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Abstract

In this work, we study the convergence of an efficient iterative method, the fast
sweeping method (FSM), for numerically solving static convex Hamilton–Jacobi
equations. First, we show the convergence of the FSM on arbitrary meshes. Then we
illustrate that the combination of a contraction property of monotone upwind schemes
with proper orderings can provide fast convergence for iterative methods. We show
that this mechanism produces different behavior from that for elliptic problems as the
mesh is refined. An equivalence between the local solver of the FSM and the Hopf
formula under linear approximation is also proved. Numerical examples are presented
to verify our analysis.
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1 Background
Efficient and robust iterative methods are highly desirable for solving a variety of static
hyperbolic partial differential equations (PDEs) numerically. Themost important property
for hyperbolic problems is that the information propagates along the characteristics. For
linear hyperbolic problems, the characteristics are known á priori and do not intersect. For
nonlinear hyperbolic problems, the characteristics are not known á priori and may inter-
sect. Consequently the information that propagates along different characteristics has to
compromise in certain ways when the characteristics intersect to render the desired weak
solution. When discretizing hyperbolic PDEs, monotone upwind schemes are an impor-
tant class of schemes that use stencils following the characteristics in the direction from
which the information comes (e.g., see [39]). How to design an effective iterative method
for hyperbolic problems also needs to fully utilize the above properties. We use the fast
sweeping method (FSM) [43] as an example to show that the combination of monotone
upwind schemes with Gauss–Seidel iterations and proper orderings can provide fast con-
vergence. The convergence mechanism is different from that of iterative methods for
elliptic problems, where relaxation is the underlying mechanism for convergence and the
key point is how to deal with long-range interactions through short-range interactions
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efficiently by using techniques such as multi-grids and/or effective pre-conditioners. We
present both analysis and examples to explain this different convergence behavior as the
mesh is refined.
In this work, we consider the following static Hamilton–Jacobi equation

H (x,∇u) = 0, x ∈ � ⊂ Rd, u|∂� = g, (1.1)

where � is a bounded domain in Rd with d the dimension, andH is the Hamiltonian that
satisfies the following assumptions:

(A1) Continuity: H ∈ C(� × Rd),
(A2) Convexity: H (x,p) is convex in p ∈ Rd for all x ∈ �,
(A3) Coercivity: H (x,p) → ∞ as |p| → ∞ uniformly for x ∈ �,
(A4) Compatibility of Hamiltonian: H (x, 0) ≤ 0 for all x ∈ �,
(A5) Compatibility of Dirichlet data: g(x)− g(y) ≤ l(x, y) for all x, y ∈ ∂�, where l(x, y)

is the optical distance defined by [7,22],

l(x, y) = inf
{∫ 1

0 ρ(ξ (t),−ξ ′(t))dt : ξ ∈ C0,1([0, 1],�), ξ (0) = x, ξ (1) = y
}
,

with ρ(x,q) = max
H (x,p)=0

〈p,q〉 the support function.
(1.2)

(A6) g is Lipschitz continuous.

The characteristic equations for (1.1) are given by
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dx
dt

= ∇pH,

dp
dt

= −∇xH,

du
dt

= p · dx
dt

= p · ∇pH,

(1.3)

with appropriate initial conditions x(0) = x0,p(0) = p0 and u(0) = u(x0). Due to the
nonlinearity, the characteristics may intersect and a classical solution of (1.1) does not
exist in general. We consider the viscosity solution [10,11]: a function u ∈ C0,1(�) is a
viscosity subsolution (supersolution, resp.) if for all v ∈ C∞

0 (�) such that u − v attains a
local maximum (minimum, resp.) at some x0 ∈ �, then

H (x0,∇v(x0)) ≤ 0 (≥ 0, resp.). (1.4)

A viscosity solution is both a viscosity subsolution and a viscosity supersolution. The
mathematical definition of the viscosity solution can be interpreted as the Hopf formula
[8,19,22],

u(x) = inf
y∈∂�

{g(y) + l(x, y)}, (1.5)

where u(x) is the value function for an appropriate optimal control problem.
The fast sweeping method is an efficient iterative method for solving (1.1). It has been

developed and used successfully for various hyperbolic problems (e.g., see [6,7,14,15,17,
20,23,26,28,30,34,35,40,43–45] and references therein for development, and [3,18,21,
24,25,27,29,31] and references therein for applications to different problems). The key
ingredients for the success of the FSM are the following:
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• An appropriate upwind discretization scheme (or local solver) that is consistent with
the underlying PDE and guarantees the numerical solution converges to the desired
weak solution.

• Gauss–Seidel iterations with enforced causality: combined with an appropriate
upwind scheme it means that (1) the information propagates along the character-
istics efficiently, and (2) all newly updated information is used in a correct way and
the intersection of different characteristics can be resolved.

• Alternating orderings that can cover the propagation of the information in all direc-
tions in a systematic and efficient way.

The above properties can result in optimal complexity for the FSM, i.e., the number of
iterations is finite and independent of the grid size. Previous studies on the convergence of
the FSM were mainly based on the method of characteristics [34,35,43]. The assumption
is that all characteristics start from the boundary where the data are explicitly given, and
are of finite length. The convergence is achieved in a finite number of iterations that
are independent of the grid size, which is due to the fact that any characteristic can be
divided into a finite number of pieces and the information propagation along each piece
can be covered by one of the sweeping directions [43]. Another view in terms of linear
algebra is that the system of the discretized equation can be turned into a triangular
system if a right ordering is followed. So one iteration is needed if the ordering is known.
For nonlinear problems the ordering depends on the solution which is not available á
priori. However, since an upwind scheme is used, all grid points can be divided into a few
connected domains according to their upwind directions. Each connected domain with
similar upwind dependence can be turned into a triangular system in one of the systematic
orderings.
In this paper we first explain the monotonicity and consistency of the FSM and show

that there is a contraction property. Then we prove the convergence that is implied by the
contraction property. We prove the convergence in two ways: one is following the usual
convergence proof as in [5] by monotonicity and consistency; the other one is through its
equivalence to the discretized Hopf formula in the framework of linear approximation.
More importantly, we show that the contraction property implies local truncation error
estimate. Furthermore, we study the contraction property of the FSM for hyperbolic
problems and use it to explain the fast convergence. Through the contraction property
we study the convergence of Gauss–Seidel iterations with proper orderings. By using an
example with periodic boundary conditions (see examples in Sect. 4), we analyze and
explain a phenomenon for hyperbolic problems which is different from that for elliptic
problems: fewer iterations are needed as the mesh is refined. Since periodic boundary
conditions are imposed, the discretized system cannot be put into a triangular system due
to the cyclic dependence and the argument based on themethod of characteristics cannot
be used.
The paper is organized as follows. In Sect. 2 we recall monotone upwind schemes and

the fast sweeping method. In Sect. 3 we first show the contraction property of monotone
upwind schemes; then, we prove the convergence of the fast sweeping method. In Sect. 4
we show some numerical examples to verify our analysis. Conclusion remarks are given
at the end.
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2 Monotone upwind schemes
The first step to solve the Hamilton–Jacobi equation (1.1) numerically with finite differ-
ence schemes on amesh/grid is the discretization of the differential operators that reduces
a continuous problem of infinite dimension to a discrete problem of finite dimension. The
discretization must be consistent, which means it approximates the PDE with certain
accuracy such that the local truncation error goes to zero as the grid size approaches zero.
In an abstract form, a discretization scheme establishes an equation for the solution at
each grid point and its neighbors that is consistent with the PDE. Assume the equation at
grid i has the general form

Fi(ui, u|j∈N (i)) = 0, (2.1)

after discretization, where Fi denotes a relation of the solution at grid i and its neighbors
j ∈ N (i).

Remark 2.1 A time-dependent problem can be regarded as a special case in which the
characteristic has a fixed direction in one variable, i.e., the time. This special case usually
leads to the simplification of the above general relation, e.g., with explicit time stepping,

un+1
i = Fe

i (u
n
i , u

n|j∈N (i)), (2.2)

i.e., the solution at time tn+1 depends on the solution at previous times (see Fig. 1a). How-
ever, this explicit scheme has to satisfy a CFL (Courant–Friedrichs–Lewy) condition to
guarantee the causality of the true solution, i.e., the numerical domain of dependencemust
include the true domain of dependence [9]. Geometrically this means that if one traces
the characteristic through xi at tn+1 backward in time, the characteristic will go through
the interior of the polygon formed by xj , j ∈ N (i) at time tn (see Fig. 1a). Numerically this
means that there is a constraint on the time step such that c δt

δx ≤ 1 where c is the speed
of the characteristic. One can also develop unconditionally stable implicit schemes by
allowing the characteristics to come in from the side (see Fig. 1b). In this case the solution
at mesh points at tn+1 may depend on each other, which essentially turns into the general
form (2.1) except that we know the solution at tn+1 does not depend on the solution at
tn+2 or later time.

