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Abstract

We explore relations between Higgs bundles that result from isogenies between
low-dimensional Lie groups, with special attention to the spectral data for the Higgs
bundles. We focus on isogenies onto SO(4,C) and SO(6,C) and their split real forms.
Using fiber products of spectral curves, we obtain directly the desingularizations of the
(necessarily singular) spectral curves associated with orthogonal Higgs bundles. In the
case of SO(6,C), our construction can be interpreted as a new description of Recillas’
trigonal construction.

1 Background
Exceptional isomorphisms between low-rank Lie algebras, and the corresponding iso-
genies between Lie groups, have been a source of fascination since first catalogued by
Cartan a century ago ([6, pp. 352–355], see also [12, p. 519]). In this paper, we explore the
implications for Higgs bundles of the isogenies between Lie groups of rank 2 and 3:

I2 : SL(2,C) × SL(2,C) → SO(4,C); (1)

I3 : SL(4,C) → SO(6,C); (2)

as well as their restrictions to the split real forms of these complex semi-simple groups.
Higgs bundles over a compactRiemann surfaceΣ of genus g ≥ 2were introduced in [13]

and in amore general setting in [28]. For any Lie groupG, aG-Higgs bundle onΣ is a pair
(P,Φ) where P is a holomorphic principal bundle andΦ (the Higgs field) is a holomorphic
section of an associated bundle twisted byK , the canonical bundle of the surfaceΣ . IfG is
a complex group, then P is a principalG-bundle, but ifG is a real form of a complex group,
then the structure group of P is the complexification of a maximal compact subgroup of
G. In this paper, we consider only matrix groups, in particularG = SL(n,C) or SO(2n,C),
and real forms of these groups. In these cases (described in Sect. 2), the Higgs bundles can
be seen as holomorphic vector bundles with extra structure, where the precise nature of
the extra structure is determined by the group G, and the Higgs fields are appropriately
constrained sections of the endomorphism bundle twisted by K .
The defining data forG-Higgs bundle serve to construct G-local systems on Σ . Indeed,

this is the crux of non-abelian Hodge theory (NAHT), whereby the moduli space of
semistable G-Higgs bundles on Σ is identified with the moduli space of reductive repre-
sentations of π1(Σ) into G. The implications of any group homomorphism h : G1 → G2
are clear for surface group representations, since composition with h induces a map from
representations intoG1 to representations intoG2. It follows fromNAHT that theremust
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be a corresponding induced map between the Higgs bundle moduli spaces, but the tran-
scendental nature of the NAHT correspondence means that the clarity of the induced
map on representations does not transfer so easily to the induced map on Higgs bundles.
Our goal is to understand this map in the cases where the group homomorphism is given
by the above isogenies.
In [14], Hitchin showed how the defining data of Higgs bundles can be re-encoded into

a so-called spectral data set consisting of a ramified covering S of Σ and a bundle on S.
For the groups of interest in this paper, the spectral bundles are line bundles and hence
lie in Jacobians of the spectral curve. In fact, they must lie in Prym varieties determined
by the S and Σ . These abelian varieties form the generic fibers in a fibration of the Higgs
bundle moduli space over a half-dimensional linear space.
In terms of vector bundles, the effect of some low-rank isogenies has been studied in

[1]. In this paper, we expand those result in the case of (2) through the use of Hodge
star-type operators. For both (1) and (2), we give a novel description of the spectral data
correspondences, sheddingnew light on themapsbetweenHiggs bundles and theirmoduli
spaces.Our key tool for understanding the inducedmaps on the spectral data for theHiggs
bundles is a fiber product construction, at the heart of which is the following diagram:

L1

��

L = p∗
1L1 ⊗ p∗

2L2

��

L2

��
S1

π1
��������������� S1 ×Σ S2

p1��

π

��

p2 �� S2

π2
���������������

Σ

(3)

In our applications, the curves Si and line bundlesLi come from spectral data for SL(2,C)
or SL(4,C)-Higgs bundles, while the fiber product S1×Σ S2 and the line bundleL yield the
spectral data sets for the SO(4,C) or SO(6,C)-Higgs bundles. This construction clearly has
wider applicability than the cases inspired by the isogenies (1) and (2). One notable feature
of the construction is that it generically yields smooth curves, even though curves defined
by spectral data for SO(2n,C)-Higgs bundles are necessarily singular. Indeed, the curves
provided by our construction are the normalizations of the singular SO(2n,C)-spectral
curves.
As seen in [1], the isogeny I2 induces a map on SL(2,C)-Higgs bundles (Ei,Φi) given by

I2((E1,Φ1), (E2,Φ2)) = [E1 ⊗ E2,Φ1 ⊗ 1 + 1 ⊗ Φ2] . (4)

where E1 ⊗ E2 has orthogonal structure determined by the symplectic structures on Ei.
Hence, in the case of the rank 2 isogeny I2, on the generic fibers of the Hitchin fibration
for the moduli space MSL(2,C)×SL(2,C), our main result is the following (see Propositions
16, 17, 35):

Theorem 1 Let Si be the spectral curve of the SL(2,C)-Higgs bundles (Ei,Φi), and
Li ∈ Prym(Si,Σ) the corresponding spectral line bundle. Then, the spectral data for the the
image I2((E1,Φ1), (E2,Φ2)) are given by (Ŝ4 ,L) where

• Ŝ4 := S1 ×Σ S2 is a smooth ramified fourfold cover, and
• L := p∗

1(L1) ⊗ p∗
2(L2) where pi : S1 ×Σ S2 → Si are the projection maps.
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The map I2 is a 22g fold-coverings onto its images. Restricted to SL(2,R) × SL(2,R)-Higgs
bundles, the image lies only in components ofMSO0(2,2) in which the Higgs bundles satisfy
a topological constraint.

In the case of the rank 3 isogeny, as seen in [1], the map I3 induces a morphism on
SL(4,C)-Higgs bundles (E,Φ) given by

I3(E,Φ) = [
Λ2E,Φ ⊗ 1 + 1 ⊗ Φ

]
. (5)

where Λ2E has orthogonal structure determined by the isomorphism
Λ2E∗ ⊗ det(E) � Λ2E.
This case differs from the previous one in two notable ways. The first is seen in the

restriction of (5) to SL(4,R)-Higgs bundles, where the map reflects the fact that SO(4) is
not a simple Lie group. This leads to a decomposition of the bundleΛ2E that is analogous
to the decomposition of 2-forms on a Riemannian 4-manifold into self-dual and anti-self-
dual forms.
The other new wrinkle is in the induced map on spectral data where the fiber product

in diagram (3) is now taken on two copies of the same covering, say S. The resulting curve
can never be smooth since it has a diagonally embedded copy of S, which intersects other
components at the ramification points for the covering S → Σ . It turns out though that
this component plays no part in the map induced by I3. We thus modify our construction
by removing the diagonally embedded component in the fiber product of an SL(4,C)-
spectral data set with itself (see Sect. 6, Proposition 19, 27, 41 for details):

Theorem 2 Restricted to Higgs bundles for the split real form SL(4,R) ⊂ SL(4,C), the
induced map yields

I3(E,Φ) =
[

Λ2+E ⊕ Λ2−E,
(

0 α

−αT 0

)]

,

where Λ2±E are the ±1-eigenbundles for an involution ∗ : Λ2E → Λ2E determined by an
orthogonal structure on E, with canonically determined orthogonal structures, and with Φ

and α related as in Eq. (32). Over the smooth loci in the Hitchin base, given the spectral
data (S, L) corresponding to (E,Φ), the spectral data corresponding to the SO(6,C)-Higgs
bundle I3(E,Φ) are given by (Ŝ6,I3(L)), where
• Ŝ6 is the symmetrization of the non-diagonal component in the fiber product S ×Σ S;
• I3(L) is a canonical twist of the line bundle generated by local sections of
L = p∗

1(L) ⊗ p∗
2(L) that are anti-invariant with respect to the symmetry of S ×Σ S.

ThemapI3 is a22g fold-coverings onto its images. Restricted to points representingSL(4,R)-
Higgs bundles, the image lies only in components of MSO0(3,3) in which the Higgs bundles
satisfy a topological constraint.

While the two cases covered by (1) and (2) are by no means the only interesting ones,
they have some unique features and serve to illustrate phenomena that we expect to apply
in greater generality. The group SL(2,R) has a distinguished place in any discussion of sur-
face group representations because of its relation tohyperbolic structures andTeichmuller
space, while the group SO0(2, 2) is the isometry group of the anti-de Sitter space AdS3.
Moreover, both groups are split real forms of complex semisimple groups (viz. SL(2,C)
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and SO(4,C), respectively) and also groups of Hermitian type. The only other groups
that lie in both classes are the symplectic groups Sp(2n,R). For both classes of real Lie
group, the representation variety or, equivalently, themoduli space of Higgs bundles has a
distinguished set of components. In the case of the split real forms, the distinguished com-
ponents are called “higher Teichmuller components” because they generalize the copies
of Teichmuller space which occur in the case of SL(2,R). For the groups of Hermitian
type, theG-Higgs bundles (or the surface group representations) carry a discrete invariant
known as a Toledo invariant. This invariant satisfies a so-calledMilnor–Wood bound, and
the distinguished components are those in which the invariant has maximal value.
In the two cases considered in this article, the inducedmaps on the spectral curves yield

a pairing between two different ramified coverings of a common base curve, together
with isogenies between the associated Prym varieties. The spectral curves in each pair
are, moreover, determined by different representations of the same group. This kind of
situation, with pairings between coverings of a given curve and isogenies between the
associated Prym varieties, has been considered in the context of integrable systems and
also by Donagi (see, e.g., [8,9]). As noted in [8, Example 3], the correspondence we see for
the pair SL(4,C) and SO(6,C), namely between a fourfold covering and a sixfold covering
with a fixed-point-free involution, is essentially the correspondence described by Recillas
in his trigonal construction [22] and generalized by Donagi in [9]. The novelty in our
version of the correspondence—and resulting relation between Prym varieties—lies in
the use of fiber products to get explicit descriptions of the maps.
The first part of this paper covers background material on Higgs bundles (Sect. 2),

spectral curves (Sect. 3) and the isogenies (Sect. 4). In Sect. 5, we describe the maps
induced by the isogeny I2 on both the complex group SL(2,C) × SL(2,C) and its split
real form, and in Sect. 6, we do the same for I3. We include a discussion of the relation
between our construction on spectral data and the trigonal construction of Recillas and
show how the map we obtain between Prym varieties can be interpreted in terms of
a correspondence between curves. We conclude, in Sect. 7, with a discussion of maps
between moduli spaces.

