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Abstract

A diffusion with random switching is a Markov process that consists of a stochastic
differential equation part Xt and a continuous Markov jump process part Yt . Such
systems have a wide range of applications, where the transition rates of Yt may not be
bounded or Lipschitz. A new analytical framework is developed to understand the
stability and ergodicity of these processes and allows for genuinely unbounded
transition rates. Assuming the averaged dynamics is dissipative, the first part of this
paper explicitly demonstrates how to construct a polynomial Lyapunov function and
furthermore moment bounds. When the transition rates have multiple scales, this
construction comes interestingly as a dual process of the averaging of fast transitions.
The coefficients of the Lyapunov function can be seen as the potential dissipation of
each regime in different scales, and a comparison principle comes naturally under this
interpretation. On the basis of these results, the second part of this paper establishes
geometric ergodicity for the joint processes. This can be achieved in two scenarios. If
there is a commonly accessible regime that satisfies the minorization condition, the
geometric convergence to the ergodic measure takes place in the total variation
distance. If there is contraction on average, the geometric convergence takes place in a
proper Wasserstein distance and is proved through an application of the asymptotic
coupling framework.

1 Background
Diffusions with random switching are stochastic processes consisting of two components:
a diffusion process Xt in Rd and a continuous jump process Yt on a finite set F . The
dynamics of Xt follows a stochastic differential equation (SDE)

dXt = b(Xt , Yt )dt + σ (Xt , Yt )dWt. (1.1)

Throughout, we assume b(x, y) is C1+δ and σ (x, y) is C2+δ in x for some δ > 0. The behavior
of Yt can be described by a transition rate function λ(x, y, ỹ), in other words

P(Yt+h = ỹ|Xt , Yt ) =
⎧
⎨

⎩

λ(Xt , Yt , ỹ)h + o(h), ỹ �= Yt ,

1 − λ̄(Xt , Yt )h + o(h), ỹ = Yt .

We denote the total transition rate as λ̄(x, y) = ∑
ỹ�=y λ(x, y, ỹ), and the joint process as

Zt = (Xt , Yt ), which takes place in the space E = Rd × F .
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Diffusion with random switching is widely used for modeling purpose in many areas
[38] and is becoming particularly prominent in the following directions recently:

1. For stochastic lattice models in climate science [12,14,15,25,26,31,33,48,49], Xt
represents the dry atmosphere, so (1.1) is the spatial discretization of a fluid equation.
Meanwhile, Yt represents the unresolved behavior of moisture and clouds.

2. Inmaterial science [21–24] andmolecular biology [6,45],Xt represents somemacro-
scopic quantities such as the transmembrane electronic potential, and Yt stands for
the behavior of some particular clusters, proteins, channels and cells.

3. As a simulation strategy for complex processes [8,33], a Markov jump process can
be used as a stochastic parameterization of some subgrid scale processes. It reduces
the model dimension and preserves most of the statistical quantities. It can be seen
as the Yt part in our joint process.

4. In filtering and predictive modeling [16,30,32], diffusions with random switching
are used as test beds to quantify the uncertainty from model errors.

The popularity of diffusions with random switching comes from its complexity. Even if
(1.1) is an Ornstein–Uhlenbeck (OU) process with each fixed valued of Yt , that is

dXt = −γ (Yt )Xtdt + σ (Yt )dWt, (1.2)

the switching of Yt can generate very rich nonlinear properties, such as polynomial heavy
tails [3,11] andnonregular invariantmeasures [2,29]. In the applicationsmentioned above,
this flexibility is exploited to capture natural phenomena, while the equation in each
regime is simple enough for intuitive understanding.
With somany applications of diffusions with random switching, the following questions

naturally arise:

• When does the joint process Zt = (Xt , Yt ) possess an invariant measure? What kind
of statistics, for examplemoments of |Xt |, is integrable under the invariant measures?

• Is the invariant measure unique? How does it attract other statistical states?

These questions in practice are often imposed as important sanity checks for stochastic
models. This is because parameters inference and model validation often require the
matching of statistics between nature and simulations, while the well posedness of these
operations requires existence of invariantmeasures, ergodicity and finitemoments for the
models [35,37].
In the last decade, a series of works have been devoted for the questions above [1,

3–5,7,11,39,46]. In the simplest setting, the transition rates are constants, λ(x, y, y′) =
λ(y, y′), and Xt is driven by the linear equation (1.2). Both questions above are relatively
well understood in this setting, thanks to an application of Perron–Frobenius theorem
[3,11]. These intuitive results can be extended to nonconstant transition rates through a
probabilistic coupling argument [7,46]. However, for this argument towork, the transition
rates have to be globally bounded and Lipschitz. This restriction excludesmany important
applications [14,36] or imposes additional nonphysical compact requirements on the
model space [6]. This paper intends to bridge this gap by developing a new analytical
framework.
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In order for the joint process to have an invariant measure and finite moments for |Xt |,
the rough requirement is that the averaged dynamics is dissipative. In the simplest setting
of [3,11], this condition can be defined as Eγ (Yt ) > 0 with γ as in (1.2). It is difficult to
generalize this condition to settings with nonconstant, unbounded transition rates. We
will explore two directions for generalization:

1. Inspired by the formulation in [48,49], we assume there is a |Xt | controlledmultiscale
structure in the transition rates λ, while the fast averaging procedures induce a
dissipation. It is important to note that the multiple scales here are not introduced
by an auxiliary variable ε as in other standard settings [43,44].

2. There is a comparison principle in favor of dissipation.

Interestingly, in both directions, the averaged dissipation can be demonstrated by con-
structing a polynomial Lyapunov functions, V (x, y) = ∑

ai(y)|x|mi . In the multiscale
setting, the construction comes as a dual process of the fast averaging procedures, and
ai(y) represents the potential dissipation of regime y ∈ F in a particular transition scale.
To the best of the authors’ knowledge, this is the first explicit connection between aver-
aging and Lyapunov functions. Since the ai(y) is interpreted as the potential dissipation,
which can roughly be defined as a renormalization of Ey exp(− ∫ t

0 γ (Ys)ds) for large t,
the comparison principle has an intuitive formulation, and the verification is much more
straightforward and general than the coupling approach used in [7,46]. This idea of Lya-
punov functions construction can be traced back to [39], while our results generalize and
offer new probabilistic interpretations to the working conditions.
The second part of this paper discusses geometric ergodicity assuming the existence of

a Lyapunov function. Following the frameworks of [17,19,41], it suffices to show a version
of the small set argument under a proper distance. This can be achieved in two scenarios:

1. If there is a commonly reachable regime that satisfies the minorization condition,
Theorem 3.4 proves geometrically ergodicity in the total variation distance.

2. If there is contraction on average, and the transition rates and their first derivatives
are bounded by the Lyapunov function, Theorem 3.6 shows geometric ergodicity in
a proper Wasserstein distance.

The unbounded transition rates appear to be an major obstacle in the second scenario
as the coupling method of [7,46] fails to work. It is resolved by viewing a diffusion with
random switching as an annealed piecewise deterministic Markov processes and then
applying the asymptotic coupling framework of [17,19] to the underlying densities. This
strategy was exploited by the authors in [36] to study the piecewise contractive stochastic
lattice models in [48,49], and now we generalize it to the contractive on average setting.
The remainder of this paper is arranged as follows. Section 2 discusses criterions that

lead to dissipation on average, and how to construct a Lyapunov function in different
scenarios. Section 3 gives the precise statements of geometric ergodicity when there is a
hypoelliptic regime or there is contraction on average. Conditions leading to the second
scenario are briefly discussed and comparedwith results in Sect. 2. Theproofs of geometric
ergodicity are contained in Sect. 4, where we also discuss how to verify the accessibility of
one regime. Section 5 summarizes the results and discusses some related questions.
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2 Dissipation on average and Lyapunov functions
A simple way to generalize (1.2) to a nonlinear setting is to assume that a rate function
γ : F �→ Rmeasures the dissipation and inflation of each regime in F .

Assumption 2.1 With some strictly positive constants K , ε > 0,

〈b(x, y), x〉 ≤ −γ (y)|x|2 + K, ‖σ (x, y)‖2 ≤ K |x|2−ε . (2.1)

Notice that γ (y) could be negative, which introduces an inverse dissipation or inflation,
and makes the global dissipation problem nontrivial. Given a transition dissipation pair,
(λ, γ ), the main objective of this section is to find intuitive criteria that lead to dissipation
on average in different scenarios, and show that there exists a polynomial-like Lyapunov
function.
Lyapunov functions are good tools to illustrate dissipation. In this paper, we say a

function V : E �→ [0,∞) is a Lyapunov function if it has compact sublevel sets, and for
some strictly positive constants γ̄ and K

LV (z) ≤ −γ̄V (z) + K, ∀z = (x, y) ∈ E. (2.2)

By Dynkin’s formula, Grönwall’s inequality and possibly a localization argument, (2.2)
leads to

E
zV (Zt ) ≤ e−γ̄ tV (z) + K/γ̄ . (2.3)

If in addition V (z) ≥ |x|m for all sufficiently large x, them-th moment of |Xt | is bounded
under each invariant measure. Note also that by replacing V with V + 1, (2.2) holds with
a different K . So without lost of generality we can assume V ≥ 1.
To continue our discussion, note that the infinitesimal generator of a diffusion with

random switching is given by [7]

Lf (x, y) = b(x, y) · ∇xf (x, y) + 1
2
tr[σ t (x, y)∇2

x f (x, y)σ (x, y)]

+
∑

y′∈F
λ(x, y, y′)(f (x, y′) − f (x, y)). (2.4)

One naive choice of Lyapunov function that leads to a moment bound is simply V (x, y) =
|x|m. Since Assumption 2.1 indicates LV (z) ≤ −m(γ (y)− ε′)V (z)+K ′ for some positive
constants ε′ and K ′, so with this choice of V , (2.2) holds if γ (y) > 0 for all y. But this is too
restrictive. The limit of this naive choice comes from its ignorance of the Y part, so the
averaging effect from transitions is missing. A natural way to incorporate the information
of Y is considering the following monomial or polynomial form

V (z) = a(y)|x|m, or V (z) =
∑

i≤I
ai(y)|x|mi . (2.5)

The coefficients ai(y) are strictly positive numbers that represent the potential dissipation,
of which the meaning will be discussed in Remark 2.3. By incorporating this information
of Yt , V captures the global dissipation although L is a local operator.
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Wewill adopt three simplified notations in the following exposition. First, for Lyapunov
functions we only need to be concerned with large x and the constant terms are usually
ignorable. The precise statement is given by Lemma 6.2. So we write f (z) � g(z) if there
is a constant K such that f (z) ≤ g(z)+K . Second, we often identify a function a : F �→ R
as a vector in R|F |, with the y-th coordinate being [a]y = a(y). We also use �(x) for the
Markov transition matrix on F , with entries [�(x)]y,y′ = 1y′ �=yλ(x, y, y′) − 1y=y′ λ̄(x, y).
With this notation, we can separate the first and second lines of (2.4) into the form

Lf (x, y) = LX (y)f ( · , y) + [�(x)f (x, · )]y, (2.6)

where LX and �(x) represent the dynamics of the diffusion part and transition part,
respectively. Third, |x|m is not C2 when m < 2, and not well defined when m < 0, so
rigorously speakingL cannot apply to it. However, as proposed in [3], fm(x) = |x|m+n/(1+
|x|n) with sufficiently large n is C2 and carries essentially the same dissipation property of
|x|m, that is for any δ > 0

LX (y)fm(x) � (−mγ (y) + δ)fm(x),

see Lemma 6.3. So without lost of generality, we assume all |x|m are well defined and C2,
else we just use fm in its place.