−

+

+

+

+

−

+− +−
a b

Fig. 1 Explicit (left) and implicit (right) schemes. Black dots stencil, red dashed arrow characteristic
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Although using implicit schemes will need the CFL condition to be of the same order
for accuracy reason, there are a few advantages of using unconditionally stable implicit
schemes such as:

• The time step can still be relaxed by a factor as explained above and in Fig. 1. Using
an efficient implicit solver, such as the fast sweeping method, one can still gain com-
putational efficiency.

• The constant in theCFL condition for explicit schemesmaynot be easy to estimate for
nonlinear problems. For example,when theHamiltonian is nonlinear, theflux velocity
depends on the solution itself and varies significantly such that a sharp global bound
of the velocity is unavailable. This usually leads to either inefficiency or instability.

The consistency of a numerical scheme is usually easy to satisfy. However, it does not
guarantee the stability and convergence of the numerical solution. For hyperbolic PDEs,
an important class of discretization schemes is monotone schemes. The monotonicity is
equivalent to requiring that Fi is nondecreasing in its first variable and nonincreasing in
the remaining variables or vice versa. For nonlinear hyperbolic problems themonotonicity
is usually necessary for the convergence of the numerical solutions to the correct weak
solutions [5,12]. Although monotone schemes are at most first-order accurate (e.g., see
[32,39]), they provide the most robust schemes in practice as well as the starting point
for high-order schemes [6,33,38,42]. The simplest way to construct monotone schemes
is using the Lax–Friedrichs scheme which uses central differences to approximate the
derivatives and explicit numerical viscosity term with a coefficient proportional to the
grid size, e.g., the discrete Laplacian, to achieve the monotonicity. The main advantage
of the Lax–Friedrichs scheme is its simplicity and generality. However, it is not upwind
which makes iterative methods converge slowly because the underlying equation has
changed from a hyperbolic problem to an elliptic problem with singular perturbation.
The convergence to the correct viscosity solution is through the vanishing viscosity as
the grid size decreases. Therefore we focus on upwind monotone schemes that are more
desirable for iterative methods. In particular, we study the FSM on a general mesh [34,
35,43]. For simplicity we restrict our discussion in 2D. Extension to higher dimension is
straightforward.
The key point of the discretization for the FSM is to use the PDE locally to enforce the

consistency and the causality condition. The discretization is detailed as follows.We con-
sider meshes that satisfy the following regularity requirement. Given a mesh �h covering
the domain�, for each triangle/simplex of themesh, we denote the diameter of this trian-
gle by h1 and the minimal height of its vertices by h0, and let h be the maximum diameter
among all triangles of the mesh. Then we assume the mesh satisfies the assumption:

(A7) 1 ≤ h
h0

≤ θ < ∞, for any triangle/simplex, h → 0, (2.3)

where θ is some constant. Given a vertex C and its local mesh DC
h which consists of all

triangles that include C as a common vertex (see Fig. 2), the local discretization scheme
first uses the PDE to find a possible value at C that satisfies both the consistency and
the causality condition on each triangle and then picks the minimum one among all
the possible values according to the control interpretation (or the Hopf formula) of the
viscosity solution.



Luo and Zhao Res Math Sci (2016) 3:35 Page 6 of 28

Fig. 2 Example of vertex C and the local mesh DC
h

For a typical triangle/simplex �ABC with vertices A = (xA, yA), B = (xB, yB) and
C = (xC , yC ), angles  A = α,  B = β and  C = γ and sides |AB| = c, |AC| = b and
|BC| = a, we use linear Taylor expansion,

(
u(C)−u(A)

b
u(C)−u(B)

a

)
≈ P∇u(C), with P ≡

(
xC−xA

b , yC−yA
b

xC−xB
a , yC−yB

a

)
, (2.4)

to approximate ∇u(C) as

∇u(C) ≈ P−1q, with q ≡
(

u(C)−u(A)
b

u(C)−u(B)
a

)
. (2.5)

Inserting ∇u(C) into the Hamilton–Jacobi equation (1.1) at point C, we have a consistent
discretization of the equation on the triangle �ABC,

H (C,∇u(C)) = 0, (2.6)

which yields an equation for u(A), u(B) and u(C), i.e.,

Ĥ (C,q) ≡ H (C,P−1q) = 0, (2.7)

where Ĥ is the numerical Hamiltonian. Given values u(A) and u(B), we solve (2.7) for
u(C). Since∇u(C) is approximated as a linear vector function in u(C) by (2.5), the solution
corresponds to the intersection(s) of a straight line (parameterized by u(C)) with the level
set {p : H (C,p) = 0} in the phase space p = ∇u ∈ R2. SinceH is convex in p, the level set
{p : H (C,p) = 0} is also convex. There are only three scenarios (see Fig. 3):

1. There are no solutions for u(C) from (2.7), i.e., the triangle does not support any
consistent candidate for u(C), e.g., Fig. 3a.

2. There is only one solution foru(C) from (2.7), i.e., the triangle supports one consistent
candidate for u(C), e.g., Fig. 3b.

3. There are two solutions for u(C) from (2.7), i.e., the triangle supports two consistent
candidates for u(C), e.g., Fig. 3c.

For scenario 1 we choose

u(C) = min{u(A) + l(A,C), u(B) + l(B,C)},
where l(·, ·) is the optical distance between two points defined by (1.2). For scenario 2 or
3, we need to further check whether a candidate value for u(C) that is consistent with
the PDE satisfies the following causality condition: the characteristic passing through C
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a b

c

Fig. 3 A straight line determined by ∇u(C) intersects the convex slowness surface (2D): a no intersection;
b one intersection; and c two intersections. p = (p1 , p2)

is in between the two vectors −→AC and −→BC. This turns out to be a crucial condition for the
monotonicity of the scheme, which will be discussed later. For a value u(C) we compute
∇u(C) from (2.5) and check whether the vector ∇pH (C,∇u(C)) is in between −→AC and−→BC. We call u(C) a feasible candidate if it satisfies both the consistency and the causality
condition. We can use the same procedure to find feasible candidates for u(C) from other
triangles that includeC as one of their vertices. Now the question is: if there aremore than
one candidates, which one should be chosen? One can imagine that when different char-
acteristics intersect, each characteristic will provide a possible candidate. The viscosity
solution will pick only one of them. Althoughwe have used the local information provided
by the PDE, which gives us the relations among all the neighboring vertices and reduces
the possible candidates to a few, we need extra information, usually global, to determine
which one is the one for the viscosity solution. In this situation, the PDE definition of the
viscosity solution (1.4) is difficult to use. On the other hand the optimal control inter-
pretation (or the Hopf formula) (1.5) gives a convenient criterion: among all the possible
candidates of u(C) we choose the minimum one. Although the control interpretation
is global, the optimality condition can be applied easily and locally using the dynamical
programming principle [4,22]. In such a way, the upwind information determined by the
characteristic is chosen correctly.
Now we relate the above scheme to the one derived in [7] using the optimal control

formulation based on the following fact: if the Hamiltonian is convex and homogeneous
in space, i.e., H (x,p) = H (p), it can be shown that the optimal path between two points
x, y ∈ � is the straight line xy connecting these two points if xy ⊂ � [7,22]. Let

ξ (t) = (1 − t)x + ty, (2.8)
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then ξ ′(t) = y − x, and

l(x, y) =
∫ 1

0
ρ(y − x)dt, where ρ(q) = max

H (p)=0
〈p,q〉. (2.9)

It is easy to see that for a smooth and convex Hamiltonian H (p), maxH (p)=0〈p,q〉 is
obtained at a unique p̂ such that

H (p̂) = 0, and ∇pH (p̂) is parallel to q. (2.10)