2 Higgs bundles and the Hitchin fibration
Let Σ be a compact Riemann surface of genus g ≥ 2, and π : K := T ∗Σ → Σ its
canonical bundle. ForGc a complex reductive Lie group with Lie algebra gc, from [14] one
has the following definition:

Definition 3 AGc-Higgs bundle onΣ is given by a pair (P,Φ) for P a principalGc-bundle
on Σ , and Φ a holomorphic section of AdP ⊗ K , for AdP = P ×Ad gc the adjoint bundle
associated with P.

ForGL(n,C) one recovers classical Higgs bundles as introduced in [13]. Formatrix groups,
thedefinition canbe reformulated in termsof vectorbundles rather thanprincipal bundles.
In particular,

• An SL(n,C)-Higgs bundle is a pair (E,Φ) where E is a rank n holomorphic bundle on
Σ withfixed trivial determinant, andΦ a traceless holomorphic section of End(E)⊗K ;

• An SO(n,C)-Higgs bundle is a pair (E,Φ) where E is a rank n holomorphic bun-
dle on Σ with an orthogonal structure Q and a compatible trivialization of its
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determinant bundle,1 and Φ is a holomorphic section of End(E) ⊗ K satisfying
Q(u,Φv) = −Q(Φu, w).

The construction of G-Higgs bundles for a real form G of Gc goes back to [13,15] (see
also [5,10], for further details). The definition requires a choice of a maximal compact
subgroup of H ⊂ G, and the Cartan decomposition g = h ⊕ m, for h the Lie algebra of
H , and m its orthogonal complement. Note that the Lie algebras satisfy the symmetric
space relations [h, h] ⊂ h, [h,m] ⊂ m, and [m,m] ⊂ h. Hence, there is an induced isotropy
representation given by Ad|HC : HC → GL(mC).

Definition 4 GivenG a real formof a complex Lie groupGc, a principalG-Higgs bundle is
a pair (P,Φ) where P is a holomorphic principalHC-bundle onΣ , andΦ is a holomorphic
section of P ×Ad m

C ⊗ K .

Alternatively, as done in [15], we may regard real Higgs bundles as classical Higgs
bundles (E,Φ), with extra conditions reflecting the structure of the real group and its
isotropy representation. In this paper, we shall mainly consider SL(n,R) and SO(n, n)-
Higgs bundles, for which we recall their main properties in Sects. 3.2 and 3.4 (for further
references, see [1,15,25]).
Following [13], a classical Higgs bundle (E,Φ) is said to be (semi)-stable if all subbundles

F ⊂ E such that Φ(F ) ⊂ F ⊗ K satisfy deg(F )/rk(F ) < (≤) deg(E)/rk(E). Moreover, the
pair is said to be poly-stable if it can be written as a direct sum of stable Higgs bundles
(Ei,Φi) for which deg(Ei)/rk(Ei) = deg(E)/rk(E). The notion of stability can be extended
to Gc-Higgs bundles as in [14], as well as to G-Higgs bundles (e.g., see [4]), and used to
construct the corresponding moduli spaces. As explained below in Remark 7, stability
considerations will not play a role in this paper. We shall denote by MGc and MG the
moduli space of Gc-Higgs bundles andMG-Higgs bundles, respectively.

2.1 The Hitchin fibration and spectral curves

Given a homogenous basis r1, . . . , rk of invariant polynomials for the Lie algebra of a com-
plex Lie group Gc, let d1, . . . , dk be their degrees. Then, the Hitchin fibration (introduced
in [14]) is defined as

h : MGc → AGc :=
k⊕

i=1
H0(Σ , K di )

(E,Φ) �→ (r1(Φ), . . . , rk (Φ)).

A point in the Hitchin baseAGc determines a section of the line bundle π∗Kdk defined
by ηdk + · · · + rk−1(Φ)ηd1 + rk (Φ), where η is the tautological section of π∗K . The zero
locus of this section is the so-called spectral curve S associated with the Higgs bundle.
The curve S lies in the total space of K , and the projection π : S → Σ is a dk-fold cover of
Σ . By considering vector bundles on it (or its desingularization), one can give a geometric
description of the fibers of theHitchin fibration [14]. In the case of classical Higgs bundles,
the generic fibers are given by the Jacobian varieties of the spectral curves S, on which Φ

has a single-valued eigenvalue η. Indeed, given a line bundle L on S one may recover the
corresponding classical Higgs bundle (E,Φ) by taking E := π∗L and Φ the direct image of

1A trivialization δ : det(E) � OΣ is compatible with Q if δ2 agrees with the trivialization of (ΛnE)2 given by the
discriminant Q : ΛnE → ΛnE∗ (see Remark 2.6 in [21]).
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η : L → L⊗π∗K . In Sect. 3, we describe more fully the spectral data for the specific cases
of interest in this paper.
By considering the moduli space MG in MGc , one may identify the G-Higgs bundles

as points in the Hitchin fibration satisfying additional constraints (see [14] for classical
complex Lie groups, and [27] and references therein for real Higgs bundles). In particular,
in the case of the split real form of Gc, the line bundles are the torsion two points in the
Jacobian (see [25, Theorem 4.12]). It should be noted thatMG does not always embed in
MGc , and an example of when one does not have an embedding can be seen in [24].

Remark 5 Spectral curves are defined for all Higgs bundles represented by points in the
moduli spacesMG , but they are not necessarily smooth. It follows, however, fromBertini’s
theorem that on the generic fiber of the Hitchin fibration the spectral curves are smooth
for G = GL(n,C), SL(n,C), SO(2n + 1,C), Sp(2n,C). Throughout the paper, we shall
consider Higgs bundles over the smooth loci of the Hitchin fibration, i.e., points defining
smooth spectral curves for the above groups, since we will further restrict our attention
to those curves for which the most generic type of ramification behavior occurs.

Remark 6 In the case of SO(2n,C)-Higgs bundles, the associated spectral curves are
always singular, and one needs to work with a canonical normalization, as explained
in Sect. 3.3. It should be noted that through the fiber product process described in this
paper, one recovers the normalization of the singular curve in a natural way.

Remark 7 Note that if the spectral curve for aHiggs bundle is smooth, then the character-
istic polynomial for the Higgs field is irreducible. The Higgs bundle thus has no invariant
subbundles and is therefore automatically stable. Hence, while stability is needed to define
the moduli spaces, it will play no role in our discussions, and we shall omit any further
comment on it.

3 Spectral data for complex and real Higgs bundles
We shall recall here how to study the fibers of the Hitchin fibration through spectral data,
which we shall do by reviewing the methods introduced in [14,15] for complex Higgs
bundles, and in [25,27] for real Higgs bundles. Since our main focus is on SO(2n,C) and
SL(2n,C)-Higgs bundles, we shall restrict attention to those groups and their split real
forms.

3.1 Spectral data for SL(n,C)-Higgs bundles

The spectral curve π : S → Σ associated with an SL(n,C)-Higgs bundle (E,Φ) has
equation

det(Iη − Φ) = ηn + a2ηn−2 + · · · + an−1η + an = 0. (6)

Here ai ∈ H0(Σ , K i), and η is the tautological section of π∗K . The (n − 1)-tuple
(a2, . . . , an) defines a point in the base of theHitchin fibration (see [14]). Over a dense open
set in the base of the Hitchin fibration, the spectral curve S is smooth and the fiber can
be identified (biholomorphically) with the Prym variety Prym(S,Σ), the subset of Jac(S)
of line bundles whose direct image sheaf has trivial determinant. The relation between
L ∈ Prym(S,Σ) and E (once a choice of K 1/2 is made) is then

E := π∗(L ⊗ π∗(K (n−1)/2)). (7)
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Moreover, Prym(S,Σ) = {L ∈ Jac(S) | Nm(L) = OΣ }, where Nm denotes the norm
map defined by the projection π : S → Σ , the trivialization of det(E) determined by the
trivialization ofNm(L). Note that in the case of twofold covers, a line bundle is in the Prym
variety if and only if its dual is isomorphic to the pull back by the involution switching the
sheets of the cover.

3.2 Spectral data for SL(n,R)-Higgs bundles

From Definition 4, Higgs bundles with structure group SL(n,R) are given by classical
Higgs bundles (E,Φ) together with an oriented orthogonal structure on E, with respect
to which the Higgs field is traceless and symmetric. Moreover, by [25, Theorem 4.12]
one has that the intersection of the moduli space MSL(n,R) with the smooth fibers of the
SL(n,C) Hitchin fibration is given by line bundles L ∈ Prym(S,Σ) such that L2 ∼= O.
Following [3] and [14], a torsion 2 line bundle L induces an SL(n,R)-Higgs bundle (E,Φ)
withE = π∗(L⊗π∗K (n−1)/2) andΦ the push downof the tautological section η.Moreover,
the orthogonal structure on E comes from an O(1) structure on L.

3.3 Spectral data for SO(2n,C)-Higgs bundles

From the characteristic polynomial of an SO(2n,C)-Higgs field Φ , one obtains a 2n-fold
cover π : S → Σ whose equation is given by

det(ηI − Φ) = η2n + b1η2n−2 + · · · + bn−1η
2 + p2n = 0, (8)

where η is as in (6), the sections bi ∈ H0(Σ , K 2i), and pn ∈ H0(Σ , Kn) is the Pfaffian of
Φ . This curve has a natural involution σ : η �→ −η, and is singular at η = pn = 0, i.e., at
the fixed points of σ . The normalization of S, which we denote by π̂ : Ŝ → Σ , is what we
shall refer to as the spectral curve. As in the previous cases, Ŝ is generically smooth, and
the involution σ extends to an involution σ̂ on Ŝ which does not have fixed points.
The generic fibers of the Hitchin fibration can be identified with an abelian variety

defined by a connected component of Prym(Ŝ, Ŝ/σ ), i.e., the kernel of the norm map
Nm : Pic(Ŝ) → Pic(Ŝ/σ ). Given a line bundle L ∈ Prym(Ŝ, Ŝ/σ ) and a choice of K 1/2, the
vector bundle E is recovered as

E := π∗(L ⊗ (KŜ ⊗ π∗(K ∗))1/2). (9)

In this case, the orthogonal structure on E comes from the isomorphism σ ∗L � L−1

(by virtue of which Nm(L) = 0). The spectral data associated with an SO(2n,C)-Higgs
bundle is defined on the desingularization Ŝ of S. From Eq. (8), each pair of points
(b1, . . . , bn−1, pn) and (b1, . . . , bn−1,−pn) defines the same curve S and desingulariza-
tion Ŝ. The Prym variety Prym(Ŝ, Ŝ/σ̂ ) has two connected components. Moreover, from
[18, Lemma 1] all line bundles L on Ŝ which satisfy Nm(L) � O are of the form
L = N ⊗ σ̂ ∗(N ∗), for some line bundle N on Ŝ of degree 0 or 1. The two connected
components of Prym(Ŝ, Ŝ/σ̂ ) correspond to the two possibilities for the parity of the
degree deg(N ). This can also be seen as a reflection of the fact that MSO(2n,C) has two
components corresponding to the possible values for the second Stiefel–Whitney class of
an SO(2n,C)-bundle.We say that the spectral data are given by (Ŝ, L) for Ŝ the normalized
curve and L ∈ Prym(Ŝ, Ŝ/σ̂ ).

