂dhj } estimated by NMLA and |̂dj − d̂hj | ∼ O(ω−1/2).
We denote by

uhI =
Nh∑
j=1

A(xj)ϕj(x)eiω
[
φ(xj)+1/c(xj )̂dhj ·(x−xj)

]
(34)

the nodal interpolation of the solution in Vh
Ray(Th) analogous to the definition of uI in

(22). Then we have

‖uI − uhI ‖L2(Ω) =
∥∥∥∥∥
Nh∑
j=1

A(xj)ϕj(x)eiωφ(xj)
(
eiω∇φ(xj)·(x−xj)−eiω/c(xj )̂dhj ·(x−xj)

)∥∥∥∥∥
L2(Ω)

≤
Nh∑
j=1

‖A‖L∞(Ω)‖eiω/c(xj )̂dj ·(x−xj) − eiω/c(xj )̂dhj ·(x−xj)‖L2(Sj)

�
Nh∑
j=1

‖A‖L∞(Ω)ωh‖c−1‖L∞(Ω) |̂dj − d̂hj ||Sj|
� ω1/2h‖A‖L∞(Ω)‖c−1‖L∞(Ω).

Hence,

inf
uh∈Vh

Ray(Th)
‖u − uh‖L2(Ω) ≤ ‖u − uhI ‖L2(Ω) ≤ ‖u − uI‖L2(Ω) + ‖uI − uhI ‖L2(Ω)

� h2|A|H2(Ω) + ωh2‖A‖L∞(Ω)‖∇2φ‖L∞(Ω)

+ω1/2h‖A‖L∞(Ω)‖c−1‖L∞(Ω) + O(ω−1). (35)

Under the same smoothness assumption as in Sect. 2.4, the constant for � only depends
on the domain, and more compactly, we have that

inf
uh∈Vh

Ray(Th)
‖u − uh‖L2(Ω) = O(h2 + ωh2 + ω1/2h + ω−1). (36)

Comparingwith (24) and (36), the error in the estimation of dominant ray directions due
to NMLA leads to the extra term ω1/2h, which is the leading order in the high-frequency
regime. Specifically, if ωh = O(1), then we have

inf
uh∈Vh

Ray(Th)
‖u − uh‖L2(Ω) = O(ω−1/2). (37)

We point out that the desirable convergence rate in this case is O(ω−1), which has
the same order as the geometric optics ansatz. However, as analyzed in “Appendix B,”
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for a general wave field, the optimal achievable asymptotic error of the estimation of
the dominant wave directions using NMLA is O(ω−1/2). This is indeed the bottleneck
to improve the convergence order. In particular, the leading term of the approximation
error for the numerical ray-FEM comes from ‖uI − uhI ‖L2(Ω), which is ωh|̂dj − d̂hj | ∼
|̂dj − d̂hj | ∼ ω−1/2 if ωh = O(1). Still, we can obtain a higher-order approximation for
some special cases. For example, we can use second-order curvature correction version
of NMLA for single point source in homogeneous media to improve the ray estimation to
O(ω−1), meaning that we can obtain the optimal convergence order in this special case.

4 Algorithms
In this section we provide the full algorithm for the ray-FEM including a fast iterative
solver based on a modification of the method of polarized traces for the resulting linear
systems. In order to streamline the presentation and to make the algorithm easier to
understand, we introduce several subroutines.
More specifically, we separate the full algorithm into three conceptual stages:

1. probing the medium by solving a relatively low-frequency Helmholtz equation with
the standard FEM;

2. learning the dominant ray directions from the low-frequency-probed wave field by
NMLA;

3. solving the high-frequency Helmholtz equation in the ray-FEM space.

If necessary the second stage can be iteratively applied to the high-frequency wave field
computed in stage 3 to improve the estimation of dominant ray directions and then repeat
stage 3 to obtain more accurate high-frequency wave field.
We remind the reader that the ultimate objective of the algorithm presented in this

paper (i.e., Algorithm 7) is to solve the Helmholtz equation (1) at frequency ω with a total
O(ωd) (up to poly-logarithmic factors) computational complexity. In order to achieve this
objective, we discretize the PDE with a mesh size h = O(ω−1), which leads to a total of
O(ωd) number of degrees of freedom and a sparse linear system with O(ωd) number of
nonzeros. Then we develop a fast iterative solver with quasi-linear complexity to solve
the resulting linear system after discretization. Below is a more detailed description of
the three stages. Finally, following the notation defined in the prequel, we denote the
triangular mesh by Th.

4.1 Probing

We first solve the low-frequency Helmholtz equation (4) with ω̃ ∼ √
ω in the same

medium and with the same source on Th. The low-frequency problem is solved using
the standard finite element method (S-FEM) with linear elements as prescribed by
Algorithm 4.
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Algorithm 4 Standard FEM Helmholtz Solver
function Uω,h = S- FEM(ω, h, c, f, g)

for i, j = 1 : Nh do
Hi,j = B(ϕi,ϕj) � Assemble Helmholtz matrix
bj = F(ϕj) � Assemble right-hand side

end for
uω,h = H−1b � Solve linear system

end function

Let uω̃,h = S-FEM (ω̃, h, c, f, g) denote the S-FEM solution of the low-frequency
Helmholtz equation on Th. Since ω̃2h = O(1), S-FEM is quasi-optimal in the norm
‖ · ‖H := ‖∇ · ‖L2 + k‖ · ‖L2 [71], and it has an optimal L2 error estimate [107].

