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Abstract

Bringmann et al. (Trans Am Math Soc 364(5):2393–2410, 2012) showed how to
‘regularize’ mock modular forms by a certain linear combination of the Eichler integral
of their shadows in order to obtain p-adic modular forms in the sense of Serre. In this
paper, we give a new proof of a refined form of their results (for good primes p) by
employing the geometric theory of harmonic Maass forms developed by Candelori
(Math Ann 360(1–2):489–517, 2014) and the theory of overconvergent modular forms
due to Katz and Coleman. In particular, our main results imply that the p-adic modular
forms in Bringmann et al. (2012) are overconvergent.

Mathematics Subject Classification: 11F33, 11F23

1 Background
Over the past decade, there has been a renewed interest in Ramanujan’s mock modular
forms and relatedobjects, suchasharmonic (weak)Maass forms,whoseFourier coefficients
have been found in many instances to encode interesting arithmetic data, similarly as in
the classical theory of modular forms. In this paper, we introduce a new perspective
on the p-adic properties of Fourier coefficients of mock modular forms, based on the
algebro-geometric theory of p-adicmodular forms dueKatz [12] andColeman [8]. Such p-
adic properties were originally discovered by Guerzhoy–Kent–Ono [11] and Bringmann–
Guerzhoy–Kane [1], but we believe that our methods offer a most natural approach to
such results.
In order to state our results precisely, let τ = u + iv ∈ h be the variable in Poincaré’s

upper-half plane, with u, v ∈ R, let �0(N ) be the standard congruence subgroup of SL2(Z)
of levelN , and let χ be a Dirichlet character moduloN . Denote byHk (�0(N ),χ ) the space
of harmonic Maass forms on �0(N ) of integral weight k and character χ (as defined in [1,
§2]). Any harmonic Maass form F has a decomposition

F = F+ + F−

into a holomorphic part F+ with poles supported at the cusps and a nonholomorphic
part F−. After Zwegers’ work [15] (see also [14] for an influential overview), the function
F+ : h → C is called amockmodular form; in general, it does not transform like amodular
form, but (as first discovered by Ramanujan) the properties of its Fourier coefficients
resemble those of a classical modular form.
© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
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As shown in [3], harmonicMaass formsmap into classicalmodular forms via differential
operators. Denote byM!

k (�0(N ),χ ) (resp. Sk (�0(N ),χ )) the space of weakly holomorphic
modular forms (resp. cusp forms) of weight k , level N , and character χ . If for any w ∈ Z,
we let

ξw := 2ivw
∂

∂τ
, (1)

then f := ξ2−k (F ) = ξ2−k (F−) is a cusp form in Sk (�0(N ),χ ) for all F ∈ H2−k (�0(N ),χ ).
We say that f is the shadow of F , and a fundamental question in the subject is to relate
the coefficients of a mock modular form F+ to the coefficients of its shadow.
However, with the differential operator (1) having an infinite-dimensional kernel, to

obtain results in this direction it becomes necessary to work with a refined notion of
harmonic Maass forms lifting a given f . For any congruence subgroup � of SL2(Z), let
Sk (�, K ) (resp. M!

k (�, K )) be the space of cusp forms (weakly homomorphic modular
forms) of weight k and level � whose q-expansion coefficients all lie in K ⊆ C.

Definition 1.1 A harmonic Maass form F ∈ H2−k (�1(N )) is good for f ∈ Sk (�1(N ), K )
if:

(i) The principal parts of F at all cusps are defined over K .
(ii) We have ξ2−k (F ) = f /‖f ‖2, where ‖f ‖ is the Petersson norm of f .

Suppose that f ∈ Sk (�1(N ), K ) is a (normalized) newform defined over K , let F be a
harmonic Maass form that is good for f , and write

F+ =
∑

n�−∞
c+(n)qn

for the holomorphic part of F . Let Ef = ∑∞
n=1 n1−kanqn be the so-called Eichler integral

of f , so that Dk−1(Ef ) = f for the differential operator Dk−1 acting as (qd/dq)k−1 on
q-expansions. It is shown in [11] (and in Theorem 4.1 below by different methods) that
for any α ∈ C such that α − c+(1) ∈ K , the coefficients of

Fα := F+ − αEf =
∑

n�−∞
cα(n)qn

also lie in K . In particular, this applies of course to α = c+(1).
Now fix a prime p � N , and a choice of complex and p-adic embeddings Q ↪→ C and

Q ↪→ Cp, and let vp be the resulting p-adic valuation on Q normalized so that vp(p) = 1.
Thus, for any value of α in the set

c+(1) + Cp := {c+(1) + γ : γ ∈ Cp}, (2)

the q-expansion of Fα lies in Cp[[q]][q−1], and it becomes meaningful to ask about the
p-adic properties of its coefficients; in particular, whether the resulting q-expansion cor-
responds to a p-adic modular form. In general, the coefficients cα(n) of Fα will have
unbounded p-adic valuation (see, e.g., [1, p. 2396]), but the following special case of our
main result shows that, for a specific value of α, a certain regularization ofFα indeed gives
rise to a p-adic modular form.
For the statement, let β and β ′ be the roots of the Hecke polynomial of f at p:

