Martin et al. Computational Astrophysics and Cosmology
https://doi.org/10.1186/s40668-018-0025-5

(2018) 5:3

® Computational Astrophysics
and Cosmology

a SpringerOpen Journal

RESEARCH Open Access

On the parallelization of stellar evolution

codes

David Martin'?, Jordi José'?"@® and Richard Longland?

@ CrossMark

Abstract

Multidimensional nucleosynthesis studies with hundreds of nuclei linked through thousands of nuclear processes
are still computationally prohibitive. To date, most nucleosynthesis studies rely either on hydrostatic/hydrodynamic
simulations in spherical symmetry, or on post-processing simulations using temperature and density versus time
profiles directly linked to huge nuclear reaction networks.

Parallel computing has been regarded as the main permitting factor of computationally intensive simulations. This
paper explores the different pros and cons in the parallelization of stellar codes, providing recommendations on
when and how parallelization may help in improving the performance of a code for astrophysical applications.

We report on different parallelization strategies succesfully applied to the spherically symmetric, Lagrangian,
implicit hydrodynamic code SHIVA, extensively used in the modeling of classical novae and type | X-ray bursts.

When only matrix build-up and inversion processes in the nucleosynthesis subroutines are parallelized (a suitable
approach for post-processing calculations), the huge amount of time spent on communications between cores,
together with the small problem size (limited by the number of isotopes of the nuclear network), result in a much

worse performance of the parallel application compared to the 1-core, sequential version of the code. Parallelization
of the matrix build-up and inversion processes in the nucleosynthesis subroutines is not recommended unless the
number of isotopes adopted largely exceeds 10,000.

In sharp contrast, speed-up factors of 26 and 35 have been obtained with a parallelized version of SHIVA, in a
200-shell simulation of a type | X-ray burst carried out with two nuclear reaction networks: a reduced one, consisting
of 324 isotopes and 1392 reactions, and a more extended network with 606 nuclides and 3551 nuclear interactions.
Maximum speed-ups of ~41 (324-isotope network) and ~85 (606-isotope network), are also predicted for 200 cores,

stressing that the number of shells of the computational domain constitutes an effective upper limit for the
maximum number of cores that could be used in a parallel application.

Keywords: Numerical methods; Hydrodynamics; Parallel computing; Nuclear reactions; Nucleosynthesis;
Abundances; Stellar evolution; Stellar explosions: classical novae; Stellar explosions: X-ray bursts

1 Introduction

Computational astrophysics has revolutionized our knowl-
edge of the physics of stars. Simultaneously to the progress
achieved in observational astrophysics (through high-
resolution spectroscopy and photometry, sometimes in-
cluding multiwavelength observations with space-borne

“Correspondence: jordijose@upc.edu

' Departament de Fisica, EEBE, Universitat Politécnica de Catalunya, Barcelona,
Spain

2Institut d'Estudis Espacials de Catalunya, Barcelona, Spain

Full list of author information is available at the end of the article

@ Springer

and indicate if changes were made.

and ground-based observatories), cosmochemistry (iso-
topic abundance determinations in presolar meteoritic
grains) and nuclear physics (determination of nuclear
cross sections at or close to stellar energies), computers
have provided astrophysicists with the appropriate arena
in which complex physical processes operating in stars
(e.g., rotation, convection and mixing, mass loss...) can be
properly modeled (see, e.g., Ref. Bodenheimer et al. 2006).

Stellar evolution models are becoming increasingly so-
phisticated and complex. The dawn of supercomputing
and multi-core machines has allowed to (partially) over-
come the limitations imposed by the assumption of spher-

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,

https://doi.org/10.1186/s40668-018-0025-5
http://crossmark.crossref.org/dialog/?doi=10.1186/s40668-018-0025-5&domain=pdf
http://orcid.org/0000-0002-9937-2685
mailto:jordi.jose@upc.edu

Martin et al. Computational Astrophysics and Cosmology

ical symmetry. The pay-off, however, is still very expen-
sive. Two-, and specially three-dimensional simulations
are so computationally demanding that other simplifica-
tions, such as the use of truncated nuclear reaction net-
works, large enough to account for the energetics of the
star, must be adopted. Multidimensional nucleosynthesis
studies with hundreds of nuclear species linked through
thousands of nuclear processes are still prohibitive. Ac-
cordingly, most of our understanding of element synthesis
in stars relies either on hydrostatic/hydrodynamic simula-
tions in spherical symmetry (1D), or on post-processing
simulations using temperature and density versus time
profiles extracted from stellar evolution models, and di-
rectly linked to huge nuclear reaction networks. Even such
post-processing calculations can sometimes become com-
putationally very intensive: for instance, the sensitivity
study of the effect of nuclear uncertainties in X-ray bursts
nucleosynthesis performed by Parikh et al. (2008), requir-
ing 50,000 post-processing calculations, with a network
containing 600 species (from H to 13Xe), and more than
3500 nuclear reactions, took about 9 CPU months in a
single-core computer.

In the 1D codes used in the modeling of a wide range
of astrophysical scenarios, such as classical novae, X-ray
bursts, supernovae, or asymptotic giant branch (AGB)
stars (e.g., FRANEC Limongi and Chieffi 2003, Chieffi and
Limongi 2013, MESA Paxton et al. 2011, 2013, SHIVA
José and Hernanz 1998, José 2016), stars are divided into
~100s — 1000s of concentric shells. They also incorporate
a similar number of nuclear processes, which link hun-
dreds of nuclear species. The subroutines that handle the
suite of different nuclear processes and the associated nu-
cleosynthesis are often the most time-consuming compo-
nents of a stellar evolution code (unless very small nuclear
reaction networks are used). Different strategies have been
adopted to reduce the computational cost of such simula-
tions, therefore improving the performance of a code. One
possibility relies on the use of more efficient numerical
techniques to handle integration of large nuclear networks
(Timmes 1999, Longland et al. 2014). Another possibility
involves parallelization of the stellar code, so that the high
computational cost can be split and handled by different
cores working cooperatively.