4.2 Learning

Once the low-frequency problem has been solved, we extract the dominant ray directions
from uω̃,h using NMLA as described in Sect. 3.1 around each mesh node. We utilize the
smoothness of the phase functions, and hence the smoothness of the ray directions field
to reduce the computational cost. The reduction is achieved by restricting the learning
of the dominant ray directions to vertices of a coarse mesh down-sampled from Th. Such
remeshed coarse mesh is denoted by Thc = {Kc}, where hc = O(

√
h). The resulting

dominant ray directions are then linearly interpolated onto the fine mesh Th.
Note that at each vertex of Thc , the wave field uω̃,h on the fine mesh Th is used by NMLA

to estimate the dominant ray directions. There are three sources of errors in the learning
stage:

• numerical errors of uω̃,h;
• model errors in the geometric optics ansatz;
• interpolation errors.

The numerical error for uω̃,h by Algorithm 4 in the L2 norm [107] isO(ω̃h2 + ω̃2h2) =
O(ω−1), which is negligible with respect to themodel error in the geometric optics ansatz.
The error introduced by the geometric optics approximation and NMLA is O(ω̃− 1

2 ) as
shown in Sect. 3.1 and “Appendix B.” The error due to the linear interpolation on Thc to
obtain the ray direction estimations at every vertex on Th is O(h2c ) = O(h) = O(ω−1),
which is much smaller than the model error in the geometric optics ansatz. Hence, the
overall error in the ray direction estimation based on NMLA on uω̃,h and interpolation is
O(ω̃− 1

2 ). The dominant ray direction estimation algorithm is summarized in Algorithm
5. For each node xj on mesh Th, the number of dominant ray directions is denoted by nj ,
dj

ω,h = {dj,l
ω,h}

nj
l=1.

Algorithm 5 Ray Learning
1: function {dj

ω,h}Nh
j=1 = RayLearning(ω, h, hc, c,uω,h)

2: for j = 1 : Nhc do
3: dj

ω,hc = NMLA(xcj , Th,ω, h, c,uω,h)
4: end for
5: {dj

ω,h}Nh
j=1 = LinearInterpolation(Thc , Th, {dj

ω,hc }
Nhc
j=1)

6: end function
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4.3 High-frequency solver

Once the dominant ray directions on Th have been computed, we can construct the ray-
FEM space VRay(Th) and solve the high-frequency Helmholtz equations following (20),
which is implemented in Algorithm 6.

Algorithm 6 Ray-FEM Helmholtz Solver
1: function UDω ,h = Ray- FEM(ω, h, c, f, g, {dj

ω,h}Nh
j=1)

2: Ndof = 0
3: for j = 1 : Nh, l = 1 : nj do
4: Ndof = Ndof + 1,m = Ndof
5: ψm(x) = ϕj(x)eiw/c(xj )dj,l ·x � Construct ray-FEM basis functions
6: ψ̂ = ψm(xj) � Nodal values of ray-FEM basis functions
7: end for
8: for m, n = 1 : Ndof do
9: Hm,n = B(ψm,ψn) � Assemble Helmholtz matrix

10: bn = F(ψn) � Assemble right-hand side
11: end for
12: v = H−1b � Coefficients of ray-FEM basis functions
13: udω ,h = v · ̂ψ � Ray-FEM solution on mesh nodes
14: end function

In general, the accuracy of the solution computed by Algorithm 6 using the ray-FEM
method depends on the accuracy of the computed dominant wave directions. From
Sect. 4.2, the accuracy order of the learning stage from the low-frequency wave field
isO(ω̃− 1

2 ), and following the error analysis of Sect. 3.2, the consequent ray-FEM solution
has the same order of accuracy. However, the iterative ray-FEMHelmholtz solver, as pre-
sented in Algorithm 7, provides a way to improve approximations for both dominant ray
directions and the high-frequency wave field.

Algorithm 7 Iterative Ray-FEM High-Frequency Helmholtz Solver
1: function UDω ,h = IterRay- FEM(ω, c, f, g)
2: ω̃ ∼ √

ω, h ∼ ω−1, hc ∼ ω− 1
2

3: uω̃,h = S-FEM(ω̃, h, c, f, g) � Low-frequency waves
4: {dω̃,h} = RayLearning(ω̃, h, hc, c,uω̃,h) � Low-frequency ray learning
5: udω̃ ,h = Ray-FEM(ω, h, c, f, g, {dω̃,h}) � High-frequency waves
6: tol = 1, niter = 0, u1

ω,h = udω̃ ,h
7: while tol > ε or niter > max_iter do
8: {dω,h} = RayLearning(ω, h, hc, c,u1ω,h) � High-frequency ray learning
9: udω ,h = Ray-FEM(ω, h, c, f, g, {dω,h}), u2ω,h = udω ,h

10: tol = ‖u1
ω,h − u2

ω,h‖L2(Ω)/‖u2ω,h‖L2(Ω)
11: niter = niter + 1, u1

ω,h = u2
ω,h

12: end while
13: end function

Remark 2 Extensive numerical experiments and “Appendix A” indicate that the NMLA
process in learning dominant ray directions stage is remarkably stable even for noisy plane
wave data. Hence, the iterative process in Algorithm 7 usually needs very few iterations to
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reach the desired accuracy. Typically, we only need one or two iterations in our numerical
tests.

Remark 3 Since NMLA can not be used to estimate ray directions near the point source,
a slight modification of Algorithm 7 is used for solving a point source inside domain
problem. First, we approximate the right-hand side with the associated column of the
massmatrix (normalized bymesh size h).Moreover, we use a standard finite element basis
function at the source point. For vertices near the source, we apply the radial directions
(exact ray directions in homogeneous medium) in the construction of the approximation
space for the ray-FEMmethod. Meanwhile, for vertices away from the source, we find the
dominant ray directions by NMLA. Under this modification, ray-FEM can capture the
phase accurately and it will be demonstrated numerically in Sect. 6.2.