T 2 − apT + χ (p)pk−1 = (T − β)(T − β ′),

ordered so that vp(β) � vp(β ′). Let V be the operator acting as q 	→ qp on q-expansions.
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Theorem 1.2 With the above notations and hypotheses, suppose vp(β) < vp(β ′) and
vp(β ′) < k −1, and setF∗

α := Fα −p1−kβ ′V (Fα). Then, among all values α ∈ c+(1)+Cp,
the value

α = c+(1) + (β − β ′) lim
w→+∞

cc+(1)(pw)
βw+1

is the unique one such that F∗
α is an overconvergent modular form of weight 2 − k.

We refer the reader to Definition 3.1 for the precise notion of overconvergent modular
forms to which Theorem 1.2 applies, but suffice it to say that they bear a relation to
Coleman’s overconvergent modular forms [8] analogous to that of p-adic modular forms
in the sense of [1] to Serre’s p-adic modular forms [13]. In particular, our results in Sect. 5
(of which Theorem 1.2 is a special case) yield a new proof of a refined form of the main
results obtained by Bringmann–Guerzhoy–Kane in [1], showing that the p-adic modular
forms constructed in loc.cit. are overconvergent.
We conclude this Introduction by briefly mentioning some key ideas behind our proof

of Theorem 1.2. Let fβ and fβ ′ be the p-stabilizations of f , which are modular forms of
level Np that are eigenvectors for the U-operator with eigenvalues β and β ′, respectively.
In Theorem 4.3 we show that, for all but one value of α, the p-stabilized shadow fβ can be
recovered from an iterated application ofU onDk−1(Fα); the exceptional value of α yields
the precise value in Theorem 1.2. The forms fβ and fβ ′ define classes in the f -isotypical
component of a certain parabolic cohomology group, and in Proposition 3.4 we show that
under the assumptions of Theorem 1.2 they form a basis for this space. Writing the class
ofDk−1(Fα) in terms of this basis, our proof of Theorem 4.3 then follows from an analysis
of the action of U on cohomology.

2 Harmonic Maass forms: the geometric point of view
We begin by briefly recalling the geometric interpretation of harmonicMaass forms given
in [4]. For N > 4, consider the moduli functorM1(N ) of generalized elliptic curves with
a point of order N , which is represented by a smooth and proper scheme over Z[1/N ].
Let Egen → M1(N ) be the universal generalized elliptic curve, and let ω be its relative
dualizing sheaf. Let X := M1(N ) ×Z[1/N ] Q and Y := X � C , where C is the cuspidal
subscheme, whose ideal sheaf we denote by IC . For any extension K/Q, we denote by
XK , YK the base-change to K .
We have well-known canonical isomorphisms

M!
k (�1(N ), K ) � H0(YK ,ωk ), Sk (�1(N ), K ) � H0(XK ,ωk ⊗ IC ),

where a modular form f of weight k is identified with the differential f (dq/q)k . Let π :
E → Y be the universal elliptic curve with �1(N )-level structure. The relative de Rham
cohomology of π : E → Y canonically extends to a rank two vector bundle H1

dR over X .
Let

Hr := Symr(H1
dR).

The Gauss–Manin connection of π : E → Y extends to a connection with logarithmic
poles ∇ : H1

dR → H1
dR ⊗ 1

X (logC) over X , and we let
∇r : Hr −→ Hr ⊗ 1

X (logC)
denote its r-th symmetric power. Define

H
1
par(X,Hr ) := H

1(X,Hr ⊗ IC ∇r−→ Hr ⊗ 1
X ), (3)
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where H
• denotes hypercohomology. The formation of H

1
par(X,Hr) is compatible with

base-change under field extensions K/Q, and over C it is canonically isomorphic to the
parabolic cohomology group attached to the space of cusp forms of weight r + 2 and
level �1(N ). In particular, by the Shimura isomorphism (see, e.g., [9, Thm. 2.10], [2])
H

1
par(XC,Hr) is canonically isomorphic to the direct sum of Sr+2(�1(N )) and its complex

conjugate.
More generally, the following second description of H

1
par(X,Hr) in terms of modular

forms will play an important role here. Recall that for all k � 2 there is a differential
operator

Dk−1 : M!
2−k (�1(N )) −→ M!

k (�1(N ))

acting on q-expansion as (qd/dq)k−1. In particular, Dk−1 preserves fields of definition.

Theorem 2.1 ([4, Thm. 6]) Let K be a subfield of C and let S!k (�1(N ), K ) be the subspace
of those modular forms in M!

k (�1(N ), K ) with vanishing constant coefficient in their q-
expansions at the cusps. Then, for all k � 2 there is a canonical isomorphism:

H
1
par(XK ,Hk−2) � S!k (�1(N ), K )

Dk−1M!
2−k (�1(N ), K )

.