Parallel computing has been regarded as the main per-
mitting factor of more precise, computationally intensive
simulations. Indeed, most of the existing multidimensional
stellar codes have been parallelized. Naively, paralleliza-
tion simply relies on applying several cores to the solution
of a single problem, so that speed-ups are accomplished
by executing independent, non-sequentional portions of
the code. In practice, however, parallelization comes with
a high cost in both engineering and programming efforts.
And on top of that, it may turn out that parallelization does

(2018) 5:3

Page 2 of 10

not pay off altogether, for specific applications. There-
fore, the main goal of this paper is to explore the advan-
tages (and disadvantages) associated with the paralleliza-
tion of stellar codes, outlining recommendations on when
and how parallelization may help in improving the perfor-
mance of a code for astrophysical applications. We discuss
speed-up factors ranging between 26 and 35 that allow the
execution of hydrodynamic simulations coupled to large
nuclear reaction networks in affordable times.

The structure of this paper is as follows: different strate-
gies in the parallelization of a stellar evolution code (and
of the matrix build-up and inversion processes in the nu-
cleosynthesis subroutines) are described in Sects. 2 and 3.
Special emphasis is devoted to the expected speed-ups ob-
tained as a function of the size of the nuclear reaction net-
work and the number of cores involved in the simulation.
The performance of the parallelized version of SHIVA
code is qualitatively compared with other codes, with sim-
ilar or different architectures, in Sect. 4. The main results
and conclusions of this work, together with a list of open
issues, are summarized as well in Sect. 4.

2 Parallelization of a stellar code with a decoupled,
time-explicit treatment of the nucleosynthesis
subroutines

The different strategies in the parallelization of a stellar

evolution code described in this paper rely on the Message

Passing Interface (MPI) communication protocol, and have

been directly applied to SHIVA, a one-dimensional (spher-

ically symmetric), hydrodynamic code, in Lagrangian for-
mulation, built originally to model classical nova outbursts

(see Refs. José and Hernanz 1998, José 2016, for details).

The code uses a co-moving (Lagrangian) coordinate sys-

tem, such that all physical variables (i.e., luminosity, L, ve-

locity, u, distance to the stellar center, r, density, p, and
temperature, 7) are evaluated in a number of grid points
directly attached to the fluid. In essence, this corresponds
to a system of 5N variables (unknowns), where N is the
overall number of shells of the computational domain.

SHIVA’s computational flow is depicted in Fig. 1.

At each time-step, the set of 5N unknowns is deter-
mined from a system of 5N linearized equations (i.e., con-
servation of mass, momentum and energy, the definition
of the Lagrangian velocity and an equation that accounts
for energy transport), which is solved by means of an it-
erative technique—Henyey’s method (Henyey et al. 1964).
The basic set of stellar structure equations, supplemented
by a suitable equation of state (EOS, that includes radia-
tion, ions, and electrons with different degrees of degen-
eracy), opacities and a nuclear reaction network, consti-
tute the building blocks of any stellar evolution code. In
SHIVA, convection and nuclear energy production are de-
coupled from the set of hydrodynamic equations, and han-
dled by means of a time-explicit scheme. In general, par-
tial differential equations involving time derivatives can be

Martin et al. Computational Astrophysics and Cosmology (2018) 5:3 Page 3 of 10
Initial t+ At
values
attimet
LI Pt Henyey«sl_" T”’\/,p“'\',X' ‘-’ X1\+Aj’gl\+Aj Ll (t+At)
i it1/2 Method weirz 5y 2 ez Mass i
r z Vs \ Accretion g (480
1 i 1
; qi+1/2 o d AM = M- At 1 (1+At)
12) t ~ i . A ALyt A XA gt - N 2
W B Ea B W TATX, e KA B e
! t o rid. y
T k"’llz u™ ° 7—;;:';/\/)
i+1/2 i
t t . . 1 (t+At)
Shells X Einr T e TUNPLNX - X Xiva
Linearized system Determination Solution of the Broadcast of all Determination of Mass rezoning Interpolation
of equations of auxiliary system of 5N relevant new abundances to incorporate of variables
(cons. mass, quantities: P, linear equations parameters to and nuclear the mass due to new
momentum and q.Ek €. AX=X each node for energy released accreted in /'t. mass grid.
energy; energy B nucleosynthesis att + /'t, for each
transport) for the Determination calculations on shell.
values of L, 1, o, u, of new values a subset of
Tattimet. for the physical shells
variables at
timet + /'t
Figure 1 The SHIVA code workflow. The code uses a co-moving (Lagrangian) coordinate system, such that all physical variables (luminosity, L,
velocity, u, distance to the stellar center, r, density, p, temperature, T, pressure, P, internal energy, £, artificial viscosity, g, mass fractions, X, opacity, ,
and energy generation rate, €) are evaluated in a number of grid points directly attached to the fluid (see Refs. José and Hernanz 1998, José 2016, for
details)

discretized in terms of variables evaluated (i.e., known) at
the previous time-step (explicit schemes) or at the current
time-step (implicit schemes). Explicit schemes are usually
easier to implement than implicit schemes. However, in
explicit schemes the time-step is limited by the Courant—
Friedrichs—Levy condition that prevents any disturbance
traveling at the sonic speed from traversing more than one
numerical cell, thus leading to unphysical results. Implicit
schemes allow larger time-steps than explicit schemes,
with no precondition on the time-step, but they require
an iterative procedure to solve the system at each step. In
SHIVA, all compositional changes driven by nuclear pro-
cesses or convective transport are evaluated at the end of
the iterative procedure,* once the temperature, density and
the other physical variables have been determined at each
computational shell. In particular, SHIVA implements a
two-step, time-explicit scheme to calculate the new chemi-
cal composition at each time-step (see Ref. Wagoner 1969).
While such decoupling of the nucleosynthesis subroutines
from the hydrodynamic equations has a minor effect on
the results, it has a huge impact on the speed-up factors
that can be obtained after parallelization (see Sect. 4, for a
more detailed discussion).