2.1 Constant transition rates

In order to build up the intuition, let us first review the classical case studied in [3,11]
where �(x) = � is a constant irreducible matrix, and Xt is driven by the linear equation
(1.2). Yt then is an ergodic Markov process on F that does not depend on Xt . Let π be the
unique ergodic measure of Yt , and the dissipation on average can be formulated as

∑

y∈F
π (y)γ (y) > 0. (2.7)

Suppose that σ ≡ 0, |Xt |m = exp(−m
∫ t
0 γ (Ys)ds)|X0|m. Then by Jensen’s inequality and

Birkhoff ergodic theorem, we see that (2.7) is necessary for the whole dynamics to be
dissipative. In fact, it is also sufficient, due to the following theorem, which is a translation
of Theorem 1.5 [3] in our context.

Theorem 2.2 Suppose that Xt follows (1.2) and Yt is an ergodicMarkov jump process with
constant transition rate�. Suppose also the average dissipation is positive

∑
π (y)γ (y) > 0,

with π being the ergodic measure of Yt . Let 	 be the diagonal matrix with entries γ (y) on
the y, y-th component, then there is an m > 0 such that the spectrum of −m	 + � lies in
the negative half plane, and V (x) = a(y)|x|m is a Lyapunov function. Here a as a vector is
the Perron eigenvector of −m	 + �.

Proof According to Assumption 2.1 and Lemma 6.3, for V (x) = a(y)|x|m and any fixed
δ > 0,

LV (z) = a(y)LX (y)|x|m + |x|m[�a]y
� [−(mγ (y)ay − δ) + [�a]y]|x|m
= (

[(−m	 + �)a]y − δ
) |x|m. (2.8)
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Based on (2.8), if a is a right eigenvector of thematrix−m	+� associated with a negative
eigenvalue, while a is strictly positive componentwise, then V (x) will be a Lyapunov
function in the sense of (2.2). Such a can be found by the following two observations from
[3].
First, from the Feynman Kac formula, we find that the y, y′-th component of matrix

exp(−m	t + �t) is

E
y1Yt=y′ exp

(

−
∫ t

0
mγ (Ys)ds

)

> 0, (2.9)

soPerron–Frobenius theoremapplies to exp(−m	t+�t).As a consequence, ifa is thePer-
ron eigenvector, which is the eigenvector associated with the eigenvalue with maximum
real part, a is strictly positive componentwise. Since the spectrum of exp(−m	t+�t) and
the spectrum of−m	 +� clearly have an one-to-one relation, so a is also the eigenvector
of −m	 + � associated with the eigenvalue of the maximum real part.
Second, at m = 0, the Perron eigenvalue is 0. Through a perturbation analysis of m to

the positive direction, one can show the spectrum of −m	 + � lies in the negative half
plane for small enough m. The details of these results can be found in proposition 4.2 of
[3].
Combining these two arguments, we find a strictly positivem, such that the spectrum of

−m	+� is in the negative half plane, and the Perron eigenvector a of exp(−m	t+�t) is
an eigenvector of−m	+� associatedwith anegative eigenvalue,while all the components
of a are strictly positive. ��

Remark 2.3 Let 1 be the vector with one on each component, since a is the Perron
eigenvector, we can approximate a by normalizing exp(−m	t + �t)1 with t → ∞.
Because of the Feynman Kac’s formulation (2.9),

a(y)
a(y′)

= lim
t→∞

E
y exp

(
− ∫ t

0 mγ (Ys)ds
)

Ey′ exp
(
− ∫ t

0 mγ (Ys)ds
) . (2.10)

In other words, a(y) measures the potential dissipation along the whole future. This
explains why V (z) captures the global dissipation: if γ is negative for certain y, then y
produces a weaker potential dissipation comparing with average states, so the transition
part in (2.8), [�(x)a]y = ∑

y′ λ(x, y, y′)(a(y′)− a(y)) could be negative and compensate the
inflation inmγ (y).

2.2 Multiscale transitions: one fast scale

When the transition rates are coupled with the diffusion part, so are the trajectories of
Yt and Xt . This makes the notion of dissipation on average no longer as simple as (2.7).
One way to manifest it is finding multiscale structures controlled by Xt in the transition
rates. Such structures rise naturally in many physical models, as part of Xt represents
the temperature of environment [48,49] or the electronic potential [6] and controls the
speed of moisture connectivity or chemical reaction. For the simplicity of discussion, we
assume in the following sections that the transition ratematrixhaspolynomial dependence
over |x|:



Tong and Majda ResMath Sci (2016) 3:41 Page 7 of 33

�(x) =
∑

0≤j≤J
�j|x|nj , (2.11)

where �j are constant |F | × |F | transition matrices, and 0 ≤ n0 < · · · < nJ . We remark
that it is possible to generalize our methods below to cases where�(x) is the sum of other
functions of separate orders. While the discussion below may appear to be abstract in the
first read, the ideas are rather elementary. A concrete example will be illustrated by Fig. 1
in Sect. 2.4, and the readers can read that section first for the intuition.
Since Lyapunov functions concern only large |x|, see Lemma 6.2, it is intuitive that the

highest order transition �J plays a dominating role; if over the invariant measure of �J
the average of γ is positive, then there should be a Lyapunov function that quantifies
dissipation on average. The complications to this argument may come from two aspects:
(1) the support of each �j may not be the whole state space F , so different subsets of F
may have different transition scales; (2) on the support of each �j , �j may not induce an
irreducible Markov chain. Here F ′ ⊂ F is the support of a transition rate matrix � if F ′

is the minimal subset such that λ(y, y′) = 0 if y and y′ are not both in F ′. We will leave
the first issue to the next subsection and focus first on the averaging phenomenon from
multiscale transitions and possible reducible structures.
Irreducibility was a necessary condition in Theorem 2.2, when the transition matrix

was constant, but not anymore if the transition is genuinely fast. Consider the following
simple example on two states

F = {−2, 1}, γ (y) = y, λ(−2, 1) = 1, λ(1,−2) = 0, dXt = −γ (Yt )Xtdt.

Clearly δ1 is the invariant measure for Yt and there is dissipation on average over this
measure. However, Ex,yXt = xEy exp(− ∫ t

0 Ysds), and if we start from y = −2,

E
y exp

(

−
∫ t

0
Ysds

)

≥ exp(2t)Py(Ys = −2, s ≤ t) = exp(t),

so E
x,y|Xt | diverges to infinity. On the other hand, if we replace the transition rates by

λ(−2, 1) = λ(1,−2) = |x| + 1, the time that Yt spend in −2 is much shorter as |Xt | gets
large, so the dynamics is dissipative on average.
To continue our discussion, we need the notion of connected components. Given a

transition rate matrix �(x), we say F ′ ⊂ F is an order n maximal connected component of
F if the following hold

1. There is a constant |F ′| × |F ′| matrix �F ′ such that �(x)|F ′ − |x|n�F ′ is of order
|x|n−δ for some δ > 0. Here �(x)|F ′ is the subdiagonal matrix of �(x) with indices in
F ′.

Fig. 1 Averaging multiscale transition rates. Subplot (1) is the original system, and (2) and (3) are the systems
after one and two averaging steps. The leading-order transitions are marked by solid arrows, and the
lower-order transitions are marked by dashed arrows



Tong and Majda ResMath Sci (2016) 3:41 Page 8 of 33

2. For any y, y′ ∈ F ′, there is a path y = y0, y1, . . . , ym = y′ such that for each i, either
λF ′ (yi, yi+1) > 0 or λF ′ (yi+1, yi) > 0.

3. F ′ is maximal as there is no strict superset of F ′ that also satisfies the conditions
above.

When such an F ′ and �F ′ exist, because �F ′ |x|n consists of the leading-order terms in
the stochastic matrix �(x), �F ′ itself must also be a stochastic matrix. As a consequence,
there is a Markov jump process with constant rate �F ′ on F ′. This is a nice mechanism
we will exploit in our discussion later.
Nextwedefine the irreducible components,which is also called the closed communicating

classes in the literature like [42]. A subset G ⊂ F ′ is an irreducible component , if (1) for
all y, y′ ∈ G, there is a path y = y0, . . . , yn = y′ in G such that λF ′ (yi, yi+1) > 0; (2) for all
y ∈ g, y′ /∈ G such a path does not exist. We will use Gc to denote the transient set, which
consists of states in F ′ not being in any irreducible components.
Now we consider the simple case where the highest order component is F itself.

Theorem 2.4 Suppose the whole state space F is amaximal connected component of order
n > 0. Let {Gk} be the irreducible components, and πk be the ergodic measure generated
by �F |Gk . Let γ be the linear dissipation rate function satisfying Assumption 2.1, while
∑

y∈Gk
πk (y)γ (y) > 0 for each Gk , then for any m > 0 there is a Lyapunov function of form

V (x, y) = |x|m + a(y)|x|m−n.

Proof Let V0(z) = |x|m. Directly apply the generator, by Lemma 6.3 for any δ > 0

LV0(z) � (−mγ (y) + δ)|x|m.
The right-hand side is a polynomial of order m, and for any irreducible component Gk ,
∑

y∈Gk
πk (y)γ (y) > 0

∑

y∈Gk

πk (y)(−mγ (y) + δ)|x|m � −2δ|x|m,

if δ is sufficiently small. Applying a Fredhlom alternative type of argument, which is
Lemma 2.5 directly below, there is a monomial Q(z) = a(y)|x|m−n with a(y) ≥ 0, such
that

[�(x)Q(z)]y + (−mγ (y) + δ)|x|m � −δ|x|m.
Then because V (z) = V0(z) + Q(z) is of order m, and LX (y)Q(z) is of order m − n by
Lemma 6.3, so LV (z) � −δV (z), and V (z) is a Lyapunov function. ��

Lemma 2.5 Let F ′ be a maximal connected component of order n > 0, and P(x, y) be a
polynomial of |x| of order m > 0 such that P(x, y) = 0 if y /∈ F ′. Suppose the following holds

∑

y∈Gk

πk (y)P(x, y) � 0, ∀x ∈ Rd.

Then we can find a positive monomial Q(z) = q(y)|x|m−n with q(y) ≥ 0 and q(y) = 0 if
y ∈ F/F ′, such that for any ε > 0

�(x)Q(z) + P(z) � ε|x|m, y ∈ F ′.
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Proof First, we will specify the value of q(y) for each nontransient y. We assume y ∈ Gk
in the discussion below. Let p(y)|x|m be the maximum order term in P(z), then clearly
∑

y′∈Gk
πk (y′)p(y′) ≤ 0. By the Fredhlom alternative, there is a vector qk with nonzero

components only for indices in Gk , so that

p|Gk + �F ′qk =
⎛

⎝
∑

y′∈Gk

πk (y′)p(y′)

⎞

⎠1Gk . (2.12)

1Gk stands for the indicator vector of set Gk . Note that �Gk1Gk = 0, we can always
replace qk with qk +κ1Gk with a proper κ , so it is still a solution to (2.12), but with strictly
positive components. So we can assume qk > 0 componentwise. We let q(y) = qk (y) for
nontransient y.
Next, for the transient states y ∈ Gc, consider a Markov jump process Y ′

t on F ′, driven
by the transition matrix �F ′ . Denote the expected time of hitting any one of Gk from any
y as T (y). Clearly T (y) = 0 for y ∈ Gk . By running the one-step analysis for the jumps, we
find for y ∈ Gc,

T (y) = λ̄−1
F ′ (y) +

∑

y′

λF ′ (y, y′)
λ̄F ′ (y)

T (y′),

recall that λ̄F ′ (y) = ∑
y′ �=y λF ′ (y, y′). As a consequence, for y ∈ Gc,

�F ′T (y) =
∑

y′∈F ′
λF ′ (y, y′)(T (y′) − T (y)) = −1.