The spaces H
1
par(XK ,Hk−2) are endowed with an action of the Hecke operators T� for

all primes � � N , and if f ∈ Sk (�1(N ), K ) is a newform, we let

MdR(f ) := H
1
par(XK ,Hk−2)f

denote the f -isotypical component for this action. Note that this is a 2-dimensional K -
vector space. This can be seen by extending scalars to C and then noting that the Shimura
isomorphism is compatible under the action of Hecke operators, thus MdR(f ) ⊗K C �
C[f ] ⊕ C[f̄ ].
Now let [φ] be a class in MdR(f ) represented by an element φ ∈ S!k (�1(N ), K ) using

Theorem 2.1. Extending scalars to C, we may write

[φ] = s1[f ] + s2[f̄ ], (4)

for some s1, s2 ∈ C. Let C∞
Y (resp. A1

Y ) be the sheaf of smooth functions (resp. smooth
differential forms) on YC. The differential φ − s1f − s2 f̄ is smooth over YC, and it defines
a class in

H
1(Hk−2 ⊗ C∞

Y
∇k−2−−−→ Hk−2 ⊗ A1

Y ) � H0(YC,Hk−2 ⊗ A1
Y )

∇k−2H0(YC,Hk−2 ⊗ C∞
Y )

which is trivial by construction. Therefore, there exists a smooth Hk−2-valued section F
such that

∇k−2(F) = φ − s1f − s2 f̄ .

The vector bundleHk−2 decomposes into line bundles as

Hk−2 � ω2−k ⊕ ω4−k ⊕ · · · ⊕ ωk−2,

and we let F ∈ ω2−k be the projection of F to the first factor. With this construction, it is
shown in [4, Prop. 4] that F is a harmonic Maass form of weight 2 − k satisfying

Dk−1(F+) = φ − s1f,
2iv2−k

(−4π )k−1
∂

∂τ
(F−) = s2 f̄ .
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Carrying out the above construction of F with a class [φ] normalized so that 〈f,φ〉 = 1
under the cup product, one then finds that the constant s2 in (4) is given

s2 = 1/〈f, f̄ 〉 = 1/(−4π )k−1‖f ‖2,
which shows that ξ2−k (F ) = f /‖f ‖2 and F is good for f in the sense of Definition 1.1.

3 Overconvergent modular forms
Let p � 5 be a prime and let Cp be the completion of an algebraic closure of Qp. We fix
a valuation vp on Cp such that vp(p) = 1 and an absolute value | · | on Cp compatible
with vp. Let Kp be a complete discretely valued subfield of Cp and let Rp be its ring of
integers. Suppose (p, N ) = 1, and letX := M1(N ) ×Z[1/N ] Rp be the base-change to Rp.
Let Ep−1 ∈ H0(X ×Rp Kp,ωp−1) be the global section given by the Eisenstein series of
weight p − 1 and level 1, normalized so that its constant coefficient is 1. As in [8, §1], for
any ε ∈ |Rp| there are rigid analytic spaces X(ε) characterized by

Xcl
(ε) = {x ∈ (X ×Rp Kp)cl : |Ep−1(x)| > ε},

where the superscript ‘cl’ denotes the set of closed points. In the terminology of [6], the
spaces X(ε) for 0 < ε < 1 are wide-open neighborhoods of the ordinary locus Xord of X ,
which is the rigid analytic space characterized by

(Xord)cl = {x ∈ (X ×Rp Kp)cl : |Ep−1(x)| � 1}.
Since |Ep−1(c)| = 1 for all c ∈ C , we have C ⊆ X(ε) for all ε ∈ |Rp|, and we let

Y ord := Xord
� C, Y(ε) := X(ε) � C

be the rigid analytic spaces obtained by removing the cusps. The invertible sheaves ωk

restrict to rigid analytic line bundles on these spaces denoted in the same manner.

Definition 3.1 An overconvergent modular form of integral weight k is a rigid analytic
section of ωk on Y(ε) for some ε < 1.

Remark 3.2 As shown by Katz [12], sections of ωk over Xord are the same as Serre’s
p-adic modular forms [13] of integral weight k , and therefore elements in H0(Y ord,ωk )
correspond to p-adicmodular forms in the sense considered in [1]. As explained in [loc.cit.,
p. 2394], the latter give rise to Serre’s p-adic modular forms upon multiplication by an
appropriate power of the modular discriminant � ∈ S12(SL2(Z)), and the same argument
shows that overconvergent modular forms in the sense of Definition 3.1 give rise to
overconvergent modular forms in the sense of Coleman [8].

For any wide-open neighborhoodW of Xord, setW ◦ := W � C and define

H
1(W ◦,Hr) := H

1(W ◦,Hr
∇r−→ Hr ⊗ 1

X ) � H0(W ◦,Hr ⊗ 1
X )

∇rH0(W ◦,Hr)
,

where the isomorphism follows from the fact that Hq(W ◦,H) = 0 for q > 0 and any
coherent sheafH onW ◦. The next two results will play an important role in the proofs of
our main results.