2.1 Parallelization strategy

The maximum theoretical speed-up accomplished by a
parallel application is defined as the ratio of the total ex-
ecution times of the serial application, Ts, and the parallel
application, Tp:

TS/TP = TS/(Tm + Tpp/NP + Tcomm + Tout)

= 1/((1 —P) +p/NP + Tcomm/TS)r (1)
where Np is the number of processes participating in the
parallel computation, T¢omm the time devoted to commu-
nications and message passing amongst cores, Tj, and Toy¢
are the initialization and output times, and p = T}/ T is
the so-called parallel content, or ratio of the serial execu-
tion times of the overall application, T, and the potentially
parallel portion of the code (e.g., a subroutine), Tp,,. The
maximum attainable speed-up® is, therefore, determined
by the ratio between T¢omm and Ts. For Teomm = 0, Eq. (1)
results in the well-known Amdahl’s law, which provides an
estimate of the theoretical speed-up as a function of the
parallel content and the number of cores used (Amdahl
1967). If the processes need to communicate frequently,
the cost of communication will take a heavy toll on the total
execution time. In this situation, speed-ups below unity are
even possible (i.e., the parallel application will run slower
than its sequential counterpart), and therefore, must be
avoided.

A first analysis of SHIVA’s architecture suggests two
main points where parallelization might be exploited: the
solution of the linearized system of equations for the deter-
mination of the physical variables (i.e., Henyey’s method),
and the multizone calculation of the nuclear energy gener-
ation rate and nucleosynthesis. The first one relies on the
parallel solution of a system of 5N linear equations, where
N is the number of shells adopted in the simulation. For
a typical astrophysical application, N ~ 100-1000. How-
ever, as will be discussed later (see Sect. 3.3), such a par-
allel approach only achieves acceptable performance for

Martin et al. Computational Astrophysics and Cosmology

>10,000 equations. Very modest speed-up factors are ob-
tained otherwise (i.e., less than a factor of 2), which do
not justify the effort. In contrast, the multizone calcula-
tion of nuclear energy generation and nucleosynthesis is
computed independently at each shell, and can result in
large speed-up factors if parallelized. This is the specific
parallelization strategy adopted hereafter, and presented in
this Section. Each core goes redundantly through almost
all processing stages. However, with regard to the nucle-
osynthesis part, each core performs the computation on
a non-overlapping subset of shells. After this, each core
broadcasts its (partial) results, and from this stage onward,
the simulation proceeds again on all cores redundantly.
In this parallelization strategy adopted, there are only two
points of communication: at the beginning of the simula-
tion (where the root process broadcasts all the initial infor-
mation and parameters to the rest of the processes), and re-
peatedly at each (successful) iteration, after the distributed
computation of the nucleosynthesis has been performed.
This choice maximizes parallel performance by keeping
communication points to a minimum or, in other words,
by maximizing the computation to communication ratio
(McKenney 2011).

In order to obtain equivalent workloads on all cores, the
total number of shells of the computational domain must
be split up into approximately equally sized groups. The
shells assigned to each core are consecutive, so that the dif-
ferent cores compute energy and nucleosynthesis for shells
1...j,j+1...5,i+1...m,and so on. The last core will have
assigned shells m + 1 to N.

2.2 Performance prediction

At each iteration, each core broadcasts the new abun-
dances obtained in the computation of their assigned
shells. This represents an ALLGATHER communication
procedure (Graham 2012), where all processes get the data
sent by the other processing cores. The information is
thereafter distributed by means of a ring algorithm where,
in the first step, each core i sends its contribution to core
i + 1 and receives the contribution from core i — 1 (with
wrap-around). Subsequently, each core i forwards to core
i + 1 the data received from core i — 1 in the previous step
(Pacheco 1997). The communication time taken by this
algorithm is given by Thakur and Gropp (2003):

Tcomm = (NP - 1)“ + (NP - 1)71;3/NP’ (2)

where 7 is the total data size received by any core from
all other cores, « is the latency or start-up time per mes-
sage (which is independent of the message size), and 8 is
the transfer time per byte. Actual values for « and S ob-
tained in the simulations performed with the SHIVA code
are given in Sect. 2.3. Note that both the latency and the

(2018) 5:3

Page 4 of 10
40 T : : :
35 |
30
25 -
o
a
£ 20
2]
[
15
10 -
¢ Theoretical (324 Nuclides) -
5r Theoretical (606 Nuclides) -
SHIVA (324 Nuclides)
‘ ; ‘ SHIVA‘(606 NLIJC|ideS) ‘ ‘
0

5 10 15 20 25 30 35 40
Np

Figure 2 Performance (speed-up factor) of the parallel SHIVA code
for executions with 324 nuclides (Model 1; p = 0.99127) and 606
nuclides (Model 2, p = 0.99738), for N = 200 shells. Theoretical
speed-ups (thin lines) are compared with real speed-ups obtained
with the SHIVA code (thick lines). The theoretical speed-ups
correspond to the maximum values expected in the case of a perfect
parallelization, as given by Eq. (1)

transfer time depend specifically on the speed of the net-
work and of the communications of the computer clus-
ter (or multi-core computer) where the parallel application
is being executed. It will also depend on the heterogene-
ity of the cores (e.g. workstations with different process-
ing power, or different Operating Systems), and ultimately
on how finely the cluster has been tuned to optimize data
transfer and communications. Such quantities are difficult
to estimate analytically, and are frequently measured using
real data and extrapolating communication times from ob-
servations (Foster 1995).

2.3 Results

Figure 2 shows the excellent speed-up factors accom-
plished in a parallel simulation of a type I X-ray burst per-
formed with SHIVA, with N = 200 shells. Parallel execu-
tion times have been compared with respect to a serial
execution time obtained with a single core. Simulations
have been carried out with two different nuclear reaction
networks: a reduced one, consisting of 324 isotopes and
1392 reactions (hereafter, Model 1), and a more extended
network with 606 nuclides and 3551 nuclear interactions
(Model 2; see Ref. José et al. 2010). Speed-up factors of 26
and 35 are achieved in Models 1 and 2, respectively, when
42 cores are used in parallel to execute the application. Fig-
ure 2 also highlights the nonlinear scaling of the speed-up
factor with the number of cores adopted in the parallel

Martin et al. Computational Astrophysics and Cosmology

execution. Both T¢omm and the overhead time vary with
the number of cores adopted. This variation depends crit-
ically on the type of communication (e.g., all to all, broad-
cast, point to point sends and receives, gather, all gather,
etc.), but at any rate both T¢omm and the overhead time
increase monotonically with the number of cores adopted,
with a much more pronounced dependence of T¢omm on
Np (Thakur and Gropp 2003).