One can solve the above equation for p̂ and get

ρ(q) = 〈p̂,q〉.
In our first-order approximation, we assume H (x,p) ≈ H (C,p) on the local mesh DC

h of
C. The above scheme is equivalent to finding the optimal value u(C) with the boundary
value defined as the linear interpolation of the nodal values on each line segment of ∂DC

h .
In particular, for each triangle, e.g., �ABC, if the values at B and C are compatible, i.e.,
|u(B) − u(C)| ≤ l(B,C), then scenario 2 or 3 occurs. The corresponding characteristic is
the optimal path in this triangle. However, if the values at B and C are not compatible,
the optimal path is one of the edges. This is, for example, if the value at one vertex, say
A, is much smaller than the values at other vertices, then u(A) + l(A,C) may provide
the smallest possible value for u(C) than through any other triangles or edges. This is
important when one starts from an arbitrary initial guess, i.e., for those vertices on or near
the boundary, their values are set according to the boundary conditions, while all other
vertices are assigned a large value.
By denoting the minimum value among those possible candidates satisfying the consis-

tency and causality through each triangle on DC
h by û(C), and the minimum value among

those values going though the edges connecting to C by

u(C) = min{u(A) + l(A,C), u(B) + l(B,C), . . .},
our local solver of the discretization scheme for u(C) is

u(C) = min{û(C), u(C)}. (2.11)

This scheme is consistent, monotone and upwind. The scheme is upwind because the
value of u(C) is determined by either one triangle or one edge, which is the upwind direc-
tion. The consistency and monotonicity guarantee the numerical solution will converge
to the correct viscosity solution as the grid size approaches zero [5,12]. We will show a
few important properties of this scheme in more details in Sect. 3.1.
The discretization at each vertex results in a nonlinear equation like (2.7). Since we

have a boundary value problem, all the vertices are coupled together and a large system of
nonlinear equations needs to be solved, which is the second step in designing the method.
The key idea behind the FSM is using causality enforced Gauss–Seidel iterations with
alternating orderings.
We summarize the method:

1. Initial guess:
For vertices on or near the boundary, their values are set according to the given
boundary conditions, and they are fixed during iterations. All other vertices are
assigned a large value, e.g., infinity.

2. Causality enforced Gauss–Seidel iterations with alternating orderings (sweepings):
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• Update during each iteration: at a vertex C, the updated value unew(C) at C is

unew(C) = min{uold(C), ũ(C)}, (2.12)

where uold(C) is the current value atC and ũ(C) is the value atC computed from
the current given neighboring values according to (2.7) and (2.11).

• Orderings: all vertices are ordered according to a finite number of different
orderings alternately duringGauss–Seidel iterations.Theorderings are designed
in a way to cover all the directions of the characteristics systematically and
efficiently. For example, in 2D cases, if a Cartesian grid is used, four alternating
orderings are needed and given by

(1) i = 1:I ; j = 1:J ; (2) i = I :1; j = 1:J ;
(3) i = I :1; j = J :1; (4) i = 1:I ; j = J :1.

(2.13)

If a triangulated mesh is used, we can choose the orderings designed in [34,35],
where the distances to a few fixed reference points are used to order all the
vertices.

Remark 2.2 This scheme can be formulated in different ways such as the variational
formulation [7], the Legendre-transform formulation [20] and the fast marching method
[36,37]. For more types of discretizations, please refer to [1] and references therein.

3 Properties of FSM and its convergence
In this section, we analyze the fast convergence of the FSM and the convergence of its
numerical solution to the viscosity solution as the grid size approaches zero. Firstly, we
prove themonotonicity and consistency, especially we prove the scheme has a contraction
property. Secondly, we show the convergence of the FSM and the convergence of its
numerical solution to the viscosity solution as the grid size approaches zero. We also
prove its equivalence to the discretized Hopf formula. Finally, we analyze the effect of the
contraction property that contracts the local truncation error, which also implies the fast
convergence with optimal complexity.

3.1 Monotonicity, consistency and contraction property

We show that the scheme is consistent and monotone, and especially it has a contraction
property.

Lemma 3.1 Thediscretization scheme (2.7)alongwith the causality condition is consistent
and monotone. Moreover, if u(C) depends on u(A) and u(B), i.e., u(C) is computed through
the triangle �ABC or along one of the two edges, AC or BC, then the following contraction
condition is satisfied:

0 ≤ ∂u(C)
∂u(A) ,

∂u(C)
∂u(B) ≤ 1,

∂u(C)
∂u(A) + ∂u(C)

∂u(B) = 1. (3.1)

Proof The consistency and monotonicity have been shown in [34,35] if u(C) is computed
through one triangle. Taking the minimum among all the triangles will maintain the
monotonicity. In particular if u(C) is determined from �ABC, we have

Ĥ (C,q) = H (C,P−1q) = H (C,∇u(C)) = 0,
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as in (2.7). The causality condition implies that ∇pH can be represented as a convex
combination of −→AC and −→BC, which gives

∇qĤ = (Pt )−1∇pH ≥ 0 componentwisely.

Then the monotonicity is guaranteed, i.e.,

∂Ĥ
∂u(C)

= ∂Ĥ
∂q1

1
b

+ ∂Ĥ
∂q2

1
a

≥ 0;

∂Ĥ
∂u(A)

= − ∂Ĥ
∂q1

1
b

≤ 0;

∂Ĥ
∂u(B)

= − ∂Ĥ
∂q2

1
a

≤ 0;

(3.2)

with q defined in (2.5). If we differentiate the equation Ĥ (C,q) = 0 with respect to u(A)
and u(B), we have

1
b

∂Ĥ
∂q1

(
∂u(C)
∂u(A)

− 1
)

+ 1
a

∂Ĥ
∂q2

∂u(C)
∂u(A)

= 0 ⇒ ∂u(C)
∂u(A)

=
1
b

∂Ĥ
∂q1

1
b

∂Ĥ
∂q1 + 1

a
∂Ĥ
∂q2

,

and similarly,

∂u(C)
∂u(B)

=
1
a

∂Ĥ
∂q2

1
b

∂Ĥ
∂q1 + 1

a
∂Ĥ
∂q2

.

Hence the last statement of the lemma holds. This completes the proof.
The next lemma shows a special property of the scheme if theHamilton–Jacobi equation

is of the Eikonal type,

H (x,∇u(x)) = |∇u(x)| − f (x) = 0, (3.3)

where f (x) > 0 is a positive continuous function bounded above and bounded below from
0. This allows the causality condition to be enforced by a sorting algorithm, which is the
base of a Dijkstra-type algorithm [13].

Lemma 3.2 For the Eikonal equation (3.3), if u(C) is computed through the triangle�ABC
and  C = γ < π

2 , we have

u(C) ≥ max{u(A), u(B)} + δ(γ )h, and δ(γ ) ↓ 0 as γ → π

2
,

where h is the size of the triangle and δ(γ ) > 0 is a constant depending on γ .

Proof The result comes directly from the Fermat’s principle. Without loss of generality,
we assume u(B) ≥ u(A), and θ is the angle formed by −→AC and the characteristic; then we
have (see Fig. 4),

{
u(C) = u(A) + f (C)|EC| = u(A) + f (C)b cos(θ ) ≥ u(A) + f (C)b cos(γ ),

u(C) = u(B) + f (C)|DC| = u(B) + f (C)a cos(γ − θ ) ≥ u(B) + f (C)a cos(γ ),

which implies
{
u(C) − u(A) ≥ f (C)b cos(γ ),

u(C) − u(B) ≥ f (C)a cos(γ ).

This completes the proof.
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Fig. 4 Isotropic Eikonal equation: wavefront

Remark 3.3 Tsitsiklis [41] proved the same result on a Cartesian grid.

As a consequence of the monotonicity of the scheme and (3.1), we have the following
lemma.

Lemma 3.4 The fast sweeping algorithm is monotone in the initial data, i.e., if at iteration
k, u(k) ≤ v(k) at every grid point, then at any later iteration, say n > k, u(n) ≤ v(n) at every
grid point.

With the above properties for the discretization scheme, we prove the convergence
of the iterative method and the convergence of the numerical solution to the viscosity
solution as the grid size approaches zero. Besides, we prove the equivalence between the
FSM discretization and the Hopf formula under linear approximations.

3.2 Convergence of the FSM

We first show the convergence of the FSM, which is implied by the contraction property
and monotonicity. Here we use subscript h to indicate the numerical solutions.