Remark 8 For any m-fold ramified cover π : S → Σ , the ramification divisor R in S
relates the canonical bundles KS and K of S and Σ , respectively, by [R] = KS ⊗ π∗K ∗,
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where [R] denotes the line bundle defined by the divisor R. If S is a spectral curve, i.e.,
contained in the total space of K , then KS = π∗Km, and [R] = π∗K (m−1). The relation
between L and E in both (7) and (9) can thus be given2 as

E = π∗(L ⊗ [R]1/2).

3.4 Spectral data for SO0(n, n)-Higgs bundles

FromDefinition 4, one has that SO(n, n)-Higgs bundles can be viewed as SO(2n,C)-Higgs
bundles of the form (W1 ⊕W2,Φ) whereWi are vector bundles of rank nwith orthogonal
structure, say qi, and

Φ =
(

0 α

−αT 0

)

, (10)

for αT the orthogonal transpose of α, i.e., αT = q−1
2 · α∗ · q1 where α∗ denotes the dual

map. By further requiring that det(Wi) � O, one obtains an SO0(n, n) pair. In this case,
from [25, Theorem 4.12] and along the lines of Sect. 3.2, one has that the intersection of
the moduli space MSO0(n,n) with the smooth fibers of the SO(n,C) Hitchin fibration is
given by L ∈ Prym(Ŝ, Ŝ/σ̂ ) which satisfy L2 ∼= O. As for classical Higgs bundles, given a
torsion two line bundle L ∈ Prym(Ŝ, Ŝ/σ̂ ) one obtains an SO0(n, n)-Higgs bundle (E,Φ)
by taking the direct image of the line bundle L⊗ (KŜ ⊗ π∗K ∗)1/2 and the push forward of
η.
Given the spectral data (Ŝ, L) of an SO0(n, n)-Higgs bundle, since L is of order two and

in the Prym variety of a twofold cover p : Ŝ → Ŝ/σ , it is invariant under the involution σ

on Ŝ. Hence, its local sections decompose into invariant and anti-invariant local sections,
and thus, the direct image decomposes as p∗L = L̂1 ⊕ L̂2, where the summands are
generated by local invariant and anti-invariant sections (see [26]). Moreover, considering
the n-fold cover π̂ : Ŝ/σ̂ → Σ , the orthogonal bundles Wi are recovered by taking
π̂∗(Li ⊗ p∗(KŜ ⊗ π̂∗K ∗)1/2) for i = 1, 2.

4 Homomorphisms of groups and inducedmaps
As noted in the Introduction, given a fixed surface Σ and a homomorphism between two
Lie groups Ψ : G → G′, there is clearly an induced map

Ψ : Rep(Σ , G) → Rep(Σ , G′),

where Rep(Σ , G) denotes the space of representations modulo conjugation. The cor-
respondence between surface group representations and Higgs bundles thus implies a
similar induced map between G-Higgs bundles and G′-Higgs bundles.
From Definition 3, one sees that for a homomorphism between complex groups there

is in fact an induced map from G-Higgs bundles to G′-Higgs bundles given by

Ψ∗ : (PG,Φ) �→ (PG′ = PG ×Ψ G′,Φ ′ = dΨ (Φ)), (11)

where

dΨ : ad(PG) → ad(PG′ ) (12)

is the map defined by the derivative at the identity of the map Ψ , i.e., by the map on Lie
algebras. Moreover, if the homomorphism Ψ restricts to a map between real forms of G

2Note that the line bundle corresponding to our L is denoted in [14] by U , so that the line bundle denoted in [14] by L
corresponds to L[R]−1/2 in our notation.
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and G′ which respects the Cartan decompositions of the Lie algebras, then the map Ψ

induces a map from Gr-Higgs bundles to G′
r-Higgs bundles. From Definition 4, following

the notation of Sect. 2, the map is given by

Ψ∗ : (PHC
,Φ) �→

(
PH ′

C
= PHC

×Ψ H ′
C
,Φ ′ = dΨ (Φ)

)
. (13)

Themaps in (11) and (13) ought to acquire descriptions purely in terms of spectral data,
and this shall be investigated in forthcoming sections. The relation between the spectral
curves can be deduced from its relation to the eigenvalues of the Higgs field, once it is
viewed as a classical Higgs bundle to which one imposes conditions reflecting the nature
of the group. Thus, if the spectral curve S for (PHC

,Φ) is defined by

0 = det(ηI − Φ) =
n∏

i=1
(η − ηi), (14)

where {η1, . . . , ηn} are the eigenvalues of Φ , then the spectral curve S′ for Ψ∗(PHC
,Φ)

is defined by an equation of the same form except with the eigenvalues replaced by the
eigenvalues of dΨ (Φ), leading to a map S �→ S′.
Alternatively, one may seek a more intrinsic understanding of the map purely in terms

of the information encoded in the geometry of the covering S → Σ and the restrictions
on the spectral line bundle L. This is our goal for the special cases of the isogenies in (1)
and (2). The isogenies can be described in several ways, including from coincidences of
Dynkin diagrams or in terms of representations, e.g., in terms of Schur functors as in [20,
Chapter 9–10]. For our purposes, the representation theoretic point of view is convenient,
as described in the next two sections.

4.1 The isogeny between SL(2,C)× SL(2,C) and SO(4,C)

The group SL(2,C)× SL(2,C) acts on C2 ⊗C2 = C4 by (g, h)(v ⊗w) := (gv)⊗ (hw). The
isogeny onto SO(4,C) can be seen as coming from the fact that SL(2,C) � Sp(2,C). If ω is
the symplectic formonC2 preserved bymatriceswith unit determinant, thenQ4 := ω⊗ω,
defines a symmetric, non-degenerate bilinear form on C2 ⊗ C2. Hence, one has a map

I2 : SL(2,C) × SL(2,C) → SO(4,C),

(A1, A2) �→ A1 ⊗ A2, (15)

where SO(4,C) is the group of (orientation preserving) linear maps C4 → C4 preserving
the formQ4. The derivative at the identity yields an isomorphism of Lie algebras given by

dI2 : sl(2,C) × sl(2,C) → so(4,C),

(Ȧ1, Ȧ2) �→ Ȧ1 ⊗ I + I ⊗ Ȧ2. (16)

Remark 9 If Ȧi has eigenvalues {λi1, λi2}, for i = 1, 2, then the image dI2(Ȧ1, Ȧ2) has
eigenvalues {λ1a + λ2b |1 ≤ a, b ≤ 2}. In particular, if Tr(Ȧi) = 0, then λi2 = −λi1 and the
eigenvalues for dI2(Ȧ1, Ȧ2) are {±λ11 ± λ21}.

Restricted to R2 ⊗ R2 = R4, the quadratic form Q4 has signature (2, 2), and thus, the
above map (15) between complex Lie groups restricts to

I2 : SL(2,R) × SL(2,R) → SO0(2, 2), (17)

where the subscript in SO0(2, 2) denotes the connected component of the identity (see [1,
Section 5.2] for more details). The map on Lie algebras similarly restricts. Indeed, given
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ȧi ∈ sl(2,R) symmetric and trace-free for i = 1, 2, and fixing a basis for R4 such that the

orthogonal structure has the form
(
I 0
0 −I

)
, then the map in (16) is given by

dI2(ȧ1, ȧ2) =
[
0 α

αt 0

]

∈ so(2, 2), (18)

whereαt denotes the transpose.3 The precise formofα depends on the orientation chosen
forR4, i.e., on the identification Λ4R4 � R. A concrete description of the implications of
this identification, as well as of α, shall be given in the following section (see Remark 13).
Finally, it should be noted thatwhile Pf(dI2(ȧ1, ȧ2))2 = det(α)2, the sign of Pf(dI2(ȧ1, ȧ2))
depends on the choice of orientation.

4.2 The isogeny between SL(4,C) and SO(6,C)

The group SL(4,C) of volume-preserving linear maps T : C4 → C4 has a 6-dimensional
representation on the exterior powerΛ2C4 given by g(v∧w) := (gv)∧ (gw). Taking n = 4
and k = 2 in the isomorphism

Λk (C∗) ⊗ Λn(C) −→ Λn−k (C), (19)

and fixing an identification Λ4C4 � C (i.e., fixing a volume form), one gets a bilinear
form Q6 on Λ2C2, which is symmetric and non-degenerate. Since an element of SL(4,C)
preserves the volume form, it preserves a bilinear form, and thus, one has a map

I3 : SL(4,C) → SO(6,C)

A �→ Λ2A, (20)

where SO(6,C) is the group of (orientation preserving) linear maps C6 → C6 preserving
the non-degenerate symmetric formQ6. Moreover, the map gives a double cover SL(4,C)
of SO(6, C), thus realizing SL(4,C) as Spin(6,C). The derivative at the identity gives the
Lie algebra isomorphism

dI3 : sl(4,C) → so(6,C),

Ȧ �→ Ȧ ⊗ I4 + I4 ⊗ Ȧ, (21)

where I4 denotes the identity map on C4 and the endomorphism Ȧ ⊗ I4 + I4 ⊗ Ȧ is
understood to be the restriction to Λ2C4 ⊂ C4 ⊗ C4.

Remark 10 If Ȧ has eigenvalues {λa}4a=1, then as a map on C6 = Λ2C4 the image dI3(Ȧ)
has eigenvalues {λa + λb |1 ≤ a < b ≤ 4}.

Restricted to R6, the quadratic form Q6 has signature (3, 3) and thus I3 restricts to
I3 : SL(4,R) → SO0(3, 3), (22)

with a corresponding restriction of (21). In particular, if ȧ ∈ sl(4,R) is symmetric, trace-
free, with entries aij , fixing a basis for R6 such that the orthogonal structure has the form(
I 0
0 −I

)
, the map has the form

dI3(ȧ) =
[
0 α

αt 0

]

∈ so(3, 3). (23)

3Notice that αt = −(−I · αt · I) so that in this case αt = −αT .
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As in the previous case, the precise form of α depends on the orientation chosen forR6,
i.e., on the identification Λ6R6 � R, and a standard choice yields

α =
⎡

⎢
⎣

a13 + a24 −a14 + a23 a11 + a22
−a12 + a34 a11 + a33 a14 + a23
−a22 − a33 a12 + a34 −a13 + a24

⎤

⎥
⎦ . (24)

In all cases, the Pfaffian is given by Pf (dI3(a)) = ± det(α), where the sign depends on
the choice of orientation.