The results obtained are so good and approach the per-
formance of a perfect parallel application; this means that
the computation to communication ratio is large enough
so that processing work can be distributed in an extremely
efficient way amongst cores. Accordingly, larger speed-ups
are expected if the number of cores used in the parallel
execution is increased. Figure 2 displays as well the the-
oretical speed-ups expected for both simulations, as given
by Eq. (1). Such theoretical estimates do not take into ac-
count the communication or synchronization times, and
as a result, the observed performance always falls short
compared to the theoretical, ideal speed-up.

As expected, higher speed-ups are obtained when we in-
crease the problem size by using a nuclear reaction net-
work with 606 isotopes and 3551 reactions (e.g., Model 2).
The speed-up accomplished in this simulation exceeds by
approximately 34% the performance of the execution with
areduced nuclear network (i.e., 26 versus 35 speed-up fac-
tors, respectively). This is a direct consequence of increas-
ing the problem size, which is essentially equivalent to in-
creasing the amount of parallelizable computation (that is,
the nucleosynthesis calculation), and therefore the poten-
tial parallel content also increases (p = 0.99127 for Model
1, whereas p = 0.99738 for the simulation with a larger nu-
clear reaction network, i.e. Model 2). This, in turn, im-
proves the curve of the modelled, theoretical speed-up,
hence diminishing the gap from an ideal speed-up.

The theoretical performance of the parallelized SHIVA
code, based on Eq. (1) and Eq. (2), taking into account the
communication time between cores, can be expressed as:

Speed-up ~ [(1 - p) + p/Np + ((Np — D

+ (Np — 1)nBINy)/Ts] ™, 3)

where # and T are specific of the simulation being exe-
cuted, and the latency « and the transfer time per byte
depend solely on the communications infrastructure. Nu-
merical experiments? yield « =1 x 10 s and 8 = 5 x
1078 s. At the end of each iteration, all cores gather the
nucleosynthesis results, together with the overall nuclear
energy released and the values predicted for the new time-
step, At (e.g., based on the variation of the most abundant
isotopes, as in Wagoner’s method), from all shells. Taking
all this into account, the total amount of bytes being trans-

(2018) 5:3

Page 5 of 10

100 T T T

Ts/Tpp

SHIVA (324 Nuclides)
SHIVA (606 Nuclides)
Performance Model (324 Nuclides)
P'erformyance l\lllodel (‘606 N‘uclide‘s)

0 1 1

20 40 60 80 100 120 140 160
NP

180 200

Figure 3 Extrapolated performance model of the parallel SHIVA
code, with up to 200 cores. A parallel content coefficient of
p=0.99127 was used for Model 1 (simulations with a 324-isotope
network), while p = 0.99738 was used for Model 2 (606 isotopes). The
modelled speed-ups correspond to values predicted for the specific
parallelization model discussed in this paper and for the Hyperion
cluster, as given by Eq. (3)

mitted works out as:

200 shells x (324 nuc. x 8 bytes/nuc.
+ 8 bytes/shell (energy) + 8 bytes/shell (Az))
= 521.6 kbytes,
200 shells x (606 nuc. x 8 bytes/nuc.
+ 8 bytes/shell (energy) + 8 bytes/shell (Az))
=972.8 kbytes

for Models 1 and 2, respectively. The expected perfor-
mance of the parallel SHIVA code (Eq. (3)) for up to 200
cores is shown in Fig. 3, together with the experimental
values obtained up to Np = 42 cores in the Hyperion
cluster. It is interesting to note that there is still way for
improvement. Indeed, maximum speed-ups of ~41 and
~85 are predicted when using 200 cores, for Models 1 and
2, respectively. The scaling efficiency (i.e., the ratio of ac-
tual scaling to ideal scaling) is 21% for Model 1 (speed-up
of 41 on 200 cores) and 43% for Model 2 (speed-up of 85
on 200 cores). At this point, it is important to stress that as
a result of the parallelization strategy adopted, the num-
ber of shells of the computational domain constitute an ef-
fective upper limit for the maximum number of cores that
could be used in the parallel application. Moreover, it is
also worth mentioning that the expected performance of

Martin et al. Computational Astrophysics and Cosmology

the parallel SHIVA code, and in general, of any stellar evo-
lution code, is limited by the number of shells adopted and
also by the potentially parallel portion of the code.

It is also important to note that the model of perfor-
mance presented here is valid for the execution environ-
ment discussed, and cannot be extrapolated to other clus-
ters which may have different latencies and communica-
tion bandwidths. That said, this model can be taken as a
reference for the capabilities of a parallelized application,
and can be used to decide whether access time at some
supercomputing facility, where latencies and transmission
bandwidths are highly optimized for parallel executions,
must be requested. In those platforms, even better speed-
up factors must be expected.

3 Parallelization of the nuclear energy generation
and nucleosynthesis subroutines

In this section, we report on the expected speed-ups re-
sulting from parallelization of the matrix build-up and
inversion processes in the nucleosynthesis subroutines,
for different sizes of the adopted nuclear reaction net-
works. This is a completely different parallelization ap-
proach compared to the one described in Sect. 2. In the
strategy described for SHIVA, the method of solving the
system of equations was not modified, but executed in par-
allel on a subset of non-overlapping shells. Now, it is the
build-up and inversion of the matrix containing the rates
of the different nuclear interactions (i.e., the solution of the
system of equations) that is being parallelized. The strategy
adopted in this section is of interest for stellar evolution
models that rely on reasonably large nuclear reaction net-
works, and also for post-processing nucleosynthesis calcu-
lations, in which temperature and density versus time pro-
files (frequently extracted from stellar models) are directly
coupled to huge nuclear networks.