4.4 Fast linear solver

To achieve the quasi-linear overall complexity mentioned in the introduction, it is neces-
sary to solve the linear system resulting from both standard and ray-based FEMs, which
we write in a generic form as

Hu = f , (38)

in a linear complexity (up to poly-logarithmic factors). This solver is, in fact, the compu-
tational bottleneck of Algorithms 4 and 6.
For a smoothmedium, this can be achieved bymodifying themethod of polarized traces

[109], of which we provide a brief review here. For further details we refer the interested
readers to [109]. The method of polarized traces is a domain decomposition method that
encompasses the following aspects:

• layered domain decompositions;
• absorbing boundary conditions between subdomains implemented via PML [13];
• transmission conditions issued from a discrete Green’s representation formula;
• efficient preconditioners arising from localization of the waves via an incomplete

Green’s formula.

The first two aspects can be effortlessly implemented. Consider a layered partition of
Ω into L slabs, or layers {Ω	}L	=1. Define f

	 as the restriction of f to Ω	, i.e., f 	 = f χΩ	 ;
define the local Helmholtz operators as

H	u := (−� − ω2/c2
)
u in Ω	, (39)

with absorbing boundary conditions implemented via PML around the slabs.
Themethod of polarized traces aims at solving the global linear system in (38) by solving

the local systemsH	, which are the discrete version of (39).
In order to solve the global system, or in this case, to find a good approximate solution,

we need to “glue” the subdomains together. This is achieved via a discrete Green’s integral
formula deduced by imposing discontinuous solutions.
In the original formulation of the method of polarized traces [109], the Green’s rep-

resentation formula was used to build a global surface integral equation (SIE) at the
interfaces between slabs. The SIE was solved using an efficient preconditioner coupled



Fang et al. Res Math Sci (2017) 4:9 Page 20 of 35

Table 1 Overall computational complexities with respect to ω given that themesh size
scaled as h = O(ω−1)

Methods S-FEM Learning Ray-FEM Iterative Ray-FEM

Frequency
√

ω
√

ω or ω ω ω

Complexity O(ωd log3 ω) O(ωd ) O(ωd logω) O(ωd log3 ω)

Table 2 Computational complexities of estimating ray directions on a coarse mesh Thc

with hc = O(ω− 1
2 ) and a finemesh Th with h = O(ω−1)

Frequency r Mω CNMLA Cray,hc CInt Cray,h

ω ω− 1
2 ω

d−1
2 ω

d−1
2 logω ωd− 1

2 logω ωd ωd

ω̃ ∼ √
ω ω̃− 1

2 ω̃
d−1
2 ω̃

d−1
2 log ω̃ ω̃d− 1

2 log ω̃ ωd ωd

with a multilevel compression of the discrete kernels to accelerate the online stage of the
algorithm.The original algorithmhad an embarrassingly parallel superlinear off-line com-
plexity which was amortized among a large number of right-hand sides, which represents
a typical situation in exploration geophysics.
In the context of the present paper, the linear systems issued from the ray-based FEM

depend on the source distribution, making it impossible to amortize a superlinear off-line
cost. In order to reduce the off-line cost we use a matrix-free formulation (see Chapter 2
in [108]) with a domain decomposition in thin layers. In this case, the cost per iteration
is linear with respect to the number of degrees of freedom, depending on the growth or
the auxiliary degrees of freedom corresponding to the PML’s. Finally, the convergence is
normally achieved inO(logω) iterations, as it will be shown in the sequel.

5 Complexity
In this section we provide an overall complexity analysis of our algorithm for the high-
frequency Helmholtz equation (1) in terms of ω, and it is summarized in Table 1. The
overall complexity includes the complexity in learning ray directions by NMLA (shown
in Table 2) and the complexity of the linear solver for the discretized systems from both
standard FEMs for low-frequency and ray-FEMs for high-frequencyHelmholtz equations.

5.1 Ray learning

As described in Sect. 4.2, Algorithm 5 applies NMLA to computed wave fields with low-
frequency ω̃ ∼ √

ω or high-frequency ω. It first estimates ray directions at vertices on a
down-sampled coarse mesh Thc and then interpolates the ray directions to the vertices on
a fine mesh Th. We remind the reader the following scalings: h = O(ω−1), hc = O(

√
h) =

O(ω− 1
2 ). These scalings allow us to strike a balance among the number of observation

points at whichNMLA is used to estimate ray directions, the radius of the sampling circle,
and the corresponding number of sampling points on the circle so as to resolve the wave
field to reach the optimal accuracy ofNMLAwith desired total computational complexity.
The dominant computational cost of the ray learning is coming from the application of

NMLA to the high-frequency wave field. Here we analyze its complexity in 2D case. As
shown in “Appendix B,” the least error that can be achieved by NMLA is O(ω− 1

2 ) when
the radius r of the sampling circle centered at an observation point is O(ω− 1

2 ). Hence,
the number of points sampled on the circle to resolve the wave field with frequency ω is
Mω = O(ωr) = O(ω

1
2 ). Since NMLA is a linear filter based on the Fourier transform in
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the angle space, the corresponding computational complexity isO(Mω logMω) [12]. The
number of observation points that we need to perform NMLA is the number of vertices
on the coarse mesh which isO(h−2

c ) = O(ω). Hence, the computational cost to obtain the
ray directions at the vertices on the coarse mesh by NMLA isO(ω

3
2 logω). Finally, the ray

directions estimated at the vertices on the coarsemesh byNMLA are linearly interpolated
onto the fine mesh Th. Interpolation is a linear operation, and hence, its computational
complexity isO(ω2).
Table 2 provides the complexity of ray learning stage for both high-frequency and low-

frequency wave fields, where d is the dimension and CNMLA, Cray,hc , CInt , and Cray,h are
the computation complexity of NMLA at a single vertex, NMLA on the under-sampled
coarse mesh, interpolation of local ray directions to the fine mesh, and the full algorithm
for learning local ray directions at frequency ω on the fine mesh Th, respectively.