Theorem 3.5 Given a mesh �h with size h for the domain �, assume that the initial
guess enforces the boundary condition u(0)h (x) = g(x) for mesh points x ∈ ∂�h, and assigns
u(0)h (x) = M for some M > 0 large enough at all other mesh points, then the sequence of
solutions

{
u(n)h

}∞
n=0

computed by the FSM corresponding to Gauss–Seidel iterations will
converge to a solution uh of the discretized equation (2.7) with uh|∂�h = g. Moreover,

min
∂�

g ≤ uh ≤ M. (3.4)

Proof The causality enforcement (2.12) during iterations and the monotonicity in the
initial data from Lemma 3.4 imply

u(0)h ≥ u(1)h ≥ · · · ≥ u(n)h ≥ u(n+1)
h ≥ · · ·

at all mesh points. At any iteration n,

M ≥ u(n)h ≥ min
∂�

g, and u(n)h |∂�h = g,

where the first inequality is due to the enforcement in (2.12), the second inequality is due
to the control interpretation (or the Hopf formula) of the viscosity solution (see Lemma
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3.8 in Sect. 3.3), and the equality is the result of fixing the boundary conditions during
iterations.
Then the sequence

{
u(n)h

}∞
n=0

is monotone and bounded, which implies u(n)h (x) → uh(x)
as n → ∞ for certain function uh at any mesh point x. By Lipschitz dependence of the
numerical Hamiltonian on themesh values (3.2), uh satisfies the discretized equation (2.7)
with uh|∂�h = g . And

min
∂�

g ≤ uh ≤ M.

Remark 3.6 The large number M > 0 only needs to be larger than the maximum value
of uh(x) that has an upper bound given as the optimal cost among all the paths passing
through edges to the boundary,

ueh(x) = min
ξ eh (x,y),y∈∂�h

l(ξ eh(x, y)) + g(y)

where ξ eh(x, y) is any path through edges of themesh starting from x and ending at y ∈ ∂�h,
and l(ξ eh(x, y)) is defined by (2.9) on each edge segment.

Nowwe prove that the numerical solution of the FSMconverges to the viscosity solution
as the grid size approaches zero.

Theorem 3.7 As h → 0, the numerical solution {uh} of the FSM converges uniformly to
the viscosity solution of (1.1).

Proof The proof consists of two steps: (1) {uh} is equi-continuous and uniformly bounded
(Remark 3.6) such that by the theorem of Arzelà–Ascoli {uh} converges to some function
u satisfying (1.1) as h → 0 (e.g., see [7]); (2) u is the viscosity solution by the monotonicity
(e.g., see [5]).
We first prove {uh} is Lipschitz continuous by the following three steps: (a) for two

vertices x and y belonging to the same triangle, |uh(x) − uh(y)| ≤ K1|x − y| for some
K1 > 0 independent of the mesh size h; (b) for any two points x and y in the same triangle,
|uh(x)−uh(y)| ≤ K2|x−y| for someK2 > 0 independent of themesh size h; and (c) for any
two points x and y on the mesh, |uh(x) − uh(y)| ≤ K |x − y| for some K > 0 independent
of the mesh size h.
For (a), the convexity and coercivity of the Hamiltonian imply for any p, H (x,p) ≥

c1|p| − c2 for some positive constants c1 and c2. From (2.9), we have ρ(p) ≤ K1|p| with
K1 = c2/c1.Using the control interpretation (or theHopf formula) of the viscosity solution
(also see Lemma 3.8 in Sect. 3.3), we get

uh(x) ≤ uh(y) + ρ(x − y), uh(y) ≤ uh(x) + ρ(y − x),

hence,

|uh(x) − uh(y)| ≤ max{ρ(x − y), ρ(y − x)} ≤ K1|x − y|.
For (b), let us first assume x and y are in a triangle denoted as �ABC, x is on edge AB,

and y is on edge BC. Then

uh(x) = λuh(A) + (1 − λ)uh(B), x = λA + (1 − λ)B,

for some λ ∈ [0, 1], and

uh(y) = μuh(C) + (1 − μ)uh(B), y = μC + (1 − μ)B,
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for some μ ∈ [0, 1], following which we have

uh(x) − uh(y) = λ(uh(A) − uh(B)) + μ(uh(B) − uh(C)),

and

x − y = λ(A − B) + μ(B − C).

Hence we have

|uh(x) − uh(y)| ≤ λ|uh(A) − uh(B)|+μ|uh(B) − uh(C)| ≤ K1(λ|A − B|+μ|B − C|).
(3.5)

By denoting the internal angle at B of �ABC as θB, we have

|x − y| =
√

λ2|A − B|2 + μ2|B − C|2 − 2λμ|A − B||B − C| cos(θB).
And by the assumption (2.3), θB ≥ θ∗ > 0 for some constant θ∗ independent of h, which
implies there exists some constant K3 > 0 independent of h such that

K3|x − y| ≥ λ|A − B| + μ|B − C|. (3.6)

With (3.5) and (3.6), we have

|uh(x) − uh(y)| ≤ K2|x − y|, with K2 = K1K3.

Since uh(x) is linear on�ABC and |uh(x)−uh(y)| ≤ K2|x−y| for any two points on edges
of the triangle, it is true for any two points in the interior of the triangle.
For (c), for any two vertices x, y ∈ �h, there is a Lipschitz path ξ ∈ C0,1([0, 1],�h)

linking x and y with arc-length lξ such that

|ξ ′|∞ ≤ K�|x − y|, i.e., lξ ≤ K�|x − y|, (3.7)

for some constant K� depending on � (see [2]). Let 0 = t0 < t1 < . . . < tl = 1 be a
partition of [0, 1] such that ξ (ti) and ξ (ti+1) are points belonging to a common triangle,
which can be chosen as the intersections of ξ with the mesh �h. Then we have

|uh(x) − uh(y)| ≤
l−1∑
i=0

|uh(ξ (ti)) − uh(ξ (ti+1))| ≤ K2

l−1∑
i=0

|ξ (ti) − ξ (ti+1)|

≤ K2lξ ≤ K�K2|x − y|
where the first inequality is by the triangle inequality, the second inequality is due to
(b), the third inequality is by the fact that the total length of the polygonal path through
{ξ (ti)}li=0 is bounded by lξ , and the last inequality is due to (3.7). Let K = K�K2, we prove
that {uh} is Lipschitz continuous with a Lipschitz constant independent of h.
The boundedness of {uh} as discussed in Remark 3.6, the above proof of Lipschitz

continuity and the theorem of Arzelà–Ascoli imply that there exists a subsequence {uhk }
of {uh} such that

uhk → u, hk → 0, as k → ∞,

where u is some function satisfying (1.1).
Next we follow the arguments in [5,7] to prove that u is the viscosity solution. We first

prove u is a viscosity subsolution. Following the perturbed test function method in [16],
let φ ∈ C∞

0 (�) and x0 ∈ � such that u − φ attains a strict local maximum at x0. Then
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there is a sequence of points {Chk′ ∈ �hk′ } such that Chk′ → x0, hk ′ → 0 as k ′ → ∞, and
uhk′ − φ attains a local maximum at Chk′ . That is,

uhk′
(
Chk′

) − φ
(
Chk′

) ≥ uhk′
(
xhk′

) − φ
(
xhk′

)
,

for all xhk′ belonging to the local mesh of Chk′ (see Fig. 2). Let us focus on the upwind
triangle, say �Ahk′Bhk′Chk′ , and follow the notations in Lemma 3.1, and we have

uhk′
(
Chk′

) − uhk′
(
Ahk′

) ≥ φ
(
Chk′

) − φ
(
Ahk′

)
,

and

uhk′
(
Chk′

) − uhk′
(
Bhk′

) ≥ φ
(
Chk′

) − φ
(
Bhk′

)
.

Then we have
uhk′

(
Chk′

) − uhk′
(
Ahk′

)

b
≥ φ

(
Chk′

) − φ
(
Ahk′

)

b
,

and
uhk′

(
Chk′

) − uhk′
(
Bhk′

)

a
≥ φ

(
Chk′

) − φ
(
Bhk′

)

a
.

Following the causality and monotonicity in Lemma 3.1, we have

0 = Ĥ
(
Chk′ ,

uhk′
(
Chk′

) − uhk′
(
Ahk′

)

b
,
uhk′

(
Chk′

) − uhk′
(
Bhk′

)

a

)

≥ Ĥ
(
Chk′ ,

φ
(
Chk′

) − φ
(
Ahk′

)

b
,
φ

(
Chk′

) − φ
(
Bhk′

)

a

)
.