Theorem 3.3 (Coleman) For every r � 0, there is linear map

θ r+1 : H0(W ◦,ω−r) −→ H0(W ◦,ωr+2)
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whose action on q-expansions is (qd/dq)r+1, and the natural injection

H0(W ◦,ωr+2) � H0(W ◦,ωr ⊗ 1
X ) ↪→ H0(W ◦,Hr ⊗ 1

X )

induces an isomorphism

H
1(W ◦,Hr) � H0(W ◦,ωr+2)

θ r+1H0(W ◦,ω−r)
.

Proof See [8, Prop. 4.3] for the construction of θ r+1 and [loc.cit., Thm. 5.4] for the last
isomorphism. ��

Consider now the wide-open neighborhoods of Xord given by W1 := X(p−p/p+1) and
W2 := X(p−1/p+1) ⊆ W1, and let

U : H0(W2,ωk ) −→ H0(W1,ωk ), V : H0(W1,ωk ) −→ H0(W2,ωk )

be the operators defined in [8, §§2, 3] and whose action on q-expansions is given by the
usual formulas

U
(∑

n
anqn

)
=

∑

n
apnqn, V

(∑

n
anqn

)
=

∑

n
anqpn.

Let f = ∑∞
n=1 anqn ∈ Sk (�0(N ),χ ) be a newform defined over a number field K and with

Tp-eigenvalue ap. This is a section of ωk defined over X , and thus by restriction it gives a
section of ωk overW2 as well. The relation Tp = U + χ (p)pk−1V trivially implies that

apf = U (f ) + χ (p)pk−1V (f ) ∈ H0(W2,ωk ),

from which it follows easily that the p-stabilizations

fβ := f − β ′V (f ) fβ ′ := f − βV (f ) (5)

are U-eigenvectors with eigenvalues β and β ′, respectively. After replacing K by a
quadratic extension if necessary, we assume from now on that both β and β ′ lie in K .
Let Kp be the completion of K at the prime above p induced by our fixed embedding

Q ↪→ Cp, and set MdR,p(f ) := MdR(f ) ⊗K Kp. For any wide-open neighborhood W of
Xord, the natural restriction

H
1
par(XKp ,Hk−2) −→ H

1(W ◦,Hk−2) (6)

is injective. (See [6, Thm. 4.2] for the case k = 2 and [7, Prop. 10.3] for higher weights.)
The image of this map can be described in terms of p-adic residues, and as a result for any
newform f as above, the classes [fβ ], [fβ ′ ] ∈ H

1(W ◦
2 ,Hk−2) naturally lie inH

1
par(XKp ,Hk−2).

In fact, similarly asH
1
par(XKp ,Hk−2), the spacesH

1(W ◦,Hk−2) are endowedwith an action
of the Hecke operatorsT� for � � Np (see [7, §8]), and the restrictionmap (6) is equivariant
for these actions. Therefore, the classes [fβ ], [fβ ′ ] naturally lie inMdR,p(f ).

Proposition 3.4 Let f = ∑∞
n=1 anqn ∈ Sk (�0(N ),χ ) be a newform of weight k � 2, and

let β and β ′ be the roots of T 2 − apT + χ (p)pk−1, ordered so that vp(β) � vp(β ′). Assume
that the following two conditions hold:
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(i) β �= β ′.
(ii) fβ ′ /∈ im(θk−1).

Then {[f ], [V (f )]} is a basis for MdR,p(f ).

Proof Since MdR,p(f ) := MdR(f ) ⊗K Kp is 2-dimensional (see remark after Thm. 2.1),
it suffices to show that the classes [f ] and [V (f )] are linearly independent. Since clearly
vp(β) < k −1, by [8, Lem. 6.3] we have [fβ ] �= 0. Thus, by conditions (i) and (ii) the classes
[fβ ] and [fβ ′ ] are linearly independent. On the other hand, from the definitions (5) we see
that

[
f

V (f )

]
= 1

β − β ′

[
β 1

−β ′ −1

][
fβ
fβ ′

]
,

and since det
[

β 1
−β ′ −1

]
= β ′ − β �= 0, the result follows. ��

Remark 3.5 By results of Coleman–Edixhoven [5], condition (i) in Proposition 3.4 holds
if k = 2, and for k > 2 it is a consequence of the semi-simplicity of crystalline Frobenius,
which remains an open conjecture. On the other hand, by [8, Prop. 7.1] condition (ii) fails
if f has CM by an imaginary quadratic field in which p splits, and the ‘p-adic variational
Hodge conjecture’ of Emerton–Mazur (see [10]) predicts that these are the only cases
where it fails.