5.2 Helmholtz solver

Themost computationally intensive component in thewhole ray-FEMalgorithm is solving
the linear systems after discretization of the Helmholtz equation. Algorithm 7 solves both
uω̃,h = S-FEM(ω̃, h, c, f, g) and udω ,h = Ray-FEM(ω, h, c, f, g, {d j

ω,h}Nh
j=1) on the same mesh

Th. Each solver is composed of three steps: the assembling step, the setup step, and the
iterative solve step.
Since the basis functions are locally supported, the resulting matrix is sparse. The com-

plexity of the assembling step is of the same order as the degrees of freedomNh = O(ωd).
In the setup stage, the computational domain is decomposed into subdomains of thin

layers whose width is comparable to the characteristic wavelength. The local problems
in each subdomain are factorized5 using a multifrontal method [26] coupled with a
nested dissection ordering [40] in O(

√
Nh) time for the high-frequency problem (or

O(
√
Nh log3Nh) time for the low-frequency problem, depending on the width of the

auxiliary PML for each subdomain in terms of the wavelength). Given that the layers are
O(1) elements thick, we have to factorize O(

√
Nh) subsystems, which results in a total

O(Nh) (or O(Nh log3Nh) for the low-frequency problem) asymptotic complexity for the
setup step.
Finally, for the iterative solve step, each application of the preconditioner involves 6

local solves per layer, each one performed withO(
√
Nh) ( orO(

√
Nh log2Nh)) complexity.

Given that we haveO(
√
Nh) layers, we have an overallO(Nh) (orO(Nh logNh) for the low-

frequency problem) complexity per iteration. Extensive numerical experiments suggest
that the number of iterations to converge is O(logNh) for both high- and low-frequency
solves for smooth media. Hence, the empirical overall complexity isO(Nh logNh) for the
high-frequency solve andO(Nh log3Nh) for the low-frequency one, which as stated before
in Table 1.

6 Numerical experiments
In this section we provide several numerical experiments to test the proposed ray-FEM
and corroborate our claims. For all cases, the domain of interest isΩ = (−1/2, 1/2)2 with
different source terms and boundary conditions.Ω is discretized using a standard triangu-
lar mesh. The integrals to assemble the mass and stiffness matrices in (15), the right-hand

5The solver was implemented in MATLAB; thus, the underlying sparse solver is UMFPACK [25].
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side in (16), and the L2 errors of the ray-FEM solutions are numerically computed by using
a high-order Gaussian quadrature rule.6

The algorithmdescribed in this paperwas implemented inMATLAB, and the numerical
experimentswere executedusingMATLAB2015b in adual socket serverwith 2 IntelXeon
E5-2670 with 384 GB of RAM.

6.1 Convergence tests

In the first test, the exact solution to the Helmholtz equation with the Robin boundary
condition is the wave field (normalized by the frequency ω) corresponding to a point
source outside the domain. It is given by

uex(x, y) = √
ωH (1)

0

(
ω

√
(x − 2)2 + (y − 2)2

)
. (40)

Numerically, we choose a mesh size to solve the Helmholtz equation (1) with wave speed
c(x) ≡ 1, source f (x) ≡ 0, and exact impedance boundary data such that the number of
points per wave length (NPW) is 6 for different ω’s. We test convergence for both the ray
direction estimation by NMLA and the final numerical solution by the ray-FEM.
First, a probing wave with low-frequency ω̃ = √

ω is solved by the standard FEM.
Then NMLA is applied to the low-frequency probing wave to get an estimation of the
local dominant ray directions dw̃ . Instead of using the regular NMLA for the plane wave
decomposition, we use NMLA with curvature correction (see details in Algorithm 3 and
“Appendix C”) to estimate the ray information of a circular wave front. The estimated
local ray directions are then used in the ray-FEM to produce the first numerical solution
udw̃ to the high-frequency Helmholtz equation.
We employ one more iteration in the framework of the iterative ray-FEMs by applying

NMLA to udw̃ to get an improved local ray direction estimation dw and then use it again
in the ray-FEM to get a more accurate numerical solution udw to the high-frequency
Helmholtz equation.
Table 3 and the left column of Fig. 1 show that the NMLA and ray-FEM algorithm

are stable, and the error for both the ray estimation and the numerical solution by the
ray-FEM with fixed NPW, i.e., ωh = O(1), asymptotically decreases as the frequency
increases. Moreover, they show that one more iteration using the iterative ray-FEM can
improve the accuracy of final numerical solution to the order of O(ω−1), which is of the
same order when the exact ray direction dex is used in the ray-FEM, due to the asymptotic
error of the geometric optics ansatz.
NMLA with curvature correction plays an important role to achieve the above optimal

convergence orders. As discussed in “Appendix C,” it can improve the angle estimation
for a perfect point source solution from O(ω−1/2) to a much higher convergence order
O(ω−3). However, the noise level coming from low-frequency problem solved by S-FEM,
together with the interpolation error, which are allO(ω−1), dominate the overall error. As
a consequence, the low-frequency ray estimation error ‖dw̃−dex‖ isO(ω−1). Using similar
estimate in Sect. 3.2, one can show that the approximation error for the high-frequency