Consequently we have

H (x0,∇φ (x0)) ≤ 0,

following the consistency. Hence we prove u is a viscosity subsolution. Similarly we can
prove u is a viscosity supersolution. Therefore, u is the viscosity solution.
Due to the uniqueness of the viscosity solution [10,11], the above proof shows that every

subsequence of {uh} has a subsequence which converges uniformly to u. Therefore, {uh}
converges uniformly to u as h → 0. This completes the proof.

In conclusion, we show that the FSM is convergent and its numerical solution converges
to the viscosity solution as the grid size approaches zero.

3.3 Hopf formula and FSM

Here we show that, with piecewise linear approximation, the local solver based on the
Hopf formula introduced in [7,37] and the local solver, (2.7) + (2.12) + (2.11), of the FSM
are equivalent. The subscript h is omitted in this part for notational simplicity.
The Hopf formula under piecewise linear approximation on a local mesh DC

h at C (see
Fig. 2) is given as,

u(C) = inf
F∈∂DC

h

{u(F) + ρ(C − F)}

= inf{u(F) + (C − F) · p|F ∈ ∂DC
h , H (C,p)=0, ∇pH (C,p) is parallel to C−F},

(3.8)

where the boundary value u(F) is determined by linear interpolations of vertex values on
each line segment of ∂DC

h .
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Lemma 3.8 The local solver (3.8)basedon theHopf formulausingpiecewise linearapprox-
imation is equivalent to the local solver, (2.7) + (2.11) + (2.12), of the FSM.

Proof Note that the local solver (3.8) is exactly to enforce the method of characteristics
on direction −→FC and to choose the minimum one along all the paths. That is,

⎧⎪⎨
⎪⎩

dx
dt

= ∇H (p),

du
dt

= −p · ∇H (p),
⇒

{ ∇H (p)δt = C − F,

u(C) = u(F) + p · ∇H (p)δt = u(F) + (C − F) · p. (3.9)

Now we show that on each triangle �ABC, the local solver of the FSM, (2.7), (2.11)
and (2.12), can pick the minimum one as shown in the Hopf formula, therefore from all
triangles.
For each point F ∈ AB, by linear interpolations,

F ≡ F(λ) ≡ (1 − λ)A + λB,

u(F) ≡ u(λ) = (1 − λ)u(A) + λu(B),
for λ ∈ [0, 1].

Define

GC(F) ≡ G(λ) ≡ u(F) + (C − F) · p(λ)
= (1 − λ)u(A) + λu(B) + (C − ((1 − λ)A + λB)) · p(λ),

where Ĥ (p(λ)) = 0, and ∇Ĥ (p(λ)) is parallel to (C − F). Then, for λ ∈ (0, 1),

dG(λ)
dλ

= u(B) − u(A) + (C − F) · ∂p(λ)
∂λ

+ (A − B) · p(λ).

Since Ĥ (p(λ)) = 0 and ∇Ĥ (p(λ)) is parallel to (C − F), we know

∇Ĥ (p(λ)) · ∂p(λ)
∂λ

= 0 and (C − F) · ∂p(λ)
∂λ

= 0.

Then,

dG(λ)
dλ

= u(B) − u(A) + (A − B) · p(λ).
First we show that the solution from the local solver of the FSM, (2.7), (2.11) and (2.12),

denoted as {λM,p(λM)}, satisfies
dG(λM)

dλ
= 0 if λM ∈ (0, 1).

To prove this, we use the notations from the proof of Lemma 3.1. We have

dG(λM)
dλ

= 0 ⇐ u(B) − u(A) + (A − B) · p(λM) = 0

⇐ u(B) − u(A) = (B − A) · p(λM)

⇐ u(B) − u(A) = (B − A)P-1
(

u(C)−u(A)
b

u(C)−u(B)
a

)

⇐ (b, − a) ·
(

u(C)−u(A)
b

u(C)−u(B)
a

)
= (B − A)P-1

(
u(C)−u(A)

b
u(C)−u(B)

a

)

⇐ (b, − a) = (B − A)P−1 ⇐ (b, − a)P = B − A.

Therefore, {λM,p(λM)} is a critical point of G(λ).
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Next we prove that G(λ) is convex by showing
d2G(λ)
dλ2

= (A − B) · ∂p(λ)
∂λ

≥ 0.

We show that,

Ĥ (p(λ)) = 0 ⇒ ∇Ĥ (p(λ)) · ∂p(λ)
∂λ

= 0

⇒ ∂p(λ)
∂λ

D2Ĥ (p(λ))
∂p(λ)
∂λ

+ ∇Ĥ (p(λ)) · ∂2p(λ)
∂λ2

= 0

⇒ ∇Ĥ (p(λ)) · ∂2p(λ)
∂λ2

≤ 0, since Ĥ (p) is convex.

And we see that

(C − F) · ∂p(λ)
∂λ

= 0 ⇒ (A − B) · ∂p(λ)
∂λ

+ (C − F) · ∂2p(λ)
∂λ2

= 0

⇒ (A − B) · ∂p(λ)
∂λ

≥ 0,

since ∇Ĥ (p(λ)) · ∂2p(λ)
∂λ2

≤ 0 implies (C − F) · ∂2p(λ)
∂λ2

≤ 0. Hence G(λ) is convex when
λ ∈ (0, 1).
SinceG(λ) is convex in (0, 1), the global minimum ofG(λ) on [0, 1] is obtained either at

an interior point or at the two end points. If λM is one of the two end points, {λM,p(λM)}
is a global minimum point according to (2.7), (2.11) and (2.12). If λM ∈ (0, 1), since
dG(λM )

dλ
= 0, {λM,p(λM)} is a global minimum point.

In conclusion, the local solver (3.8) based on the Hopf formula and that of the FSM,
(2.7), (2.11) and (2.12), are equivalent to piecewise linear approximation. The proof is
complete.

3.4 Local truncation error and error estimate

Lemma 3.1 shows the monotonicity and consistency of the local solver of the FSM, espe-
cially the contraction property (3.1). Here we study the relation for the errors at vertices of
the same triangle. In contrast to error estimate for linear problems, the main difficulty for
error estimate for nonlinear problems is that the errors do not satisfy the same equation
as the solution.
Under the assumptions (A1)–(A7), let u be the exact viscosity solution of (1.1) and uh

be the numerical solution computed by the FSM on �h. Assume that ∇pH satisfies

0 < vmin ≤ |∇pH | ≤ vmax < ∞
on �h for both u and uh with given constants vmin and vmax. Denote the error by e(x, y) =
u(x, y) − uh(x, y) on �h. In a typical triangle �ABC ∈ �h as shown in Fig. 5a, assume
uh(C) is determined by uh(A), uh(B) and u is twice differentiable.
Denote q = (q1, q2) and qh = (qh1 , q

h
2 ) with

qh1 = uh(C) − uh(A)
b

, qh2 = uh(C) − uh(B)
a

q1 = u(C) − u(A) − γAC
b

, q2 = u(C) − u(B) − γBC
a

,

where

γAC = −1
2
ûxx(xC − xA)2 − ûxy(xC − xA)(yC − yA) − 1

2
ûyy(yC − yA)2,

γBC = −1
2
ũxx(xC − xB)2 − ũxy(xC − xB)(yC − yB) − 1

2
ũyy(yC − yB)2.
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Here ûxx, ûxy, ûyy and ũxx, ũxy, ũyy are evaluated at appropriate points on AC and BC,
respectively, and p = P−1q and ph = P−1qh with P defined in (2.4). It is clear that
|γAC| ≤ D(u)h2 and |γBC| ≤ D(u)h2, where D depends on the regularity of u. Since u is
twice differentiable everywhere, D ≤ M < ∞ for some constant M that is independent
of h. We know

Ĥ (C,q) = H (C,P−1q) = H (C,p) = 0,

Ĥ (C,qh) = H (C,P−1qh) = H (C,ph) = 0.