3.1 Numerical treatment of nuclear abundances

The time-evolution of the chemical composition of a star
relies on a set of differential equations that take into ac-
count all possible creation and destruction channels for the
species included in the network. After linearization (e.g.,
finite-differences), the overall system of equations can be
written in matrix form as:

A - X =X,, (5)

where X is the matrix containing the set of abundances
of the previous (or initial) step, A is the matrix containing
the rates of the different nuclear inteactions, and X is the
matrix with the new (unknown) abundances.

Different methods have been reported to solve Eq. (5),
such as Wagoner’s two-step linearization technique (Wag-
oner 1969), Bader—Deuflehard’s semi-implicit method
(Bader and Deuflhard 1983), or Gear’s backward differen-
tiation technique (Gear 1971). The performance of these

(2018) 5:3

Page 6 of 10

different integration methods for stellar nucleosynthesis
calculations has been been analyzed in a number of stud-
ies (see Refs. Timmes 1999, Longland et al. 2014, and ref-
erences therein). Here, we will explore the gain in perfor-
mance driven by parallelization od one particular method:
Wagoner’s. As described in Ref. Prantzos et al. (1987),
Wagoner’s two-step linearization procedure exploits the
special properties of matrix A, which consists of an upper
left square matrix, an upper horizontal band, a left verti-
cal band, and a diagonal band. The sparse nature of matrix
A results from the fact that the different isotopes, when
ordered in terms of increasing atomic number, are only
linked with close neighbors through nuclear interactions
that usually involve light particles® (e.g., n, p,).

3.2 Parallelization strategy
A typical nucleosynthesis calculation consists of the fol-
lowing main processing steps:

1 Interpolation (calculation) of reaction rates from
tables (analytic fits), for the specific temperature and
density of each shell, at a given time.

2 Assembly of matrices X and A.

3 Solution of Eq. (5), for the new abundances of all
chemical species at each shell.

4 Convergence check; determination of the new
time-step, Af.

5 Determination of the overall nuclear energy released
at each shell.

Stages 2 and 3 are by far the most time-consuming parts
of a simulation (97% of the execution time in the simula-
tions reported in Sect. 3.3). Consequently, the paralleliza-
tion strategy adopted in this work focused on providing the
most efficient partitioning of matrix A, as required by the
parallel solution of the system of equations performed by
the parallel solver.

Reaction-rate determinations are partitioned amongst
cores, such that at each iteration step each core performs
the interpolation (calculation) of only those reactions rates
that are strictly needed for the construction of the local
partition of matrix A (Eq. (5)). Given a typical nuclear re-
action, of the form i(j, k)/, there are 8 possible combina-
tions contributing to matrix A: A(i, i), A(i, /), A(,j), A, i),
A(k, i), A(k,j), A(l,i), and A(/, /), according to the lineariza-
tion technique described in Ref. Wagoner (1969). The par-
allel solution of the system of equations is obtained using
MuMpst (Amestoy et al. 2001, 2004), a widely used software
for the solution of large sparse systems of linear algebraic
equations, of the form Ax = b, on distributed-memory
(parallel) computers.

The right hand side of Eq. (5) is centralized in the root
process. This requires that the complete solution from the
previous iteration has to be gathered by the root process at
some time during the simulation. In contrast, the solution
of the system of equations is kept distributed, so that af-
ter solving the system of equations each of the cores holds

Martin et al. Computational Astrophysics and Cosmology

a non-overlapping subset of elements of the solution (i.e.,
a subset of the new abundances). At this point, the solution
must be exploited in its distributed form, which requires
that subsequent processing stages (e.g., convergence and
accuracy) must be executed independently between cores.

After solving Eq. (5), each core checks convergence and

accuracy?® of its part of the solution. Finally, the overall nu-
clear energy released at the specific time-step is obtained
by summing the energy generated by all interactions. This
stage is parallelized by having each core compute the par-
tial nuclear energy released by a subset of reactions. The
above parallelization strategy requires that the cores com-
municate at four specific steps during the simulation:

1 During the parallel solution of the system of equations
(MUMPS).

2 Once the system of equations is solved; the

distributed solution is shared amongst all cores.
To check convergence and accuracy of the solution.

4 To sum up energy contributions from the distributed
reactions; every core computes only the energy
released by a subset of reactions.

The above communication requirements are considerably
high, as shown by the performance results reported in the
following section.

w

3.3 Results
The fact that parallelization of the nucleosynthesis sub-
routines demands much communication between cores
makes the parallel application actually take longer to com-
plete than its 1-core counterpart (see Fig. 4, where the ref-
erence value—sequential version—corresponds to Np = 1
and the total execution time is depicted as the ratio be-
tween parallel and sequential execution times, ¢(Np)/£(1)).
The execution time increases when cores physically sep-
arated (i.e., on different workstations) participate in the
simulation. In sharp contrast, when the parallel applica-
tion is run using cores within the same machine, the ex-
ecution time is kept at bay with respect to the sequential
version, and even small speed-ups are obtained when using
aquad core machine, for two, three and four cores. Figure 5
shows the partial execution times spent on the determina-
tion of reaction rates (panel (a)), matrix assembly (b), con-
vergence check (c), and determination of the overall nu-
clear energy released (d). It is clear that the parallelization
strategy adopted for these different stages is excellent. For
instance, the matrix assembly runs almost 5 times faster
than the sequential version when using 5 cores and almost
7 times faster when using 10 cores. The convergence and
accuracy check and nuclear energy computation times also
yield increases in performance, both running consistently
faster in the parallel version than in the sequential appli-
cation. Performance results for the matrix build-up and
inversion time are also shown in Panel (e). It reveals that
the solution of the system of equations takes consistently

(2018) 5:3

Page 7 of 10

10 T

t(Np)/t(1)

Np

Figure 4 Total execution time as a function of the number of cores.
Two different executions are provided, P2 and P4, in which the first
two or four cores, respectively, are physically located on the same
multi-core machine. Execution P2 has been obtained using only
dual-core workstations, whereas execution P4 has been run on one
quad-core workstation plus 19 dual-core workstations

longer if executed in parallel, for any number of cores used
in the computation. Note that for the matrix inversion, we
do not even get the small improvements when cores phys-
ically located on the same machine are used. Even though
the execution time is more or less controlled up to four
cores (for a simulation run on a quad-core machine), the
performance plummets dramatically with a larger num-
ber of cores. The dramatic loss in performance is therefore
provoked by the parallel solution of the system of equa-
tions. The relative time spent on communications is de-
picted in Panel (f). It clearly exhibits the same pattern un-
derlined for the matrix inversion and total execution times.
While the communication time increases slightly from one
to four cores, it soars rapidly whenever physically sepa-
rated cores are incorporated into the parallel execution.
We conclude that the high communication costs, together
with a relatively limited computation time, are responsible
for the loss in performance.