6Given the expression of the mass and stiffness matrices, which are polynomials times a plane wave, it is possible to
compute the integral analytically [81]. However, the right-hand side of the linear system and the L2 error of the ray-FEM
solution can only be computed numerically for a general source term f (x).
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Table 3 Errors of one point source problem for fixed NPW = 6. θex is the exact ray angle;
θ(dω̃) and θ(dω) are ray angle estimations using low and high-frequency waves,
respectively; udω̃

, udω
, and udex are ray-FEM solutions using low-frequency ray estimation

dω̃, high-frequency ray estimation dω, and exact ray dex , respectively

ω/2π 20 40 80 160

1/h 120 240 480 960

‖θ (dω̃) − θex‖L2 7.50e-04 4.26e-04 1.96e-04 1.07e-04

‖θ (dω) − θex‖L2 1.82e-04 7.99e-05 4.43e-05 2.10e-05

‖udω̃
− uex‖L2 4.36e-05 1.92e-05 9.03e-06 4.69e-06

‖udω
− uex‖L2 3.15e-05 1.47e-05 7.57e-06 3.73e-06

‖udex − uex‖L2 2.97e-05 1.49e-05 7.47e-06 3.74e-06

Fig. 1 Tests with point source/sources outside the domain, NPW = 6. Left one point source; right four point
sources; top ray direction errors;middle errors of ray-FEM solutions with ray directions estimated by NMLA;
bottom errors of ray-FEM solutions with exact ray directions

numerical ray-FEM space is at leastO(ω−1) if dw̃ is incorporated into the high-frequency
basis functions. Again we apply NMLA with curvature correction to the numerically
computed high-frequency ray-FEM solution to get ray estimation dw with ‖dw − dex‖ =
O(ω−1) and further get the final ray-FEM solution udw with ‖u − uh‖L2(Ω) = O(ω−1).
Next we show that our method can handle multiple wave fronts by probing the whole

domain and extracting dominant ray directions locally. The setup is exactly as above
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except that there are four point sources. The exact solution is given by

uex(x, y) = √
ωH (1)

0

(
ω

√
(x + 20)2 + (y + 20)2

)

+ 2
√

ωH (1)
0

(
ω

√
(x − 20)2 + (y − 20)2

)

+ 0.5
√

ωH (1)
0

(
ω

√
(x + 20)2 + (y − 20)2

)

−√
ωH (1)

0

(
ω

√
(x − 20)2 + (y + 20)2

)
. (41)

The main difficulty of this example compared to the single point source case is that the
low-frequency wave solution by the standard FEM contains multiple wave fronts at each
point due to the interference of multiple sources. The numerical results are shown in
the right column of Fig. 1. In this case, the NMLA with curvature correction does not
apply so that we have to use the standard NMLA for the plane wave decomposition as
described in Sect. 3.1 to estimate local dominant ray directions. As analyzed in Sect. 3.2
and “Appendix B,” the expected error for ray direction estimation and numerical solution
is of order O(ω−1/2) due to the curved wave fronts. The numerical results show that the
ray-FEM meets the expected asymptotic error as the frequency increases.

6.2 Phase errors

Here we show that the ray-FEMmethod can capture the phase and satisfy the dispersion
relation more accurately. We test our algorithm with a point source inside the domain,
given its importance in many practical applications, in particular, in exploration geo-
physics, in which the sources are often modeled as point sources. Moreover, in appli-
cations oriented toward inverse and imaging problems, having a numerical method that
produces the correct phase in the far field is of great importance in order to properly
locate features in the image.
In this experiment we focus our attention on the far field since our current method

can not deal with singularities in amplitude and phase at source points. We test a point
source located at x0 = (−0.4,−0.4) with frequency ω = 80π in a homogeneous medium.
Following Remark 3, we use radial directions (exact directions in homogeneous medium)
for vertices x near the source with |x − x0| ≤ 0.1 and estimate ray directions for other
vertices; see the left part of Fig. 2 for the ray direction field.
To demonstrate the accurate phase of the numerical solutions, we plot the real part of

computed wave field on a 90 degree part of an annulus [93], with the radial coordinate
varying on an interval of about two wavelengths. The location where the real part is
maximal or minimal, according to the exact solution, is indicated by a straight line; see
the right part of Fig. 2.
Next we fix the frequency ω = 250π and use radial directions as ray directions in

the source neighborhood {x : |x − x0| ≤ 0.064}. When the number of grid points per
wavelength is increased, Fig. 3 depicts the behavior of both the ray-FEM solution and
the standard FEM solution. From the figure we can easily observe the superiority of the
ray-FEM on minimizing the phase error, even using relatively coarse meshes.
In a heterogeneousmedium, a ray-FEMsolution is given by Fig. 4with the source located

inside.We also provide an experimentwherewe show the ability of themethod introduced
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Fig. 2 One point source inside a homogeneous medium, ω = 80π , NPW= 6. Left ray directions captured by
NMLA; right polar plot of the ray-FEM solution, r/λ: the number of wavelengths away from the source

Fig. 3 Polar plots of the ray-FEM solution and the s-FEM solution with ω = 250π . r/λ: the number of
wavelengths away from the source

in this paper to handle wave fields with caustics; see Fig. 5. Again radial directions are used
for local ray directions near the source point within {x : |x − x0| ≤ 0.1}.