Let us also denote

αh
C = ∂u(C)

∂u(A)

(
uh(A), uh(B)

)
, βh

C = ∂u(C)
∂u(B)

(
uh(A), uh(B)

)
,

αC = ∂u(C)
∂u(A)

(
u(A) + γAC, u(B) + γBC

)
, βC = ∂u(C)

∂u(B)

(
u(A) + γAC, u(B) + γBC

)
,

(3.10)

where the partial derivative of u(C) with respect to values at A and B is defined as in the
proof of Lemma 3.1. Since H (C,p) is convex in the second argument, on the level set
{p : H (C,p) = 0} atC as shown in Fig. 5b, there is only one point on the level set, denoted
as pμ, such that ∇pH (C,pμ) is perpendicular to the line segment connecting p and ph,
i.e.,

∇pH (C,pμ) · (p − ph) = 0, (3.11)

Fig. 5 Upwind discretization: a upwind direction and simplex, and Fermat’s principle; b zero level set of H
with normal directions corresponding to both exact and numerical solutions; and c Fermat’s principle
corresponding to both exact and numerical solutions
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and pμ must be on the curve between p and ph. Then we know ∇pH (C,pμ) is in between
∇pH (C,p) and ∇pH (C,ph). Equation (3.11) implies,

((Pt )−1(∇pH (C,pμ))) · (q − qh) = 0,

⇒ ∇qĤ (C,qμ) · (q − qh) = 0,

⇒ Ĥq1 (C,qμ)
b

(e(C) − e(A) − γAC) + Ĥq2 (C,qμ)
a

(e(C) − e(B) − γBC) = 0,

⇒ α
μ
C(e(C) − e(A) − γAC) + β

μ
C (e(C) − e(B) − γBC) = 0,

where qμ = Ppμ, and α
μ
C and β

μ
C are defined at qμ as in the proof of Lemma 3.1. We

rewrite the above equation as

α
μ
C(e(C) − e(A)) + β

μ
C (e(C) − e(B)) = γ

μ
C , (3.12)

with

γ
μ
C = (αμ

CγAC + β
μ
CγBC). (3.13)

If the true characteristic∇pH (C,p) throughC is inside the triangle aswell, as demonstrated
in Fig. 5c, from Lemma 3.1, we know

0 ≤ α
μ
C , β

μ
C ≤ 1, α

μ
C + β

μ
C = 1,

0 ≤ αh
C, βh

C ≤ 1, αh
C + βh

C = 1,

0 ≤ αC, βC ≤ 1, αC + βC = 1,

α
μ
C is betweenαh

C andαC, and β
μ
C is between βh

C and βC. Equation (3.12) can also bewritten
as

e(C) = α
μ
Ce(A) + β

μ
Ce(B) + γ

μ
C . (3.14)

Moreover, in addition to the above error relation, we can get a relation among the function
values. With Fermat’s principle (see Fig. 5a, c), we have

u(C) = αC (u(A) + γAC) + βC (u(B) + γBC) + |CF|
vFC

,

uh(C) = αh
Cuh(A) + βh

Cuh(B) + |CFh|
vhFC

,
(3.15)

for F = αCA + βCB and Fh = αh
CA + βh

CB, where vFC = |∇pH (C,∇u(C))| (vhFC =
|∇pH (C,∇uh(C))|, resp.) is the group velocity along the direction F → C (Fh → C, resp.).
Then we have

u(C) − u(B) = αC (u(A) − u(B)) + (αCγAC + βCγBC) + |CF|
vFC

,

u(C) − u(A) = βC (u(B) − u(A)) + (αCγAC + βCγBC) + |CF|
vFC

,
(3.16)

and

uh(C) − uh(B) = αh
C (uh(A) − uh(B)) + |CFh|

vhFC
,

uh(C) − uh(A) = βh
C (uh(B) − uh(A)) + |CFh|

vhFC
.

(3.17)

Due to the Lipschitz continuity of u and uh, there exists a constant 0 < L < ∞ such
that
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|u(x) − u(y)| ≤ L|x − y|, |uh(x) − uh(y)| ≤ L|x − y|,
for any x, y ∈ �h.
Define

smin ≡ min
{

1
4vmaxLθ

, 0.25
}
,

where θ is given in (A7). For h sufficiently small, from (3.16) and (3.17) and the Lipschitz
continuity, we have:

if αC < smin, u(C) − u(B) ≥ h0
2vmax

;

if βC < smin, u(C) − u(A) ≥ h0
2vmax

;

if αh
C < smin, uh(C) − uh(B) ≥ h0

2vmax
;

if βh
C < smin, uh(C) − uh(A) ≥ h0

2vmax
.

(3.18)

The above analysis shows that in a triangle in which the causality of the true solution
and the causality of the numerical solution are consistent, the global error has a stable
accumulation of local truncation error as shown in (3.14). Moreover, this stable accu-
mulation of local truncation error can be traced back to the boundary following a strict
descent order of the solution in O(1/h0) steps as shown in (3.18).

3.5 Convergence study through contraction property

Using the contraction property of monotone upwind schemes we study error reduction
during Gauss–Seidel iterations with proper orderings. The convergence mechanism is
different from that, i.e. relaxation, for elliptic problems. We analyze and explain a few
interesting phenomena as the mesh is refined for hyperbolic problems using examples
with different boundary conditions. We start by using the following linear convection
equation as an illustration. For the problem

{
aux + buy = 0, (x, y) ∈ [0, 1] × [0, 1],

appropriate boundary conditions,
(3.19)

where a, b are constants and a > b > 0, the first-order monotone upwind scheme is

uj,i = a
a + b

uj,i−1 + b
a + b

uj−1,i . (3.20)

Define enj,i = unj,i − uj,i as the error at the nth iteration. With the right ordering (i.e.,
i = 1 : I, j = 1 : J ) for Gauss–Seidel iterations, the update at every point gives the
following recursive relation in the error,

enj,i = a
a + b

enj,i−1 + b
a + b

enj−1,i . (3.21)

We analyze three convergence scenarios (see Fig. 6).

Case 1: The information propagates directly from the inflow boundary. Then the conver-
gence can be obtained in a finite number of iterations independent of the grid size
for Gauss–Seidel iterations that use upwind schemes with proper orderings, e.g.,
the fast sweeping method. For this example, one sweep is enough if the boundary
condition is given on the left and bottom sides.
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Fig. 6 Linear problem

Case 2: There is circular dependence, e.g., periodic boundary conditions.

• Partial circular dependence, e.g., periodic boundary condition in x and given
boundary condition on the bottom. This is equivalent to solving the PDE on
a cylinder with boundary conditions given on the bottom. The characteristics
wind from the bottom to the top of the cylinder. For this example, grid points
on each horizontal line are coupled. Update at each grid point on the first line
above the bottom side has the following error contraction from (3.21),

en1,i = a
a + b

en1,i−1.

In each sweeping with right orderings, the error at the first line is contracted by
a factor of α

1
h after one iteration with α = a

a+b < 1. Very few iterations, say n,

are needed to get
(
α

1
h
)n

� hp for any p. Moreover, the smaller the h, the faster
the convergence. The convergence due to the contraction follows similarly for
other horizontal grid lines.

• Full circular dependence, e.g., periodic boundary conditions in both x and y
with the value fixed at one point. This is equivalent to solving the PDE on
a torus. The characteristics can be infinitely long or closed depending on a
and b. If b

a is rational, each characteristic forms a closed curve. These closed
curves are parallel to each other and do not have a starting point from which
the information originates, except the characteristic that passes through the
point with fixed value to make the solution unique. For the discrete system, all
grid points are coupled together due to the circular dependence. In this case, the
characteristic that passes through the given point will converge first and quickly.
The solution has to compromise among the characteristics as well as propagate
along the characteristics gradually due to the relaxation from the monotone
scheme (3.20), i.e., the value at a grid point is the average of its neighbors’ values.
When the grid is refined by half, there are twice as many characteristics as
before involved. Hence the number of iterations is almost doubled as shown by
numerical tests in Sect. 4. If b

a is irrational, the characteristic is infinitely long
and covers the whole torus. Again all grid points are coupled together and the
convergence is due to the relaxation from the scheme. When the grid is refined
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by half, the characteristic is twice as long as before with respect to the grid size.
So the number of iterations is also doubled.

Remark 3.9 The above discussion for the convergence of iterative methods for linear
convection problems provides some insight into nonlinear problems (Lemma 3.1), except
for a few key differences:

1. The ordering, the upwind finite difference scheme and the contraction rate are
unknown á priori (all depending on the solution). That is why sweeping in four
directions alternately is needed.