One final aspect that deserves further discussion is the
reason why the gains in performance found in the other
stages (see Fig. 5) do not make up for the increase in com-
munication times. Figure 6 shows the percentage of the to-
tal simulation time devoted to initialization, global com-
munications (not including MUMPS internal communi-
cations during the solution of the system of equations),
reaction rate calculations, matrix assembly, convergence
check, determination of the nuclear energy released, and

Martin et al. Computational Astrophysics and Cosmology

(2018) 5:3

Page 8 of 10

t(Np)/t(1)

t(Np)/(1)

5 10 15 20
Np
(a)

5 10 15 20
Np
(c)

-

O=_2NWRUIONOOO -~
T

0.9 |-
0.8 f
0.7 |
0.6 |
0.5 -
04 |-
03 |-
0.2 |-
0.1 |-

0 | | |

t(Np)/t(1)

t{(Np)/t(10)

| 0.2 Lu I I | |

5 10 15 20 2 4
Np
(d)

build-up and inversion time. (f) Communication time

Figure 5 Partial execution times: (a) Rates calculation. (b) Matrix assembly. (c) Convergence check. (d) Nuclear energy computation. (e) Matrix

matrix inversion (i.e., solver). The sequential execution
spends most of the time inverting the matrix (82%) and
building the system of equations (15%). The calculation of
the overall nuclear energy released accounts only for 1% of
the total computation time. The relative time spent on the
interpolation of reaction rates is just a 0.44% of the total ex-
ecution time, whereas only 0.06% is spent on convergence
checks. With an increasing number of cores participating
in the simulation, the time spent on global communica-
tions and in the solution of the system of equations grad-
ually tends to account for nearly all the computation time.
This is the reason why improvements in performance in
these stages have no major effect on the overall execution
time.

Having such a loss in performance associated with the
solution of the system of equations, it is compulsory to
analyze whether the selection of MUMPS as a solver has
been appropriate. MUMPS represents one of the few pro-
fessional and supported public domain implementations
of the multifrontal method. Amestoy et al. (2001) have
shown that the MUMPS solver performance for large ma-
trices is excellent. For matrices of order >100,000, very
good speed-ups are accomplished (e.g., between 2.8 and to
3.7, with 4 cores; and between 7.1 and 10.6, with 16 cores).
Note that speed-ups increase with the matrix size as the
computation to communication ratio increases. For ma-
trices of the order between 10,000 and 100,000, moderate

120
100
80
=60
=
Initialization m—
40 Global comm.
Rate calculation
Matrix assembly —
20 Matrix inversion =
Convergence
0 | | Nuclear energy calc.

-
0 2 4 6 8 10 12
Np

Figure 6 Aggregated simulation time (percentage)

speed-ups are accomplished with MUMPS (e.g., 2.4-3.1,
with 4 cores, and 7.2-8.4, with 16 cores; Amestoy et al.
2001). Finally, not much data is available for matrices of or-
der <10,000. This is due to the fact that as the problem di-
mension shrinks, the distributed computation time is also
reduced, whilst communication time diminishes much less
noticeably. Accordingly, the resulting speed-ups are dra-
matically reduced. For instance, Fox (2007), in solving a
system with 5535 elements with the MUMPS solver, re-
ports speed-ups of 1 (i.e., no speed-up at all) with 4 cores,

Martin et al. Computational Astrophysics and Cosmology

and a speed-up of 1.8 for 16 cores. It seems clear that the
poor performance reported in this work is mostly due to
the size (order) of the nucleosynthesis matrix, too small to
maximize the ratio between computation and communi-
cation times. Accordingly, the efficient parallelization of the
matrix build-up and inversion processes in the nucleosyn-
thesis subroutines is therefore not possible, unless > 10,000
nuclear interactions are included.

4 Conclusions

This paper reports on several parallelization strategies that
can be applied to stellar evolution codes, providing rec-
ommendations on when and how parallelization may help
in improving the performance of a code for astrophysi-
cal applications. Parallelization frequently forces to think
about a program in new ways and may virtually require
partial or total rewriting of the serial code. It is therefore
important to understand the potential benefits and risks
beforehand, since sometimes parallelized codes may per-
form even worse than their sequential counterparts.

To this end, two different parallelization strategies have
been reported in this work. With regard to the nucleosyn-
thesis part, efforts have focused on the parallelization of
the solution of the system of equations (that is, the build-
up and inversion of the matrix containing the rates of the
different nuclear interactions). In Wagoner’s two-step lin-
earization technique, the integration method for stellar
nucleosynthesis calculations discussed in this work, the it-
erative procedure places this application in the worst pos-
sible category for parallelization, in which all cores have to
participate throughout the iteration, exchanging interme-
diate results on a regular basis. The huge amount ot time
spent on communications between cores, together with
the small problem size (limited by the number of isotopes
of the nuclear network), result in a much worse perfor-
mance of the parallel application than the 1-core, sequen-
tial version of the code. This stems from the fact that the
communication and message passing times between pro-
cesses largely outgrow the time spent on computation. It
is therefore not advisable to parallelize the nucleosynthesis
portion of a stellar code (or, by extension, a post-processing
code) unless the number of isotopes adopted largely ex-
ceeds 10,000.