4 Recovering the shadow
Let f = ∑∞

n=1 anqn be a normalized newform and let F be a harmonic Maass form which
is good for f in the sense Definition 1.1. By the construction in Sect. 2, we may assume
that F satisfies

Dk−1(F ) = Dk−1(F+) = φ − s1f (7)

for some φ ∈ S!k (�1(N ), K ) and s1 ∈ C.
In [11], Guerzhoy, Kent, and Ono showed that one of the p-stabilizations of f can

be recovered p-adically from an iterated application of U to a certain ‘regularization’ of
Dk−1(F+). In this section, we give a new proof of this result using the p-adic techniques
developed above. We begin by giving a new proof of [loc.cit., Thm. 1.1].

Theorem 4.1 Let α ∈ C be such that α − c+(1) ∈ K. Then, the coefficients of

Fα := F+ − αEf :=
∑

n�−∞
c+(n)qn − α

∞∑

n=1
ann1−kqn

are all in K .

Proof Write φ = ∑
n�−∞ d(n)qn, with d(n) ∈ K . By (7), we have the formula

c+(n) =
(
d(n) − s1an

nk−1

)
(8)

where an := 0 for n � 0. The result is thus clear for n � 0. Now let n � 1, and write
α = c+(1) + γ with γ ∈ K , or equivalently, α = d(1) − s1 + γ . Using (8), an immediate
calculation reveals that the coefficient of qn in Fα is given by (d(n) − d(1) − γ )n1−k . ��
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Since one can always take α = c+(1) in Theorem 4.1, the coefficients of Fc+(1) are all in
K . Writing

Dk−1(Fc+(1)) =
∑

n�−∞
cc+(1)(n)qn,

we may thus view the coefficients cc+(1)(n) inside Cp via our fixed embedding Q ↪→ Cp.
Our next result is a special case of [11, Thm. 1.2(i)], but the ideas in the proof of the general
case (see Theorem 4.3 below) already appear here.

Theorem 4.2 Assume that vp(β) < vp(β ′) and that fβ ′ /∈ im(θk−1). Then

lim
w→+∞

UwDk−1(Fc+(1))
cc+(1)(pw)

= fβ .

Proof First note that by Eqs. (7) and (8), we have

Dk−1(Fc+(1)) = φ − d(1)f,

which is a weakly holomorphic cusp form of weight k with q-expansion coefficients in
K , hence defining a class in MdR(f ) (see Theorem 2.1). Our assumptions clearly imply
conditions (i) and (ii) of Proposition 3.4, and so (as shown in the proof) the Kp-vector
spaceMdR,p(f ) has a basis {[fβ ], [fβ ′ ]} of eigenvectors for U . In particular, we can write

[Dk−1(Fc+(1))] = t1[fβ ] + t2[fβ ′ ]

for some constants t1, t2 ∈ Kp. By restriction, the differential Dk−1(Fc+(1)) − t1fβ − t2fβ ′

defines a class in H
1(W ◦

2 ,Hk−2) � H0(W ◦
2 ,ωk )/θk−1H0(W ◦

2 ,ω2−k ) which is trivial by
construction. Thus, we may write

Dk−1(Fc+(1)) = t1fβ + t2fβ ′ + θk−1h

for some h ∈ H0(W ◦
2 ,ω2−k ). Applying U to both sides of the equation gives

UDk−1(Fc+(1)) = t1βfβ + t2β ′fβ ′ + U (θk−1h);

and more generally, for any power w � 1, we obtain

UwDk−1(Fc+(1)) = t1βwfβ + t2β ′wfβ ′ + Uw(θk−1h). (9)

Dividing by βw , we get

β−wUwDk−1(Fc+(1)) = t1fβ + t2
(

β ′

β

)w
fβ ′ + β−wUw(θk−1h)

and taking the limit as w → +∞ we arrive at

lim
w→+∞ β−wUwDk−1(Fc+(1)) = t1fβ .

Here we used the hypothesis vp(β ′/β) > 0, and that fact that (since the coefficients of h
have bounded denominators) the differential Uw(θk−1h) has coefficients with arbitrarily
high valuation as w → +∞.
To determine the value of t1, consider the coefficient of qpw in (9), which is given by

cc+(1)(pw) = apw (Dk−1(Fc+(1))) = a1(UwDk−1(Fc+(1)))

= t1βw + t2β ′w + O(pw(k−1)),



Candelori and Castella Res Math Sci (2017) 4:5 Page 9 of 15

where we let an(g) denote the n-th Fourier coefficients in a q-expansion g , and we used
the fact that both fβ and fβ ′ are normalized, so that a1(fβ ) = a1(fβ ′ ) = 1. Thus, taking the
limit as w → +∞ we obtain

lim
w→+∞ β−wcc+(1)(pw) = t1 (10)

which gives the result. ��
Now for any α with α − c+(1) ∈ K , define

Fα := F+ − αEf

and let cα(n) denote the n-th coefficient in the expansion

Dk−1(Fα) =
∑

n�−∞
cα(n)qn.