6.3 Complexity tests

In this subsection we test the computational complexity for the ray-FEM. A key step of
the algorithms presented is solving the sparse linear systems generated by the ray-FEM
using iterative methods with a performant preconditioner, e.g., domain decomposition
techniques coupled with high-quality absorbing/transmission boundary conditions. In
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Fig. 4 One point source inside a heterogeneous medium with the Gaussian wave speed
c(x, y) = 3 − 2.5e−((x+0.125)2+(y−0.1)2)/0.82 , ω = 80π , NPW = 10. Left ray directions captured by NMLA; right
wave field computed by ray-FEM

Fig. 5 One point source inside a heterogeneous medium with the sinusoidal wave speed
c(x, y) = 1 + 0.5 sin(2πx), ω = 80π , NPW= 10. Left wave speed; right wave field computed by ray-FEM

our tests, we use a modification of the method of polarized traces to solve the linear
systems resulting from both the standard FEM and ray-FEM as described in Sect. 4.4.
We solve the Helmholtz equation with a point source in both a homogeneous and

heterogeneous medium. We compute for many different frequencies, using Algorithm 7
with only one iteration of the ray-FEM, the solution to the Helmholtz equation posed
on Ω with absorbing boundary conditions implemented via PML. For each frequency we
report the execution time of the low- and high-frequency problems and the time spent in
processing the data using NMLA to extract the dominant ray information.
As explained in Sect. 4, in order to process the data using NMLA we need to solve the

low-frequency problem in a slightly larger domain. The size of the larger domain is given
by the sampling radius of the NMLA. For the sake of simplicity, we use a low-frequency
subdomain, Ωlow = (−1, 1) × (−1, 1), i.e., four times bigger than the original domain.
The size can be reduced in order to lower the computational cost for the low-frequency
problem.
Themain issue with the low-frequency solver in our case is related to the PML, since the

PMLmay not be very effective given that each thin slab contains less than one wavelength
across. In order to decrease the number of iterations to converge, we increase the number
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of PML points logarithmically with the frequency. This implies a slightly more expensive
setup cost and solve cost as shown in Figs. 6 left and 7 left.
Figure 6 shows the runtime for solving the Helmholtz equation with a point source

inside a homogeneous medium. We can observe that the overall cost isO(N ) up to poly-
logarithmic factors as shown in our complexity study. The low-frequency solver has a
slightly higher asymptotic cost in this case, given the ratio between the width of the PML
and the characteristic wavelength inside the domain.
Figure 7 shows the runtime for solving the Helmholtz equation with a point source

inside a heterogeneous medium. We can observe the same scaling as before, albeit with
slightly larger constants.

7 Conclusion
In this work we present a numerical method, the ray-FEM, for the high-frequency
Helmholtz equation in smooth media based on learning problem-specific basis functions
to represent the wave field. The key information, local ray directions, is extracted from
a relatively low-frequency wave field that has probed the whole domain. These local ray
directions are then incorporated into the basis to improve both stability and accuracy in
the computation for a high-frequency wave field. Moreover, both local ray directions and
the high-frequency wave field can be further improved through more iterations. Numer-
ical tests suggest that our method only requires a fixed number of points per wavelength

Fig. 6 Runtime for solving the Helmholtz equation with a homogeneous wave speed using GMRES
preconditioned with themethod of polarized traces. The tolerance was set up to 10−7. Left runtime for solving
the low-frequency problem. Right Runtime for solving the high-frequency problem with the adaptive basis

Fig. 7 Runtime for solving the Helmholtz equation with a heterogeneous wave speed using GMRES
preconditioned with themethod of polarized traces. The tolerance was set up to 10−7. Left runtime for solving
the low-frequency problem. Right runtime for solving the high-frequency problem with the adaptive basis
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with an asymptotic convergence as the frequency becomes large. By designing a fast solver
for the discretized linear systems an overall complexity of orderO(ωd log3 ω) is achieved.
However, the ray-FEM cannot handle singularities of both the amplitude and phase on a

givenmesh.We will develop a hybridmethod that combines a local asymptotic expansion
near the source and the ray-FEM away from the source in our future work.
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Appendix A: Stability and error analysis for NMLA
In this sectionwe summarize the stability result and error estimate from [11] for complete-
ness.We remind the reader thatB is the filter operator defined by (29),ω is the frequency,
k = ω/c is the wave number, and r is the radius of the sampling circle. For simplicity we
use the single wave case, i.e., N = 1. Moreover, we assume that the measured datum is
a perturbation to the perfect plane wave datum of the form U (θ ) = Uplane(θ ) + δU (θ ),
where Uplane denotes a single plane wave datum in the form of (27). Let θ∗ denote the
angle for which θ �→ BU (θ ) is maximum. Assuming that the noise level satisfies

||δU ||L∞ <
1

4B∗ |B1|, (42)

where B∗ ≤ 1 is a pure constant independent of ω and B1 is the complex amplitude of the
plane wave. Then the error in the angle estimation is given by

|θ1 − θ∗| ≤ 2π
2Lα + 1

∼ O
(
1
α

)
, α = kr ∼ ∞. (43)

Similar results can be derived for multiple waves N > 1. We remark that 1
4B∗ ≥ 0.25,

which implies that if the relative noise level does not surpass 25% the angle will be detected
within an error of orderO( 1

kr ). In Benamou’swork [11], an analysis of a point source shows
that |θ1 − θ∗| decreases like O(ω−1/2) when the point x0 is far away from the source and
the radius of the observation circle is chosen like r ∼ ω−1/2 for large ω. We obtain similar
accuracy order for general noisy plane waves under some smoothness conditions; see
details in “Appendix B.”