Remark 11 Fixing a maximal compact subgroup SO(4) ⊂ SL(4,R), one obtains extra
structure related to the presence of two inequivalent normal SO(3) subgroups, by virtue
of which SO(4) fails to be simple. These subgroups have an important influence on the
map induced by I3 on SL(4,R)-Higgs bundles, described in more detail in Sect. 6.3, and
considered also in Sect. 7.2.

5 The rank 2 isogeny and the Hitchin fibration
In this section, we describe the map corresponding to the isogeny I2 in Sect. 4.1 in terms
of spectral data. After exploring the maps for the complex groups, we examine the extra
conditions required to understand the corresponding maps for the split real forms.

5.1 SL(2,C)× SL(2,C)- and SL(2,R)× SL(2,R)-Higgs bundles

An SL(2,C) × SL(2,C)-Higgs bundle on Σ is defined by a pair of SL(2,C)-Higgs bundles
(Ei,Φi), for i = 1, 2. An SL(2,R) × SL(2,R)-Higgs bundle can be viewed as a pair of this
type in which the bundles have oriented orthogonal structures and the Higgs fields are
traceless and symmetric with respect to the orthogonal structures. Up to isomorphism, we
may thus assume in this case that the bundles are of the form Ei = Ni ⊕N ∗

i where Ni is a
line bundle of nonnegative degree, the orthogonal structure is defined by the isomorphism

q =
[
0 1
1 0

]

: Ni ⊕ N ∗
i → N ∗

i ⊕ Ni, (25)

and the Higgs field is of the form

Φi =
(
0 βi
γi 0

)

. (26)

The characteristic polynomials for the Higgs fields define two spectral curves πi : Si →
Σ in the total space of K as in Eq. (6). These are twofold covers of the Riemann surface,
with equations

η2 + ai = 0,

for ai ∈ H0(Σ , K 2) and η the tautological section of π∗K . Generically, the quadratic
differentials ai have simple zeros, and thus, by Bertini’s theorem the curves Si are gener-
ically smooth. As seen in Sect. 3.2, the spectral data associated with these SL(2,C)-Higgs
bundles are completed by line bundles Li ∈ Prym(Si,Σ).
In the case of SL(2,R)×SL(2,R)-Higgs bundles, by [25, Theorem 4.12], the line bundles

are required to satisfy L2i ∼= OSi . Note that, since Li ∈ Prym(Si,Σ) if and only if σ ∗L ∼= L∗
i ,

the conditions that Li ∈ Prym(Si,Σ) and L2i ∼= O are equivalent to the conditions that
σ ∗Li ∼= Li and L2i ∼= O.
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Remark 12 The SL(2,R)-Higgs bundles (Ei,Φi) have associated an integer invariant τEi
known as the Toledo invariant. This can be defined in several equivalent ways, including
as the degree of the line bundle Ni or the Euler number of the SO(2)-principal bundle
associated withNi ⊕N ∗

i . It can also be seen in the spectral data where it is detected by the
action of the involution on the fibers of the line bundle at fixed points (see [26]). How-
ever, it is defined that the Toledo invariant satisfies a so-called Milnor–Wood inequality
|τEi | ≤ 2g − 2.

5.2 SO(4,C)-Higgs bundles and SO0(2, 2)-Higgs bundles

An SO0(2, 2)-Higgs bundle can be described as an SO(4,C)-Higgs bundle (E,Φ) where
E = W1 ⊕ W2 decomposes as the sum of two rank 2 holomorphic oriented orthogonal
bundles, and

Φ =
(

0 α

−αT 0

)

, (27)

for αT = q−1
2 ◦ α∗ ◦ q1 where αT is the dual map and qi is the orthogonal structure

of Wi. Furthermore, Higgs bundles with structure group SO0(2, 2) have isomorphisms
δi : Λ2Wi ∼= O. As in the previous section, we may take the rank two orthogonal bundles
to be of the form W1 = M1 ⊕ M∗

1 and W2 = M2 ⊕ M∗
2 , for Mi line bundles on Σ with

deg(Mi) ≥ 0, and with orthogonal structure as in (25).
As in Eq. (8), the Higgs field Φ in an SO(4,C)-Higgs bundle defines a fourfold cover

π4 : S4 → Σ with equation

P4(η) := det(ηI − Φ) = η4 + b1η2 + b22 = 0, (28)

where b2 is the Pfaffian, bi ∈ H0(Σ , K i), and η the tautological section of π∗K . The
spectral data for an SO0(2, 2)-Higgs bundle are given by the spectral data (Ŝ4 , L) of the
corresponding complex SO(4,C)-Higgs bundle for which L2 ∼= O [25, Theorem 4.12].
Moreover, as in Sect. 3.4, the direct image of L in Ŝ4/σ̂ defines two line bundles which
induceWi on Σ .
The group SO0(2, 2) is both a split real form of SO(4,C) and a group of Hermitian

type. As a consequence of being a split real form, the Hitchin fibration admits a section
which defines theHitchin component inMSO0(2,2). By virtue of the properties of groups of
Hermitian type, the Higgs bundles carry Toledo invariants, i.e., discrete invariants which
in the case of SO0(2, 2)-Higgs bundles may be taken to be the degrees of the line bundles
M1 andM2. The invariants are bounded by a Milnor–Wood type inequality which in this
case is (e.g., see [5] or [23, Table C.2])

| deg(Mi)| ≤ 2g − 2. (29)

5.3 The inducedmap on the Higgs bundles

From Sect. 4.1 (see [1] for a detailed study of this), the map on SL(2,C)× SL(2,C)- Higgs
bundles induced by I2 is

I2((E1,Φ1), (E2,Φ2)) = (E1 ⊗ E2,Φ1 ⊗ I + I ⊗ Φ2), (30)

where the orthogonal structure on E1 ⊗ E2 is the tensor product of the symplectic struc-
tures ωi on E1 and E2 (recall that SL(2,C) � Sp(2,C)).
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Remark 13 Notice that the isomorphisms det(Ei) � OΣ do not uniquely determine a
trivialization δ : det(E1 ⊗E2) � OΣ compatible with the orthogonal structure on E1 ⊗E2.
Indeed, if {e1i , e2i } are local oriented frames for Ei satisfying ωi(e1i , e

2
i ) = 1, then both

{e11 ⊗ e12 , e
1
1 ⊗ e22 , e

2
1 ⊗ e12 , e

2
1 ⊗ e22} and {e11 ⊗ e12 , e

2
1 ⊗ e12 , e

1
1 ⊗ e22 , e

2
1 ⊗ e22} are orthonormal

local frames for E1 ⊗ E2 but they have opposite orientations. They determine the two
inequivalent choices for δ : det(E1 ⊗ E2) � OΣ .

Following the notation of Sect. 5.1, the map I2 can be seen as

I2((N1 ⊕ N−1
1 ,Φ1), (N2 ⊕ N−1

2 ,Φ2))

=
(

(M1 ⊕ M−1
1 ) ⊕ (M2 ⊕ M−1

2 ),
(

0 α

−αT0

))

, (31)

whereM1 = N1 ⊗ N2 andM2 = N1 ⊗ N−1
2 , and

α =
(

β2 β1
γ1 γ2

)

. (32)

5.4 The inducedmap on spectral data

Weshall first construct the spectral data (Ŝ4 ,L) associatedwith the SO(4,C)-Higgs bundle
obtained via I2and then specialize to the spectral data associated with the split real forms
SL(2,R) × SL(2,R) and SO0(2, 2).

Proposition 14 Let (Si, Li) be the spectral data corresponding to an SL(2,C) × SL(2,C)-
Higgs bundle, where each Si is defined by η2 + ai = 0 for ai ∈ H0(Σ , K 2), and
Li ∈ Prym(Si,Σ). Then, the pair (Ŝ4 ,L) given by

• Ŝ4 := S1 ×Σ S2 is the fiber product curve, and
• L = p∗

1(L1) ⊗ p∗
2(L2) is the line bundle

is the spectral data associated with an SO(4,C)-Higgs bundle.

Remark 15 The total space of K ⊕ K can be identified with the fiber product
K ×K K ⊂ K × K . The fiber product S1 ×Σ S2 may thus be regarded as a subvariety
of either K ×K K or of the total space of K ⊕ K .

Proof The pair (Ŝ4 ,L) shall be constructed as in diagram (3). The fiber product Ŝ4, as a
curve in the total space of K ⊕ K , is defined by the conditions

η21 + a1 = η22 + a2 = 0, (33)

where (η1, η2) denotes the tautological section on K ⊕ K . It follows that for a generic
choice of (a1, a2) this curve is smooth. Moreover, if S4 ⊂ K denotes the image of Ŝ4 under
the map

+ : K ⊕ K → K (34)

given by fiberwise addition, then it is defined by the conditions

η = η1 + η2 ; η21 + a1 = η22 + a2 = 0. (35)

Hence, the fourfold cover S4 is defined by the equation

η4 + 2(a1 + a2)η2 + (a1 − a2)2 = 0, (36)
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which from Sect. 3.4 and Eq. (8), is the spectral curve of an SO(4,C)-Higgs bundle. The
curve S4 is generically singular, with singularities over the zeros of a1 − a2, and by con-
struction the map + : Ŝ4 → S4 is an isomorphism on the smooth locus of S4.
The involution σ : η �→ −η which preserves S1 and S2 induces an involution (σ , σ ) on

Ŝ4 = S1 ×Σ S2. When needed we shall denote the involution on S1, S2 by σi, for i = 1, 2
and on Ŝ4 by σ̂4. The fixed points of σi are the zeros of ai, and thus, since the zeros of a1
and a2 are generically different, generically σ̂4 = (σ1, σ2) does not have any fixed points.
It is clear from (35) that σ̂4 descends to the involution η �→ −η on the singular curve S4,
where it has fixed points at the branch locus.
In order to see that L is the spectral line bundle associated with an SO(4,C)-Higgs

bundle, one has to show that L ∈ Prym(Ŝ4 , Ŝ4/σ̂4). Since Li ∈ Prym(Si,Σ), one has that
σ ∗
i Li ∼= L∗

i and so the line bundle L := p∗
1(L1)⊗ p∗

2(L2) is sent to its dual by the involution
σ̂4. Hence, the line bundle L on Ŝ4 is in Prym(Ŝ4 , Ŝ4/σ̂4) as required. ��

Proposition 16 The spectral data (Ŝ4 ,L) induced by an SL(2,C)×SL(2,C)-Higgs bundle
(E1,Φ1), (E2,Φ2), as in Proposition 14, correspond to the spectral data of the SO(4,C)-Higgs
bundle I2[(E1,Φ1), (E2,Φ2)].