2. Nonlinear stability: for each point, due to the update with causality enforcement,
e.g., accepting the smallest/best value propagated to this point so far, incorrect value
at this point, no matter how large the error is, can be corrected when the correct
information arrives during a sweeping with the right orderings; hence decay of the
error may be better than geometric during iterations.

3. For the full periodic case, the characteristics behavior is much more complicated.
The convergence depends on ergodicity of the characteristics on the torus. So when
the mesh is refined, more iterations may or may not be needed for convergence as
indicated by the numerical examples in Sect. 4.

Numerical examples are shown in the next section to verify the above study.

4 Numerical examples
In this section, we first use a few examples to show the general error estimate and the
fast convergence. Then we use various tests on the linear convection equation as well
as nonlinear Hamilton–Jacobi equations to demonstrate the convergence in different
scenarios as discussed in Sect. 3.5. We record the number of iterations. One iteration
means one sweep over all grid points.
Example 1: Eikonal equation. In this example, we consider the isotropic Eikonal equa-

tion,

|∇u| = s,

where s is the slowness field and different boundary conditions are considered. The tests
are performed on a rectangular mesh.

1. We consider s ≡ 1, and the domain is [0, 1]2. We first compute the distance to a
source point. The boundary condition is imposed at the source point. The solution
is not differentiable at the source, i.e., there has a source singularity. Table 1 shows
the results. The accuracy is O(|h log h|) due to the source singularity, which verifies
the error estimate in [43]. Then we compute the distance to two disjoint circles of
radius 0.1 and 0.15, respectively. Table 2 shows the results. We record maximum
errors both inside and outside the circles. Although there are shocks both inside and
outside the circles, they are different. Inside the circles, the shocks are located at the
centers of the circles. All characteristics are converging to the centers. The second
derivatives blow up like 1

d , where d is the distance to the centers. So the accumulation
of local truncation error behaves in the same way as near a source singularity, which
gives an error estimate of the form O(|h log h|). Outside the circles, the shock is a
smooth curve (at the equal distance locations). As long as the shock is a smooth
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Table 1 Example 1: Case 1 with distance to one source point

Source point = (0.5, 0.5), domain = [0, 1]2

Mesh 21 × 21 41 × 41 81 × 81 161 × 161 321 × 321

|u − uh|∞ 4.11E−2 2.56E−2 1.55E−2 9.19E−3 5.33E−3

Convergence order – 0.6804 0.7221 0.7572 0.7865
|u−uh|∞|h log h| 0.2741 0.2778 0.2835 0.2897 0.2955

#Iter 5 5 5 5 5

Table 2 Example 1: Case 1 with distance to two circles

Circle 1 with center (0.2, 0.2) and radius 0.1

Circle 2 with center (0.8, 0.8) and radius 0.15

Domain = [0, 1]2

Mesh 21 × 21 41 × 41 81 × 81 161 × 161 321 × 321

|u − uh|∞ outside circles 1.76E−2 1.09E−2 5.66E−3 2.95E−3 1.50E−3

Convergence order – 0.6997 0.9392 0.9432 0.9747

|u − uh|∞ inside circles 2.03E−2 1.33E−2 8.33E−3 5.08E−3 3.03E−3

Convergence order – 0.6059 0.6807 0.7141 0.7442
|u−uh|∞|h log h| inside circles 0.1356 0.1447 0.1520 0.1600 0.1681

#Iter 8 8 8 8 8

curve without end points, the second derivatives are uniformly bounded except at
the shock. So the local truncation error is still O(h2) all the way up to the shock. At
the shock, the local truncation error isO(h). So the global error is stillO(h), which is
verified by the numerical tests.

2. We consider s(x, y) = 0.5 − (y − 0.25) and the domain is [0, 0.5]2. For point-source
conditions, the exact solution can be derived as in [17]. Table 3 shows the results
with one point source. When the boundary condition is enforced only at the source,
the maximum error is O(h log h) since the solution has a source singularity. When
the exact solution is enforced on a disk of radius 0.1 centered at the source and the
computation is performed outside the disk, then the maximum error is O(h) since
the solution is smooth outside the disk. Table 4 shows the results with two source
points and with the same treatment at the sources. Similar accuracy is observed.

Example 2: Linear problem (3.19) In this example, we show convergence tests corre-
sponding to the three scenarios of boundary conditions discussed in Sect. 3.5. All the

Table 3 Example 1: Case 2 with one source point

Boundary condition assigned at the source

Mesh 51 × 51 101 × 101 201 × 201 4011 × 401 801 × 801

|u − uh|∞ 3.06E−2 1.75E−2 9.87E−3 5.52E−3 3.06E−3

Convergence order – 0.8062 0.8262 0.8384 0.8511
|u−uh|∞|h log h| 0.3911 0.3800 0.3725 0.3685 0.3662

#Iter 8 8 8 8 8

Boundary condition assigned at the disk of radius 0.1 centered at the source

Mesh 51 × 51 101 × 101 201 × 201 4011 × 401 801 × 801

|u − uh|∞ 1.73E−2 8.66E−3 4.32E−3 2.16E−3 1.08E−3

Convergence order – 0.9983 1.0033 1.0000 1.0000

#Iter 8 8 8 8 8

Source point= (0.25, 0.25). Domain = [0, 0.5]2
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Table 4 Example 1: Case 2 with two source points

Boundary condition assigned at the sources

Mesh 51 × 51 101 × 101 201 × 201 4011 × 401 801 × 801

|u − uh|∞ 2.95E−2 1.74E−2 1.02E−2 5.83E−3 3.30E−3

Convergence order – 0.7616 0.7705 0.8070 0.8210
|u−uh|∞|h log h| 0.3770 0.3778 0.3850 0.3892 0.3949

#Iter 8 8 8 8 8

Boundary condition assigned at the disk of radius 0.1 centered at the sources

Mesh 51 × 51 101 × 101 201 × 201 4011 × 401 801 × 801

|u − uh|∞ 1.55E−2 7.72E−3 3.84E−3 1.92E−3 9.58E−4

Convergence order – 1.0056 1.0075 1.0000 1.0030

#Iter 8 8 8 8 8

Source points: (0.12, 0.12) and (0.37, 0.37). Domain = [0, 0.5]2

Table 5 Example 2: Linear problemwith different boundary conditions (B.C.)

B.C. u(x, 0) = sin(2πx), u(0, y) = sin(−2π a
b y), domain = [0, 1]2

# iter a = 1, b = 2 a = 2, b = 1 a = 4, b = 1 a = 8, b = 1

h = 1/20 2 2 2 2

h = 1/40 2 2 2 2

h = 1/80 2 2 2 2

h = 1/160 2 2 2 2

B.C. u(x, 0) = sin(2πx), periodic in x , domain = [0, 1]2

# iter a = 1, b = 2 a = 2, b = 1 a = 4, b = 1 a = 8, b = 1

h = 1/20 6 13 23 46

h = 1/40 5 9 16 32

h = 1/80 4 7 12 23

h = 1/160 4 6 10 18

B.C. periodic in both x and y , u(0, 0) = 0, a = 1, b = 2, domain = [0, 1]2

Mesh h = 1/20 h = 1/40 h = 1/80 h = 1/160

# iter 923 1917 3908 7880

B.C. periodic in both x and y , u(0, 0) = 0, a = e, b = π , domain = [0, 1]2

Mesh h = 1/20 h = 1/40 h = 1/80 h = 1/160

# iter 968 1949 3829 7527

iterations use one ordering i = 1:I, j = 1:J since all the characteristics go upright from
the boundary with a > 0, b > 0. Table 5 shows the results. It shows that for explicit inflow
boundary conditions, one iteration is needed (the second iteration is for the check of con-
vergence). For partial periodic boundary conditions, the number of iterations depends on
the contraction rate that depends on a and b. The number of iterations decreases as the
mesh is refined. For full periodic boundary conditions, the number of iterations increases
almost linearly as the mesh is refined.
Example 3: Anisotropic Eikonal equation In this example, we consider the anisotropic

Eikonal equation given by
√

|∇uMθ∇ut | = 1,

where Mθ =
(
cos θ − sin θ

sin θ cos θ

)
M0

(
cos θ − sin θ

sin θ cos θ

)t

with given M0. The domain is

[0, 1]2. The tests are performed on a rectangular mesh. We choose M0 as one of the
following two forms:
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(a)

M0 =
(
1/4 0
0 1

)
,

without spatial variation.
(b)

M0 =
(
1/4(1 − 0.5 sin πx sin πy) 0

0 1 + 0.5 sin πx sin πy

)
,

with spatial variation.