Appendix B: Error analysis of wave field as a perturbed plane wave datum
As introduced in Sect. 3.1, NMLA is a tool to process a signal that is (approximately) a
superposition of plane waves with frequencyω and to extract each plane wave component
by sampling the signal on a circle/sphere with radius r around a reference point. As
displayed in “Appendix A,” provided that the perturbation of the signal is relatively small
compared to the signal, the estimation of the plane wave directions converges and the
error isO( 1

ωr ). In this application, we use NMLA to process a wave-field datum, which is
the numerical solution to the Helmholtz equation, to extract the directions of dominant
wave fronts based on the geometric optics ansatz (9) in the high-frequency regime. Hence,
it is important to study the wave field data as a perturbation of plane wave data locally and
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estimate the error in the ray directions obtained from NMLA. In particular, this analysis
allows us to find the optimal choice of the radius of the sampling circle/sphere, in order
to achieve the minimal asymptotic error for the ray direction estimation in terms of the
frequency ω of the Helmholtz equation which generates the wave-field datum. The result
is crucial for both error analysis and implementation of the ray-FEM. Since the wave
field datum in our application is the numerical solution to the Helmholtz equation, its
perturbation is composed of the sum of three components:

1. numerical errors in solving the Helmholtz equation and interpolation errors in
obtaining data on the sampling circle/sphere for NMLA from the numerical solution
on a fixed mesh;

2. asymptotic errors in the geometric optics ansatz;
3. local approximation errors of a smooth curved wave front by a planar wave front.

On a mesh with mesh size h = O(ω−1), the last component, which we call the phase
error, is the dominant factor among the three. We present below an analysis of the phase
error, in which, for simplicity, we only consider one wave front.
Consider a singlewave front,u(x) = A(x)eiωφ(x). Following thenotationused throughout

the paper, we assume the reference point to be x0, and the small sampling circle around
x0 to be {x|x − x0 = r̂s}, ∇φ(x0) = η0d̂0, where r � 1, |̂s| = 1, η0 = 1/c(x0), |̂d0| = 1.
We have by the Taylor expansion,

A(x) = A(x0) + ∇A(x0) · (x − x0) + O
(
(x − x0)2

) = A(x0) + r (∇A(x0) · ŝ) + O
(
r2

)
,

φ(x) = φ(x0) + ∇φ(x0) · (x − x0) + 1
2 (x − x0)T ∇2φ(x0) (x − x0) + O

(
(x − x0)3

)

= φ(x0) + rη0
(̂d0 · ŝ) + 1

2 r
2 (̂sT∇2φ(x0)̂s

) + O
(
r3

)
.

Denoting φ0(x) = φ(x0) + ∇φ(x0) · (x − x0), u0(x) = A(x0)eiωφ0(x), we have

δu(x) = u(x) − u0(x)
= A(x)eiωφ(x) − A(x0)eiωφ0(x)

=
[
A(x0)eiωφ(x) + r (∇A(x0) · ŝ) eiωφ(x) + O

(
r2

)] − A(x0)eiωφ0(x)

= A(x0)eiωφ0(x)
(
eiω

[
1
2 r

2(̂sT∇2φ(x0)̂s)+O(r3)
]
− 1

)

+ r (∇A(x0) · ŝ) eiωφ(x) + O
(
r2

)
,

∂
∂r (δu(x)) = ∂

∂r

(
A(x)eiωφ(x) − A(x0)eiωφ0(x)

)

= (∇A(x0) · ŝ + O(r)) eiωφ(x)

+A(x)eiωφ(x)iω
[
η0(̂d0 · ŝ) + r

(̂sT∇2φ(x0)̂s
) + O(r2)

]

−A(x0)eiωφ0(x0)iωη0(̂d0 · ŝ)
= (∇A(x0) · ŝ + O(r)) eiωφ(x) + A(x)eiωφ(x)iω

[
r
(̂sT∇2φ(x0)̂s

) + O(r2)
]

+
(
A(x)eiωφ(x) − A(x0)eiωφ0(x0)

)
iωη0(̂d0 · ŝ)

= (∇A(x0) · ŝ + O(r)) eiωφ(x) + A(x)eiωφ(x)iω
[
r
(̂sT∇2φ(x0)̂s

) + O(r2)
]

+ iωη0(̂d0 · ŝ)δu(x).
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Then

δU (x) =
(

1
iωη0

∂
∂r + 1

)
δu(x)

= 1
iωη0

(∇A(x0) · ŝ + O(r)) eiωφ(x) + 1
η0
A(x)eiωφ(x) [r (̂sT∇2φ(x0)̂s

) + O(r2)
]

+ (̂d0 · s)δu(x) + δu(x)

= 1
iωη0

(∇A(x0) · ŝ + O(r)) eiωφ(x) + 1
η0
A(x)eiωφ(x) [r (̂sT∇2φ(x0)̂s

) + O(r2)
]

+ (̂d0 · ŝ + 1)
{
A(x0)eiωφ0(x)

(
eiω

[
1
2 r

2(̂sT∇2φ(x0)̂s)+O(r3)
]
− 1

)

+ r (∇A(x0) · ŝ) eiωφ(x) + O
(
r2

)}
.