We will let q(y) = βT (y) with

β > max
y∈F ′ |p(y)| + (max

y∈F ′ λ̄F ′ (y))( max
y∈Gk ,∀k

q(y)).

Now we verify our claim it suffices to show �(x)Q(z) + P(z) has its order m term being
less than 0. Since (�(x) − �F ′ |x|n)Q(z) is of order strictly less thanm, it suffices to show

[�F ′q]y + p(y) ≤ 0, ∀y ∈ F ′.

This is clearly the case when y ∈ Gk because it is implied by (2.12). And for y ∈ Gc, this
holds because

[�F ′q]y + p(y) =
∑

y′∈F ′
λF ′ (y, y′)(q(y′) − q(y)) + p(y)

=
∑

y′∈Gc

λF ′ (y, y′)β(T (y′) − T (y))

+
∑

k

∑

y′∈Gk

λF ′ (y, y′)(q(y′) − βT (y)) + p(y)

≤ β�F ′T (y) + λ̄F ′ (y) max
y′∈Gk ,∀k

q(y′) + p(y) < 0.

��
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2.3 Multiscale transitions: multiple scaling structures

When F is not the maximal connected component, the transitions inside a maximal
connected component F ′ of highest order will be significantly faster than transitions
outside. These fast transitions will average the dissipation of each irreducible component
Gk inside F ′ and also the manner how Yt leaves F ′. In the perspective of the states outside
F ′, each Gk is essentially a single point, and its dissipation rate is the averaged dissipation
over πk ; each transient state y ∈ Gc is an intermediate state that can jump to any of the
Gk , while the time Yt spent on it is ignorable, as long as the rates toward nonirreducible
parts, λ(x, y, y′) with y′ ∈ Gc ∪ F/F ′, are not too strong.
To be more specific, given a transition dissipation pair (�(x), γ ) with �(x) being of

order |x|n, let F ′ be a maximal connected component, G1, . . . , Gk be the irreducible sets,
and Gc be the transient set. We define a new structure (�̃(x), γ̃ ) on the averaged space
F̃ = (F/F ′) ∪ {g1, . . . , gK } as the average of the original structure on F ′. Intuitively, the
new rates are the same for states outside F ′,

γ̃ (y) = γ (y), λ̃(x, y, y′) = λ(x, y, y′), y, y′ ∈ F/F ′.

The rates related to gk are given by the following averages:

γ̃ (gk ) =
∑

y∈Gk

πk (y)γ (y), λ̃(x, gk , y) =
∑

y′∈Gk

πk (y′)λ(x, y′, y), y ∈ F/F ′,

λ̃(x, y, gk ) =
∑

y′∈Gk

λ(x, y, y′) +
∑

y′∈Gc

λ(x, y, y′)pF ′ (y, gk ), y ∈ F/F ′, (2.13)

λ̃(x, gj , gk ) =
∑

y∈Gj

πj(y)
∑

y′∈Gk

λ(x, y, y′) +
∑

y∈Gj

πj(y)
∑

y′∈Gc

λ(x, y, y′)pF ′ (y′, gk ).

In above, πk is the ergodic measure on Gk induced by the matrix �F ′ , and pF ′ (y, gk ) is the
probability that Y ′

t ends up in Gk if Y ′
t is a Markov chain driven by �F ′ and starts from y.

Note that in these averaging procedures, the transition rates from y ∈ Gc to y′ ∈
Gc ∪ F/F ′ are completely wiped out. So we need these rates to be not too strong, else the
averaged structure cannot represent this information. In particular we have the following
nondominating condition.

Assumption 2.6 For any transient state y andany y′ ∈ Gc∪F/F ′, suppose thatpF ′ (y, gk ) >

0, then there is a y′′ ∈ Gk such that λ(x, y, y′) has at most the same polynomial order in |x|
as λ(x, y′′, y′).

Since there are only finitely many states, there are only finitely many, saymJ , connected
components with the highest order nJ in (2.11). After applying an averaging step on one
of these components, F ′, the transition rates related to F ′ are of order strictly less than nJ ,
and the states after averaging have a smaller cardinality |̃F | ≤ |F |. So after mJ steps, the
transition rates are of order nJ−1. We can repeat this argument J times and finally end up
with an averaged transition matrix �̃ being a constant matrix. Intuitively, this constant
matrix dictates whether the original system is dissipative on average.

Theorem 2.7 Let state space F̃ , constant transition rates �̃ and dissipation rates γ̃ be
the final result of a sequence of averaging procedures. Suppose at each averaging step, the
transient transition rates follow the nondominating condition, Assumption 2.6. Then the
original system has a polynomial-like Lyapunov function of some order m > 0, if F̃ consists
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of only irreducible components of �̃, while on each of them the average dissipation of γ̃ is
positive. If in addition γ̃ (y) > 0 for all y ∈ F̃ , m can be any positive number.

Theorem2.4was a special one averaging step caseof the theoremabove, and the conditions
there were not optimal. But we keep Theorem 2.4 for its simpler intuition.

Proof of Theorem 2.7 Based on Theorem 2.2 it is clear how to find a Lyapunov function
Ṽ (z) for the final averaged dynamics (�̃, γ̃ ). In particular, if γ̃ (y) > 0 for all y, then for any
δ > 0, m > 0,

L|x|m �
( − mmin

y
{γ̃ (y)} + δ

)|x|m,
so |x|m is a Lyapunov function. Then by the induction principle, it suffices to show that,
given an averaging step

(F,�, γ ) ⇒ (
F/F ′ ∪ {g1, . . . , gK }, �̃, γ̃

)

and a polynomial-like Lyapunov function Ṽ (z) = ∑
ãi(y)|x|ni for the averaged structure,

how to construct a new polynomial Lyapunov function V (z).
One thing that requires special attention is the order of Lyapunov function Ṽ and the

detailed transitions, defined as

λ̃(x, y, y′)(Ṽ (x, y′) − Ṽ (x, y)).

These polynomials are clearly of order at most m in the final state, since λ̃ are constants
and Ṽ is of order m. We will show this polynomial order is inherited by the constructed
Lyapunov function V (z) of the pre-averaged dynamics.
Denote themaximal order term in Ṽ (z) as ãm(y)|x|m. Because Ṽ is a Lyapunov function,

there is a γ0 > 0 such that the orderm terms in L̃Ṽ (z) are

[�̃(x)Ṽ (x)]y − mγ̃ (y)ãi(m)|x|m � −γ0Ṽ (z), y ∈ F/F ′ ∪ {g1, . . . , gK }, (2.14)

becauseLX |x|m−δ is of order less thanm based on Lemma 6.3. To continue, we notice the
dual of the averaging step produces the following function onRd × F based on Ṽ :

V0(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

Ṽ (x, y), y ∈ F/F ′;
Ṽ (x, gk ), y ∈ Gk ;
∑

k pF ′ (y, gk )Ṽ (x, gk ), y ∈ Gc.

Decompose the transition rates into two parts �(x) = �F ′ |x|n + �c(x), where �c is of
order n− δ for some δ > 0. With some technical verification in Lemma 6.4, the following
duality equations hold

⎧
⎨

⎩

[�̃(x)Ṽ (x, · )]y = [�(x)V0(x, · )]y, y ∈ F/F ′;
[�̃(x)Ṽ (x, · )]gk = ∑

y∈Gk
πk (y)[�(x)V0(x, · )]y.

(2.15)

We claim that the detail transitions of V0 induced by �(x) are of order at mostm. The
detail transition of V0 from a y ∈ Gk to a y′ ∈ F/F ′ is λ(x, y, y′)(Ṽ (x, gk ) − Ṽ (x, y′)). A
combination of y′ ∈ Gk is

λ̃(x, gk , y′)(Ṽ (x, gk ) − Ṽ (x, y′)) =
⎛

⎝
∑

y∈Gk

πk (y)λ(x, y, y′)

⎞

⎠ (Ṽ (x, gk ) − Ṽ (x, y′)).
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The left-hand side is of order atmostm from inductions; on the right hand, the coefficients
follow λ(x, y, y′) ≥ 0,πk (y) > 0. So λ(x, y, y′)(Ṽ (x, gk ) − Ṽ (x, y′)) is of order at most m.
Likewise, because

λ̃(x, gk , gj)(Ṽ (x, gj) − Ṽ (x, gk ))

=
∑

y∈Gk

πk (y)

⎡

⎣
∑

y′∈Gc

λ(x, y, y′)
∑

j
pF ′ (y′, gj) +

∑

y′∈Gj

λ(x, y, y′)

⎤

⎦ (Ṽ (x, gj) − Ṽ (x, gk )),

we can conclude the detail transition of V0 from y ∈ Gk to y′ ∈ Gj or Gc is of order at
mostm. With the same argument, the detail transition of V0 from y ∈ F/F ′ to other y′ is
all of order at mostm. For y ∈ Gc, the detail transition to any y′ will be

λ(x, y, y′)(V0(x, y′) − V0(x, y)) = λ(x, y, y′)
∑

k
pF ′ (y, gk )(V0(x, y′) − V0(x, yk )),

where yk is any element in Gk . Then because of the nondominating condition
Assumption 2.6, and that λ(x, yk , y′)(V0(x, y′) − V0(x, yk )) is of order at most m, so is
λ(x, y, y′)(V0(x, y′) − V0(x, y)).
If we let V (z) = V0(x, y), the Lyapunov dissipation will be inherited for y ∈ F/F ′, but

there will be an order m error term for y ∈ F ′, and we will apply Lemma 2.5 to fix this
with a monomial. In particular, the image of V0 through L is

LV0(z) � P(x, y) := −mγ (y)ãm(y)|x|m + [�(x)V0(x)]y.

The average of P(x, y) over any Gk , by the second duality equation, is
∑

y∈Gk

πk (y)([�(x)V0(x, · )]y − γ (y)ãm(gk )|x|m) = [�̃(x)Ṽ (x)]gk − γ̃ (gk )ãm(gk )|x|m,

which is bounded by (2.14). Since the P(x, y) is of order at most m, by the Fredhlom
alternative Lemma 2.5, there is a positive monomial Q(z) of order less than m − n, such
that if we let V (z) = V0(z) + Q(z), then for all y ∈ F ′

−γ (y)ãm(gk )|x|m + [�(x)(Q(z) + V0(z))]y � −γ0V0(z).

Since the order ofQ(z) is less thanm−n, andLX (y)Q(z) produces a term of order at most
m − n, we find that LV (z) � −γ0V (z) if y ∈ F ′.
As for y ∈ F/F ′,

LV (z) � −γ̃ (y)ãm(gk )|x|m + [�̃(x)Ṽ (x)]y + [�(x)Q(z)]y.

Notice the first two parts are bounded by (2.14). [�(x)Q(z)]y = [�c(x)Q(z)]y because F ′ is
the connected component of �F . Then noticeQ(z) is of order at mostm− n, while �c(x)
is of order strictly less than n; therefore, [�c(x)Q(z)]y is of order strictly less than m, so
LV (z) � − 1

2γ0V (z).
Lastly, we notice the detail transition of V (z) is the sum of detail transition of V0(z) and

Q(z), the first part is of orderm from previous discussion, and λ(x, y, y′)(Q(x, y′)−Q(x, y))
is of order at mostm as well. So the detail transitions of V (z) are of order at mostm. ��

Remark 2.8 Once we finish the construction of V = ∑
ai(y)|x|mi and look back, we can

see ai(y) captures the potential dissipation with the transition rates of order |x|mI−mi
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and within a maximal connected component of that order. And for y in this maximal
connected components, aj(y) are of identical value for j ≥ i. In other words, from the
value of the sequence {ai(y)}i≤I , we can actually tell which connected component of what
order does y belong to. The following subsection gives a simple and concrete example.