The following is the content of [11, Thm. 1.2(i)] for primes p � N .

Theorem 4.3 Assume that vp(β) < vp(β ′) and that fβ ′ /∈ im(θk−1). Then for all but at
most one choice of α with α − c+(1) ∈ K, we have

lim
w→+∞

UwDk−1(Fα)
cα(pw)

= fβ .

Proof As in the proof of Theorem 4.2, we can write

[Dk−1(Fc+(1))] = t1[fβ ] + t2[fβ ′ ] (11)

in MdR,p(f ) with the value of t1 given by (10). Let γ ∈ K be such that α = c+(1) + γ , so
that Fα = Fc+(1) − γEf by definition. Noting that

f = βfβ − β ′fβ ′

β − β ′ , (12)

and substituting into the expression (11) with Fα in place of Fc+(1), we obtain

[Dk−1(Fα)] =
(
t1 − γ

β

β − β ′

)
[fβ ] +

(
t2 + γ

β ′

β − β ′

)
[fβ ′ ],

and hence we have the equality

Dk−1(Fα) =
(
t1 − γ

β

β − β ′

)
fβ +

(
t2 + γ

β ′

β − β ′

)
fβ ′ + θk−1h (13)

as sections inH0(W ◦
2 ,ωk ), for some h ∈ H0(W ◦

2 ,ω2−k ). ApplyingUw to both sides of this
equation and letting w → +∞, we deduce that

lim
w→+∞

UwDk−1(Fα)
βw =

(
t1 − γ

β

β − β ′

)
fβ (14)

as in the proof of Theorem 4.2. On the other hand, arguing again as in Theorem 4.2, we
find that the pw-th coefficient of Dk−1(Fα) is given by

cα(pw) =
(
t1 − γ

β

β − β ′

)
βw +

(
t2 + γ

β ′

β − β ′

)
β ′w + O(pw(k−1)),
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and hence
(
t1 − γ

β

β − β ′

)
= lim

w→+∞
cα(pw)

βw . (15)

Therefore, except in the case where

γ = t1(β − β ′)
β

= (β − β ′) lim
w→+∞

cc+(1)(pw)
βw+1 , (16)

combining (14) and (15) we recover fβ from Fα as in the statement the theorem. ��

5 Mockmodular forms as overconvergent modular forms
We now let α range over the larger set of values (2), and interpret the exceptional value
of α in Theorem 4.3 as the only value of α for which the ‘regularized’ mock modular form

Fα = F+ − αEf

gives rise to an overconvergent modular form (see Definition 3.1) upon p-stabilization.
Recall that we let β and β ′ be the roots of the p-th Hecke polynomial of f , ordered so that
vp(β) � vp(β ′).

Definition 5.1 For any α ∈ c+(1) + Cp, define

F∗
α := Fα − p1−kβ ′Fα|V

and write Dk−1(F∗
α ) = ∑

n�−∞ c∗α(n)qn.

Our first result shows that, similarly as in Theorem 4.3 for Fα , the p-stabilization fβ of
the shadow of F+ can be recovered p-adically from F∗

α .

Theorem 5.2 Assume that vp(β) < vp(β ′) and that fβ ′ /∈ im(θk−1). Then, for all but at
most one choice of α ∈ c+(1) + Cp, we have

lim
w→+∞

UwDk−1(F∗
α )

c∗α(pw)
= fβ .

Proof Writing α = c+(1) + γ with γ ∈ Cp, an immediate calculation reveals that

Dk−1(F∗
α ) = Dk−1(Fc+(1))|(1 − β ′V ) − γ fβ . (17)

As in the proof of Theorem 4.2, we write

[Dk−1(Fc+(1))] = t1[fβ ] + t2[fβ ′ ]

inMdR,p(f ) with t1 = limw→+∞ β−wcc+(1)(pw). Applying the operator 1− β ′V to this last
equality, and noting that V = U−1 on cohomology, we obtain

[Dk−1(Fc+(1))|(1 − β ′V )] = t1
(β − β ′)

β
[fβ ],

and hence by (17):

[Dk−1(F∗
α )] =

(
t1(β − β ′)

β
− γ

)
[fβ ]. (18)
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Arguing again as in the proof of Theorem 4.2, we obtain the equalities

lim
w→+∞

Uw(Dk−1(F∗
α ))

βw =
(
t1(β − β ′)

β
− γ

)
fβ (19)

and

t1(β − β ′)
β

− γ = lim
w→+∞

c∗α(pw)
βw . (20)

Therefore, except in the case where

γ = t1(β − β ′)
β

= (β − β ′) lim
w→+∞

cc+(1)(pw)
βw+1 , (21)

the combination of (14) and (15) recovers fβ from F∗
α as in the statement. ��

Considering the exceptional value of α arising in the proof of Theorem 5.2, we recover
a refined form of [1, Thm. 1.1].