Hence,

|δU (x)| =
∣∣∣∣
(

1
iωη0

∂

∂r
+ 1

)
δu(x)

∣∣∣∣

≤ |∇A(x0)| + O(r)
ωη0

+ |A(x)|
η0

(
r
∣∣∣̂sT∇2φ(x0)̂s

∣∣∣ + O(r2)
)

+ 2|A(x0)|ω
(
1
2
r2

∣∣∣̂sT∇2φ(x0)̂s
∣∣∣ + O(r3)

)
+ 2r|∇A(x0)| + O(r2)

=
(

1
ωη0

+ 2r
)

|∇A(x0)| +
( |A(x)|r

η0
+ |A(x0)|ωr2

) ∣∣∣̂sT∇2φ(x0)̂s
∣∣∣

+ |A(x)|
η0

O(r2) + 2ω|A(x0)|O(r3) + O(r2). (44)

As shown in “Appendix A,” on the one hand δU has to be small compared to U . On
the other hand, the error in direction estimate from NMLA is O( 1

wr ). Assuming the
smoothness of A(x) and φ(x), i.e., boundedness of ∇A(x), A(x) and ∇2φ(x), the leading
term in δU is ωr2|A(x0)|

∣∣̂sT∇2φ(x0)̂s
∣∣ as ω → ∞, where ŝT∇2φ(x0)̂s is the curvature of

the wave front. Hence, the radius of the sampling circle can at most be chosen r ∼ O( 1√
ω
)

as ω → ∞. Let

r = Cε√
ω
, |∇A(x)| ≤ C1, |A(x)| ≤ C2,

∣∣sT∇2φ(x)s
∣∣ ≤ C3, (45)

Then

|δU (x)| ≤ 2C2
εC3

∣∣A(x0)
∣∣ + O

(
1√
ω

)
(46)

By choosing Cε such that 2C2
εC3 ≤ 1

4 , the perturbation δU (x) satisfies the condition 42
for ω large enough, which implies that the error in the ray direction estimate by NMLA is
O(ω− 1

2 ).

Remark 4 The above analysis also shows that NMLA can not be used to estimate ray
directions within a few wavelengths away from the point source since the curvature of the
wave front there is of orderO(w).

Appendix C: Second-order curvature correction for a point source
AppendixB shows that the angle estimationproperty (43) does not yield the same accuracy
orderO(ω−1) as the geometric optics ansatz for a general wave front such as waves near a
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point source. We also know that the curvature term after linearization is responsible for
this loss of accuracy. Roughly speaking, the estimation is in O(ω−1) for a plane wave and
O(ω−1/2) for a point source wave. The second-order curvature correction in [11] shows
that it is possible to identify the curvature to improve the angle estimation. A summary of
the correction process is provided in this section.
We consider a normalized point source solution in a homogeneous medium

u(x) = √
k
i
4
H (1)
0 (k|x − x1|).

When the radius r of the sampling circle is smaller than the distance from the observation
point x0 to the source point x1, that is, r < |x1 − x0|, we use the Graff Addition Theorem
[24, page 66] on the sampling circle, then we have

u(x0 + r̂s) = √
k
i
4

+∞∑
l=−∞

H (1)
l (kR1)eil(θ−θ1)

where R1 := |x1 − x0| is the reciprocal of the curvature of the wave front at point x0, and
θ and θ1 are the angles such that ŝ = (cos θ , sin θ ), x1−x0|x1−x0| = (cos θ1, sin θ1).
The impedance quantity is

Upoint (θ ) = ( 1ik ∂r + 1)u(x0 + r̂s)

= eikR1√−i8πR1

+∞∑
l=−∞

Cl(kR1)(−i)l(Jl(kr) − iJ ′l (kr))e
il(θ−θ1),

where

Cl(kR1) = il
√
ikπR1

2
e−ikR1H (1)

l (kR1).

By applying the filter operator B defined in (29), we get

BUpoint (θ ) = b1
2Lkr + 1

Lkr∑
−Lkr

Cl(kR1)eil(θ−θ1), with b1 = eikR1√−i8πR1
. (47)

Then we can get the first estimate of the true angle θ1 by using Algorithm 2 onBUpoint (θ ),
which is denoted by θest . Meanwhile, we have an analytical formula for the Fourier coeffi-
cient β̂l of BUpoint (θ ), which is

β̂l = b1
2Lkr + 1

Cl(kR1)e−ilθ1 . (48)

We shift the phase,

β̂leilθest = b1
2Lkr + 1

Cl(kR1)e−il(θest−θ1) = b1
2Lkr + 1

Cl(kR1)e−ilδθ ,

where δθ := θest − θ1 is the error that we make on the angle estimation.
It is important to notice that when kR1 is large enough Cl(kR1) is a perturbation of 1

due to the asymptotic expansion [105, page 198],

Cl(kR1) ∼ 1 +
∞∑

m=1

(l, m)
(−2ikR1)m

, with(l, m)

= (4l2 − 12)(4l2 − 32) . . . (4l2 − (2m − 1)2)
22mm!

(49)
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Now we use the first two terms of the expression

Cl(kR1) = ei
l2− 1

4
2kR1

(
1 − l2− 1

4
(kR1)2

) 1
4

+ O
(

1
(kR1)3

)
,

and obtain

β̂leilθest = b1
2Lkr + 1

ei
l2− 1

4
2kR1

1
(
1 − l2− 1

4
(kR1)2

) 1
4

+ O
(

1
(kR1)3

)
.

We then consider

ψl := I
(
log(̂βleilθest ) − log(̂β0)

)
= lδθ + l2

2kR1
+ O

(
1

(kR1)3

)
. (50)

where I stands for the imaginary part.
We see that ψl is close to a parabolic function of the mode number l so that it can

be fitted by a least-squares approximation. The estimated parabola coefficient δθest then
provides a correction on the angle, which we call it the second-order curvature correction.
It improves the accuracy of angle estimation to a great extent. This process is only valid
for a single point source in a smooth medium.
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