2.4 Amultiscale transition example

In this section, we consider one concrete example with multiscale transitions, where the
averaging steps mentioned in the previous section can be discussed explicitly. In subplot
(1) of Fig. 1, a Markov process is defined on four states F = {a, b, c, d} with the transition
rates given along the arrows. The dissipation rates are given by

γ (a) = −1, γ (b) = 2, γ (c) = −1, γ (d) = −1.

F is the maximal connected component of order 2. It has two irreducible components
{a, b} and {d}. The induced invariant measure on {a, b} is π (a) = 1

3 ,π (b) = 2
3 . c is the only

transient state. Starting from c and driven by the maximal order transition �F , it is equal
likely to end up in {a, b} and {d}.
After one averaging step, we have a two-state Markov chain in subplot (2). The states

represent the irreducible components in the original system. The dissipation rates are
given by

γ̃ (ab) = π (a)γ (a) + π (b)γ (b) = 1, γ̃ (d) = γ (d) = −1.

The transition rates are given by

λ̃(x, ab, d) = π (b)λ(x, b, d) = |x|, λ̃(x, d, ab) = pF (c, ab)λ(x, d, c) = 2|x|.
So the chain is of order 1, while invariant measure driven by the dynamics of this order is
π̃ (ab) = 2

3 , π̃ (d) = 1
3 .

With thefinal step of averaging,we endupwith one state in (3), so the transitionmatrix is
the constant matrix of zero. The dissipation rate is given by π̃ (ab)γ̃ (ab)+ π̃ (d)γ̃ (d) = 1

3 .
So the whole system is dissipative on average, Theorem 2.7 applies, and the Lyapunov
function can be of any order.
In particular, for the trivial Markov process described by subplot (3), |x|m with any

m > 0 is a Lyapunov function. The procedure in the proof of Theorem 2.7 indicates this
Lyapunov function can be pulled back into Lyapunov functions for the Markov processes
described by (2) and (1):

|x|m + a2(y)|x|m−1 + a1(y)|x|m−2 ⇐= |x|m + ã2(y)|x|m−1 ⇐= |x|m.
where ã2(ab) = 0, ã2(d) = 2

3m; a2(a) = a2(b) = 0, a2(c) = 1
3m, a2(d) = 2

3m, a1(a) =
2
3m, a1(b) = 0, a1(c) = 3

2m, a1(d) = 0, assumingm ≥ 4 so |x|m−2 is C2.
In order to illustrate Assumption 2.6, we consider one modification of (1) in Fig. 1 that

violates Assumption 2.6. Suppose there is another state e, and

λ(x, a, e) = λ(x, b, e) = λ(x, d, e) = 1, λ(x, c, e) = |x|.
If one averages again like Fig. 1, the strong transition from c to e will be ignored, because
c is a transient state in the averaging procedure.

2.5 Comparison principle

The other way to deal with nonconstant transition rate is through a comparison principle.
To be specific, suppose (�(x), γ ) is dissipative on average, which may be established by
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Theorem 2.2 or Theorems 2.4 and 2.7. Suppose also in another transition dissipation
pair (�̃(x), γ̃ ), the dissipation is stronger in all regimes, while the regime transitions are
more favorable for dissipation; then, intuitively (�̃(x), γ̃ ) would also admit a dissipation
on average.
The only vagueness of the previous argument is how to determine that the regime

transitions are more favorable for dissipation. In our contexts, since the coefficients ai(y)
in (2.5) characterize the potential dissipation, see Remark 2.3, so intuitively, we would say
(�̃(x), γ̃ ) has more favorable dissipation than (�(x), γ ) if

γ̃ (y) ≥ γ (y), (λ̃(x, y, y′) − λ(x, y, y′))(ai(y′) − ai(y)) ≤ 0, ∀i.
In this interpretation, the comparison principle is straightforward and can be generalized
to dynamics on different spaces, where the state space F can be countable.

Theorem 2.9 Let P be a mapping from F to F ′. Suppose the transition dissipation pair
(�′(x), γ ′) on F ′ admits a Lyapunov function of polynomial form V (x, y) = ∑

i≤I ai(y)|x|mi

with ai ≥ 0. Suppose (�(x), γ ) on F is more favorable for dissipation in the sense that for
any i ≤ I and q ∈ F, y ∈ F ′

γ (q) ≥ γ (P(q)),

⎛

⎝
∑

P(q′)=y
λ(x, q, q′) − λ′(x, P(q), y)

⎞

⎠ (ai(y) − ai(P(q))) ≤ 0. (2.16)

Then V (x, P(q)) will be a Lyapunov function for (�(x), γ ).

Proof Let mI be the maximum polynomial order, the fact that V is a Lyapunov function
for (�′(x), γ ′) indicates that ∀y ∈ F ′

−mIaI (y)γ ′(y)|x|mI +
∑

i≤I
[�′(x)ai]y|x|mi � −γ̄ aI (y)|x|mI (2.17)

for a γ̄ > 0. According to Assumption 2.1 and Lemma 6.3, for any δ > 0 the following
holds

LV (x, P(q)) � (−mIγ (q) + δ)aI (P(q))|x|mI

+
∑

q′∈F ′
λ(x, q, q′)

∑

i≤I
(ai(P(q′)) − ai(P(q)))|x|mi .

Note that

∑

q′∈F ′
λ(x, q, q′)(ai(P(q′)) − ai(P(q))) =

∑

y∈F

⎛

⎝
∑

P(q′)=y
λ(x, q, q′)

⎞

⎠ (ai(y) − ai(P(q)))

≤
∑

y∈F
λ′(x, P(q), y)(ai(y) − ai(P(q))).

Combine both inequalities above and compare it with (2.17), LV � (−γ̄ aI (y) + δ)|x|mI .
Since δ can be arbitrarily small, it can further be bounded by −γ̄ ′aI (y)|x|mI hence also
−γ̄ ′V for some γ̄ ′ > 0. ��

The simplicity of this proof comes from our interpretation of dissipation on average
through polynomial Lyapunov functions. On the other hand, comparison principles can
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also be demonstrated by coupling methods when the transition rates are bounded. Cloez
and Hairer [7] and Shao [46] have shown dissipation on average in the following birth–
death scenario through proofs of considerate length, while it is only a special case of
Theorem 2.9.

Corollary 2.10 (Birth–death-type criterion) Suppose there is a partition of regimes F =
F1 ∪ · · · ∪ Fn, and there is an increasing sequence of dissipation rates β1, . . . ,βn. Suppose

λ(x, y, y′) = 0 if y, y′ are not in neighboring Fi,

and γ (y) ≥ βk if y ∈ Fk , where γ is the linear dissipation rate as in Assumption 2.1. For
k = 1, . . . , n, denote

bk = inf
x∈E inf

y∈Fk

∑

y′∈Fk+1

λ(x, y, y′), dk = sup
x∈E

sup
y∈Fk

∑

y′∈Fk−1

λ(x, y, y′), νk =
k∏

i=1

bk
dk

.

Then the transition dissipation pair (�(x), γ ) has a monomial Lyapunov function if
∑n

k=1 βkνk > 0.

Proof Let F ′ = {1, . . . , n}, and Y ′
t be a birth–death process on F ′ with birth rate bk

and death rate dk . Using the detailed balance relation, it is easy to see νk is a multiple
of the invariant measure of Y ′

t . So if X ′
t follows (1.2) with γ (Y ′

t ) = βY ′
t
, Theorem 2.2

applies, and there is amonomial Lyapunov functiona(y)|x|m.Meanwhile, letY ′′
t be another

birth–death process on F ′ with the same rates, we couple Y ′
t and Y ′′

t so that they jump
independently before they are of the same value, and then we make them do the same
jumps simultaneously. Then if Y ′

0 ≥ Y ′′
0 , we have for all t > 0, βY ′

t
≥ βY ′′

t
. Since the ratio

a(k)/a(k ′) can be given by (2.10), it is clear that a(k) ≥ a(k ′) if k ≤ k ′. Then we apply
Theorem 2.9 with P : y → k if y ∈ Fk to see the original transition dissipation pair has a
Lyapunov function. Condition (2.16) holds because if we let

b(q, k) =
⎛

⎝
∑

P(q′)=k
λ(x, q, q′) − λ′(x, P(q), k)

⎞

⎠ (ai(k) − ai(P(q))),

then b(q, k) = 0 if q ∈ Fj, k /∈ {j − 1, j + 1}. And if q ∈ Fj

b(q, j − 1) =
⎛

⎝
∑

P(q′)=j−1
λ(x, q, q′) − dj

⎞

⎠ (aj−1 − aj) ≤ 0

and likewise b(q, j + 1) ≤ 0. ��

3 Geometric ergodicity
In Sect. 2, Lyapunov functions are constructed for diffusions with random switching when
thedynamics is dissipative on average. Because theseLyapunov functions are in the formof
polynomials,E|Xt |m is boundeduniformly for a properm. Thenby theKrylov–Bogoliubov
theorem [9], there is at least one invariant measure for the joint process Zt = (Xt , Yt ). It
is natural to ask whether this invariant measure is unique, and how does the law of Zt
converge to the unique invariant measure π .
For many stochastic processes, this question is answered by geometric ergodicity.

Namely, let d be a distance for probability measures, and P∗
t μ be the law of Zt given

that Z0 ∼ μ, and then there is a γ > 0, Cμ,ν such that
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d(P∗
t μ, P∗

t ν) ≤ e−γ tCμ,ν .

By lettingμ be an invariantmeasure, the bound above indicates there is only one invariant
measure and all other statistical states are attracted to it geometrically fast.
In a series of important works on this subject [17,19,40,41], a general framework has

been developed to verify geometric ergodicity, assuming that a Lyapunov function exists.
In the following we will apply this framework and show Zt is geometric ergodic

1. in total variation distance if there is a commonly reachable minorization regime;
2. in a proper Wasserstein distance if there is contraction on average.

The Lyapunov function V will play a regularizing role in our discussion. In order to
show geometric ergodicity for unbounded rates, we will replace the globally bounded or
Lipschitz conditions in [7,46] with weaker requirements that the transition rates or their
derivatives are bounded by the Lyapunov function V . One important consequence is that
an explosion, that is |Xt | reaches infinity or Yt has infinitely many jumps in finite time, is
no longer possible. To see this, let Tt be the number of jumps in Ys≤t , then a space–time
version of (2.4) shows that LTt = λ̄(z). If λ̄(z) ≤ MV (z) for a constantM, then applying
Dynkin’s formula to the stopping time τN , which is the first time either |Xt | = N or
Tt = N ,

E
[
Tt∧τN + V (Zt∧τN )

] ≤ E

∫ t∧τN

0
(λ̄(Zs) − γV (Zs) + K )ds

≤
∫ t

0
E(MV (Zs) + K )ds ≤ tM(EV (Z0) + K/γ ) + Kt.

By letting N → ∞, we find Tt < ∞, V (Zt ) < ∞ a.s. Since V has compact sublevel sets,
|Xt | < ∞ a.s. We have not mentioned this technical issue till now for two reasons: (1) if it
is mentioned in the beginning of Sect. 2, it is unclear how to find the Lyapunov function
V ; (2) both L and (2.2) are well defined without this condition, so it was safe for Sect. 2 to
work without this condition.

3.1 Convergence in total variation with a minorization regime

The classical notion of ergodicity is often illustrated in the total variation norm, which is
defined as

‖μ − ν‖tv = sup
|f |≤1

∫

f dμ −
∫

f dν.