Proof As seen in Proposition 14, the spectral curve Ŝ4 is the curve associated with an
SO(4,C)-Higgs bundle. Furthermore, from Eq. (36), the curve is indeed the one associated
with the Higgs bundle in the image of (E1,Φ1), (E2,Φ2) through I2. With the notation of
(39) below, in order to prove that the line bundle L is indued the spectral line bundle of
the image SO(4,C)-Higgs bundle, note that for any line bundles Fi on Si one has

π∗(p∗
1(F1) ⊗ p∗

2(F2)) = (π1)∗(F1) ⊗ (π2)∗(F2).

Applying this to the line bundles Li and using the relation (7) with n = 2, we get

π∗(L) = (π1)∗(L1) ⊗ (π2)∗(L2) = E1 ⊗ E2 ⊗ K−1 ,

whereas by (9) the vector bundle on Σ defined by L is

E = π∗(L ⊗ (KŜ4 ⊗ π∗K ∗)1/2).

Recall that KŜ4 ⊗ π∗K ∗ corresponds to the ramification divisor R ⊂ Ŝ4, while the
ramification divisors Ri ⊂ Si satisfy [Ri] = π∗

i K . It follows that

KŜ4 ⊗ π∗K ∗ = [R] = p∗
1[R1] ⊗ p∗

2[R2] = (π∗K )2, (37)

and hence that E = π∗(L) ⊗ K = E1 ⊗ E2 as required.

5.5 The restriction to SL(2,R)× SL(2,R)

Let (Si, Li) be the spectral data of an SL(2,R)-Higgs bundle, for i = 1, 2. Then, one has
that L2 ∼= p21(L1) ⊗ p22(L2) ∼= O, i.e.,

L ∈ Pσ̂4 [2] := {M ∈ Prym(Ŝ4 , Ŝ4/σ̂4) | M2 ∼= O}. (38)

Thus, as seen in Sect. 3.4 the line bundle L defines an SO0(2, 2)-Higgs bundle.
Since σ ∗

i Li � L−1
i � Li, it follows that σ̂ ∗

4L � L−1 � L. This means that under the
projection p : Ŝ4 → Ŝ4/σ̂4 the direct image sheaf p∗L splits as the sum of two line bundles
L±, generated by σ̂4-invariant and anti-invariant local sections. The relation between the
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different covers of the Riemann surface and the line bundles on them is depicted in the
following diagram:

L = p∗
1L1 ⊗ p∗

2L2

��

p∗L = L+ ⊕ L−

��
Ŝ4 = S1 ×Σ S2

π

��

p �� Ŝ4/σ̂4

π̂

�������������������

Σ

(39)

In particular, this implies that

π∗L = (π̂ )∗p∗L = (π̂ )∗(L+ ⊕ L−). (40)

Moreover, Ŝ4 is the normalization of the spectral curve S4 ⊂ π∗K and the involution σ̂4
on Ŝ4 corresponds to the involution η → −η on S4. It follows that multiplication by the
tautological section η interchangesL+ andL−, and thus that the Higgs field on π∗(L) has
the form as in (31). We thus get:

Proposition 17 Consider ((S1, L1), (S2, L2)) the spectral data forapoint inMSL(2,R)×SL(2,R)
represented by

( (

N1 ⊕ N−1
1 ,

[
0 β1
γ1 0

])

,
(

N2 ⊕ N−1
2 ,

[
0 β2
γ2 0

]) )

,

and let (Ŝ4 ,L) be defined as in Proposition 14. Then (Ŝ4 ,L) is the spectral data for the point
inMSO0(2,2) represented by

(

(N1N2 ⊕ (N1N2)−1) ⊕ N1N−1
2 ⊕ (N−1

1 N2)),
[

0 α

−αT 0

] )

,

where α is as in Eq. (32).

6 The rank 3 isogeny and the Hitchin fibration
We shall investigate now the induced map I3 : MSL(4,C) → MSO(6,C), and its restriction
to the split real forms SL(4,R) and SO0(3, 3).

6.1 SL(4,C)-Higgs bundles and SL(4,R)-Higgs bundles

From Definition 4, an SL(4,R)-Higgs bundle on Σ is a holomorphic SO(4,C)-principal
bundle together with a symmetric Higgs field. Equivalently it can be viewed as a pair
(E,Φ) where E is an oriented holomorphic rank 4 orthogonal vector bundle, i.e., a vector
bundlewith aholomorphic symmetric non-degenerate bilinear paringQ, and a compatible
isomorphism δ : det(E) � O, and the Higgs field Φ : E → E ⊗ K is traceless and
symmetric with respect to Q.
Recall from Sect. 6.1 that the spectral curve for an SL(4,C)-Higgs bundle (E,Φ) is a

ramified fourfold cover π : S → Σ in the total space of K with equation

P4(η) := det(ηI − Φ) = η4 + a2η2 + a3η3 + a4 = 0, (41)

forai ∈ H0(Σ , K i) andη the tautological sectionofπ∗K . For generic choices of {a2, a3, a4},
the curve is smooth and has only the most generic ramification, i.e., in fibers over the
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branch locus there are two unramified points and one order two ramification point. The
spectral data are completed by a line bundle L ∈ Prym(S,Σ). For an SL(4,R)-Higgs
bundle, from [25, Theorem 4.12] the spectral line bundle L ∈ Prym(S,Σ) satisfies the
extra condition L2 ∼= O.

6.2 SO(6,C)-Higgs bundles and SO0(3, 3)-Higgs bundles

An SO0(3, 3)-Higgs bundle can be described as SO(6,C)-Higgs bundle (E,Φ) where E
decomposes as the sum of two rank 3 holomorphic oriented orthogonal bundles, say
E = W1⊕W2 with orthogonal structures qi and compatible isomorphisms δi : Λ3Wi ∼= O.
As seen in Sects. 3.3–3.4, for any SO(6,C)-Higgs bundle the Higgs fieldΦ defines a sixfold
cover π6 : S6 → Σ with equation

P6(η) := det(ηI − Φ) = η6 + b1η4 + b2η2 + b23 = 0, (42)

where b3 is the Pfaffian and bi ∈ H0(Σ , K i). The spectral data of an SO(6,C)-Higgs bundle
are then a pair (Ŝ6, L6) where Ŝ6 is the desingularization of S6 and L6 ∈ Prym(Ŝ6, Ŝ6/σ̂ )
where σ̂ is the (fixed-point-free) involution inherited from S6 [14]. When L26 ∼= O, the
spectral data correspond to an SO0(3, 3)-Higgs bundle.

6.3 The inducedmap on Higgs bundles

Using the results in Sect. 4.2 for the induced action of I3 on vector bundles and Lie
algebras, we get the map between complex Higgs bundles

I3(E,Φ) = (Λ2E,Φ ⊗ I + I ⊗ Φ). (43)

The orthogonal structure Q : Λ2E → Λ2E∗ is induced by the combination of (19)
and the trivialization of det(E). As in the case of the map defined by I2 (see Remark
13) an isomorphism δ : det(Λ2E) → OΣ such that δ2 agrees with the trivialization of
(det(Λ2E))2 determined by Q, is determined only up to a choice of sign. There are thus
two (oppositely oriented) possible conventions for determining the SO(6,C) structure on
Λ2E. This choice plays a role in themap induced byI3 on the base of theHitchin fibrations
of the moduli spaces [see Eq. (73)].
The vector bundle E of an SL(4,R)-Higgs bundle (E,Φ) has an oriented orthogonal

structure, i.e., an associated pair (q, ε) where q is a holomorphic orthogonal structure on
E, and ε is a compatible isomorphism ε : det(E) � O trivializing its determinant. The
orthogonal structure induces an isomorphism (by abuse of notation, also denoted by q)

q : Λ2E → Λ2E∗. (44)

Using ε as the trivialization of det(E) required in the construction of Q yields an iso-
morphism

∗ = q−1 · Q : Λ2E → Λ2E, (45)

which satisfies4

q(α,β) = Q(α, ∗β), (46)

where q, Q are regarded as bilinear forms on Λ2E, and α,β ∈ Λ2E. By using a local
oriented orthonormal frame to compute ∗, it can be seen that ∗ satisfies ∗2 = I . Taking
the ±1 eigenspaces of ∗ thus gives a decomposition

4We have denoted the involution by ∗ since when E is the cotangent bundle to a 4-manifold, the involution is precisely
the Hodge star.
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Λ2E = Λ2+E ⊕ Λ2−E. (47)

The orthogonal structure on Λ2E restricts to orthogonal structures on each summand,
so that the structure group reduces to SO(3,C) × SO(3,C).

Remark 18 The structure groups of the bundles Λ2E and Λ2+E ⊕ Λ2−E can be reduced to
SO(4) and SO(3) × SO(3), respectively. The two copies of SO(3) are precisely the normal
subgroups mentioned in Remark 11 by virtue of which SO(4) fails to be simple (see [10]) .

With respect to the reduction in (47), the Higgs fieldΦ ⊗ I + I ⊗Φ has the form in (27),
where Φ and α are related as in Eq. (24) and −αt is the orthogonal transpose. Denoting
orthogonal structures on Λ2±E by q±, we thus get:

Proposition 19 The isogenyI3 induces the followingmapbetweenSL(4,R)-Higgs bundles
and SO0(3, 3)-Higgs bundles:

(E,Φ) �→
(

Λ2+E ⊕ Λ2−E,
[

0 α

−αT 0

])

, (48)

where if E has orthogonal structure q then the bundlesΛ2±E have orthogonal structures q±,
and Φ and α are related as in Eq. (23).

Remark 20 The precise form of α depends on the choices of the orientations of Λ2E and

Λ2±E. Different choices will change the sign of det α, i.e., of the Pfaffian of
[

0 α

−αT 0

]
.