Theorem 5.3 Assume that vp(β) < vp(β ′) and that fβ ′ /∈ im(θk−1). Then among all values
of α ∈ c+(1) + Cp, the value

α = c+(1) + (β − β ′) lim
w→+∞

cc+(1)(pw)
βw+1

is the unique one such that F∗
α is an overconvergent modular form of weight 2 − k.

Proof Write α = c+(1) + γ with γ ∈ Cp. Since [fβ ] �= 0 ∈ MdR,p(f ) (see the proof of
Proposition 3.4), we deduce from (18) and (21) that the class of Dk−1(F∗

α ) in MdR,p(f )
vanishes only for the value of α in the statement. Since the restriction map

H
1
par(XKp ,Hk−2) −→ H

1(W ◦
2 ,Hk−2) � H0(W ◦

2 ,ωk )
θk−1H0(W ◦

2 ,ω2−k )

is injective, the above value of α is also the unique one such that the class of Dk−1(F∗
α )

becomes trivial in H
1(W ◦

2 ,Hk−2), and hence such that F∗
α ∈ H0(W ◦

2 ,ω2−k ). ��

Next we consider a second modification of Fα = ∑
n�−∞ aFα (n)qn.

Definition 5.4 For any δ ∈ Cp, define

Fα,δ := Fα − δ(Ef − βEf |V ).

Our next result determines the values of α and δ for which Fα,δ is an overconvergent
modular form, recovering a refined form of [1, Thm 1.2(2)].

Theorem 5.5 Assume that vp(β) < vp(β ′) and that fβ ′ /∈ im(θk−1). Then Fα,δ is an
overconvergent modular form for a unique pair (α, δ). In fact, α is as in Theorem 5.3, and

δ = lim
w→+∞

aFα (pw)pw(k−1)

β ′w .
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Proof With the same notations as in the proof of Theorem 4.3, we can write the equality

[Dk−1(Fα,δ)] =
(
t1 − γ

β ′

β − β ′

)
[fβ ] +

(
t2 + γ

β

β − β ′ − δ

)
[fβ ′ ] (22)

in MdR,p(f ). Since we may check the triviality of these classes upon restriction to W ◦
2 ,

it follows that Fα,δ is an overconvergent modular form of weight 2 − k if and only if
the class [Dk−1(Fα,δ)] vanishes. As in the proof of Proposition 3.4, the classes [fβ ], [fβ ′ ]
form a basis forMdR,p(f ), and hence Fα,δ is an overconvergent modular form if and only
if both coefficients in the right-hand side of (22) vanish. In particular (by the second
coefficient), this shows that the value of γ is given by (16), and therefore the necessary
value of α = c+(1) + γ is the same as in Theorem 5.3.
To determine the value of δ, we rewrite Eq. (13) for the above value of α (so that the first

summand in the right-hand side of that equation vanishes):

Dk−1(Fα) =
(
t2 + γ

β ′

β − β ′

)
fβ ′ + θk−1h.

Equating the pw-th coefficients in this equality we obtain

cα(pw) =
(
t2 + γ

β ′

β − β ′

)
β ′w + O(pw(k−1)),

and hence dividing by β ′w and letting w → +∞ we deduce

lim
w→+∞

cα(pw)
β ′w =

(
t2 + γ

β ′

β − β ′

)
. (23)

(Note that the assumption vp(β ′) < k − 1 is being used here.) Finally, substituting (23)
into (22) we see that the necessary value for δ is given by

δ = lim
w→∞

cα(pw)
β ′w = lim

w→∞
aFα (pw)pw(k−1)

β ′w ,

as was to be shown. ��

6 The CM case
In this section, we treat the case in which f has CM. This case is of special interest, since
then one can choose a good harmonic Maass form F for f as in Section 2 with F+ having
algebraic coefficients.
Thus, assume that f = ∑∞

n=1 anqn ∈ Sk (�1(N ), K ) has CM by an imaginary quadratic
fieldM of discriminant prime to p, and let F = F+ + F− be a good harmonic Maass form
attached to f . We also assume (upon enlarging K if necessary) that K contains a primitive
m-th root of unity, wherem = N · disc(M). Then, by [3, Thm. 1.3], F+ has coefficients in
K , and so Dk−1(F+) defines a class inMdR(f ).
We first treat the case in which p is inert in M. In this case, ap = β + β ′ = 0, and so

by the proof of Proposition 3.4, the spaceMdR,p(f ) admits a basis given by the classes [fβ ]
and [fβ ′ ].