This norm is also called the L1 distance, because if μ and ν have densities p and q, ‖μ −
ν‖tv = ∫ |p− q|dx. Geometric ergodicity in total variation is well studied and understood
in the finite-dimensional Markov chain and SDE [40,41]. A classical formulation can be
found in Theorem 1.5 of [19] or Theorem 2.10 of [7], and here we present it using our
notation:

Theorem 3.1 Let Pt be a Markov semigroup admitting a Lyapunov function V . Suppose
the minorization condition holds, in the sense that for a sufficiently large C, there is a
probability measure ν and ε, t0 > 0, such that

‖P∗
t0δz − P∗

t0δz′ ‖tv > 2 − ε, ∀z, z′ : V (z), V (z′) ≤ C.

Then (Pt )t≥0 has a unique invariant measure π , and for some positive constants D and β ,
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‖P∗
t δz − π‖tv ≤ De−βt (1 + V (z)).

When F consists of only one regime,Xt is simply an SDE onRd . In this context, following
the arguments in [40], the minorization conditions of Theorem 3.1 can be verified by the
hypoellipticity and reachability conditions below:

Assumption 3.2 Let dXt = f (Xt )dt + σ (Xt ) ◦ dWt be a diffusion process inRd , where ◦
denotes the Stratonovich integral,

1. Hypoellipticity condition: let L be the Lie algebra generated by the vector fields

{f, σ1, . . . , σm}
with σi being the columns of σ , and L0 is the ideal in L generated by {σ1, . . . , σm},
assuming L0 spansRd at all points.

2. Reachability condition: there is a point xh ∈ Rd such that for any compact set C and
ε > 0, there is a t0 such that from any x ∈ C there is a piecewise constant process wt
such that the solution to the following ODE

dxt = [b(xt ) + σ (xt )wt ]dt, x0 = x,

satisfies |xt0 − xh| ≤ ε.

Theorem 3.4 below indicates that for diffusions with random switching, it suffices to
check minorization condition for one particular regime, using say Assumption 3.2, and
show this regime is commonly accessible and satisfies a mild growth condition for V (Zt ).
In particular, we define

Definition 3.3 A regime y∗ ∈ F is commonly accessible, if for all z ∈ Rd × F there is a
t > 0 such that Pz(Yt = y∗) > 0. We say it has polynomial growth for a function V , if
there is a constant Kt with polynomial growth in t, such that the following holds for the
SDE dX ′

t = b(X ′
t , y∗)dt + σ (X ′

t , y∗)dWt ,

E
xV (X ′

t , y∗) ≤ Kt (V (x, y∗) + 1). (3.1)

Theorem 3.4 Let Zt = (Xt , Yt ) be a diffusion with random switching that admits a Lya-
punov function V . Suppose the transition rates satisfy λ̄(z) ≤ MV (z), moreover there is a
regime yh ∈ F such that it is commonly accessible and has polynomial growth for V . Then
if the SDE given by dX ′

t = b(X ′
t , yh)dt + σ (X ′

t , yh)dWt satisfies the minorization condition
in Theorem 3.1, the diffusion Zt has an invariant measure π and is geometrically ergodic
under the total variation distance.

The proof is located in Sect. 4, where we will also show a simple way to verify the common
accessibility of one regime.

3.2 Wasserstein metric convergence with contraction on average

Another mechanism that may generate geometric ergodicity is contraction. Contraction
can be formulated through the Lyapunov exponents of stochastic flows. Recall that in the
diffusion part, b is required to be C2+δ and σ is required to be C1+δ in x, and there is
no explosion. As a consequence, the solution to the SDE with Yt = y can be written as
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Xt = �
y,ω
t X0, where �

y,ω
t is a diffeomorphism [27]. We say ρ : F �→ R is a contraction

rate function, if

‖Dx�
y,ω
t x‖ ≤ exp(−ρ(y)t), ∀(x, y) ∈ Rd × F, a.s. (3.2)

Here ω can be seen as a realization of the Wiener process in (1.1), and we denote its law
as PW . One way to verify (3.2) is imposing the following requirement on (1.1):

(x − x′) · (b(x, y) − b(x′, y)) ≤ −ρ(y)|x − x′|2, σ (x, y) = σ (y).

[7,46] and the references within also suggest other methods to establish (3.2) under possi-
bly a different norm, andourmethodbelow is possible for generalization in those scenarios
as well.Wewill say the joint process admits a contraction on average, if there are constants
m, ρ̄, Cρ > 0 such that

E
z exp

(

− m
∫ t

0
ρ(Ys)ds

)

≤ Cρ exp(−ρ̄t). (3.3)

The next subsection will discuss how to verify (3.3) given the contraction rates ρ.
The total variation norm is often too stringent to capture contraction. For example,

consider a trivial deterministic process in R, dXt = −ρXtdt. The invariant measure is
obviously δ0, a point mass at the origin, and it attracts other points. Yet, starting from any
nonzero point, the distribution of Xt is a point mass at e−ρtX0, which has total variation
distance 2 from δ0.
Amore suitable distance for our purpose is theWasserstein distance, which is also used

in previous works for models with bounded or Lipschitz transition [3,4,7,36]. For any
distance d on a space E, the associated Wasserstein distance between two measures μ, ν
on E is defined as:

d(μ, ν) := inf
	∈C(μ,ν)

∫

d(x, x′)	(dx, dx′) (3.4)

Here C(μ, ν) is the set of all coupling measures between μ and ν.
The distance function here can be very flexible. One remarkable discovery in [17,19] is

that by properly incorporating the Lyapunov function into d, the corresponding Wasser-
stein distance can characterize relatively weak convergence. This is known as the asymp-
totic coupling framework. As for diffusions with random switching, this framework allows
us to generalize geometric ergodicity results to cases where the transition rates and their
derivatives are bounded only by the Lyapunov function.
Similar to the situationwith dissipation, the notion of contraction on average is essential

for our discussion. The precise statement is the following:

Theorem 3.5 Let Zt = (Xt , Yt ) be a diffusion with random switching that admits a Lya-
punov function V . Suppose the following four conditions hold

1. V (x, y) has polynomial growth in x, so there are n,M such that

V (x + u, y) ≤ M(V (x) + |u|n) and V (x, y) ≥ 1
M

|x| 1n .
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2. The transition rates and their derivatives are bounded byMV with a constantM > 0

λ̄(z) ≤ MV (z),
∑

y′
|∇xλ(x, y, y′)| ≤ MV (z).

3. Each regime admits a contraction rate ρ in the sense of (3.2), and the averaged
dynamics is contractive as there are Cρ , m, ρ̄ > 0:

E
z exp

(

− m
∫ t

0
ρ(Ys)ds

)

≤ Cρ exp(−ρ̄t).

4. There is a commonly accessible regime yc, such that ρ(yc) > 0 and V has at most
polynomial growth in the sense of Definition 3.3.

Then Zt has a unique invariant measure π ; moreover, the distribution of Zt converges to π

geometrically fast in theWasserstein distance generated bym(z, z′) = 1y=y′ ∧|x−x′|+1y�=y′ .
In particular the following bound holds with come C,β > 0,

m(P∗
t δz, P

∗
t δz) ≤ Ce−βt (1 + V (z)).

3.3 Contraction on average

Given the contraction rates ρ in each regime, the contraction on average condition (3.3)
can be verified using arguments similar to the ones of dissipation on average in Sect. 2. Yet,
there is an important difference. When we construct a Lyapunov function, it suffices to
consider the transitions for large |x|, and upper bounds suffice to hold modulo a constant,
see Lemma 6.2. This is no longer the case for contraction on average, and we will need
the “�” inequalities in Sect. 2 to hold with “≤.” As a consequence, the spectrum and
comparison arguments still work with a variant, but the scaling argument no longer
works.
The following theorem is the contraction version of Theorem 2.2, while the transition

rates are allowed to be nonconstant.

Theorem 3.6 If there are constants m, ρ̄ > 0 and a vector a with strictly positive compo-
nents such that the following holds

−mρ(y)a(y) + [�(x)a]y ≤ −ρ̄a(y) (3.5)

for all (x, y) ∈ E, then the contraction on average (3.3) also holds. In particular, if �(x) is a
constant irreducible transition matrix, and over its invariant measure π ,

∑
π (y)ρ(y) > 0,

then the conditions mentioned above hold.

Proof Consider an auxiliary scalar process dUt = −mρ(Yt )Utdt withU0 = 1 then clearly

Ut = exp
(

−m
∫ t

0
ρ(Ys)ds

)

> 0.

Now consider a joint functionV (z, u) = a(y)u, which satisfies the following for any u > 0,

LV (z, u) = −mρ(y)a(y)u + [�(x)a]yu ≤ −ρ̄a(y)u = −ρ̄V (z, u).

As a consequence, EUt ≤ e−ρ̄t maxy a(y)
miny a(y) . ��

Following the representation (2.10), we can see a(y) in (3.5) as the potential contraction
of one regime. Therefore, the comparison principle can be formulated as follows:
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Proposition 3.7 Let (ρ,�(x)) satisfies (3.5) with a strictly positive vector a, and then
(ρ̃, �̃(x)) satisfies the same inequality, if it is more favorable for contraction in the sense:

ρ̃(y) ≥ ρ(y), (λ(x, y, y′) − λ̃(x, y, y′))(a(y) − a(y′)) ≥ 0.

The proof is a direct verification and ignored here. On the other hand, contraction on
average will require the contraction to hold homogenous insideRd , but not just for large
enough |x|. This is probably an intrinsic requirement due to the following example:

Example 3.8 Let F = {1,−1}, and dXt = −YtXtdt to be a scalar process, while

λ(x, 1,−1) = x2 + 3, λ(x,−1, 1) = 3x2 + 1.

With a simple application of Theorem 2.4, it is easy to see this system has dissipation on
average. Indeed, the transition rates favor contraction when |x| is large. However, when
|x| is close to 0, the transition favors inverse contraction. As a consequence, although
1
4 δ(0,1) + 3

4 δ(0,−1) is clearly an invariant measure, starting from any x0 �= 0, xt will never
reach 0. In fact, there is at least another invariant measure onR+ with density:

p(x, 1) = p(x,−1) = x exp(−x2), x > 0.

The invariance can be verified by the Fokker–Planck equation, which is the dual of L. On
the other hand, if we replace the ODE of Xt with dXt = −ytXtdt + dWt , the noise will
connect the invariant measures, so the process becomes ergodic due to Theorem 3.4.

4 Geometric ergodicity through random PDMPs
4.1 Random PDMPs

Piecewise deterministic Markov processes (PDMP) are special cases of diffusions with
random switching, as they require the SDEs of Xt to be ODEs, in other words, σ (Zt ) ≡ 0.
In this case, assuming Ys stays in regime y up to time t, the value of Xt is given by a
diffeomorphism Xt = �

y
s,tXs for any s ≤ t. A PDMP can be defined, based on �

y
s,t and

transition rates λ(x, y, y′). In fact, Xt is completely governed by the jumps of Yt : if Yt has
jumps at time t = (t1, . . . , tn) with a jump sequence y = (y1, . . . , yn), then Xt is given by

Xt = �(X0, t, y, t) := �
yn
tn,t ◦ �

yn−1
tn−1,tn ◦ · · · ◦ �

y0
0,t1X0. (4.1)

Moreover, the probability density of such event, that is having n jumps before time t with
jump times τk and jumps going to yk , is given by formula 3.10 of [20]

pz0 ,tn,t,ydt := 1t1<t2<···<tn exp
(

−
∫ t

0
λ̄(zs)ds

) n∏

i=1
(λ(zti−, yti )dti). (4.2)

In (4.2), the X part of zs is given by (4.1), and zs− = lim zr with r approaches s from left.
On the other hand, diffusions with random switching can be viewed as random PDMPs.