6.4 The inducedmap on spectral data

Given SL(4,C)-spectral data (S, L), with S defined by (41) and L ∈ Prym(S,Σ), we build
SO(6,C)-spectral data using a construction similar to the fiber product construction in
Sect. 5.4, except in this case we take the product of (S, L) with itself, i.e., in diagram (3)
we have S1 = S2 and L1 = L2. The resulting curve has both singularities and additional
symmetries that are absent when S1 and S2 are different. Our construction takes both of
these features into account in an essential way.
The curve S×Σ S is a 16-fold cover of the Riemann surfaceΣ . Over a generic point in the

Hitchin base, S is smooth and S ×Σ S has two smooth components, namely the diagonal
SΔ := {(s, s) ∈ S ×Σ S} and another one which we denote by (S ×Σ S)0. The intersection
of these components lies in fibers over the branch locus of the covering π : S → Σ .
Viewing the curve S ×Σ S in the total space of K ⊕ K , the involution τ : (x, y) �→ (y, x)

interchanges the copies of S, and thus, the fixed point set of τ is SΔ. The quotient map
πτ : (S ×Σ S)0 → (S ×Σ S)0/τ commutes with the projection onto Σ . It is an unramified
double cover on S ×Σ S − SΔ but has ramification points in the fibers over the base locus
of π : S → Σ . Using the biholomorphism Sym : (K ⊕ K )/τ → K ⊕ K 2 given by

Sym : (x, y) �→
(
x + y
2

, xy
)
, (49)

we can view the quotient (S ×Σ S)0/τ as a curve in the total space of K ⊕ K 2. We define

Ŝ6 := Sym((S ×Σ S)0/τ ), (50)

and denote by π̂τ the composition of πτ and Sym. A depiction of the relation between
the above curves and projections is given in diagram (51) below. By abuse of notation, we
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denote by pi : (S ×Σ S)0 → Σ the restrictions to (S ×Σ S)0 of the projection maps to the
two factors of the full fiber product:

S

π
������������ (S ×Σ S)0

p1��
p2

��

π0

��

π̂τ �� Ŝ6

π̂6		����������

Σ

(51)

Lemma 21 For generic points in the Hitchin base, the ramification divisors R on S, R0 on
(S×Σ S)0 and R̂6 on Ŝ6 for the projections π , π̂τ and π̂6, respectively, are related as follows:

p−1
1 (R) + p−1

2 (R) = (π̂τ )−1(R̂6) + 2R0. (52)

Proof The ramification divisor for a covering π : X → Y is defined by R = Σy∈Y R(y) · y
where the weights R(y) are such that R(y) + 1 is the multiplicity of π at y. If S is a generic
spectral curve and x is a point in the branch locus of π : S → Σ , then we can write
π−1(x) = {y1, y2, y3}, with y1 ∈ R (with weight 1) but π unramified at y2, y3. Then, the
fiber of (S ×Σ S)0/τ over x consists of points {[y1, y1], [y1, y2], [y1, y3], [y2, y3]}. Of these,
Sym[y1, y2] andSym[y1, y3] land in R̂6, eachwithweight 1,while π̂−1

τ Sym([y1, y1]) = (y1, y1)
is in R0 (with weight 1). Notice now that in the fiber over x one has

π−1
0 (x) ∩ (p−1

1 (R) + p−1
2 (R))

= 2(y1, y1) + (y1, y2) + (y2, y1) + (y1, y3) + (y3, y1)

= 2(y1, y1) + π̂−1
τ (Sym([y1, y2]) + Sym([y1, y3])),

as required.

Proposition 22 The curve Ŝ6 is generically smooth and gives the canonical desingular-
ization of its projection to K through the Sym map, which is the spectral curve of an
SO(6,C)-Higgs bundle.

Proof In order to prove the proposition, one needs to show the following hold:

1. the curve Ŝ6 is generically smooth;
2. under the projection q1 : K ⊕ K 2 → K which on each fiber is given by (u, v) �→ 2u,

the image S6 := q1(Ŝ6) is a spectral curve defined by an equation of the form in (42)
with

b1 = 2a2, b2 = a22 − 4a4 , b23 = a23; (53)

3. the projection q1 : Ŝ6 → S6 is an isomorphism away from the singularities of the
curve S6 at its intersection with the zero section of K .

To prove the above items, let S ⊂ K be defined by the zero locus of (41). As a curve in
the total space of K ⊕ K , the fiber product S ×Σ S is defined by the conditions P4(η1) =
P4(η2) = 0, where η1, η2 denote the tautological sections of the two summands in K ⊕K .
After using the transformation Sym defined in (49) to realize the curve as a subvariety of
K ⊕ K 2, the component Ŝ6 is described locally (i.e., with respect to a trivialization of the
bundles) as the zero locus of the map F : C3 → C2 given by (z, u, v) �→ (8u3 − 4uv +
2a2(z)u + a3(z), 8u4 + 2a2(z)u2 − 8u2v − a2(z)v + a3(z)u + v2 + a4(z)). The projection
q1 onto the total space of K is given locally by (z, u, v) �→ (z, 2u). Direct computation
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shows that away from u = 0, the map is a biholomorphism onto the curve defined by the
equation

P6(z, η) = η6 + 2a2(z)η4 + (a2(z)2 − a4(z))η2 + a23 = 0, (54)

where η is the local fiber coordinate on K . This curve, which we denote by S6, necessarily
has singularities at the zeros of a3, but is otherwise smooth for generic choice of a2, a3, a4.
For such choices, singularities in Ŝ6 can occur only at points where u = 0. Direct compu-
tation shows that the derivative of F has full rank at such points provided a3 and a22 − a4
have no common zeros, proving the proposition.

Lemma 23 The involution η → −η on S6 lifts to the involution σ : Ŝ6 → Ŝ6 which, away
from the branch locus of π : S → Σ , is given by the map

Sym[yi, yj] �→ Sym[yk , yl],

where {i, j, k, l} = {1, 2, 3, 4}. When there is a ramification point, say y1, the involutionmaps
Sym[y1, y1] to Sym[y2, y3].

Proof From diagram (51), for x ∈ Σ away from the base locus of π : S → Σ , we can
write π−1(x) = {y1, y2, y3, y4}, and the coordinate η on S6 has values yi + yj for i �= j. But
y1 + y2 + y3 + y4 = 0 and hence −(yi + yj) = (yk + yl) where {i, j, k, l} = {1, 2, 3, 4}, i.e.,
η �→ −η corresponds to the action of σ . Assuming that only the most generic type of
ramification occurs, the computation is similar for x ∈ Σ in the branch locus of π . ��
To obtain the correspondence induced by I3 between spectral line bundles, we begin as

in Sect. 5.4, but with L1 = L2, and consider

L = p∗
1(L) ⊗ p∗

2(L). (55)

Since L is invariant under τ : (x, y) �→ (y, x), its direct image on Ŝ6 decomposes as a
sum of rank one locally free sheaves generated by the invariant and anti-invariant local
sections, i.e.,

(π̂τ )∗L = L+ ⊕ L−. (56)

Similarly

(π̂τ )∗O(S×ΣS)0 = OŜ6 ⊕ T. (57)

Moreover, if [R0] is the line bundle on (S ×Σ S)0 defined by the divisor R0, then (π̂τ )∗T =
[R0]−1 (see, for example, [17, Lemma 3.1] or [7, p. 49]). We define

I3(L) := L− ⊗ T−1. (58)

Remark 24 While we have defined L only on (S ×Σ S)0 ⊂ S ×Σ S, this distinction
disappears in L−. This is a consequence of the fact that anti-invariant local sections must
vanish on the fixed points of τ , so that the sheaf on (S ×Σ S)/τ generated by the anti-
invariant sections has support only on (S ×Σ S)0/τ .

Remark 25 Since L is clearly invariant under pullback by the involution τ and admits a
lift of τ which acts as identity on fibers over all fixed points, it follows (see, for example,
[19]) that L = π̂−1

τ M for some line bundleM on Ŝ6. We thus get

(π̂τ )∗L = (π̂τ )∗((π̂τ )∗M) = M ⊕ (M ⊗ T ),
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with the summandsM andM⊗ T generated by the τ -invariant and anti-invariant local
sections of (π̂τ )∗(π̂τ )∗M, respectively. With this choice ofM, we get

I3(L) = M. (59)

Proposition 26 If L ∈ Prym(S,Σ), then I3(L) ∈ Prym(Ŝ6, Ŝ6/σ ).

Proof Let L be defined by the divisor D on S given by

D =
∑

x∈Σ

∑

y∈π−1
0 (x)

D(y) · y :=
∑

x∈Σ

Dx.

For D the divisor p∗
1(D) + p∗

2(D) on (S ×Σ S)0, one has that D is in the linear system
of L. Moreover, when x is not in the branch locus of π0, so that π−1

0 (x) has four distinct
points {y1, y2, y3, y4}, one has that

Dx := D ∩ π−1
0 (x)

= π̂∗
τ

( ∑

i �=j
(D(yi) + D(yj)) · Sym([yi, yj])

)

:= π̂∗
τ Cx. (60)

On the other hand, if x is a branch point, then under our genericity assumptions on S,
we can assume that π−1

0 (x) has one point (say y1) where π0 has multiplicity two, and two
points (say y2, y3) where π0 is unramified. Then,Dx = π̂∗

τ Cx with
Cx = D(y1) · Sym[y1, y1] + (D(y2) + D(y3)) · Sym[y2, y3]

+
⎡

⎣
∑

i=2,3
(D(y1) + 2D(yi)) · Sym[y1, yi

⎤

⎦ (61)

where the factor 2 in the last term comes from the fact that the projection p1 is ramified
at the points (y1, y2) and (y1, y3), while p2 is ramified at the points (y2, y1) and (y3, y1).
Moreover, from Remark 25 one has that L = π̂∗

τ (M) and I3(L) = M, and hence, C is
defined by (60), and (61) is a divisor in the linear system of I3(L). Notice that on fibers
over branch points of π0 one has σ [y1, y1] = [y2, y3]. Then, denoting the branch locus of
π0 by B, one has that

Nmσ (Cx) = (D(y1) + D(y2) + D(y3) + D(y4)) ·
4∑

i=2
[[y1, yi]] (62)

if x ∈ Σ − B; otherwise, if x ∈ B, the norm is

Nmσ (Cx) = (D(y1) + D(y2) + D(y3)) · ([[y1, y1]] + 2[[y1, y2]]),

where [[y1, y2]] denotes the point in Ŝ6/σ and Nmσ is the norm map for the covering
Ŝ6 → Ŝ6/σ . Finally, note that if L ∈ Prym(S,Σ), then we can pickD so thatNmπ0 (Dx) = 0
for all x ∈ Σ and hence Nmσ (I3(L)) = Nmσ (C) = 0, as required. ��
We have shown that the map (S, L) �→ (Ŝ6,I3(L)) sends spectral data for an SL(4,C)-

Higgs bundle to SO(6,C)-spectral data. We now show that this map is compatible with
the map given by (43).