With regard to the parallelization of a complete stel-
lar evolution code, efforts have focused on the spheri-
cally symmetric, Lagrangian, implicit hydrodynamic code
SHIVA (José and Hernanz 1998, José 2016), in the frame-
work of a 200-shell simulation of a typical type I X-ray
burst. Two different nuclear reaction networks have been
considered: a reduced one, consisting of 324 isotopes and
1392 reactions; and a more extended network, with 606
nuclides and 3551 nuclear interactions. The performance
of the parallelized version of SHIVA turned out to be excel-
lent: speed-up factors of 26 and 35 have been obtained, for

(2018) 5:3

Page 9 of 10

the reduced (i.e., Model 1) and extended networks (Model
2), respectively, when 42 cores were used. These results,
however, did not match the maximum expected values for
a perfect parallel application (i.e., the computation to com-
munication ratio was large enough so that processing work
could be distributed in an extremely efficient way amongst
processes). To put these results into context, in our exe-
cution environment, a parallel simulation using 42 cores
took ~5.7 hr to compute 200,000 time-steps with a re-
duced nuclear network (cf., 6.1 days in its sequential ver-
sion). The computation time increased to ~20 hr when the
extended network (with 606 nuclides and 3551 nuclear re-
actions) was used, for the same number of time-steps (cf.,
28.6 days in its sequential version). Such excellent results
completely justify the time invested in the parallelization
of the code. Moreover, maximum speed-ups of ~41 and
~85 have been predicted by the performance model when
using 200 cores, for the reduced and extended nuclear net-
works, respectively.

A key ingredient in achieving the large speed-up fac-
tors reported above is the decoupling of the nucleosynthe-
sis subroutines from the set of hydrodynamic/structure
equations adopted in SHIVA. This approach, while having
a minor effect on the expected energetics and chemical
composition of a star, is essential to justify a paralleliza-
tion effort. In sharp contrast, efforts to parallelize FRANEC
(see Refs. Limongi and Chieffi 2003, Chieffi and Limongi
2013, and references therein), another Henyey-type code
in which the nucleosynthesis and structure equations
are solved simultaneously by means of a time-implicit
scheme,” yielded very poor speed-up factors (A. Chieffi,
private com.).

In summary, parallelization of a fully coupled, time-
implicit code can only result in large speed-factors if the
most time-consuming parts of the code (e.g., the nucle-
osynthesis subroutines) are decoupled from the hydro
equations, and therefore, can be handled in a time-explicit
way. Most multidimensional, stellar evolution codes avail-
able to date (e.g., PROMETHEUS Fryxell et al. 1989; FLASH
Fryxell et al. 2000; DOEHUTY Dearborn et al. 2005, 2006;
GADGET?2 Springel 2005) are (time) explicit. While, in gen-
eral, explicit schemes are easier to implement than im-
plicit schemes, the real pay-off is the huge speed-up factors
achievable when parallelized, compared with their 1-core,
sequential versions.

Acknowledgements
This article benefited from discussions within the “ChETEC” COST Action
(CA16117).

Funding

This work has been partially supported by the Spanish MINECO grant
AYA2017-86274-P, by the E.U. FEDER funds, and by the AGAUR/Generalitat de
Catalunya grant SGR-661/2017.

Martin et al. Computational Astrophysics and Cosmology

Abbreviations
AGB star, Asymptotic Giant Branch star; MPI, Message Passing Interface; EOS,
Equation of State; MUMPS, MUltifrontal Massively Parallel Sparse direct Solver.

Availability of data and materials

A simplified version of the SHIVA code, freefallf, is available at
http://www.fen.upc.edu/users/jjose/CRC-Downloads.html. The code applies
Henyey's method to simulate the free-fall collapse of a homogeneous sphere.
See Ref. José (2016), for details.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors have equally contributed to this work. All authors read and
approved the final manuscript.

Author details

' Departament de Fisica, EEBE, Universitat Politécnica de Catalunya, Barcelona,
Spain. “Institut d'Estudis Espacials de Catalunya, Barcelona, Spain.
3Department of Physics and Astronomy, North Carolina State University,
Raleigh, USA.

Endnotes
@ As for the nuclear energy production and nucleosynthesis, neutrino
losses are also implemented explicitly in the SHIVA code. However, as
they do not require intense computation efforts, subroutines handling
neutrino losses have not been parallelized in this work.

Note that Ts=Tn+ Tpp + Tout and Tp =T+ 7-pp/NP + Teomm + Tout-
See, e.g., https.//www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf.

All simulations reported in this paper have been executed in the 42-core
Hyperion cluster of the Astronomy and Astrophysics Group at UPC.

A few exceptions involve reactions such as '?C + '2C, '°0 + '°0, 2°Ne +
“ONe, that take place during some stages of the evolution of stars. See
Refs. lliadis (2015), José (2016), for details.

MUItifrontal Massively Parallel Sparse direct Solver; see
http://mumps.enseeiht.fr/.

-

9 The SHIVA code uses a number of convergence and accuracy criteria to
guarantee, for instance, that the new solution satisfies the mass,
momentum and energy conservation equations.

More recent versions of the FRANEC code, known as FUNS, contain
several solver schemes in which the equations of nucleosynthesis, mixing
and structure can be handled in a coupled or decoupled way (O.
Straniero, private com.). The extensively used MESA code (Paxton et al.
2011, 2013) also solves the nucleosynthesis and composition equations
directly coupled to the structure equations. Note, however, that MESA
contains a number of explicit modules that can be computed in parallel
using OpenMP (Paxton et al. 2011).