As noted in Sect. 3.2, the solution of the SDE in a fixed regime can be written as
Xt = �

y,ω
s,t Xs, where ω denotes the realization of the Wiener process Ws, and we denote

the law of ω as PW . Therefore, if we condition on each realization ω, a diffusion with
random switching is simply a PDMP. Following the nomenclature of statistical physics
[47], this PDMP will be called a quenched process, as it is the conditioning of the original
joint processZt , on one realization of randomoutcomeω. In contrast, the original process
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without conditioning will be called the annealed process. We will adopt this simple ter-
minology.
Viewing a diffusion with random switching as a random PDMP gives us two explicit

formulas. First, given the jump times t and jumps y, Xt is given by �ω(X0, t, y, t), which is
defined in (4.1) with �

y
s,t replaced by �

y,ω
s,t . Second, if p

z0 ,t,ω
n,t,y denotes the density (4.2) with

the diffeomorphisms being �
y,ω
s,t , then the law of the annealed process can be recovered

by averaging over PW :

P
z0 (Zs≤t ∈ A) =

∫

PW (dω)
∞∑

n=0

∑

y∈Fn

∫

[0,t]n
dtpz0 ,t,ωn,t,y 1zs≤t∈A, (4.3)

where zs has its x part given by xs = �ω(x0, t, y, s) and ys = yk if tk ≤ s ≤ tk+1. These
explicit formulas will be instrumental for our proofs below.

4.2 Accessibility analysis

In both the minorization and contraction on average scenarios, we need a good regime to
be commonly accessible. In this sectionwewill discuss the consequence of this assumption
and also provide a simple way to verify in Lemma 4.2. Most derivations here are relatively
standard andmay have a simpler version in [4,5,7] when the transition rates are bounded.
We provide the complete proofs here to be self-contained.

Lemma 4.1 Suppose Zt admits a Lyapunov function V , �(x) is continuous in x, while
λ̄ ≤ MV for some M > 0.

1. If Pz(Yt = ỹ) > 0, then P
z(Yt+s = ỹ) > 0 for any s ≥ 0;

2. For each z and t > 0, there exists a neighbor of x, Ox ⊂ R
d, such that

P
x′ ,y(Yt = ỹ) ≥ 1

2
P
z(Yt = ỹ), ∀x′ ∈ Ox;

3. If there is a ỹ ∈ F that is commonly accessible, then for any fixed compact set C, there
exists some t0, m0 > 0 such that

P
z(Yt0 = ỹ) ≥ m0, ∀z ∈ C.

Proof Claim 1 Our condition implies pz,t,ωn,t,y > 0 with yn = ỹ for certain ω, t, y. Then
observe that,

pz,t+s,ω
n,t,y = pz,t,ωn,t,y exp

(

−
∫ s

0
λ̄(�yn,ω

t,t+rxt , yn)dr
)

.

The exponential term above is nonzero for PW -a.s. ω, because (2.3) leads to
∫ s

0

∫

PW (dω)λ̄(�yn,ω
t,t+rxt , yn)dr ≤ M

∫ ∫ s

0
PW (dω)V (�yn,ω

t,t+rxt , yn)dr

≤ sKsM(V (xt , yn) + 1) < ∞.

So for PW -a.s. ω, pz,t,ωn,t,y > 0 implies pz,t+s,ω
n,t,y > 0, and annealing (4.3) produces our claim.

Claim 2 By formula (4.2), pz0 ,ω,tn,t,y depends continuously on xs≤t , which depends continu-
ously on x0 because of (4.1). Thus pz0 ,ω,tn,t,y depends continuously on x0, and Claim 2 follows
by applying Fatou’s lemma to the following annealing formula over any sequences z′ → z.

P
z′
(Yt = ỹ) =

∫

PW (dω)dt
∑

n,y:yn=ỹ
pz

′ ,t,ω
n,t,y .
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Claim 3 By Claim 2 and the fact that C is compact, we can find a finite cover of C ,
{Oi}i=1,...,n, and a sequence of time ti such that

P
z′
(Yti = ỹ) > 0 ∀z′ ∈ Oi.

Let t0 = max{ti}, we have P
z(Yt0 = ỹ) > 0 for all z ∈ C by Claim 1. Then using the

compactness again with Claim 2, we can find a uniform lower boundm0 for the transition
probability. ��

The following Lemma provides an easy verification that a regime y∗ is commonly acces-
sible.

Lemma 4.2 (Burst mechanism) Under the same conditions of Lemma 4.1, fix any z0 ∈ E
and a sequence in F y0, y1, . . . , yn such that

λ(x0, yi, yi+1) > 0, i = 0, 1, . . . , n − 1. (4.4)

Then for any t > 0, Pz0 (Yt = yn) > 0. Therefore, if there is a y∗ ∈ F such that for any
z0 ∈ E, there is a sequence y0, . . . , yn = y∗ such (4.4) holds, then y∗ is commonly accessible.

Proof By claim 1 of Lemma 4.1, it suffices to show our claim for sufficiently small t. Since
λ is continuous in x, so we can find 0 < δ < 1 and anM > 0 such that the following holds:

λ(x, yi, yi+1) > 0, λ̄(x, yi) < M, ∀‖x − x0‖ ≤ δ, i = 0, 1, . . . , n − 1.

Then for PW -a.s. realization of ω, because �
y,ω
s,t x is continuous in s, t and x, by induction

there is a sequence of measurable functions εk (ω) ≤ δ, k = 0, 1, . . . , n such the following
holds:

|�yk−1 ,ω
s,t x − x0| < εk (ω), ∀x : |x − x0| < εk−1(ω), s ≤ t ≤ εk (ω),

where εn(ω) = δ. Then pick any ε such that PW (ε0(ω) > ε) > 0, and consider any
fixed jump time sequence t = (t1, t2, . . . , tn) with tn < ε and the generated process
xs = �ω(x0, t, y, s). with y = (y1, . . . , yn). It is easy to verify that if ε0(ω) > ε, then
|xs − x0| < δ for all s ≤ ε; therefore, pz0 ,ω,εn,y,t > 0 for these ω. This completes the proof by
the annealing formula (4.3). ��

4.3 Ergodicity with a minorization regime

Due to Theorem 3.1, the proof of Theorem 3.4 is a relative standard verification of the
small set condition for the full Markov semigroup Pt .

Proof of Theorem 3.4 In order to apply Theorem 3.1, it suffices for us to show the
minorization condition. By the equivalence between total variation and coupling mea-
sures, this is equivalent to building a coupling of Zt and Z′

t such that P(Zt = Z′
t ) ≥ ε, if

V (Z0), V (Z′
0) ≤ C . Our strategy will be showing there are t0 > 0 and δ > 0,

P
z(Yt0 = yh, V (Zt0 ) ≤ C) > δ, ∀z ∈ U, (4.5)

and then use the fact that Yt is possible to stay as yh, while the minorization in regime h
can be used to build a coupling.



Tong and Majda ResMath Sci (2016) 3:41 Page 23 of 33

Since yh is commonly accessible, by Lemma 4.1(3), there are t0, m0, such that Pz(Yt0 =
yh) > m0 for all z ∈ Rd×F . BecauseV is a Lyapunov function,Ez(V (Zt0 )) ≤ e−γ t0C+K/γ

for all C . By picking a large C , we can make

P
z(V (Zt0 ) > C) ≤ E

zV (Zt0 )
C

≤ 1
2
m0,

hence (4.5) holds with δ = 1
2m0. By Lemma 6.1, there is a coupling of Zt0 and Z′

t0 with law
Q

z such that

Q
z((Zt0 , Z′

t0 ) ∈ A1) > δ, A1 := {(z, z′) : y = y′ = yh, V (z), V (z′) ≤ C}.
By our assumption, y = yh satisfied the minorization condition. This means there are
t1 > 0 and ε > 0, so that for any x, x′ that V (x, yh), V (x′, yh) ≤ C , there is a coupling of
PW (ω) and PW (ω′), denoted by QW (dω, dω′) such that

E
x,x′
yh (Xt1 = X ′

t1 ) =
∫

QW (dω, dω′)1
�

yh,ω
0,t1

x=�
yh,ω′
0,t1

x′ ≥ ε. (4.6)

Now we extend Q
z from time t0 to T = t0 + t1 by coupling ω,ω′ as QW after time t0.

Then Markov property yields

Q
z(ZT = Z′

T ) ≥ Q
z(Yt0≤s≤T = Y ′

t0≤s≤T = yh, V (Zt0 ), V ′(Zt0 ) ≤ C, XT = X ′
T )

≥ 1
2
m0 inf

(z,z′)∈A1

∫

QW (dω, dω)pz,t1 ,ω0,∅,∅ p
z′ ,t1 ,ω′
0,∅,∅ 1

�
yh,ω
0,t1

x=�
yh,ω′
0,t1

x
.

It suffices to show the density that there are no jumps till time t1, which is pz,t1 ,ω0,∅,∅ p
z′ ,t1 ,ω′
0,∅,∅ ,

is bounded from below on a set of probability more than 1 − 1
2ε, then union bound with

(4.6) will yield our claim. For this purpose, note

p(x,yh),t1 ,ω0,∅,∅ = exp
(

−
∫ t1

0
λ̄(xs, yh)ds

)

,

while by polynomial growth of V within regime yh,
∫

PW (dω)
∫ t1

0
λ̄(xs, yh)ds ≤ M

∫

PW (dω)
∫ t1

0
V (xs, yh)ds ≤ Mt1Kt1 (V (x0) + 1).

So by Markov’s inequality, there is an N such that

PW
(
pz,t1 ,ω0,∅,∅ ≤ exp(−N )

)
≤ PW

(∫ t1

0
λ̄(xs, yh)ds ≥ N

)

≤ 1
4
ε.

Then because QW is a coupling, by union bound,

QW
(
pz,t1 ,ω0,∅,∅ p

z′ ,t1 ,ω′
0,∅,∅ ≤ exp(−2N )

)
≤ 1

2
ε.

4.4 Ergodicity with contraction on average

The proof of Theorem3.5 uses the asymptotic couplingmechanism introduced by [18,19].
Theorem 4.8 of [19] presented below formulates our application of this mechanism.

Theorem 4.3 Let Pt be aMarkov semigroup over a Polish space E admitting a continuous
Lyapunov function V , so EV (Zt ) ≤ e−γ t

EV (Z0) + K. Suppose there exists a distance-like
function d : E × E �→ [0, 1] and a time t such that
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1. Pt is locally contracting in d:

d(P∗
t δz , P

∗
t δz′ ) ≤ 1

2
d(z, z′), ∀d(z, z′) < 1.

2. Smallness: for any two z, z′ such that V (z), V (z′) ≤ K, d(P∗
t δz, P∗

t δz′ ) ≤ 1 − ε.

Then Pt can have at most one invariant probability measure π . Furthermore, let d̃(z, z′) =
√
d(z, z′)(1 + V (z) + V (z′)), there exists a t > 0 such that d̃(P∗

t μ, P∗
t ν) ≤ 1

2 d̃(μ, ν) for any
probability measures μ, ν on E.

In [19], d : E × E �→ R+ is distant-like if it is symmetric, lower semicontinuous and
d(z, z′) = 0 ⇔ z = z′. Its associated Wasserstein-1 distance is also denoted by d for
notational simplicity. In other words, for two probability measures μ and ν,

d(μ, ν) := inf
	

∫

d(z, z′)	(dz, dz′),

where the infimum is taken over all coupling measures of μ and ν.
The reason that (1) is called a local contraction, is that in most applications, d(z, z′) = 1

unless z and z′ are very close. Theorem 4.3 essentially extends a local contraction to a
global one.