Proposition 27 The spectral data (Ŝ6,I3(L)) induced by an SL(4,C)-Higgs bundle (E,Φ)
via (50) and (58) correspond to the spectral data of the SO(6,C)-Higgs bundle I3[(E,Φ)].
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Proof By (43) the Higgs field in I3[(E,Φ)] is Φ6 := Φ ⊗ I + I ⊗ Φ , viewed as a map on
Λ2E ⊂ E ⊗ E. Let η4 + a2η2 + a3η + a4 and η6 + b2η4 + b4η2 + b23 be the characteristic
polynomials for Φ and Φ6, respectively. Then, a calculation based on Remark 10 shows
that the coefficients are related by (53). It follows that the curve Ŝ6 is the spectral curve
for the SO(6,C)-Higgs bundle I3[(E,Φ)]. Moreover, Proposition 22 then shows that Φ6
can be recovered by pushing down (η, η2), where η is tautological section of K .
The direct image π∗(I3(L)⊗ [R̂6]1/2) acquires a special orthogonal structure in the usual

way, with the trivialization of its determinant bundle determined by the Prym condition
σ ∗(I3(L)) � I3(L)∗. In order to see thatπ∗(I3(L)⊗[R̂6]1/2) = Λ2E, consider the (singular)
full fiber product S ×Σ S and for any line bundle N on S let Ñ = p∗

1(N )⊗ p∗
2(N ), where

now the projections are from the entire S ×Σ S. Arguing as before, since Ñ is invariant
under the involution τ , it follows that its direct image under the projection πτ : S×Σ S →
(S ×Σ S)/τ decomposes as the sum of rank one coherent sheaves Ñ− ⊕ Ñ+. Though in
principle these summands need not be locally free, their restriction to (S ×Σ S)0 is well
behaved. Indeed, given the projections π : S → Σ and π̂ : (S ×Σ S)/τ → Σ , one gets

π̂∗(Ñ+) ⊕ π̂∗(Ñ−) = Sym2(π∗(p∗
1(N ) ⊗ p∗

2(N ))) ⊕ Λ2(π∗(p∗
1(N ) ⊗ p∗

2(N ))).

But the left- and right-hand sides of this identification are both ±1-eigenspace decom-
positions forZ2-actions that are compatible with the projectionmap.We can thus identify
π̂∗(Ñ−) � Λ2(π∗(p∗

1(N )⊗p∗
2(N )).Notice, furthermore, that the support of Ñ− is (S×ΣS)0,

so that Ñ− = N− where dropping the tilde on Ñ denotes the restriction to (S ×Σ S)0. It
follows that

π̂∗N− = Λ2(π∗N ). (63)

In particular, taking N = L ⊗ [R]1/2 where R is the ramification divisor on S, so that
π∗N = E, it follows that (63) gives π̂∗N− = Λ2E.
It thus remains to show thatN− = I3(L) ⊗ [R̂6]1/2. But by Lemma 21 and (52)

N = L ⊗ [p−1
1 (R) + p−1

2 (R)]1/2

= π∗
τ (M ⊗ [R̂6]1/2 ⊗ T−1),

whereM is as in Remark 25 and T is as above. It follows that

N− = M ⊗ [R̂6]1/2 ⊗ T−1 ⊗ T = I3(L) ⊗ [R̂6]1/2, (64)

as required.

We shall end this section with a discussion of the relation between our construction and
the so-called trigonal constructionofRecillas (see [8] or [22]).Given a smooth curveΣ , this
construction relates a smooth fourfold cover ofΣ to a sixfold cover with a fixed-point-free
involution,whose quotient is thus a threefold smooth cover. Taking S as the fourfold cover,
the curve S := Sym−1(Ŝ6) = (S×Σ S)0/τ is precisely the corresponding sixfold cover with
involution. This is most easily seen by considering the fibers of the covering maps onto
Σ . At a regular fiber of S over a point x ∈ Σ consisting of points {y1(x), y2(x), y3(x), y4(x)},
the fiber of (S×Σ S)0/τ over x consists of the points corresponding to the unordered pairs
{[y1, y2],[y1, y3], [y1, y4],[y2, y3] ,[y2, y4], [y3, y4]} (where we have dropped the dependence
on x to simplify the notation).
Considering π : S → Σ a smooth cover with only the most generic ramification, if x is

in the branch locus and π−1(x) = {y1, y2, y3} (as in the proof of Proposition 26), then the
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fiber of S consists of the unordered pairs {[y1, y1], [y1, y2], [y1, y3], [y2, y3]}. This relation
between S and S can be regarded as a map from S to the third symmetric product of S,
mapping a point in S to the unordered pairs containing that point. This determines a
correspondence defined by an effective divisor on S × S, but for the sake of comparison
with our construction, we use the map Sym to replace S with Ŝ6.

Definition 28 Define the effective divisor Δ ⊂ S × Ŝ6 by

Δ =
∑

y∈S, [y,y′]∈S

(
y, Sym[y, y′]

)
. (65)

Notice that Δ is contained in S ×Σ Ŝ6 and is given explicitly by

Δ =
∑

x∈Σ−B

4∑

i=1

∑

j �=i

(
yi(x), Sym[yi(x), yj(x)]

)

+
∑

x∈B

( 3∑

j=1
(y1(x), Sym[y1(x), yj(x)]

)

+
3∑

i=2

∑

j �=i

(
yi(x), Sym[yi(x), yj(x)]

))

.

Here the set B ⊂ Σ , as in (62), is the branch locus of π , and at x ∈ B we label the points
in the fiber so that π has degree 2 at y1(x).

Remark 29 The map

C : (S ×Σ S)0 → S × Ŝ6
(yi(x), yj(x)) �→

(
yi(x), Sym[yi(x), yj(x)]

)
,

is injective, and its image is precisely the divisor Δ.

Using the correspondence defined by Δ, we may define

CΔ : Jac(S) → Jac(Ŝ6)

[D] �→ [Nm2(π∗
1 (D) ∩ Δ)]

for π1 the projection S × Ŝ6 → S, and the norm map Nm2 : Jac(S × Ŝ6) → Jac(Ŝ6).

Proposition 30 The map CΔ restricts to a map between Prym varieties, i.e.,

CΔ : Prym(S,Σ) → Prym(Ŝ6, Ŝ6/σ ).

This map agrees with the map defined by virtue of Proposition 26, i.e., with L �→ I3(L)
given by (58).

Proof Let L ∈ Jac(S) be defined by divisor D on S. With C as in the proof of Proposition
26, it follows from (60) and (61) that

C = Nm2(π∗
1 (D) ∩ Δ),

and hence (as in the proof of Proposition 26) that C is in the linear system for I3(L). It thus
follows from Proposition 26 that CΔ defines a map between the indicated Prym varieties.

��
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6.5 The restriction to the split real form SL(4,R)

We now examine the consequences of imposing the additional condition L2 = OS on the
spectral data (S, L) described in Sect. 6.4.

Proposition 31 Under the assumptions and notation of Proposition 26, if L2 � OS, then
I3(L) is a point of order two in Jac(Ŝ6).

Proof The map L �→ I3(L) defined by (58) is a group homomorphism between Jacobians.
Thus, in particular, if L2 � OS then I3(L)2 = I3(L2) = I3(OS) = OŜ6 . ��

It follows (see [25, Theorem4.12]) that our constructionmaps spectral data for SL(4,R)-
Higgs bundles to spectral data for SO0(3, 3)-Higgs bundles. As in the rank two case dis-
cussed in Sect. 5.5, if I3(L) is a point of order two in Prym(Ŝ6, Ŝ6/σ ), then it is invariant
under the involution σ . Under the projection p : Ŝ6 → Ŝ6/σ , the direct image sheaf
p∗I3L thus splits as the sum of two line bundles I3(L)±, generated by σ -invariant and
anti-invariant local sections. In particular,

π̂6∗I3(L) = πσ ∗I3(L)+ ⊕ πσ ∗I3(L)−. (66)

We get a diagram similar to (39):

I3(L)

��

p∗(I3(L)) = I3(L)+ ⊕ I3(L)−

��
Ŝ6

π̂6
��

p �� Ŝ6/σ

πσ

�������������������

Σ

(67)

Recall from Proposition 27 that Ŝ6 is the normalization of the spectral curve S6 ⊂ π∗K
and that the involution σ on Ŝ6 corresponds to the involution η �→ −η on S6. It follows
that multiplication by the tautological section η interchanges I3(L)− and I3(L)+, and thus
that the Higgs field on π̂6∗I3(L) has the form as in (48). Combined with Proposition 19,
we thus get:

Proposition 32 Let (S, L) be the spectral data for a point in MSL(4,R) represented by a
Higgs bundle (E,Φ)with orthogonal structure q on E, and isomorphism δ : det E � OΣ . Let
(Ŝ6,I3(L)) be defined as (50) and (58), i.e., Ŝ6 := Sym((S×Σ S)0/τ ) and I3(L) = L− ⊗T−1.
Then (Ŝ6,I3(L)) is the spectral data for the point inMSO0(3,3) represented by

(

Λ2+E ⊕ Λ2−E,
(

0 α

−αT 0

) )

, (68)

where the bundles have oriented orthogonal structures (q±, δ±) as in Sect. 6.3, and α is as
in (48).

7 Maps betweenmoduli spaces and Hitchin fibrations
Thus far, wehave examined themaps inducedby the isogenies on individualHiggs bundles
and their spectral data. In this section,we collect together some remarks about the induced
maps on the corresponding moduli spaces and on their Hitchin fibrations. We note that
the maps on Higgs bundles (given in Sect. 5.3 and Proposition 19) are defined for all Higgs
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bundles, but do not obviously preserve stability properties. On the other hand, the maps
on spectral data (see Propositions 14 and 27) automatically preserve stability but apply
only to generic points in the moduli spaces—where the stability condition is vacuous.
Throughout this section, we shall limit our study to the dense open sets in the moduli
spaces which exclude the non-generic fibers of their Hitchin fibrations, for which stability
is automatically obtained (see Remark 7). We denote these sets by M̃G ⊂ MG .
Note that for the groups in the isogenies studied in this paper, the special linear groups

can be identified as the spin groups for the special orthogonal groups. The induced map
M̃Spin(2n,C) → M̃SO(2n,C) is a finite map. For any n, the moduli space MSO(2n,C) has two
components corresponding to the two possible values for the second Stiefel–Whitney
class of an SO(2n,C)-principal bundle (see for example [16]). In contrast, the underlying
holomorphic bundles for the Higgs bundles in MSL(2,C)×SL(2,C) and MSL(4,C) have just
one topological type, and the moduli spaces are connected. The images of the maps I2
and I3 thus see just one of the components inMSO(4,C) orMSO(6,C). Indeed, this can be
understood from the point of view of the surface group representations corresponding to
the Higgs bundles via non-abelian Hodge theory. From this point of view, the component
in the image of the map contains precisely the representations in SO(2n,C) which lift to
Spin(2n, C).We therefore see only theHiggs bundles inwhich theunderlyingholomorphic
bundle has w2 = 0.
The situation ismore nuanced for the restriction of themaps to themoduli spaces for the

split real forms. In this case, the underlying holomorphic bundles have more complicated
topology than in the case of theHiggs bundles for the complex groups.Moreover, fixing the
topological type of the bundle does not ensure connectedness of the components. What
remains true is that the images of the maps I2 and I3 contain only those components of
the moduli spaces in which the Higgs bundles correspond to representations which lift to
the appropriate spin group.
In terms of Hitchin fibrations, one should note that for each n = 2, 3, the bases of the

fibrations of Spin(2n,C) and SO(2n,C)-Higgs bundles are the same. In the case of n = 2,
the base isH0(Σ , K 2)⊕H0(Σ , K 2), and forn = 3 it isH0(Σ , K 2)⊕H0(Σ , K 3)⊕H0(Σ , K 4).
In order to understand the maps induced on these bases, it is necessary to understand
exactly the relation between coordinates of a point in the base and the coefficients in the
defining equation for the spectral curve. This is completely straightforward for SL(n,C),
where the two coincide, but less so in the case of SO(2n,C) where the relation is com-
plicated by the role of the Pfaffian. In fact, the maps S �→ Ŝ2n (for n = 2, 3) do not
unambiguously descend to the base of the fibration. The ambiguity stems from the fact
that the induced orthogonal structures on E1 ⊗ E2 or Λ2E do not have a canonical orien-
tation. The choice of orientation corresponds on the one hand to a choice of trivialization
on the determinant bundles, and on the other hand to a choice of sign in the Pfaffian.