We test the following cases with different boundary conditions and show both similar-
ities and differences (see Remark 3.9) between linear and nonlinear problems.

1. With Dirichlet boundary condition

u(x, 0) = (α + 1) − α cos(πx).

For this case, the characteristics from the boundary are oriented in one direction,
either from lower left to upper right or from lower right to upper left, which can be
pre-determined. Hence one ordering is needed for convergence. Table 6 shows the
ordering and the test results.

2. With Dirichlet boundary condition

u(x, 0) = (α + 1) − α cos(2πx),

and partial periodic boundary condition: periodic in x. For this case, the characteris-
tics from the boundary are oriented in two directions: from lower left to upper right
and from lower right to upper left. Hence two orderings are needed for convergence.
Table 7 shows the orderings and the test results. The number of iterations does not
increase as the mesh is refined.

3. With point-source condition

u(1/2, 1/2) = 0.

Table 6 Example 3: Case 1

# iter θ = 0 θ = 5π/6 θ = 2π/3 θ = π/2 θ = π/3 θ = π/6
M0 without spatial variation, α = 0.15, tolerance = 10−12

h = 1/320 2 2 2 2 2 2

h = 1/640 2 2 2 2 2 2

h = 1/1280 2 2 2 2 2 2

M0 with spatial variation, α = 0.15, tolerance = 10−12

h = 1/320 2 2 2 2 2 2

h = 1/640 2 2 2 2 2 2

h = 1/1280 2 2 2 2 2 2

For θ = 0, 5π/6, 2π/3,π/2, only one ordering (i = 1:I, j = 1:J ) is used (the second iteration is due to the check of
convergence). For θ = π/3,π/6, only one ordering (i = I :1, j = 1:J ) is used (the second iteration is due to the check of
convergence)
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Table 7 Example 3: Case 2

# iter θ = 0 θ = 5π/6 θ = 2π/3 θ = π/2 θ = π/3 θ = π/6
M0 without spatial variation, α = 0.15, tolerance = 10−12

h = 1/320 3 6 6 3 7 7

h = 1/640 3 6 6 3 7 7

h = 1/1280 3 6 6 3 7 7

M0 with spatial variation, α = 0.15, tolerance = 10−12

h = 1/320 5 6 8 3 7 7

h = 1/640 5 6 8 3 7 7

h = 1/1280 5 6 8 3 7 7

Two orderings (i = 1:I, j = 1:J ; i = I :1, j = 1:J ) are used

For this case, the characteristics from the source point are oriented in all directions.
Hence four orderings (i = 1:I, j = 1:J ; i = 1:I, j = J :1; i = I :1, j = 1:J ; i = I :1, j =
J :1) are needed for convergence. Table 8 shows the orderings and the test results.
The number of iterations does not increase as the mesh is refined.

4. With partial periodic boundary condition: u is periodic in x and

u(1/2, 1/2) = 0.

For this case, the characteristics from the source point are oriented in all directions.
Hence four orderings (i = 1:I, j = 1:J ; i = 1:I, j = J :1; i = I :1, j = 1:J ; i = I :1, j =
J :1) are needed for convergence. Table 9 shows the orderings and the test results.
The number of iterations does not increase as the mesh is refined.

5. With full partial periodic boundary condition: u is periodic in x and y, and

u(1/2, 1/2) = 0.

For this case, the characteristics from the source point are oriented in all directions.
Hence four orderings (i = 1:I, j = 1:J ; i = 1:I, j = J :1; i = I :1, j = 1:J ; i = I :1, j =
J :1) are needed for convergence. Table 10 shows the orderings and the test results.
The number of iterations does not increase as the mesh is refined, which is different
from the linear case of Example 3 in that the characteristics originated at the source
propagate in all directions.

Example 5: A time-dependent problem In this example, we use the fast sweepingmethod
as a fully implicit scheme for solving a time-dependent problem as follows,

Table 8 Example 3: Case 3

# iter θ = 0 θ = 5π/6 θ = 2π/3 θ = π/2 θ = π/3 θ = π/6
M0 without spatial variation, α = 0.15, tolerance = 10−12

h = 1/320 5 5 5 5 5 5

h = 1/640 5 5 5 5 5 5

h = 1/1280 5 5 5 5 5 5

M0 with spatial variation, α = 0.15, tolerance = 10−12

h = 1/320 7 8 8 8 6 6

h = 1/640 7 8 8 8 6 6

h = 1/1280 7 8 8 8 6 6

Four orderings (i = 1:I, j = 1:J ; i = 1:I, j = J :1; i = I :1, j = 1:J ; i = I :1, j = J :1) are used for convergence
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Table 9 Example 3: Case 4

# iter θ = 0 θ = 5π/6 θ = 2π/3 θ = π/2 θ = π/3 θ = π/6
M0 without spatial variation, α = 0.15, tolerance = 10−12

h = 1/320 5 24 23 6 21 23

h = 1/640 5 24 23 6 21 23

h = 1/1280 5 24 23 6 21 22

M0 with spatial variation, α = 0.15, tolerance = 10−12

h = 1/320 8 28 21 8 20 26

h = 1/640 8 28 21 8 20 26

h = 1/1280 8 28 21 8 20 26

Four orderings (i = 1:I, j = 1:J ; i = 1:I, j = J :1; i = I :1, j = 1:J ; i = I :1, j = J :1) are used for convergence

Table 10 Example 3: Case 5

# iter θ = 0 θ = 5π/6 θ = 2π/3 θ = π/2 θ = π/3 θ = π/6
M0 without spatial variation, α = 0.15, tolerance = 10−12

h = 1/320 5 25 31 5 30 23

h = 1/640 7 25 31 6 30 24

h = 1/1280 7 24 30 7 29 23

M0 with spatial variation, α = 0.15, tolerance = 10−12

h = 1/320 8 27 21 8 20 25

h = 1/640 8 27 21 9 20 25

h = 1/1280 9 27 21 10 20 24

Four orderings (i = 1:I, j = 1:J ; i = 1:I, j = J :1; i = I :1, j = 1:J ; i = I :1, j = J :1) are used for convergence

ut + u2x + u2y = 0, (x, y, t) ∈ [−1, 1]2 × (0, 1],

u(x, y, 0) =
√
(x2 + y2) − 0.2, (x, y) ∈ [−1, 1]2,

u(−1, y, t) = u(1, y, t), u(x,−1, t) = u(x, 1, t).

The solution is u(x, y, t) = √
(x2 + y2) − 0.2 − t for t ∈ [0, 1]. From time tn to tn+1, we

treat the time-dependent problem as a stationary problemwhose characteristic has a fixed
direction in time (see Remark 2.1). The implicit scheme is unconditionally stable. At each
time step, we use the FSM to solve the problem. The test is performed on a rectangular
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Fig. 7 Example 5. Zero level set {(x, y) : uh(x, y, t) = 0}. From left to right : t = 0, 0.2, 0.4, 0.6. TopMesh
101 × 101; Bottommesh 201 × 201. δt = 0.02
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mesh. And the iterations use four orderings, i = 1:I, j = 1:J ; i = 1:I, j = J :1; i = I :1, j =
1:J ; and i = I :1, j = J :1, alternately. The time stepwe choose is δt = 0.02 or δt = 0.04.We
test the example on twomeshes: 101×101 and 201×201. The time step is large such that
the CFL condition is violated for bothmeshes and an explicit scheme will break down. On
bothmeshes, the number of iterations is 6 at each time step for the implicit scheme. Figure
7 shows the zero level set {(x, y) : uh(x, y, t) = 0} with the numerical solutions computed
by the FSM. A test on solving the same problem with the same setup by a forward Euler
schemewith either the Lax–Friedrichs numerical Hamiltonian or theGodunov numerical
Hamiltonian [33] is also performed. The CFL condition is not satisfied, and the scheme is
unstable.

5 Conclusion
We investigate the convergence of iterative methods for hyperbolic problems such as
the boundary value problems of static convex Hamilton–Jacobi equations using the fast
sweeping method as an example. We prove the convergence and show that the contrac-
tion property of monotone upwind schemes combined with Gauss–Seidel iterations and
proper orderings can provide fast convergence for such hyperbolic problems. The mech-
anism is different from that for elliptic problems and may render different behavior when
the mesh is refined. The study is verified by various numerical examples.
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