4.4.1 Contracting distance

For the construction of a contracting distance, we have the following lemma. It is a variant
of Lemma 4.13 in [19] which uses a Lyapunov function instead of a super Lyapunov
function. The proof goes very similar.

Proposition 4.4 Under the conditions of Theorem 3.5, the following distance with any
positive r ≤ min{m2 , 12 } is locally 1

2 -contracting for PT with a proper T and δ < 2− 1
r :

d(z, z′) = 1y�=y′ + 1y=y′ ∧ δ−1
(

inf
θ :x→x′

∫ 1

0
V (θ (s), y))|θ̇ (s)|ds

)r
. (4.7)

Here the infimum is taken over all the C1 paths θ : [0, 1] �→ Rd that connects x and x′.

Before we move on to the proof of Proposition 4.4, we need two pieces of arguments.
The first one indicates d(z, z′) ≈ 1y�=y′ + 1y=y′ ∧ δ−1(V (z)|x − x′|)r .

Lemma 4.5 Assuming condition (1) of Theorem 3.5, fix any y ∈ F, x, x′ ∈ R
d and a C1

path θ : [0, 1] �→ Rd that connects x and x′ so that

inf
θ :x→x′

∫ 1

0
V (θ (s), y)|θ̇ (s)|ds ≤ 1

2
,

then
1
2M

|x − x′|V (z) ≤ inf
θ :x→x′

∫ 1

0
V (θ (s), y)|θ̇ (s)|ds ≤ 2M|x − x′|V (z).

Proof Recall that we can always assume thatV ≥ 1, so our condition leads to |x−x′| ≤ 1
2 .

Because of the polynomial growth of V in x, when |u| ≤ 1, V (x+ u, y) ≥ M−1V (x, y)− 1,
so

V (x + u, y) ≥ 1
2
[(M−1V (x, y) − 1) + 1] = 1

2M
V (x, y), ∀|u| ≤ 1.
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Therefore for any C1 path θ that connects x with x′, while |x − x′| ≤ 1
2 , if it completely

lies in Bx(1) = {x + u : |u| ≤ 1}, then
∫ 1

0
V (θ (s), y)|θ̇ (s)|ds ≥ 1

2M
V (z)

∫ 1

0
|θ̇ (s)|ds ≥ 1

2M
V (z)|x − x′|.

In the other case, if θ has a part lying outside Bx(1), then there is an exiting time of Bx(1),
τ = inf{s : θ (s) /∈ Bx(1)}. By definition θ ([0, τ ]) is a C1 path of length at least 1, hence

∫ 1

0
V (θ (s), y)|θ̇ (s)|ds ≥

∫ τ

0
V (θ (s), y)|θ̇ (s)|ds ≥ 1

2M
V (z) ≥ 1

2M
V (z)|x − x′|.

For the other side of the bound, we only need to show it holds for θ (s) = x + s(x − x′),
which is the following by polynomial growth:

|x − x′|
∫ 1

0
V (θ (s), y)ds ≤ M|x − x′|(V (z) + 1).

��
The second lemma gives a bound on the perturbation of measures caused by perturba-

tion on the initial condition:

Lemma 4.6 Under the conditions of Theorem 3.5, for any fixed T there is a constant DT
such that

∫

PW (dω)
∑

n,y

∫

[0,T ]n
dt‖Dxpz,ω,Tn,t,y ‖ ≤ DT (V (z) + 1).

Proof Recall that the density function is

pz,ω,Tn,t,y = 1t1<···<tn<T exp
(

−
∫ T

0
λs(zs)ds

) n∏

i
(λ(zti−, yti )dti).

Applying Fréchet derivative and the chain rule, we have
∫

PW (dω)
∑

n,y

∫

[0,T ]n
dt‖Dxpz,ω,Tn,t,y ‖

≤
∫

PW (dω)
∑

n,y

∫

[0,T ]n
dtpz,ω,Tn,t,y

∫ T

0
‖Dx�ω(x, t, y, s)∂xλ(xs, ys)‖ds

+
∫

PW (dω)
∑

n,y

∫

[0,T ]n
dtpz,ω,Tn,t,y

n∑

k=1
‖Dx�ω(x, t, y, tk )‖

‖∂xλ(zttk− , ytk )‖
λ(ztk−, ytk )

. (4.8)

We will bound the two parts separately in below. Since for tk ≤ s < tk+1 and every ω

‖Dx�ω(x, t, y, s)‖ = ‖Dx�
yk ,ω
tk ,s ◦ �

yk−1 ,ω
tk−1 ,tk ◦ · · · ◦ �

y0 ,ω
0,t1 x0‖

≤ exp
(

−
∫ s

0
ρ(ys)ds

)

≤ exp(MρT ).

HereMρ := maxy{−ρ(y)} < ∞. Using condition (2) of Theorem 3.5, the first part of (4.8)
is bounded by the following

M
∫

PW (dω)
∑

n,y

∫

dtpz,ω,Tn,t,y

∫ T

0
exp(MρT )V (zs)ds

= M exp(MρT )Ez
∫ T

0
V (Zs)ds,
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which is bounded further byKTV (z) with a properKT sinceV is a Lyapunov function. The
equality above holds as we recognize the probabilistic meaning of the integrals and then
use that V is a Lyapunov function. For the second part of (4.8), according to condition (2)
of Theorem 3.5, it is clearly bounded by

M exp(MρT )
∫

PW (dω)
∑

n,y

∫

[0,T ]n
dtpz,ω,Tn,t,y

n∑

k=1

V (ztk−1 )
λ(ztk−, ytk )

= M exp(MρT )Ez
∑

k :τk≤T

V (zτk−)
λ(Zτk−, Yτk )

,

where τk are the sequential jump times. Apply formula 31.18 in [10] with b(z′, z) = V (z)
λ(z,y′)

on the quenched PDMP, and then annealing, we find

E
z

∑

k :τk≤T

V (zτk−)
λ(Zτk−, Yτk )

= E
z
∫ T

0
V (Zt )dt,

which is bounded further by KTV (z) with a proper KT since V is a Lyapunov function.
��

We are finally at the position to prove Proposition 4.4:

Proof of Proposition 4.4 By the definition of contracting metric, it suffices for us to show
that d(P∗

T δz, P∗
T δz′ ) ≤ 1

2d(z, z
′) when d(z, z′) < 1. This implies that y = y′, and |x−x′| ≤ 1

2 .
Since the spaces here are Polish, by the Kantorovich–Rubinstein theorem (Theorem

11.8.2 of [13]),

d(P∗
T δz, P∗

T δz′ ) = sup
ϕ

{

Px,y
T ϕ − Px′ ,y

T ϕ

∣
∣
∣
∣‖ϕ‖Lip(d) ≤ 1

}

.

‖ϕ‖Lip(d) denotes the Lipschitz norm, in other words, for any z, z′ ∈ E, ϕ(z) − ϕ(z′) ≤
‖ϕ‖Lip(d)d(z, z′). Hence, to prove this lemmawe only need to show for anyϕ, ‖ϕ‖Lip(d) ≤ 1,

Px,y
T ϕ − Px′ ,y

T ϕ ≤ 1
2δ

(

inf
r:x→x′

∫ 1

0
V (r(s), y)|ṙ(s)|ds

)r
. (4.9)

However, if ϕ has its d-Lipschitz norm less than 1, its maximum variation is less than 1,
we can replace ϕ by ϕ − c such that ‖ϕ‖∞ ≤ 1

2 , yet
∫

ϕdQx,y − ϕdQx′ ,y remains invariant.
So without loss of generality, we assume ‖ϕ‖∞ ≤ 1

2 .
Consider splitting Px,y

T ϕ − Px′ ,y
T into the difference caused by the initial condition, and

the difference caused by the underlying probability measure:

|Px,y
T ϕ − Px′ ,y

T ϕ| = |Ex,yϕ(�ω(x, Ys≤T , T ), YT ) − E
x′ ,yϕ(�ω(x′, Ys≤T , T ), YT )|

≤ |Ex,yϕ(�ω(x, Ys≤T , T ), YT ) − E
x,yϕ(�ω(x′, Ys≤T , T ), YT )| (4.10)

+ |Ex,yϕ(�ω(x′, Ys≤T , T ), YT ) − E
x′ ,yϕ(�ω(x′, Ys≤T , T ), YT )|.

(4.11)

The quantityEx,yϕ(�ω(x′, Ys≤T , T ), YT ) has its probability initialized from point (x, y), but
the stochastic flow is initialized at x′, in other words:

E
x,yϕ(�ω(x′, Ys≤T , T ), YT ) =

∫

PW (dω)
∑

n,y
pz,ω,Tn,t,y

∫

[0,T ]n
dtϕ(�ω(x′, y, T ), yT ).
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Since ϕ is d-Lipschitz, so the first part is bounded as below by Lemma 4.5

(4.10) ≤ E
zd((�ω(x, Ys≤T , T ), YT ), (�ω(x′, Ys≤T , T ), YT ))

≤ E
z1 ∧ δ−1

(

inf
θ

∫ 1

0
V (θ (s), YT )‖θ̇ (s)‖ds

)r

≤ E
zδ−1(2M)rV (ZT )r |uT |r ,

where uT = �ω(x′, Ys≤T , YT ) − XT . By Cauchy–Schwartz,

E
zV (ZT )r |uT |r ≤

√
EzV (ZT )2r

√
Ez|uT |2r .

Notice Ez|uT |2r ≤ [Ez|uT |m] 2rm , and by contraction on average:

E|uT |m ≤ E
z|x − x′|m exp

(

−
∫ T

0
mρ(Ys)ds

)

≤ Cρ |x − x′|m exp(−ρ̄T ).

Likewise, Ez|V (ZT )|2r ≤ [EzV (ZT )]2r ≤ C0V (z)2r for a constant C0. As a consequence,
there is a constant C1 such that

(4.10) ≤ C1 exp
( − 2r

m ρ̄T
)|x − x′|rV (z)r ,

which further leads to the following by Lemma 4.5 for a constant C2:

(4.10) ≤ δ−1C2 exp
( − 2r

m ρ̄T
)
(

inf
θ :x→x′

∫ 1

0
V (θ (s), y))‖θ̇ (s)‖ds

)r
.

In the following, we will fix a T such that C2 exp
( − 2r

m ρ̄T
) ≤ 1

4 . In order to bound (4.11),
by definition:

(4.11) =
∣
∣
∣
∣

∫

PW (dω)
∑

n,y
(pz,ω,Tn,t,y − pz

′ ,ω,T
n,t,y )

∫

[0,T ]n
dtϕ

(
�ω(x′, t, y, T ), yT

)
∣
∣
∣
∣

≤ ‖ϕ‖∞
∫

PW (dω)
∑

n,y

∫

[0,T ]n
dt

∣
∣pz,ω,Tn,t,y − pz

′ ,ω,T
n,t,y

∣
∣

≤ 1
2

∫

PW (dω)
∑

n,y

∫

[0,T ]n
dt

∫ 1

0
‖Dxpzs,ω,Tn,t,y ‖|θ̇ (s)|ds.

where z′ = (x′, y) and zs = (θ (s), y), and θ is any C1 path from x to x′. By Lemma 4.6, there
is a constant DT such that

∫

PW (dω)
∑

n,y

∫

[0,T ]n
dt‖Dxpzs,ω,Tn,t,y ‖ ≤ DTV (zs).