Remark 33 One should note that whist not done here, the isogenies could also be under-
stood through the language of Cameral covers introduced in [8].

7.1 The isogeny I2 on moduli spaces

Once the isomorphism δ : E1 ⊗ E2 � OΣ is fixed, the map (30) determines a map on the
base of the Hitchin fibrations forMSL(2,C)×SL(2,C) andMSO(4,C). The explicit form of the
map depends on the generators chosen for the rings of invariant polynomials. Taking the
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coefficients of the characteristic equation det(ϕ − ηI) as generators, it follows from (36)
that this map is given on the generic points in the base by

I2 : H0(Σ , K 2) ⊕ H0(Σ , K 2) → H0(Σ , K 2) ⊕ H0(Σ , K 2)

(a1, a2) �→ (2(a1 + a2),±(a1 − a2)), (69)

where the sign in the last component is determined by the isomorphism δ. For example,
following the notation of Remark 13, if {e11 ⊗ e12 , e

1
1 ⊗ e22, e

2
1 ⊗ e12 , e

2
1 ⊗ e22} is the positively

oriented local frame, then

Pf(Φ1 ⊗ I + I ⊗ Φ2) = a2 − a1

where ai = det(Φi), so the second component in (69) is −(a1 − a2).

Remark 34 As explained at the beginning of Sect. 4, the relation between spectral curves
and thus the map (69) can be understood heuristically from the relation between the
eigenvalues of the Φi and those of Φ1 ⊗ I + I ⊗ Φ2. By Remark 9, at least at smooth
unramified points, the equations for the spectral curves Si are given by

0 = η2 + ai = (η − η
(i)
1 )(η + η

(i)
1 ), for i = 1, 2,

and the equation for the spectral curve S4 is

0 = η4 + b2η2 + b23
=

∏
(η ± η

(1)
1 ± η

(2)
1 )

= (η2 − (η(1)1 + η
(2)
1 )2)(η2 − (η(1)1 − η

(2)
1 )2),

from which the relations between (b1, b2, b23) and (a1, a2) can be deduced.

As described in Sect. 3.4, the vector bundle of an SO0(2, 2)-Higgs bundles may be
expressed as (M1⊕M∗

1 )⊕(M2⊕M∗
2 ), and thus, they are labeled by two integer topological

invariants, say (c1, c2), corresponding to the degrees of the line bundles M1 and M2 (or,
equivalently by classes in π1(SO(2,C)) ∼= Z). Themoduli spaceMSO0(2,2) is thus a disjoint
union of (possibly disconnected or empty) subspaces

MSO0(2,2) =
⊔

c1 ,c2
Mc1c2

SO0(2,2). (70)

Themoduli spaceMSL(2,R)×SL(2,R) is similarly a disjoint union of (possibly disconnected
or empty) subspaces

MSL(2,R)×SL(2,R) =
⊔

d1 ,d2

Md1d2
SL(2,R)×SL(2,R), (71)

for d1, d2 the degrees of the line bundles defining the SL(2,R) × SL(2,R)-Higgs bundles.
As seen in [13], the components are non-empty if and only if |di| ≤ g − 1, inequalities
which are known as the the Milnor–Wood bounds.

Proposition 35 The map I2 : M̃SL(2,R)×SL(2,R) → M̃SO0(2,2)
is a 22g+1-fold covering onto the components satisfying c1 = c2 mod 2 and |ci| ≤ 2g − 2,
for i = 1, 2. The map restricts to maps

I2 : M̃d1d2
SL(2,R)×SL(2,R) → M̃c1c2

SO0(2,2) (72)

for c1 = d1 + d2 and c2 = d1 − d2.
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Proof The mod 2 congruence condition follows from the fact that any SO0(2, 2)-Higgs
bundle as in (5.1) in the image of I2 has

deg(M1) = deg(N1) + deg(N2),

deg(M2) = deg(N1) − deg(N2),

whereN1, N2 are line bundles defining SL(2,R)-Higgs bundles (see Sect. 5.3). The bounds
on |ci| follow from the Milnor–Wood bound for SL(2,R)-Higgs bundles. The rest of the
proposition follows from the observation that the preimage under I2 for anyHiggs bundle
of the form (5.1) consists of all SL(2,R)× SL(2,R)-Higgs bundles defined by (L1,β1, γ1),
and (L2,β2, γ2) with L21 = M1M2 and L22 = M1M−1

2 . If deg(M1) = deg(M2) mod 2, then
there are 22g solutions for L1 and L2. ��

While themoduli space of SL(4,R)-Higgs bundles has 22g Hitchin components, the one for
SO0(3, 3)-Higgs bundles has just oneHitchin component. From the analysis of topological
invariants, which are constant on connected components, one has 4+1 = 5 components,
4 coming from the 4 pairs of w2’s characterizing SO(3) × SO(3) bundles.

Proposition 36 The isogeny I2 between moduli spaces of Higgs bundles takes the 22g

Hitchin components to the one Hitchin component, and the other 2 components to the two
components (possibly disconnected) where the two w2’s are the same.

As seen before, the map I2 constructed in Sect. 5 is surjective onto some of the com-
ponents of MSO0(2,2). The components in the image correspond to those components
in the representation variety Rep(π1(Σ), SO0(2, 2)) for which the representations lift to
SL(2,R) × SL(2,R).
We shall denote byM0

SO0(2,2) the union of components ofMSO0(2,2) obtained through
(30) and (32) with deg(M1) = deg(M2) mod 2. Equivalently, let Rep0(π1(Σ), SO0(2, 2)) be
the union of components of Rep(π1(Σ), SO0(2, 2)) which correspond to the components
inM0(SO0(2, 2).

Corollary 37 The structure group of an SO0(2, 2)-Higgs bundle lifts to SL(2,R)×SL(2,R)
if and only if the SO0(2, 2)-Higgs bundle lies inM0

SO0(2,2). Equivalently, a reductive surface
group representation into SO0(2, 2) lifts to a representation into SL(2,R)× SL(2,R) if and
only if the representation lies Rep0(π1(Σ), SO0(2, 2)).

Remark 38 By realizing SO0(2, 2)-Higgs bundles in terms of rank 2-Higgs bundles, one
can understand the monodromy action studied in [2] for rank 4 Higgs bundles in terms
of monodromy of lower-rank Higgs bundles. Indeed, taking b1 and b2 as in Eq. (36) one
recovers the rank 4 monodromy as a product of actions coming from the rank 2-Hitchin
systems.

7.2 The isogeny I3 on moduli spaces

To fully specify the map induced by I3 [as in (43)] on MSL(4,C), one needs to specify
the trivialization δ : det(Λ2(E)) � OΣ . Then, using the coefficients of the characteristic
equation det(ϕ − ηI) as generators for the rings of invariant polynomials, it follows from
(53) that the map on the generic points of the Hitchin base is
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I3 :
4⊕

i=2
H0(Σ , K i) →

4⊕

i=2
H0(Σ , K i)

(a2, a3, a4) �→ (2a2,±a3, a22 − 4a2), (73)

where the sign in the second component is determined by the isomorphism δ.

Remark 39 For both n=2,3 the variety Prym(Ŝ2n, Ŝ2n/σ )) has two components. In the case
n = 3, given Ŝ6 the spectral curve defined by (2a2, a22 − 4a2, a23), the two components
occur in the fibers over both points (2a2,±a3, a22 − 4a2) in the Hitchin base. However, on
each fiber only one of the components is in the image of the map induced by I3. A similar
phenomenon occurs for n = 2.

Remark 40 Themap (73) can be understood heuristically from eigenvalue considerations
in the same way as (69), i.e., as explained in Remark 34.

As a consequence of its special orthogonal structure, the vector bundle in an SL(4,R)-
Higgs bundle is classified topologically by a second Stiefel–Whitney class. The moduli
space MSL(4,R) thus decomposes into components (not necessarily connected) labeled
by this Z2-valued invariant. The moduli space MSO0(3,3) likewise has a decomposition
into components labeled by a pair of Z2-valued invariants corresponding to the second
Stiefel–Whitney classes of the two rank three bundles. Using superscripts to indicate these
characteristic classes, we can thus write

MSL(4,R) =
∐

a ∈ H2(Σ ,Z2)

Ma
SL(4,R);

MSO0(3,3) =
∐

bi ∈ H2(Σ ,Z2)

M(b1 ,b2)
SO0(3,3).

Proposition 41 The map I3 : M̃SL(4,R) → M̃SO0(3,3) is a 22g -fold covering onto the
components satisfying b1 = b2 mod 2. For a = w2(E) the orthogonal rank 4 bundle E, and
b = w2(Λ2(E), the map restricts to

I3 : M̃a
SL(4,R) → M̃(b,b)

SO0(3,3). (74)

Proof It follows from Proposition 19 that the image of M̃a
SL(4,R) lies in the component

M̃(b1 ,b2)
SO0(3,3), where b1 = w2(Λ2+(E)) and b2 = w2(Λ2−(E)) for some SO(4,C) vector bundle

E with w2(E) = a. Moreover, from [11, Proposition 1.8] it follows that w2(Λ2(E)±) =
w2(Λ2(E)), so in particular b1 = b2. However, any pair of SO(3,C)-bundles with the same
second Stiefel–Whitney class arises in this way, i.e., as Λ2(E)± where E is an SO(4,C)
bundle. Finally, if (Λ2E,Φ ⊗ I + I ⊗ Φ) represents a point in the image of I3, then the 22g

preimages come from twisting E by any point of order two in Jac(Σ). ��
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