Lemma 6.1 Assume that p is inert in M, and write [Dk−1(F+)] = t1[fβ ] + t2[fβ ′ ] with
t1, t2 ∈ Kp. Then

lim
w→+∞

aDk−1(F+)(p2w+1)
β2w+1 = t1 − t2.
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Proof The proof will be obtained by arguments similar to the proof of Theorem 4.2, but
some adjustments are necessary due to the fact that condition vp(β) �= vp(β ′) clearly does
not hold in this case. Instead, we shall exploit the extra symmetry β ′ = −β .
Upon restriction toW ◦

2 , we can write

Dk−1(F+) = t1fβ + t2fβ ′ + θk−1h (24)

for some h ∈ H0(W ◦
2 ,ω2−k ). Taking p2w+1-st coefficients in this identity, we obtain

aDk−1(F+)(p
2w+1) = t1β2w+1 + t2β ′2w+1 + O(p(2w+1)(k−1))

= (t1 − t2)β2w+1 + O(p(2w+1)(k−1)),

and hence dividing by β2w+1 and letting w → +∞ the result follows. ��

Definition 6.2 For any α ∈ Cp, define

F̃α := F+ − αEf |V .

Armed with Lemma 6.1, in Corollary 6.4 below we will determine the values of α

for which F̃α is an overconvergent modular form, thus recovering a refined form of [1,
Thm. 1.3]. This will be an immediate consequence of the following result.

Theorem 6.3 Assume that p � N is inert in M, and for any α̃ ∈ Cp define

Gα̃ := F+ − α̃(Ef − βEf |V ).

Then, there exists a unique value of α̃ such that Gα̃ is an overconvergent modular form of
weight 2 − k, and it is given by

α̃ = lim
w→+∞

aDk−1(F+)(p2w+1)
β2w+1 .

Proof We will deduce this result by first determining the values of α and δ for which the
form Fα,δ of Definition 5.4 is an overconvergent modular form. Note that this case is
not covered by Theorem 5.5, since its proof exploits the assumption that vp(β) < vp(β ′).
However, [fβ ] and [fβ ′ ] still forma basis forMdR(f ), and so Eq. (22) for [Dk−1(Fα,δ)] applies,
yielding (setting γ = α by the algebraicity of c+(1))

[Dk−1(Fα,δ)] =
(
t1 − α

2

)
[fβ ] +

(
t2 − α

2
− δ

)
[fβ ′ ]. (25)

By Theorem 3.4, the classes [f ] and [V (f )] form a basis for MdR(f ), and rewriting (25) in
terms of them we arrive at

[Dk−1(Fα,δ)] = (t1 + t2 − α − δ)[f ] + β(t1 − t2 − α − δ)[V (f )]. (26)

Now, Fα,δ is an overconvergent modular form if and only if both coefficients in Eq. (26)
vanish; in particular, we need to have

α + δ = t1 − t2 = lim
w→+∞

aDk−1(F+)(p2w+1)
β2w+1 , (27)
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where we used Lemma 6.1 for the second equality. The necessary vanishing of (26) also
forces the vanishing of t2 and hence from (25) we deduce that δ = −α

2 , or equivalently,
α + δ = α

2 . Finally, noting that

Fα,δ = F+ − α

2
(
Ef − βEf |V

) = G α
2
,

we conclude from (27) that Gα̃ is an overconvergent modular form of weight 2 − k if and
only if α̃ is given by the p-adic limit in the statement. ��

Corollary 6.4 Assume that p � N is inert inM. Then, there exists a unique value of α such
that F̃α is an overconvergent modular form of weight 2 − k, and it is given by

α = lim
w→+∞

aDk−1(F+)(p2w+1)
β2w .

Proof Comparing the definitions of F̃α and Gα̃ , we see that

Gα̃ = F̃α − α̃Ef ,

with α = α̃β . Since Ef is easily seen to be an overconvergentmodular form of weight 2−k
under our running hypotheses (see [1, Prop. 4.2], which remains true in our case p � N ),
the result follows from Theorem 6.3. ��

Finally, we deal with the case in which f has CM by an imaginary quadratic field M in
which p splits, characterizing the values of α ∈ Cp for which F∗

α is an overconvergent
modular form. As noted in Remark 3.5, the class [fβ ′ ] vanishes in this case, and so the
proofs of Theorems 5.2 and 5.3 break down. However, based on the observation that
(using the algebraicity of c+(1) to set α = γ )

F∗
α = (F+ − αEf )|(1 − p1−kβ ′V ) = F∗

0 − αEfβ , (28)

we can easily prove the following result (cf. [1, Thm. 1.2]).

Theorem 6.5 Assume that p � N is split inM. Then, among all values of α ∈ Cp, the value
α = 0 is the unique one for which F∗

α is an overconvergent modular form of weight 2 − k.

Proof As we have already argued in preceding proofs, F∗
α is an overconvergent modular

form of weight 2−k if and only if the class [Dk−1(F∗
α )] vanishes, and from (28) we see that

[Dk−1(F∗
α )] = 0 ⇐⇒ α[fβ ] = [Dk−1(F∗

0 )].

In particular, this shows that F∗
α is an overconvergent modular form of weight 2 − k

for α = 0, and so [Dk−1(F∗
0 )] = 0. On the other hand, since [fβ ] �= 0 (see the proof of

Proposition 3.4), the above equivalence shows that [Dk−1(F∗
α )] �= 0 for α �= 0, yielding

the result. ��
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