Hence for anyC1 path θ that connects x and x′, while
∫ 1
0 V (zs)|θ̇ (s)|ds ≤ 1, because r < 1,

(4.11) ≤ DT
2

∫ 1

0
V (zs)|θ̇ (s)|ds ≤ DT

2

(∫ 1

0
V (zs)|θ̇ (s)|ds

)r
.

So combining the bounds for (4.10) and (4.11), we have

E
x,yϕ(ZT ) − E

x′ ,yϕ(ZT ) ≤
(

1
4δ

+ DT
2

)( ∫ 1

0
V (zs)|θ̇ (s)|ds

)r
;

it suffices to take δ ≤ D−1
T in (4.9) for this proposition to hold.
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4.4.2 Small set verification

Verification of condition (2) of Theorem 4.3 is given by the following

Lemma 4.7 Under the condition of Theorem 3.5, for any fixed strictly positive C, there are
some T, ε > 0 such that:

d(P∗
T δz, P∗

T δz′ ) ≤ 1 − ε, ∀z, z′ : V (z), V (z′) ≤ C.

Proof The proof is exactly the same as Theorem 3.4, and a coupling will be constructed
through two steps.We first coupleYt0 , Y ′

t0 to yc, which follows exactly the same commonly
accessible argument as in the proof of Theorem 3.4. Then we keep the value of Y to be
the same afterward, until the contracting dynamics brings the X part close enough. For
this part, it suffices to show that there is a t1 such that from any two x and x′ with
V (x, yc), V (x′, yc) ≤ C , there is a coupling QW of PW (dω) and PW (dω′), such that

∫

QW (dω, dω′)d((�yc,ω
t1 x, yc), (�

yc,ω′
t1 x′, yc)) ≤ 1 − ε. (4.12)

Then (4.12) replaces (4.6), while the remainder of the proof of Theorem 3.4 can be used
again.
By Lemma 4.5, for all ω,

d((�yc,ω
t x, yc), (�

yc,ω
t x′, yc)) ≤ δ−1(2M)r exp(−rρ(yc)t)V ((�yc,ω

t x), yc)r |x − x′|r .
Note that V (x, yc), V (x′, yc) ≤ C implies |x − x′| is bounded, so for a t large enough,

d((�yc,ω
t x, yc), (�

yc,ω
t x′, yc)) ≤ exp

( − 1
2 rρ(yc)t

)

2C
V ((�yc,ω

t x), yc)r

≤ exp
( − 1

2 rρ(yc)t
)

2C
V ((�yc,ω

t x), yc).

Therefore, if we letω = ω′, that isQW (dω, dω′) = P(dω)δω′=ω, the left-hand side of (4.12)
is bounded by (3.1)

exp
( − 1

2 rρ(yc)t
)

2C

∫

PW (dω)V ((�yc,ω
t x), yc) ≤ exp

( − 1
2 rρ(yc)t

)
Kt .

Since Kt has at most polynomial growth, a large t = t1 would produce (4.12). ��

4.4.3 Proof of Theorem 3.5

With the conditions of Theorem 4.3 verified, it is rather elementary to show Theorem 3.5.

Proof By the existence of Lyapunov function, and Krylov–Bogoliubov’s theorem, there
exists an invariant measure π with E

πV = ∫
π (dz)V (z) < ∞. Let d be as in Proposition

4.4 and d̃ be defined by Theorem 4.3, then

d̃(P∗
ntδz , P

∗
ntπ ) ≤ 1

2
d̃(P∗

(n−1)tδz, P
∗
(n−1)tπ ) ≤ · · · ≤ 1

2n
d̃(δz,π ).

By Lemma 4.5, for some constant C0

d̃(δz,π ) ≤
∫

π (dz′)
√
(1 + V (z) + V (z′))(2M)rδ−1|x − x′|rV (z)r

≤ C0 + C0V (z)
r+1
2

∫

π (dz′)|x − x′| r2 + C0V (z)
r
2

∫

π (dz′)|x − x′| r2V (z′)
1
2 .
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Since V (z′) ≥ M−1|x| 1n , using the bound above, we can pick r < 2
n in the beginning such

that

d̃(δz,π ) ≤ C0(1 + 2V (z)EπV ).

On the other hand, by Lemma 4.5 and that 1 ∧ ur ≥ 1 ∧ u for any u ≥ 0,

d̃(z, z′) ≥ 1y=y′ ∧ |x − x′|r
(2M)r

V (z)r + 1y�=y′ ≥ 1y=y′ ∧ |x − x′|
2M

+ 1y�=y′ ≥ 1
2M

m(z, z′).

Combining the inequalities above, we have our claim. ��

5 Conclusion and discussion
Diffusions with random switching are a general class of stochastic processes with appli-
cations in many different areas. Such system consists of a diffusion process part Xt and a
Markov jump part Yt , and their dynamics can be fully coupled. The stability and ergod-
icity of such processes remain open questions if the transition rates are not bounded or
Lipschitz. This paper closes this gap by developing a new analytical framework.
The first part of this paper constructs polynomial-type Lyapunov functions when there

is dissipation on average. These functions can be used to derive moment bounds on the
diffusion part. The incorporation of potential dissipation of each regime is found to be
an efficient way to capture averaged dissipation. This idea can be easily applied to the
classical case where the transition rates are constants as Theorem 2.2. It also leads to a
simple illustration of comparison principles, Theorem 2.9. Moreover, with a Fredhlom
alternative argument, we demonstrate how can the Lyapunov function be inductively
constructed, as a dual process of the averaging procedure, Theorems 2.4, 2.7, assuming
the transition rates have a multiscale structure.
The second part of this paper is devoted to the geometric ergodicity of diffusions with

random switching, assuming a Lyapunov function exists. If there is a commonly accessible
regime that satisfies theminorization condition, Theorem 3.4 proves geometric ergodicity
under total variation distance.When there is contraction on average, using the asymptotic
coupling framework of [17,19], Theorem 3.6 demonstrates geometric ergodicity under a
proper Wasserstein distance.
There are a few interesting ideas came to the authors when this paper is written. We

share them in below to inspire further research.

1. The authors conjecture that the results here hold in a similar form if the regime
process Yt is instead a continuous stochastic process. One way to see this is taking
the limit of a jump process on grid points of vanishing size. But the authors suspect
that an independent mechanism can be set up for these processes without little
change of the proofs. Such theory will be applicable to many nonlinear models that
exhibits intermittency, for example [34].

2. The attraction or contraction rates used in this paper provides a uniform control
over each component of Xt . A more general situation is that each component of Xt
has a different regime-based attraction rates; in other words, the attraction rate is
given by a matrix. A simple example will be dXt = A(Yt )Xtdt, where A is a matrix-
valued function. It is known such system is very sensitive to the switching even if A
has all eigenvalues of negative real parts [28]. It will be interesting if our results can
be generalized to this case.
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3. Theorem 3.4 can probably be generalized. Bakhtin and Hurth [1] show that a PDMP
is geometric ergodic in total variation despite the fact that each regime is degen-
erate. The proofs there only require a Hörmander type of condition on the vector
fields generated by different regimes. The authors conjecture that for diffusions with
random regime switching, in order to have geometric ergodicity, it suffices to have
the Lie algebra generated by stochastic flows of all regimes spanning Rd . But this
requires a completely different set of techniques, and Assumption 3.2 should be
general enough to cover most applications.
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6 Appendix: Proofs for miscellaneous claims
Lemma 6.1 For two probability measuresμ, ν on a polish space, assume thatμ(X ∈ A) ≥
p and ν(Y ∈ B) ≥ p, then there exists a coupling 	 of μ and ν such that 	(X ∈ A, Y ∈
B) ≥ p.

Proof This is also Lemma A.1 in [36]. ��

Lemma 6.2 Suppose the generators of two processes, L and L′, are the same outside a
compact set C. Suppose V is a Lyapunov function of the generator L, so LV ≤ −γV + K.
Then V is also a Lyapunov function for L′ if L′V and V are bounded in C, since

L′V ≤ −γV + K + sup
z∈C

{|γV − K | + L′V }.

Lemma 6.3 Under the linear regime dissipation Assumption 2.1, with any m ∈ R and
n ≥ max{2, 2−m}, the function fm(x) = |x|m+n

1+|x|n is C2, fm(x) ≤ |x|m.Moreover, for any δ > 0

LX (y)fm(x) � −(mγ (y) − δ)fm(x).

Proof The C2 regularity of fm and that fm(x) ≤ |x|m can be verified directly. The gradient
of fm is

∇fm(x) = m|x|m+n−2x
1 + |x|n + n|x|m+n−2x

(1 + |x|n)2 ,

from which we can conclude that the Hessian ∇2fm � M|x|m−2 with a constantM. Then
from Assumption 2.1, we find

LX (y)fm(x) = m|x|m+n−2〈b(x, y), x〉
1 + |x|n + O(|x|m+n−ε).

Then by Young’s inequality, for any δ > 0 we have LX (y)fm(x) � −(mγ (y) − δ)fm(x). ��

Lemma 6.4 Based on the definition of averaging procedures and V0, the duality equations
(2.15) hold.
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Proof For the first duality equation, simply check

[�̃(x)Ṽ (x, · )]y =
∑

y′∈F̃
λ̃(x, y, y′)[Ṽ (x, y′) − Ṽ (x, y)]

=
∑

y′∈F/F ′
λ̃(x, y, y′)[Ṽ (x, y′) − Ṽ (x, y)]

+
∑

k
λ̃(x, y, gk )[Ṽ (x, gk ) − Ṽ (x, y)].

The first summation above is
∑

y′∈F/F ′ λ(x, y, y′)[V0(x, y′) − V0(x, y)]. Based on (2.13), the
k-th term in the second summation can be written as

∑

y′∈Gc

λ(x, y, y′)pF ′ (y′, gk )[Ṽ (x, gk ) − V0(x, y)]

+
∑

y′∈Gk

λ(x, y, y′)[V0(x, gk ) − V0(x, y)].

If we sum the first term above over all k , it is
∑

y′∈Gc λ(x, y, y′)[V0(x, y′)−V0(x, y)]. Putting
these back to the decomposition of [�̃(x)Ṽ (x, · )]y, we can conclude the first duality equa-
tion holds.
Likewise, the left hand of the second duality equation can be written as

[�̃(x)Ṽ (x, · )]gk =
∑

y′∈F/F ′
λ̃(x, gk , y′)[Ṽ (x, y′) − Ṽ (x, gk )]

+
∑

j �=k
λ̃(x, gk , gj)[Ṽ (x, gj) − Ṽ (x, gk )].

Based on (2.13), for y′ ∈ F/F ′, each term in the first summation is

λ̃(x, gk , y′)[Ṽ (x, y′) − Ṽ (x, gk )] =
∑

y∈Gk

πk (y)λ(x, y, y′)[V0(x, y′) − V0(x, y)].

And each term in the second summation can be written as

∑

j �=k

⎛

⎝
∑

y∈Gk

πk (y)
∑

y′∈Gj

λ(x, y, y′)

+
∑

y∈Gk

πk (y)
∑

y′∈Gc

λ(x, y, y′)pF ′ (y′, gj)

⎞

⎠ [Ṽ (x, gj) − Ṽ (x, gk )]

=
∑

y∈Gk

πk (y)

⎛

⎝
∑

y′∈Gj,∀j
λ(x, y, y′)[V0(x, y′) − V0(x, y)]

+
∑

y′∈Gc

λ(x, y, y′)[V0(x, y′) − V0(x, y)]

⎞

⎠ .

Ifwe sum the second termon the right-hand side over all k , it is
∑

y′∈Gc λ(x, y, y′)[V0(x, y′)−
V0(x, y)]. Therefore, we can conclude the second duality equation holds. ��
Received: 12 April 2016 Accepted: 26 October 2016
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