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 28 May 2018 Accepted: 8 November 2018
Published online: 16 November 2018

References

Amdahl, GM.: Validity of the single processor approach to achieving large scale
computing capabilities. In: Proceedings of the April 18-20, 1967, Spring
Joint Computer Conference, pp. 483-485. ACM Publ., New York (1967)

Amestoy, P, Guermouche, A, LExcellent, LY, Pralet, S.: Hybrid scheduling for
the parallel solution of linear systems. CERFACS, Tech. Rep., Toulouse,
France (2004)

Amestoy, PR, Duff, LS., LExcellent, J.Y, Koster, J.: A fully asynchronous
multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix
Anal. Appl. 23, 15-41 (2001)

Amestoy, PR, Duff, LS., LExcellent, J.Y,, Li, X.S.: Performance and tuning of two
distributed memory sparse solvers. In: Meza, J., Koelbel, C. (eds.)
Proceedings of the 10th SIAM Conference on Parallel Processing for

(2018) 5:3

Page 10 of 10

Scientific Computing. Society for Industrial & Applied Mathematics,
Portsmouth (2001)

Bader, G, Deuflhard, P: A semi-implicit mid-point rule for stiff systems of
ordinary differential equations. Numer. Math. 41, 373-398 (1983)

Bodenheimer, P, Laughlin, G.P, Rézyczka, M., Yorke, HW.: Numerical Methods in
Astrophysics: An Introduction. CRC/Taylor and Francis, Boca Raton (2006)

Chieffi, A, Limongi, M.: Pre-supernova evolution of rotating solar metallicity
stars in the mass range 13-120 Mg and their explosive yields. Astrophys. J.
764,21-36 (2013)

Dearborn, D.SP, Lattanzio, J.C, Eggleton, PP: Three-dimensional numerical
experimentation on the core helium flash of low-mass red giants.
Astrophys. J. 639, 405-415 (2006)

Dearborn, D.S.P, Wilson, J.R, Mathews, G.J.: Relativistically compressed
exploding white dwarf model for Sagittarius A East. Astrophys. J. 630,
309-320 (2005)

Foster, I.: Designing and Building Parallel Programs. Addison-Wesley, Boston
(1995)

Fox, J.: Fully-kinetic PIC simulations for hall-effect thrusters. PhD thesis,
Massachusetts Institute of Technology (2007)

Fryxell, B, Mdller, E., Arnett, W.D.: Hydrodynamics and nuclear burning.
Max-Planck Inst. for Astrophysics. Rep. 449, Garching, Germany (1989)
Fryxell, B, Olson, K, Ricker, P, Timmes, FX,, Zingale, M., Lamb, D.Q,, MacNeice, P,
Rosner, R, Truran, JW,, Tufo, H.. FLASH: an adaptive mesh hydrodynamics

code for modeling astrophysical thermonuclear flashes. Astrophys.
J.Suppl. Ser. 131, 273-334 (2000)

Gear, CW.: The automatic integration of ordinary differential equations.
Commun. ACM 14, 176-179 (1971)

Graham, R.: MPI: a message-passing interface standard, V3.0. University of
Tennessee, Tech. Rep., Knoxville (2012)

Henyey, L.G., Forbes, J.E, Gould, N.L.: A new method of automatic computation
of stellar evolution. Astrophys. J. 139, 306-317 (1964)

lliadis, C.: Nuclear Physics of Stars, 2nd edn. Wiley-VCH Verlag, Weinheim (2015)

José, J.: Stellar Explosions: Hydrodynamics and Nucleosynthesis. CRC/Taylor
and Francis, Boca Raton (2016)

José, J,, Hernanz, M.: Nucleosynthesis in classical novae: CO versus ONe white
dwarfs. Astrophys. J. 494, 680-690 (1998)

José, J., Moreno, F, Parikh, A, lliadis, C.: Hydrodynamic models of type | X-ray
bursts: metallicity effects. Astrophys. J. Suppl. Ser. 189, 204-239 (2010)

Limongi, M., Chieffi, A Evolution, explosion, and nucleosynthesis of
core-collapse supernovae. Astrophys. J. 592, 404-433 (2003)

Longland, R, Martin, D,, José, J.: Performance improvements for nuclear
reaction network integration. Astron. Astrophys. 563, 67-113 (2014)

McKenney, PE.: Is Parallel Programming Hard, and, If so, What Can You do
About It?. Paper Linux Technology Center, New York (2011)

Pacheco, P: Parallel Programming with MPI. Morgan Kaufmann Publ., San
Francisco (1997)

Parikh, A, José, J., Moreno, F, lliadis, C.: The effects of variations in nuclear
processes on type | X-ray burst nucleosynthesis. Astrophys. J. Suppl. Ser.
178, 110-136 (2008)

Paxton, B, Bildsten, L, Dotter, A, Herwig, F, Lesaffre, P, Timmes, F.: Modules for
experiments in stellar astrophysics (MESA). Astrophys. J. Suppl. Ser. 192,
3-35(2011)

Paxton, B, Cantiello, M., Arras, P, Bildsten, L., Brown, E.F, Dotter, A., Mankovich,
C., Montgomery, M.H, Stello, D, Timmes, FX., Townsend, R.: Modules for
experiments in stellar astrophysics (MESA): planets, oscillations, rotation,
and massive stars. Astrophys. J. Suppl. Ser. 208, 4-42 (2013)

Prantzos, N., Arnould, M., Arcoragi, J.P: Neutron capture nucleosynthesis during
core helium burning in massive stars. Astrophys. J. 315, 209-228 (1987)

Springel, V.: The cosmological simulation code GADGET-2. Mon. Not. R. Astron.
Soc. 364, 1105-1134 (2005)

Thakur, R, Gropp, W.: Improving the performance of MPI collective
communication on switched networks. In: Dongarra, J.D.L, Orlando, S.
(eds.) Recent Advances in Parallel Virtual Machine and Message Passing
Interface, pp. 257-276. Springer, Berlin (2003)

Timmes, FX.: Integration of nuclear reaction networks for stellar
hydrodynamics. Astrophys. J. 124, 241-263 (1999)

Wagoner, RV.: Synthesis of the elements within objects exploding from very
high temperatures. Astrophys. J. Suppl. Ser. 18, 247-295 (1969)

http://www.fen.upc.edu/users/jjose/CRC-Downloads.html
https://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://mumps.enseeiht.fr/

	On the parallelization of stellar evolution codes
	Abstract
	Keywords

	Introduction
	Parallelization of a stellar code with a decoupled, time-explicit treatment of the nucleosynthesis subroutines
	Parallelization strategy
	Performance prediction
	Results

	Parallelization of the nuclear energy generation and nucleosynthesis subroutines
	Numerical treatment of nuclear abundances
	Parallelization strategy
	Results

	Conclusions
	Acknowledgements
	Funding
	Abbreviations
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Endnotes
	Publisher's Note
	References

